Knowledge

Lattice (order)

Source đź“ť

5123: 5206: 5187: 6421: 45: 5314: 5276: 8646: 8354: 5998: 5871: 1724: 1711: 1145: 1135: 1105: 1095: 1073: 1063: 1028: 1006: 996: 961: 929: 919: 894: 862: 847: 827: 795: 785: 775: 755: 723: 703: 693: 683: 651: 631: 587: 567: 557: 520: 495: 485: 453: 428: 391: 361: 329: 267: 232: 6113: 12341: 11763:-irreducible). For example, in Pic. 2, the elements 2, 3, 4, and 5 are join irreducible, while 12, 15, 20, and 30 are meet irreducible. Depending on definition, the bottom element 1 and top element 60 may or may not be considered join irreducible and meet irreducible, respectively. In the lattice of 4805: 8257:
Every poset that is a complete semilattice is also a complete lattice. Related to this result is the interesting phenomenon that there are various competing notions of homomorphism for this class of posets, depending on whether they are seen as complete lattices, complete join-semilattices, complete
6410:
partially ordered by divisibility is not a lattice. Every pair of elements has an upper bound and a lower bound, but the pair 2, 3 has three upper bounds, namely 12, 18, and 36, none of which is the least of those three under divisibility (12 and 18 do not divide each other). Likewise the pair 12,
9778:
Both of these classes have interesting properties. For example, continuous lattices can be characterized as algebraic structures (with infinitary operations) satisfying certain identities. While such a characterization is not known for algebraic lattices, they can be described "syntactically" via
4695: 4361:
This is consistent with the associativity and commutativity of meet and join: the join of a union of finite sets is equal to the join of the joins of the sets, and dually, the meet of a union of finite sets is equal to the meet of the meets of the sets, that is, for finite subsets
5122: 8253:
its subsets have both a join and a meet. In particular, every complete lattice is a bounded lattice. While bounded lattice homomorphisms in general preserve only finite joins and meets, complete lattice homomorphisms are required to preserve arbitrary joins and meets.
3285:. The absorption laws, the only axioms above in which both meet and join appear, distinguish a lattice from an arbitrary pair of semilattice structures and assure that the two semilattices interact appropriately. In particular, each semilattice is the 4700: 1455: 1384: 4568: 5841:
complete lattice is a lattice with a least element, where the lattice operations are given by restricting the respective operations of the arithmetic lattice. This is the specific property that distinguishes arithmetic lattices from
5060:
By commutativity, associativity and idempotence one can think of join and meet as operations on non-empty finite sets, rather than on pairs of elements. In a bounded lattice the join and meet of the empty set can also be defined (as
3701: 4593: 4495: 2887:. In addition to this extrinsic definition as a subset of some other algebraic structure (a lattice), a partial lattice can also be intrinsically defined as a set with two partial binary operations satisfying certain axioms. 5205: 1699: 1313: 4844:
Every lattice can be embedded into a bounded lattice by adding a greatest and a least element. Furthermore, every non-empty finite lattice is bounded, by taking the join (respectively, meet) of all elements, denoted by
7071: 6692: 9191: 1584: 1540: 6528: 1496: 7156: 9933: 8962: 8555: 3518: 10524: 8840: 8632: 4298: 4252: 3941: 10449: 7309: 4965: 2774: 1721:
indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by
9466: 6902: 9288: 6843: 5027: 4904: 12611: 2705: 1654: 1551: 1507: 1466: 1395: 1324: 1268: 6776: 3566: 5658: 11846: 6609: 7362: 11694: 4359: 4840: 3993: 11544: 7690: 7606: 4330: 2782:
argument that every non-empty finite subset of a lattice has a least upper bound and a greatest lower bound. With additional assumptions, further conclusions may be possible; see
10840: 8476: 8432: 3144: 3101: 1257: 7532: 7475: 6408: 4500: 3424: 2448: 9055: 4031: 3606: 3380: 2938: 5275: 1643: 10010: 5615: 2639: 2599: 10631: 11803: 8098: 5186: 2830: 12055: 11165: 11027: 10906: 10862: 10311: 7505: 7448: 5263: 9981: 9102: 8717: 8214: 6271: 4183: 3279: 3213: 2534: 9609: 6350: 5170: 4427: 11579: 11501: 10789: 7905: 6981: 6309: 4152: 3601: 3247: 3182: 2556: 2512: 2402: 1390: 12194: 11246: 9375: 8130: 7879: 6946: 5956: 5306: 4121: 3747: 3342: 3053: 11872: 11761: 11648: 11217: 11110: 10705: 10596: 10172: 9721: 9635: 9223: 8993:
For an overview of stronger notions of distributivity that are appropriate for complete lattices and that are used to define more special classes of lattices such as
8863: 8761: 8388: 7931: 6195: 5731: 3706:
One can now check that the relation ≤ introduced in this way defines a partial ordering within which binary meets and joins are given through the original operations
3001: 2478: 12304: â€“ lattice of all clones (sets of logical connectives closed under composition and containing all projections) on a two-element set {0, 1}, ordered by inclusion 12020: 11994: 11191: 10932: 10140: 8261:"Partial lattice" is not the opposite of "complete lattice" – rather, "partial lattice", "lattice", and "complete lattice" are increasingly restrictive definitions. 4078: 1797: 1319: 11737: 10563: 10377: 10350: 10259: 9701: 8883: 8741: 6711: 6547: 5690: 3889: 3826: 3724: 3444: 3319: 2981: 6224: 6071: 4300:
and therefore every element of a poset is both an upper bound and a lower bound of the empty set. This implies that the join of an empty set is the least element
1878: 11308: 1849: 1823: 1611: 1228: 12125: 11622: 11443: 11366: 11331: 11081: 10977: 10676: 10199: 10108: 9678: 9540: 8339: 8316: 8173: 8066: 7997: 7954: 7787: 6094: 5979: 5774: 5547: 5520: 5474: 5451: 5349: 5102: 4423: 3804: 2857: 12219: 12165: 12145: 12102: 12075: 11964: 11944: 11924: 11900: 11713: 11599: 11462: 11420: 11389: 11279: 11130: 11054: 10952: 10745: 10725: 10653: 10279: 10229: 10074: 10054: 10034: 9875: 9855: 9835: 9815: 9655: 9580: 9560: 9517: 9497: 8150: 8039: 8019: 7974: 7847: 7827: 7807: 7764: 7744: 7710: 7626: 7250: 7230: 7210: 7178: 6985: 6445: 6157: 6137: 6042: 6022: 5915: 5895: 5813: 5793: 5751: 5494: 5417: 5393: 5369: 5079: 4588: 4400: 4380: 4205: 4098: 4051: 3868: 3464: 3021: 2958: 2877: 1758: 4800:{\displaystyle \bigwedge (A\cup \varnothing )=\left(\bigwedge A\right)\wedge \left(\bigwedge \varnothing \right)=\left(\bigwedge A\right)\wedge 1=\bigwedge A,} 4187:
A partially ordered set is a bounded lattice if and only if every finite set of elements (including the empty set) has a join and a meet. For every element
12618: 3148:
The following two identities are also usually regarded as axioms, even though they follow from the two absorption laws taken together. These are called
5313: 8229:
We now introduce a number of important properties that lead to interesting special classes of lattices. One, boundedness, has already been discussed.
7075: 9884: 3751:
Since the two definitions of a lattice are equivalent, one may freely invoke aspects of either definition in any way that suits the purpose at hand.
1649: 8890: 1263: 3469: 8768: 7370:
binary meets and joins. For bounded lattices, preservation of least and greatest elements is just preservation of join and meet of the empty set.
6411:
18 has three lower bounds, namely 1, 2, and 3, none of which is the greatest of those three under divisibility (2 and 3 do not divide each other).
9937:
In general, some elements of a bounded lattice might not have a complement, and others might have more than one complement. For example, the set
2788:
for more discussion of this subject. That article also discusses how one may rephrase the above definition in terms of the existence of suitable
13179: 4690:{\displaystyle \bigvee (A\cup \varnothing )=\left(\bigvee A\right)\vee \left(\bigvee \varnothing \right)=\left(\bigvee A\right)\vee 0=\bigvee A} 3896: 10313:
If the pseudo-complement of every element of a Heyting algebra is in fact a complement, then the Heyting algebra is in fact a Boolean algebra.
6614: 2216: 9107: 7255: 1546: 5104:
respectively). This makes bounded lattices somewhat more natural than general lattices, and many authors require all lattices to be bounded.
13135:
Schlimm, Dirk (November 2011). "On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and others".
1502: 6450: 1461: 7381:. The converse is not true: monotonicity by no means implies the required preservation of meets and joins (see Pic. 9), although an 9683:
A lattice is called lower semimodular if its dual is semimodular. For finite lattices this means that the previous conditions hold with
5560:
in their usual order form an unbounded lattice, under the operations of "min" and "max". 1 is bottom; there is no top (see Pic. 4).
13967: 132: 8483: 3522: 13950: 12498: 7378: 7367: 11882:. Every join-prime element is also join irreducible, and every meet-prime element is also meet irreducible. The converse holds if 10454: 8560: 4257: 13480: 4214: 7313: 13316: 10382: 9019:
For some applications the distributivity condition is too strong, and the following weaker property is often useful. A lattice
9735:, it is natural to seek to approximate the elements in a partial order by "much simpler" elements. This leads to the class of 7188:. When lattices with more structure are considered, the morphisms should "respect" the extra structure, too. In particular, a 2710: 13072: 13052: 13013: 8990:. Each distributive lattice is isomorphic to a lattice of sets (with union and intersection as join and meet, respectively). 4909: 12244:
of a partially ordered set, and are therefore important for lattice theory. Details can be found in the respective entries.
9382: 5053:
is the only defining identity that is peculiar to lattice theory. A bounded lattice can also be thought of as a commutative
13797: 13214: 6848: 9228: 6792: 4970: 13087: 12548: 4848: 3105: 3062: 2644: 9304:(shown in Pic. 11). Besides distributive lattices, examples of modular lattices are the lattice of submodules of a 12999: 12438: 6226:
is a lattice if and only if it has at most one element. In particular the two-element discrete poset is not a lattice.
2209: 13933: 13792: 12956: 12939: 12775: 12696: 12641: 3289:
of the other. The absorption laws can be viewed as a requirement that the meet and join semilattices define the same
88: 66: 8295:. A conditionally complete lattice is either a complete lattice, or a complete lattice without its maximum element 6715: 59: 13787: 5620: 11808: 8978:; they are shown in Pictures 10 and 11, respectively. A lattice is distributive if and only if it does not have a 13423: 13093: 12387:
Note that in many applications the sets are only partial lattices: not every pair of elements has a meet or join.
8998: 6551: 4156: 3186: 13505: 13110: 12229:
However, many sources and mathematical communities use the term "atomic" to mean "atomistic" as defined above.
4125: 3155: 125: 12876:
Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications
7366:
In the order-theoretic formulation, these conditions just state that a homomorphism of lattices is a function
3344:
Since the commutative, associative and absorption laws can easily be verified for these operations, they make
2360:
A lattice can be defined either order-theoretically as a partially ordered set, or as an algebraic structure.
14005: 13824: 13744: 13239: 13034: 11653: 9354:. For a graded lattice, (upper) semimodularity is equivalent to the following condition on the rank function 9002: 5041:. Because meet and join both commute and associate, a lattice can be viewed as consisting of two commutative 2202: 17: 13609: 13538: 13418: 13229: 13086:
R. Freese, J. Jezek, and J. B. Nation, 1985. "Free Lattices". Mathematical Surveys and Monographs Vol. 42.
12516: 4810: 4335: 3948: 11506: 7635: 7551: 13512: 13500: 13463: 13438: 13413: 13367: 13336: 13234: 12542: 12448: 12319: 10811: 10084: 8437: 8393: 4303: 2784: 2330: 2071: 1233: 8287:
has a join (that is, a least upper bound). Such lattices provide the most direct generalization of the
6357: 3388: 2415: 13809: 13443: 13433: 13309: 13005: 12688: 10211:
are an example of distributive lattices where some members might be lacking complements. Every element
9022: 3998: 3347: 2905: 1617: 13782: 13448: 12433: 12265: 9986: 8966:
A lattice that satisfies the first or, equivalently (as it turns out), the second axiom, is called a
5570: 2604: 2564: 2280: 118: 13149: 10601: 6420: 13714: 13341: 12198: 11776: 9780: 8994: 8071: 7510: 7453: 2806: 1192: 1016: 185: 53: 12025: 11402:
We now define some order-theoretic notions of importance to lattice theory. In the following, let
11135: 10982: 10867: 10845: 10284: 7488: 7431: 5221: 1450:{\displaystyle {\begin{aligned}a\neq {}&b\Rightarrow \\aRb{\text{ or }}&bRa\end{aligned}}} 14000: 13962: 13945: 12468: 12458: 12417: 10175: 9940: 9066: 8681: 8178: 6232: 5696: 3252: 2961: 2797: 2517: 2296: 2162: 12655: 11767:
with the usual order, each element is join irreducible, but none is completely join irreducible.
9585: 6314: 6311:
so ordered is not a lattice because the pair 2, 3 lacks a join; similarly, 2, 3 lacks a meet in
5134: 13874: 13490: 13144: 11549: 11474: 10762: 8675: 7884: 6951: 6276: 5215: 3571: 3286: 3220: 2779: 2539: 2491: 2481: 2375: 2310: 1379:{\displaystyle {\begin{aligned}aRb{\text{ and }}&bRa\\\Rightarrow a={}&b\end{aligned}}} 1162: 155: 70: 12750: 12715: 12170: 11222: 9357: 8103: 7852: 6919: 5920: 5858:
Further examples of lattices are given for each of the additional properties discussed below.
5826:) is a (rather specific) bounded lattice. This class gives rise to a broad range of practical 5287: 4103: 3729: 3324: 3026: 13852: 13687: 13678: 13547: 13428: 13382: 13346: 13302: 12964: 12792: 12734: 12526: 12081: 11851: 11746: 11627: 11196: 11086: 10681: 10568: 9706: 9614: 9202: 8848: 8746: 8367: 7910: 6174: 5710: 5700: 2986: 2457: 2369: 2292: 2248: 1717:
indicates that the column's property is always true the row's term (at the very left), while
1172: 165: 11999: 11973: 11170: 10911: 10145: 5827: 4060: 1767: 13940: 13899: 13889: 13879: 13624: 13587: 13577: 13557: 13542: 12478: 12453: 12397: 12280: 12276: 12237: 12233: 11722: 10541: 10355: 10328: 10116: 10077: 10076:(see Pic. 11). A bounded lattice for which every element has a complement is called a 9686: 9305: 8868: 8726: 8665: 6696: 6532: 5982: 5663: 4563:{\displaystyle \bigwedge (A\cup B)=\left(\bigwedge A\right)\wedge \left(\bigwedge B\right)} 3874: 3811: 3709: 3429: 3304: 2966: 2149: 2141: 2113: 2108: 2099: 2056: 1998: 1738: 949: 224: 10238: 6200: 6047: 3696:{\displaystyle a=a\wedge b{\text{ implies }}b=b\vee (b\wedge a)=(a\wedge b)\vee b=a\vee b} 1854: 8: 13867: 13778: 13724: 13683: 13673: 13562: 13495: 13458: 12503: 12422: 12362: 11967: 11287: 9351: 9345: 9333: 9329: 9325: 8670:
Since lattices come with two binary operations, it is natural to ask whether one of them
2900: 2303: 2167: 2157: 2008: 1908: 1900: 1891: 1881:
A term's definition may require additional properties that are not listed in this table.
1828: 1802: 1761: 1590: 1207: 1197: 608: 190: 107: 13124: 12107: 11604: 11425: 11348: 11313: 11063: 10959: 10658: 10181: 10090: 9660: 9522: 8321: 8298: 8155: 8048: 7979: 7936: 7769: 6076: 5961: 5756: 5529: 5502: 5456: 5433: 5331: 5084: 5045:
having the same domain. For a bounded lattice, these semigroups are in fact commutative
4405: 3786: 2839: 13979: 13906: 13759: 13668: 13658: 13599: 13517: 13453: 13162: 13061: 13040: 12844: 12809: 12763: 12407: 12392: 12324: 12313: â€“ mathematical object formed by an order on the way of parenthesing an expression 12204: 12150: 12130: 12087: 12060: 11949: 11929: 11909: 11885: 11698: 11584: 11447: 11405: 11374: 11338: 11264: 11115: 11039: 10937: 10730: 10710: 10638: 10264: 10214: 10059: 10039: 10019: 9860: 9840: 9820: 9800: 9761: 9640: 9565: 9545: 9502: 9482: 9317: 8288: 8135: 8024: 8004: 7959: 7832: 7812: 7792: 7749: 7729: 7695: 7611: 7382: 7235: 7215: 7195: 7163: 6430: 6142: 6122: 6027: 6007: 5900: 5880: 5838: 5798: 5778: 5736: 5550: 5523: 5479: 5402: 5378: 5354: 5064: 4573: 4385: 4365: 4190: 4083: 4036: 3853: 3449: 3006: 2943: 2862: 2793: 2485: 2451: 2276: 2264: 2256: 1973: 1964: 1922: 1743: 1187: 1167: 1157: 1083: 180: 160: 150: 13819: 13916: 13894: 13754: 13739: 13719: 13522: 13248: 13195: 13068: 13048: 13009: 12952: 12947: 12935: 12771: 12692: 12637: 12301: 11368: 11057: 10954: 10232: 9770: 8270: 7374: 6097: 5843: 5557: 5108: 5054: 2789: 2318: 13166: 12978: 13729: 13582: 13190: 13175: 13154: 13026: 12995: 12930: 12879: 12836: 12801: 12630: 12473: 12412: 12296: 9792: 9736: 9472: 8238: 7389: 5847: 5819: 5564: 5424: 5396: 4490:{\displaystyle \bigvee (A\cup B)=\left(\bigvee A\right)\vee \left(\bigvee B\right)} 4054: 3765: 2833: 2558: 2345: 2244: 1993: 882: 815: 2018: 13911: 13694: 13572: 13552: 13468: 13362: 12493: 12259: 10208: 9752: 9748: 9321: 9313: 9014: 8224: 7422: 5834: 5038: 2338: 2326: 2079: 2066: 2003: 1940: 540: 111: 31: 9739:, consisting of posets where every element can be obtained as the supremum of a 13829: 13814: 13804: 13663: 13641: 13619: 12402: 12310: 9817:
be a bounded lattice with greatest element 1 and least element 0. Two elements
9723:
exchanged, "covers" exchanged with "is covered by", and inequalities reversed.
8671: 7546: 5050: 4208: 2792:
between related partially ordered sets—an approach of special interest for the
2284: 2127: 1694:{\displaystyle {\begin{aligned}aRb\Rightarrow \\{\text{not }}bRa\end{aligned}}} 411: 13158: 7421:
is a bijective lattice endomorphism. Lattices and their homomorphisms form a
1308:{\displaystyle {\begin{aligned}&aRb\\\Rightarrow {}&bRa\end{aligned}}} 13994: 13928: 13884: 13862: 13734: 13604: 13592: 13397: 13251: 12989:
The standard contemporary introductory text, somewhat harder than the above:
12483: 12462: 12443: 12253: 11874:, although this is unusual. This too can be generalized to obtain the notion 9732: 5851: 5177: 5173: 3832: 3290: 2013: 1978: 1935: 1182: 1177: 349: 175: 170: 8970:. The only non-distributive lattices with fewer than 6 elements are called M 5476:
ordered by inclusion, is also a lattice, and will be bounded if and only if
3945:
A bounded lattice may also be defined as an algebraic structure of the form
13749: 13631: 13614: 13532: 13372: 13325: 12488: 12366: 12286: 11764: 11310:
The free semilattice is defined to consist of all of the finite subsets of
11256: 10802: 10793: 9740: 9332:
with the ordering "is more specific than" is a non-modular lattice used in
7181: 5704: 5695:
The natural numbers also form a lattice under the operations of taking the
2314: 2288: 2240: 2236: 2187: 2118: 1952: 13100:. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press. 7066:{\displaystyle f\left(a\vee _{L}b\right)=f(a)\vee _{M}f(b),{\text{ and }}} 13955: 13648: 13527: 13392: 12270: 8292: 7396: 7185: 6687:{\displaystyle f(u)\wedge f(v)=u^{\prime }\wedge u^{\prime }=u^{\prime }} 3282: 2409: 2322: 2313:. Since the two definitions are equivalent, lattice theory draws on both 2177: 2172: 2061: 2051: 2025: 473: 9186:{\displaystyle (a\wedge c)\vee (b\wedge c)=((a\wedge c)\vee b)\wedge c.} 1579:{\displaystyle {\begin{aligned}a\wedge b\\{\text{exists}}\end{aligned}}} 13923: 13857: 13698: 12883: 12848: 12813: 9297: 8645: 8353: 6167:
Most partially ordered sets are not lattices, including the following.
5419:
itself and the empty set. In this lattice, the supremum is provided by
5042: 1927: 671: 9350:
A finite lattice is modular if and only if it is both upper and lower
1535:{\displaystyle {\begin{aligned}a\vee b\\{\text{exists}}\end{aligned}}} 13974: 13847: 13653: 13275: 13256: 12427: 12355: 11334: 9751:
of a poset for obtaining these directed sets, then the poset is even
9744: 7406: 7385: 6523:{\displaystyle f(u)\vee f(v)=u^{\prime }\vee u^{\prime }=u^{\prime }} 5420: 5372: 2268: 2182: 1988: 1945: 1913: 1491:{\displaystyle {\begin{aligned}\min S\\{\text{exists}}\end{aligned}}} 13180:"Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler" 12840: 12805: 5107:
The algebraic interpretation of lattices plays an essential role in
3603:
The laws of absorption ensure that both definitions are equivalent:
13769: 13636: 13387: 12351: 12222: 11029:
The value of the rank function for a lattice element is called its
10202: 8674:
over the other, that is, whether one or the other of the following
6782: 5997: 4100:(the lattice's top) is the identity element for the meet operation 3301:
An order-theoretic lattice gives rise to the two binary operations
2252: 1983: 288: 8258:
meet-semilattices, or as join-complete or meet-complete lattices.
3385:
The converse is also true. Given an algebraically defined lattice
13281: 12902: 5870: 2260: 12890: 7151:{\displaystyle f\left(a\wedge _{L}b\right)=f(a)\wedge _{M}f(b).} 2561:. Both operations are monotone with respect to the given order: 13294: 13266: 12241: 9928:{\displaystyle x\vee y=1\quad {\text{ and }}\quad x\wedge y=0.} 8480:
The labelled elements also violate the distributivity equation
6447:
between lattices that preserves neither joins nor meets, since
5046: 3023:
satisfying the following axiomatic identities for all elements
2272: 1917: 13285:
sequence A006966 (Number of unlabeled lattices with
10747:
have the same length, then the lattice is said to satisfy the
8957:{\displaystyle a\wedge (b\vee c)=(a\wedge b)\vee (a\wedge c).} 8550:{\displaystyle c\wedge (a\vee b)=(c\wedge a)\vee (c\wedge b),} 6112: 11650:. When the first condition is generalized to arbitrary joins 3513:{\displaystyle a\leq b{\text{ if }}a=a\wedge b,{\text{ or }}} 2307: 12951:, Lecture Notes in Mathematics 1533, Springer Verlag, 1992. 12855: 12279: â€“ Nonempty, upper-bounded, downward-closed subset and 10519:{\displaystyle x_{0}<x_{1}<x_{2}<\ldots <x_{n}.} 8835:{\displaystyle a\vee (b\wedge c)=(a\vee b)\wedge (a\vee c).} 8627:{\displaystyle c\vee (a\wedge b)=(c\vee a)\wedge (c\vee b).} 7766:
that is a lattice with the same meet and join operations as
5850:. Both of these classes of complete lattices are studied in 5322:
Lattice of nonnegative integer pairs, ordered componentwise.
4293:{\displaystyle {\text{ for all }}a\in \varnothing ,a\leq x,} 13284: 12726: 12724: 9747:
the element. If one can additionally restrict these to the
8360:
Smallest non-modular (and hence non-distributive) lattice N
5032: 4247:{\displaystyle {\text{ for all }}a\in \varnothing ,x\leq a} 10805:
for an alternative meaning), if it can be equipped with a
10201:
called complementation, introduces an analogue of logical
7415:
is a lattice homomorphism from a lattice to itself, and a
3936:{\displaystyle 0\leq x\leq 1\;{\text{ for every }}x\in L.} 10444:{\displaystyle \left\{x_{0},x_{1},\ldots ,x_{n}\right\},} 5692:
is the bottom element; there is no top (see Pic. 5).
3296: 2836:– they are undefined if their value is not in the subset 12983:
Lattice Theory: First concepts and distributive lattices
12878:. Continuous Lattices. Vol. 871. pp. 159–208. 12721: 7304:{\displaystyle f\left(0_{L}\right)=0_{M},{\text{ and }}} 6273:
partially ordered by divisibility is a lattice, the set
4960:{\textstyle 0=\bigwedge L=a_{1}\land \cdots \land a_{n}} 2769:{\displaystyle a_{1}\wedge b_{1}\leq a_{2}\wedge b_{2}.} 12330: 9755:. Both concepts can be applied to lattices as follows: 9296:
A lattice is modular if and only if it does not have a
11397: 10534:, or one less than its number of elements. A chain is 10241: 10148: 10119: 10083:
A complemented lattice that is also distributive is a
9991: 9471:
Another equivalent (for graded lattices) condition is
9461:{\displaystyle r(x)+r(y)\geq r(x\wedge y)+r(x\vee y).} 7377:
with respect to the associated ordering relation; see
4912: 4851: 4338: 4332:
and the meet of the empty set is the greatest element
4306: 13131:
Textbook with numerous attributions in the footnotes.
12551: 12207: 12173: 12153: 12133: 12110: 12090: 12063: 12028: 12002: 11976: 11952: 11932: 11912: 11888: 11854: 11811: 11779: 11749: 11725: 11701: 11656: 11630: 11607: 11587: 11552: 11509: 11477: 11450: 11428: 11408: 11377: 11351: 11316: 11290: 11267: 11225: 11199: 11173: 11138: 11118: 11089: 11066: 11042: 10985: 10962: 10940: 10914: 10870: 10848: 10814: 10765: 10733: 10713: 10684: 10661: 10641: 10604: 10571: 10544: 10457: 10385: 10358: 10331: 10287: 10267: 10217: 10184: 10093: 10062: 10042: 10022: 9989: 9943: 9887: 9863: 9843: 9823: 9803: 9786: 9709: 9689: 9663: 9643: 9617: 9588: 9568: 9548: 9525: 9505: 9485: 9385: 9360: 9231: 9205: 9199:
This condition is equivalent to the following axiom:
9110: 9069: 9025: 8893: 8871: 8851: 8771: 8749: 8729: 8684: 8563: 8486: 8440: 8396: 8370: 8324: 8301: 8181: 8158: 8138: 8106: 8074: 8051: 8027: 8007: 7982: 7962: 7939: 7913: 7887: 7855: 7835: 7815: 7795: 7772: 7752: 7732: 7698: 7638: 7614: 7554: 7513: 7491: 7456: 7434: 7316: 7258: 7238: 7218: 7198: 7166: 7078: 6988: 6954: 6922: 6897:{\displaystyle \left(M,\vee _{M},\wedge _{M}\right),} 6851: 6795: 6786: 6718: 6699: 6617: 6554: 6535: 6453: 6433: 6360: 6317: 6279: 6235: 6203: 6177: 6145: 6125: 6079: 6050: 6030: 6010: 5964: 5923: 5903: 5883: 5801: 5781: 5759: 5739: 5713: 5666: 5623: 5573: 5532: 5505: 5482: 5459: 5436: 5405: 5381: 5357: 5334: 5290: 5224: 5176:. The name "lattice" is suggested by the form of the 5137: 5087: 5067: 4973: 4813: 4703: 4596: 4576: 4503: 4430: 4408: 4388: 4368: 4260: 4217: 4193: 4159: 4128: 4106: 4086: 4063: 4039: 4001: 3951: 3899: 3877: 3856: 3814: 3789: 3732: 3712: 3609: 3574: 3525: 3472: 3452: 3432: 3391: 3350: 3327: 3307: 3255: 3223: 3189: 3158: 3108: 3065: 3029: 3009: 2989: 2969: 2946: 2908: 2865: 2842: 2809: 2713: 2647: 2607: 2567: 2542: 2520: 2494: 2460: 2418: 2378: 1857: 1831: 1805: 1770: 1746: 1652: 1620: 1593: 1549: 1505: 1464: 1393: 1322: 1266: 1236: 1210: 12963:
Elementary texts recommended for those with limited
12928:
Burris, Stanley N., and Sankappanavar, H. P., 1981.
12629:
Burris, Stanley N., and Sankappanavar, H. P., 1981.
12315:
Pages displaying wikidata descriptions as a fallback
12306:
Pages displaying wikidata descriptions as a fallback
12291:
Pages displaying wikidata descriptions as a fallback
10113:
In the case that the complement is unique, we write
10012:
does not have a complement. In the bounded lattice N
9765:
is a complete lattice that is continuous as a poset.
9283:{\displaystyle a\vee (b\wedge c)=(a\vee b)\wedge c.} 6838:{\displaystyle \left(L,\vee _{L},\wedge _{L}\right)} 5022:{\displaystyle L=\left\{a_{1},\ldots ,a_{n}\right\}} 4899:{\textstyle 1=\bigvee L=a_{1}\lor \cdots \lor a_{n}} 12606:{\displaystyle a=a\vee (a\wedge (a\vee a))=a\vee a} 9774:
is a complete lattice that is algebraic as a poset.
2700:{\displaystyle a_{1}\vee b_{1}\leq a_{2}\vee b_{2}} 13060: 13033:, 3rd ed. Vol. 25 of AMS Colloquium Publications. 12605: 12213: 12188: 12159: 12139: 12119: 12096: 12069: 12049: 12014: 11988: 11958: 11938: 11918: 11894: 11866: 11840: 11797: 11755: 11731: 11707: 11688: 11642: 11616: 11593: 11573: 11538: 11495: 11456: 11437: 11414: 11383: 11360: 11325: 11302: 11273: 11240: 11211: 11185: 11159: 11124: 11104: 11075: 11048: 11021: 10971: 10946: 10926: 10900: 10856: 10834: 10783: 10739: 10719: 10699: 10670: 10647: 10625: 10590: 10557: 10518: 10443: 10371: 10344: 10316: 10305: 10273: 10253: 10223: 10193: 10166: 10134: 10102: 10068: 10048: 10028: 10004: 9983:with its usual ordering is a bounded lattice, and 9975: 9927: 9869: 9849: 9829: 9809: 9715: 9695: 9672: 9649: 9629: 9603: 9574: 9554: 9534: 9511: 9491: 9460: 9369: 9282: 9217: 9185: 9096: 9049: 8956: 8877: 8857: 8834: 8755: 8735: 8711: 8626: 8549: 8470: 8426: 8382: 8333: 8310: 8208: 8167: 8144: 8124: 8092: 8060: 8033: 8013: 7991: 7968: 7948: 7925: 7899: 7873: 7841: 7821: 7801: 7781: 7758: 7738: 7704: 7684: 7620: 7600: 7526: 7499: 7469: 7442: 7356: 7303: 7244: 7224: 7204: 7172: 7150: 7065: 6975: 6940: 6896: 6837: 6770: 6705: 6686: 6603: 6541: 6522: 6439: 6402: 6344: 6303: 6265: 6218: 6189: 6151: 6131: 6088: 6065: 6036: 6016: 5973: 5950: 5909: 5889: 5807: 5787: 5768: 5745: 5725: 5684: 5652: 5609: 5541: 5514: 5488: 5468: 5445: 5411: 5387: 5363: 5343: 5300: 5257: 5164: 5096: 5073: 5021: 4959: 4898: 4834: 4799: 4689: 4582: 4562: 4489: 4417: 4394: 4374: 4353: 4324: 4292: 4246: 4199: 4177: 4146: 4115: 4092: 4072: 4045: 4025: 3987: 3935: 3883: 3862: 3820: 3798: 3741: 3718: 3695: 3595: 3560: 3512: 3458: 3438: 3418: 3374: 3336: 3313: 3273: 3241: 3207: 3176: 3138: 3095: 3047: 3015: 2995: 2975: 2952: 2932: 2871: 2851: 2824: 2768: 2699: 2633: 2593: 2550: 2528: 2506: 2472: 2442: 2396: 1872: 1843: 1817: 1791: 1752: 1693: 1637: 1605: 1578: 1534: 1490: 1449: 1378: 1307: 1251: 1222: 12293:(generalization to non-commutative join and meet) 11333:with the semilattice operation given by ordinary 8652:Smallest non-distributive (but modular) lattice M 13992: 13246: 13207: 12770:, Cambridge University Press, pp. 103–104, 10087:. For a distributive lattice, the complement of 5037:Lattices have some connections to the family of 1469: 13208:Garrett Birkhoff (1967). James C. Abbot (ed.). 13108: 12273: â€“ Order whose elements are all comparable 10231:of a Heyting algebra has, on the other hand, a 5195:Lattice of integer divisors of 60, ordered by " 12993: 12861: 12826: 12789: 12746: 12730: 12711: 11371:gave a construction based on polynomials over 10261:The pseudo-complement is the greatest element 9726: 6771:{\displaystyle 0^{\prime }=f(0)=f(u\wedge v).} 5815:is top. Pic. 2 shows a finite sublattice. 3561:{\displaystyle a\leq b{\text{ if }}b=a\vee b,} 13310: 7192:(usually called just "lattice homomorphism") 5653:{\displaystyle a\leq c{\text{ and }}b\leq d.} 2251:in which every pair of elements has a unique 2210: 1734:in the "Antisymmetric" column, respectively. 126: 13109:Ĺ tÄ•pánka Bilová (2001). Eduard Fuchs (ed.). 11841:{\displaystyle x\leq a{\text{ or }}x\leq b.} 9970: 9944: 7679: 7673: 7667: 7652: 7595: 7589: 7583: 7568: 7373:Any homomorphism of lattices is necessarily 6397: 6361: 6336: 6318: 6298: 6280: 6260: 6236: 6171:A discrete poset, meaning a poset such that 5249: 5225: 5156: 5138: 2960:and two binary, commutative and associative 2431: 2419: 12827:Philip Whitman (1942). "Free Lattices II". 8264: 6785:between two lattices flows easily from the 6604:{\displaystyle 1^{\prime }=f(1)=f(u\vee v)} 5861: 2363: 13968:Positive cone of a partially ordered group 13317: 13303: 12790:Philip Whitman (1941). "Free Lattices I". 7357:{\displaystyle f\left(1_{L}\right)=1_{M}.} 3915: 2217: 2203: 133: 119: 13194: 13148: 12682: 12613:and dually". Birkhoff attributes this to 10850: 10828: 8218: 7516: 7493: 7459: 7436: 7252:should also have the following property: 6789:algebraic definition. Given two lattices 5291: 5284:Lattice of positive integers, ordered by 2890: 2547: 2543: 2525: 2521: 89:Learn how and when to remove this message 13951:Positive cone of an ordered vector space 13174: 13122: 12873: 12614: 12538: 8644: 8352: 6419: 6415: 6111: 5996: 5869: 5567:of the natural numbers, ordered so that 5453:the collection of all finite subsets of 5033:Connection to other algebraic structures 2325:include lattices, which in turn include 2235:is an abstract structure studied in the 52:This article includes a list of general 13134: 13058: 12908: 12896: 12762: 12522: 11689:{\displaystyle \bigvee _{i\in I}a_{i},} 4807:which is consistent with the fact that 3382:into a lattice in the algebraic sense. 2488:(i.e. greatest lower bound, denoted by 2263:(also called a greatest lower bound or 14: 13993: 13067:(Second ed.). Basel: Birkhäuser. 4354:{\textstyle \bigwedge \varnothing =1.} 3297:Connection between the two definitions 2302:Lattices can also be characterized as 27:Set whose pairs have minima and maxima 13298: 13247: 12653: 7849:such that for every pair of elements 5846:, for which the compacts only form a 4835:{\displaystyle A\cup \varnothing =A.} 3988:{\displaystyle (L,\vee ,\wedge ,0,1)} 3763:is a lattice that additionally has a 12434:Algebraizations of first-order logic 12334: 12331:Applications that use lattice theory 11926:have a bottom element 0. An element 11539:{\displaystyle x=a{\text{ or }}x=b.} 8678:laws holds for every three elements 7685:{\displaystyle f^{-1}\{f(1)\}=\{1\}} 7601:{\displaystyle f^{-1}\{f(0)\}=\{0\}} 4325:{\textstyle \bigvee \varnothing =0,} 3703:and dually for the other direction. 2454:(i.e. least upper bound, denoted by 2255:(also called a least upper bound or 1737:All definitions tacitly require the 38: 13203:On applications of lattice theory: 13171:Summary of the history of lattices. 13112:Lattice theory — its birth and life 13088:Mathematical Association of America 11398:Important lattice-theoretic notions 10864:, compatible with the ordering (so 10835:{\displaystyle r:L\to \mathbb {N} } 8471:{\displaystyle (b\vee a)\wedge c=c} 8427:{\displaystyle b\vee (a\wedge c)=b} 7409:lattice homomorphism. Similarly, a 3139:{\displaystyle a\wedge (a\vee b)=a} 3096:{\displaystyle a\vee (a\wedge b)=a} 2341:as well as algebraic descriptions. 1252:{\displaystyle S\neq \varnothing :} 24: 13478:Properties & Types ( 13104:On the history of lattice theory: 13001:Introduction to Lattices and Order 12924:Monographs available free online: 12768:Enumerative Combinatorics (vol. 1) 12439:Semantics of programming languages 11739:-irreducible). The dual notion is 10242: 10149: 10120: 9787:Complements and pseudo-complements 6724: 6679: 6666: 6653: 6560: 6515: 6502: 6489: 6403:{\displaystyle \{1,2,3,12,18,36\}} 3878: 3815: 3754: 3419:{\displaystyle (L,\vee ,\wedge ),} 2443:{\displaystyle \{a,b\}\subseteq L} 2283:. Another example is given by the 58:it lacks sufficient corresponding 25: 14017: 13934:Positive cone of an ordered field 13221: 9339: 9050:{\displaystyle (L,\vee ,\wedge )} 8478:, so the modular law is violated. 8344: 7395:Given the standard definition of 5823: 5553:, is a lattice (see Pic. 3). 5351:the collection of all subsets of 4820: 4752: 4716: 4645: 4609: 4342: 4310: 4272: 4229: 4026:{\displaystyle (L,\vee ,\wedge )} 3375:{\displaystyle (L,\vee ,\wedge )} 2933:{\displaystyle (L,\vee ,\wedge )} 2408:if it is both a join- and a meet- 1243: 13788:Ordered topological vector space 13324: 13196:10.24355/dbbs.084-200908140200-2 12339: 11337:. The free semilattice has the 11250: 10754: 8999:completely distributive lattices 8979: 5312: 5274: 5204: 5185: 5121: 5057:without the distributive axiom. 2348:that studies lattices is called 2291:, for which the supremum is the 2275:, for which the supremum is the 1722: 1709: 1638:{\displaystyle {\text{not }}aRa} 1143: 1133: 1103: 1093: 1071: 1061: 1026: 1004: 994: 959: 927: 917: 892: 860: 845: 825: 793: 783: 773: 753: 721: 701: 691: 681: 649: 629: 585: 565: 555: 518: 493: 483: 451: 426: 389: 359: 327: 265: 230: 43: 13118:. Prometheus. pp. 250–257. 12945:Jipsen, Peter, and Henry Rose, 12867: 12820: 12783: 12687:(2nd ed.). New York City: 12256: â€“ Concept in order theory 10749:Jordan–Dedekind chain condition 10317:Jordan–Dedekind chain condition 10005:{\displaystyle {\tfrac {1}{2}}} 9909: 9903: 8232: 5610:{\displaystyle (a,b)\leq (c,d)} 5423:and the infimum is provided by 5399:to obtain a lattice bounded by 5039:group-like algebraic structures 3426:one can define a partial order 2634:{\displaystyle b_{1}\leq b_{2}} 2594:{\displaystyle a_{1}\leq a_{2}} 2412:, i.e. each two-element subset 2271:of a set, partially ordered by 12931:A Course in Universal Algebra. 12756: 12740: 12705: 12676: 12663:UCLA Department of Mathematics 12647: 12623: 12588: 12585: 12573: 12564: 12532: 12354:format but may read better as 12262: â€“ Concept in mathematics 11422:be an element of some lattice 11010: 11004: 10995: 10989: 10895: 10889: 10880: 10874: 10824: 10778: 10766: 10626:{\displaystyle 1\leq i\leq n.} 9881:of each other if and only if: 9452: 9440: 9431: 9419: 9410: 9404: 9395: 9389: 9268: 9256: 9250: 9238: 9171: 9162: 9150: 9147: 9141: 9129: 9123: 9111: 9104:the following identity holds: 9044: 9026: 9003:distributivity in order theory 8948: 8936: 8930: 8918: 8912: 8900: 8826: 8814: 8808: 8796: 8790: 8778: 8618: 8606: 8600: 8588: 8582: 8570: 8541: 8529: 8523: 8511: 8505: 8493: 8453: 8441: 8415: 8403: 8277:conditionally complete lattice 7715: 7664: 7658: 7580: 7574: 7142: 7136: 7120: 7114: 7052: 7046: 7030: 7024: 6932: 6762: 6750: 6741: 6735: 6642: 6636: 6627: 6621: 6598: 6586: 6577: 6571: 6478: 6472: 6463: 6457: 5679: 5667: 5604: 5592: 5586: 5574: 4719: 4707: 4612: 4600: 4519: 4507: 4446: 4434: 4053:(the lattice's bottom) is the 4020: 4002: 3982: 3952: 3672: 3660: 3654: 3642: 3410: 3392: 3369: 3351: 3268: 3256: 3236: 3224: 3217:These axioms assert that both 3127: 3115: 3084: 3072: 2927: 2909: 2796:approach to lattices, and for 2391: 2379: 2267:). An example is given by the 1730:in the "Symmetric" column and 1666: 1411: 1356: 1285: 13: 1: 13745:Series-parallel partial order 13271:, course notes, revised 2017. 13210:What can Lattices do for you? 13035:American Mathematical Society 12918: 12632:A Course in Universal Algebra 12240:refer to particular kinds of 12084:if for every nonzero element 11798:{\displaystyle x\leq a\vee b} 9008: 8093:{\displaystyle x\leq z\leq y} 7527:{\displaystyle \mathbb {L} '} 7470:{\displaystyle \mathbb {L} '} 7212:between two bounded lattices 2825:{\displaystyle H\subseteq L,} 2803:Given a subset of a lattice, 2355: 1731: 1718: 1128: 1123: 1118: 1113: 1088: 1056: 1051: 1046: 1041: 1036: 1021: 989: 984: 979: 974: 969: 954: 942: 937: 912: 907: 902: 887: 875: 870: 855: 840: 835: 820: 808: 803: 768: 763: 748: 736: 731: 716: 711: 676: 664: 659: 644: 639: 624: 619: 614: 600: 595: 580: 575: 550: 545: 533: 528: 513: 508: 503: 478: 466: 461: 446: 441: 436: 421: 416: 404: 399: 384: 379: 374: 369: 354: 342: 337: 322: 317: 312: 307: 302: 297: 280: 275: 260: 255: 250: 245: 240: 13424:Cantor's isomorphism theorem 13045:Algebraic Theory of Lattices 12874:Hoffmann, Rudolf-E. (1981). 12747:Davey & Priestley (2002) 12731:Davey & Priestley (2002) 12712:Davey & Priestley (2002) 12685:Set Theory and Metric Spaces 12050:{\displaystyle 0<y<x.} 11996:and there exists no element 11281:may be used to generate the 11160:{\displaystyle y>z>x.} 11022:{\displaystyle r(y)=r(x)+1.} 10901:{\displaystyle r(x)<r(y)} 10857:{\displaystyle \mathbb {Z} } 10306:{\displaystyle x\wedge y=0.} 8279:is a lattice in which every 7500:{\displaystyle \mathbb {L} } 7443:{\displaystyle \mathbb {L} } 7190:bounded-lattice homomorphism 6781:The appropriate notion of a 5258:{\displaystyle \{1,2,3,4\},} 5029:is the set of all elements. 7: 13464:Szpilrajn extension theorem 13439:Hausdorff maximal principle 13414:Boolean prime ideal theorem 13235:Encyclopedia of Mathematics 12911:, p. 234, after Def.1. 12449:Ontology (computer science) 12289: â€“ Algebraic Structure 12247: 11848:Again some authors require 11717:completely join irreducible 11112:but there does not exist a 10110:when it exists, is unique. 9976:{\displaystyle \{0,1/2,1\}} 9727:Continuity and algebraicity 9097:{\displaystyle a,b,c\in L,} 8712:{\displaystyle a,b,c\in L,} 8209:{\displaystyle x,y,z\in L.} 7399:as invertible morphisms, a 6266:{\displaystyle \{1,2,3,6\}} 6159:have no common upper bound. 5114: 4178:{\displaystyle a\wedge 1=a} 3274:{\displaystyle (L,\wedge )} 3208:{\displaystyle a\wedge a=a} 2859:The resulting structure on 2785:Completeness (order theory) 2529:{\displaystyle \,\wedge \,} 10: 14022: 13810:Topological vector lattice 13187:Braunschweiger Festschrift 13123:Birkhoff, Garrett (1948). 13043:and Crawley, Peter, 1973. 13006:Cambridge University Press 12899:, p. 246, Exercise 3. 12862:Davey & Priestley 2002 12683:Kaplansky, Irving (1972). 11254: 10036:has two complements, viz. 9790: 9604:{\displaystyle x\wedge y,} 9343: 9012: 8663: 8268: 8236: 8222: 7392:is also order-preserving. 6345:{\displaystyle \{2,3,6\}.} 5165:{\displaystyle \{x,y,z\},} 2832:meet and join restrict to 29: 13840: 13768: 13707: 13477: 13406: 13355: 13332: 13276:"Lattice Theory Homepage" 13159:10.1007/s11229-009-9667-9 12971:Donnellan, Thomas, 1968. 12499:Regular language learning 12266:Orthocomplemented lattice 11574:{\displaystyle a,b\in L.} 11496:{\displaystyle x=a\vee b} 10784:{\displaystyle (L,\leq )} 9781:Scott information systems 7900:{\displaystyle a\wedge b} 7388:is a homomorphism if its 7379:Limit preserving function 6976:{\displaystyle a,b\in L:} 6304:{\displaystyle \{1,2,3\}} 6044:have common upper bounds 5917:have common lower bounds 4147:{\displaystyle a\vee 0=a} 3596:{\displaystyle a,b\in L.} 3242:{\displaystyle (L,\vee )} 3177:{\displaystyle a\vee a=a} 2551:{\displaystyle \,\vee \,} 2514:). This definition makes 2507:{\displaystyle a\wedge b} 2397:{\displaystyle (L,\leq )} 13419:Cantor–Bernstein theorem 13059:Grätzer, George (2003). 12509: 12189:{\displaystyle a\leq x;} 11241:{\displaystyle x\neq y.} 10707:all maximal chains from 10174:The corresponding unary 9370:{\displaystyle r\colon } 9330:set of first-order terms 8265:Conditional completeness 8125:{\displaystyle x,y\in M} 7874:{\displaystyle a,b\in M} 6941:{\displaystyle f:L\to M} 6096:but none of them is the 5981:but none of them is the 5951:{\displaystyle 0,d,g,h,} 5862:Examples of non-lattices 5301:{\displaystyle \,\leq ,} 4116:{\displaystyle \wedge .} 3783:element, and denoted by 3742:{\displaystyle \wedge .} 3337:{\displaystyle \wedge .} 3048:{\displaystyle a,b\in L} 2364:As partially ordered set 30:Not to be confused with 13963:Partially ordered group 13783:Specialization preorder 13268:Notes on Lattice Theory 13230:"Lattice-ordered group" 12459:Formal concept analysis 12418:Abstract interpretation 12363:converting this article 12320:Young–Fibonacci lattice 12236:and the dual notion of 11867:{\displaystyle x\neq 0} 11756:{\displaystyle \wedge } 11643:{\displaystyle x\neq 0} 11212:{\displaystyle x\leq y} 11105:{\displaystyle y>x,} 10700:{\displaystyle x<y,} 10591:{\displaystyle x_{i-1}} 10167:{\textstyle \lnot y=x.} 9716:{\displaystyle \wedge } 9630:{\displaystyle x\vee y} 9218:{\displaystyle a\leq c} 8858:{\displaystyle \wedge } 8756:{\displaystyle \wedge } 8383:{\displaystyle b\leq c} 8285:that has an upper bound 7926:{\displaystyle a\vee b} 6190:{\displaystyle x\leq y} 5726:{\displaystyle a\leq b} 5707:as the order relation: 5697:greatest common divisor 4057:for the join operation 2996:{\displaystyle \wedge } 2798:formal concept analysis 2473:{\displaystyle a\vee b} 2297:greatest common divisor 2295:and the infimum is the 2287:, partially ordered by 2279:and the infimum is the 73:more precise citations. 13449:Kruskal's tree theorem 13444:Knaster–Tarski theorem 13434:Dushnik–Miller theorem 13063:General Lattice Theory 12689:AMS Chelsea Publishing 12607: 12215: 12190: 12161: 12141: 12121: 12098: 12071: 12051: 12016: 12015:{\displaystyle y\in L} 11990: 11989:{\displaystyle 0<x} 11960: 11940: 11920: 11896: 11868: 11842: 11799: 11757: 11733: 11709: 11690: 11644: 11618: 11595: 11575: 11540: 11497: 11458: 11439: 11416: 11385: 11362: 11327: 11304: 11275: 11242: 11213: 11187: 11186:{\displaystyle y>x} 11161: 11126: 11106: 11077: 11050: 11023: 10973: 10948: 10928: 10927:{\displaystyle x<y} 10902: 10858: 10836: 10785: 10741: 10721: 10701: 10672: 10649: 10627: 10592: 10559: 10520: 10445: 10373: 10346: 10307: 10275: 10255: 10225: 10195: 10168: 10136: 10135:{\textstyle \lnot x=y} 10104: 10070: 10050: 10030: 10006: 9977: 9929: 9871: 9851: 9831: 9811: 9717: 9697: 9674: 9651: 9631: 9605: 9576: 9556: 9536: 9513: 9493: 9462: 9371: 9284: 9219: 9187: 9098: 9051: 8958: 8879: 8859: 8836: 8757: 8737: 8713: 8657: 8634: 8628: 8551: 8472: 8428: 8384: 8335: 8312: 8219:Properties of lattices 8210: 8169: 8146: 8126: 8094: 8062: 8035: 8015: 7993: 7970: 7950: 7927: 7901: 7875: 7843: 7823: 7803: 7783: 7760: 7740: 7706: 7686: 7622: 7602: 7528: 7501: 7485:. A homomorphism from 7471: 7444: 7358: 7305: 7246: 7226: 7206: 7184:of the two underlying 7174: 7152: 7067: 6977: 6942: 6898: 6839: 6778: 6772: 6707: 6688: 6605: 6543: 6524: 6441: 6404: 6346: 6305: 6267: 6220: 6191: 6160: 6153: 6133: 6101: 6090: 6067: 6038: 6018: 5986: 5975: 5952: 5911: 5891: 5809: 5789: 5770: 5747: 5727: 5686: 5654: 5611: 5543: 5522:the collection of all 5516: 5490: 5470: 5447: 5413: 5389: 5365: 5345: 5302: 5259: 5166: 5098: 5075: 5023: 4961: 4900: 4836: 4801: 4691: 4584: 4564: 4491: 4419: 4396: 4376: 4355: 4326: 4294: 4248: 4201: 4179: 4148: 4117: 4094: 4074: 4073:{\displaystyle \vee ,} 4047: 4027: 3989: 3937: 3885: 3864: 3822: 3800: 3743: 3720: 3697: 3597: 3562: 3514: 3460: 3440: 3420: 3376: 3338: 3315: 3275: 3243: 3209: 3178: 3140: 3097: 3049: 3017: 2997: 2977: 2954: 2940:, consisting of a set 2934: 2891:As algebraic structure 2873: 2853: 2826: 2770: 2701: 2635: 2595: 2552: 2530: 2508: 2474: 2444: 2398: 1874: 1845: 1819: 1793: 1792:{\displaystyle a,b,c,} 1754: 1695: 1639: 1607: 1580: 1536: 1492: 1451: 1380: 1309: 1253: 1224: 13022:Advanced monographs: 12965:mathematical maturity 12948:Varieties of Lattices 12829:Annals of Mathematics 12793:Annals of Mathematics 12654:Baker, Kirby (2010). 12608: 12216: 12191: 12162: 12142: 12127:there exists an atom 12122: 12099: 12072: 12052: 12017: 11991: 11961: 11941: 11921: 11897: 11878:. The dual notion is 11876:completely join prime 11869: 11843: 11800: 11758: 11734: 11732:{\displaystyle \vee } 11710: 11691: 11645: 11624:some authors require 11619: 11601:has a bottom element 11596: 11576: 11541: 11498: 11459: 11440: 11417: 11386: 11363: 11328: 11305: 11276: 11243: 11214: 11188: 11162: 11127: 11107: 11078: 11051: 11024: 10974: 10949: 10934:) such that whenever 10929: 10903: 10859: 10837: 10786: 10742: 10722: 10702: 10673: 10650: 10628: 10593: 10560: 10558:{\displaystyle x_{i}} 10521: 10446: 10374: 10372:{\displaystyle x_{n}} 10347: 10345:{\displaystyle x_{0}} 10308: 10276: 10256: 10254:{\textstyle \lnot x.} 10226: 10205:into lattice theory. 10196: 10169: 10137: 10105: 10071: 10051: 10031: 10007: 9978: 9930: 9872: 9852: 9832: 9812: 9743:of elements that are 9718: 9698: 9696:{\displaystyle \vee } 9675: 9652: 9632: 9606: 9577: 9557: 9537: 9514: 9494: 9463: 9372: 9320:, and the lattice of 9285: 9220: 9188: 9099: 9063:if, for all elements 9052: 8959: 8880: 8878:{\displaystyle \vee } 8860: 8837: 8758: 8738: 8736:{\displaystyle \vee } 8714: 8648: 8629: 8557:but satisfy its dual 8552: 8473: 8429: 8385: 8356: 8336: 8313: 8223:Further information: 8211: 8170: 8147: 8127: 8095: 8063: 8036: 8016: 7994: 7971: 7951: 7928: 7902: 7876: 7844: 7824: 7804: 7784: 7761: 7741: 7707: 7687: 7623: 7603: 7529: 7502: 7477:be two lattices with 7472: 7445: 7359: 7306: 7247: 7227: 7207: 7175: 7153: 7068: 6978: 6943: 6899: 6840: 6773: 6708: 6706:{\displaystyle \neq } 6689: 6606: 6544: 6542:{\displaystyle \neq } 6525: 6442: 6423: 6416:Morphisms of lattices 6405: 6347: 6306: 6268: 6221: 6192: 6154: 6134: 6115: 6091: 6068: 6039: 6019: 6000: 5976: 5953: 5912: 5892: 5873: 5810: 5790: 5771: 5748: 5728: 5701:least common multiple 5687: 5685:{\displaystyle (0,0)} 5655: 5612: 5544: 5517: 5491: 5471: 5448: 5414: 5395:) can be ordered via 5390: 5366: 5346: 5303: 5260: 5167: 5099: 5076: 5024: 4962: 4901: 4837: 4802: 4692: 4590:to be the empty set, 4585: 4565: 4492: 4420: 4397: 4377: 4356: 4327: 4295: 4249: 4202: 4180: 4149: 4118: 4095: 4075: 4048: 4028: 3990: 3938: 3918: for every  3886: 3884:{\displaystyle \bot } 3865: 3823: 3821:{\displaystyle \top } 3801: 3744: 3721: 3719:{\displaystyle \vee } 3698: 3598: 3563: 3515: 3461: 3441: 3439:{\displaystyle \leq } 3421: 3377: 3339: 3316: 3314:{\displaystyle \vee } 3276: 3244: 3210: 3179: 3141: 3098: 3050: 3018: 2998: 2978: 2976:{\displaystyle \vee } 2955: 2935: 2874: 2854: 2827: 2771: 2702: 2636: 2596: 2553: 2531: 2509: 2475: 2445: 2399: 2370:partially ordered set 2337:structures all admit 2293:least common multiple 2249:partially ordered set 1875: 1846: 1820: 1794: 1755: 1696: 1640: 1608: 1581: 1537: 1493: 1452: 1381: 1310: 1254: 1225: 1204:Definitions, for all 14006:Algebraic structures 13941:Ordered vector space 12549: 12479:Ordinal optimization 12454:Multiple inheritance 12398:Lattice of subgroups 12205: 12201:if every element of 12171: 12151: 12131: 12108: 12088: 12061: 12026: 12000: 11974: 11950: 11930: 11910: 11886: 11852: 11809: 11777: 11747: 11723: 11699: 11654: 11628: 11605: 11585: 11550: 11507: 11475: 11448: 11426: 11406: 11375: 11349: 11314: 11288: 11265: 11223: 11197: 11171: 11136: 11116: 11087: 11064: 11040: 10983: 10960: 10938: 10912: 10868: 10846: 10812: 10763: 10731: 10711: 10682: 10659: 10639: 10602: 10569: 10542: 10455: 10383: 10356: 10329: 10285: 10265: 10239: 10215: 10182: 10146: 10117: 10091: 10078:complemented lattice 10060: 10040: 10020: 9987: 9941: 9885: 9861: 9841: 9821: 9801: 9707: 9687: 9661: 9641: 9615: 9586: 9566: 9546: 9523: 9503: 9483: 9383: 9358: 9229: 9203: 9108: 9067: 9023: 8968:distributive lattice 8891: 8869: 8849: 8769: 8747: 8727: 8682: 8666:Distributive lattice 8561: 8484: 8438: 8394: 8368: 8322: 8318:its minimum element 8299: 8243:A poset is called a 8179: 8156: 8136: 8104: 8072: 8049: 8025: 8005: 7980: 7960: 7937: 7911: 7885: 7853: 7833: 7813: 7793: 7770: 7750: 7730: 7696: 7636: 7612: 7552: 7511: 7489: 7454: 7432: 7418:lattice automorphism 7412:lattice endomorphism 7314: 7256: 7236: 7216: 7196: 7164: 7076: 6986: 6952: 6920: 6906:lattice homomorphism 6849: 6793: 6716: 6697: 6615: 6552: 6533: 6451: 6431: 6358: 6315: 6277: 6233: 6219:{\displaystyle x=y,} 6201: 6175: 6143: 6123: 6077: 6066:{\displaystyle d,e,} 6048: 6028: 6008: 5983:greatest lower bound 5962: 5921: 5901: 5881: 5799: 5779: 5757: 5737: 5711: 5664: 5621: 5571: 5530: 5503: 5480: 5457: 5434: 5403: 5379: 5355: 5332: 5288: 5222: 5135: 5085: 5065: 4971: 4910: 4849: 4811: 4701: 4594: 4574: 4501: 4428: 4406: 4386: 4366: 4336: 4304: 4258: 4215: 4191: 4157: 4126: 4104: 4084: 4061: 4037: 3999: 3949: 3897: 3875: 3854: 3812: 3787: 3730: 3710: 3607: 3572: 3523: 3470: 3450: 3430: 3389: 3348: 3325: 3305: 3253: 3221: 3187: 3156: 3106: 3063: 3027: 3007: 2987: 2967: 2944: 2906: 2863: 2840: 2807: 2711: 2645: 2605: 2565: 2540: 2518: 2492: 2458: 2416: 2376: 2304:algebraic structures 2114:Group with operators 2057:Complemented lattice 1892:Algebraic structures 1873:{\displaystyle aRc.} 1855: 1829: 1803: 1768: 1744: 1739:homogeneous relation 1650: 1618: 1591: 1547: 1503: 1462: 1391: 1320: 1264: 1234: 1208: 950:Strict partial order 225:Equivalence relation 13779:Alexandrov topology 13725:Lexicographic order 13684:Well-quasi-ordering 12656:"Complete Lattices" 12504:Analogical modeling 12423:Subsumption lattice 11741:meet irreducibility 11303:{\displaystyle FX.} 9346:Semimodular lattice 9334:automated reasoning 7976:is a sublattice of 7402:lattice isomorphism 6119:Non-lattice poset: 6004:Non-lattice poset: 5877:Non-lattice poset: 4263: for all  4220: for all  3627: implies  2901:algebraic structure 2306:satisfying certain 2247:. It consists of a 2168:Composition algebra 1928:Quasigroup and loop 1844:{\displaystyle bRc} 1818:{\displaystyle aRb} 1606:{\displaystyle aRa} 1223:{\displaystyle a,b} 609:Well-quasi-ordering 13760:Transitive closure 13720:Converse/Transpose 13429:Dilworth's theorem 13249:Weisstein, Eric W. 13082:On free lattices: 13041:Robert P. Dilworth 12884:10.1007/BFb0089907 12764:Stanley, Richard P 12603: 12408:Invariant subspace 12393:Pointless topology 12365:, if appropriate. 12325:0,1-simple lattice 12211: 12186: 12157: 12137: 12120:{\displaystyle L,} 12117: 12094: 12067: 12047: 12012: 11986: 11956: 11936: 11916: 11892: 11864: 11838: 11795: 11753: 11729: 11705: 11686: 11672: 11640: 11617:{\displaystyle 0,} 11614: 11591: 11571: 11536: 11493: 11454: 11438:{\displaystyle L.} 11435: 11412: 11381: 11361:{\displaystyle X,} 11358: 11339:universal property 11326:{\displaystyle X,} 11323: 11300: 11271: 11238: 11209: 11183: 11157: 11122: 11102: 11076:{\displaystyle x,} 11073: 11046: 11036:A lattice element 11019: 10972:{\displaystyle x,} 10969: 10944: 10924: 10898: 10854: 10832: 10781: 10737: 10717: 10697: 10671:{\displaystyle y,} 10668: 10645: 10623: 10588: 10555: 10516: 10441: 10369: 10342: 10303: 10271: 10251: 10221: 10194:{\displaystyle L,} 10191: 10164: 10142:and equivalently, 10132: 10103:{\displaystyle x,} 10100: 10066: 10046: 10026: 10002: 10000: 9973: 9925: 9867: 9847: 9827: 9807: 9762:continuous lattice 9713: 9693: 9673:{\displaystyle y.} 9670: 9647: 9627: 9601: 9572: 9552: 9535:{\displaystyle L,} 9532: 9509: 9489: 9458: 9367: 9312:), the lattice of 9280: 9215: 9183: 9094: 9047: 8954: 8875: 8855: 8845:Distributivity of 8832: 8753: 8733: 8723:Distributivity of 8709: 8658: 8635: 8624: 8547: 8468: 8424: 8380: 8334:{\displaystyle 0,} 8331: 8311:{\displaystyle 1,} 8308: 8289:completeness axiom 8206: 8168:{\displaystyle M,} 8165: 8142: 8122: 8090: 8061:{\displaystyle L,} 8058: 8031: 8011: 7992:{\displaystyle L.} 7989: 7966: 7949:{\displaystyle M,} 7946: 7923: 7897: 7871: 7839: 7819: 7799: 7782:{\displaystyle L.} 7779: 7756: 7736: 7702: 7682: 7618: 7598: 7524: 7497: 7467: 7440: 7354: 7301: 7242: 7222: 7202: 7170: 7148: 7063: 6973: 6948:such that for all 6938: 6894: 6835: 6779: 6768: 6703: 6684: 6601: 6539: 6520: 6437: 6400: 6342: 6301: 6263: 6216: 6187: 6161: 6149: 6129: 6102: 6089:{\displaystyle f,} 6086: 6063: 6034: 6014: 5987: 5974:{\displaystyle i,} 5971: 5948: 5907: 5887: 5844:algebraic lattices 5805: 5785: 5769:{\displaystyle b.} 5766: 5743: 5723: 5682: 5650: 5607: 5542:{\displaystyle A,} 5539: 5515:{\displaystyle A,} 5512: 5486: 5469:{\displaystyle A,} 5466: 5446:{\displaystyle A,} 5443: 5427:(see Pic. 1). 5409: 5385: 5361: 5344:{\displaystyle A,} 5341: 5298: 5255: 5162: 5097:{\displaystyle 1,} 5094: 5071: 5019: 4957: 4896: 4832: 4797: 4687: 4580: 4560: 4487: 4418:{\displaystyle L,} 4415: 4392: 4372: 4351: 4322: 4290: 4244: 4197: 4175: 4144: 4113: 4090: 4070: 4043: 4023: 3985: 3933: 3881: 3860: 3818: 3799:{\displaystyle 1,} 3796: 3739: 3716: 3693: 3593: 3558: 3510: 3456: 3436: 3416: 3372: 3334: 3311: 3271: 3239: 3205: 3174: 3136: 3093: 3055:(sometimes called 3045: 3013: 2993: 2973: 2950: 2930: 2869: 2852:{\displaystyle H.} 2849: 2822: 2794:category theoretic 2790:Galois connections 2766: 2697: 2631: 2591: 2548: 2526: 2504: 2470: 2440: 2394: 2239:subdisciplines of 1870: 1841: 1815: 1789: 1750: 1691: 1689: 1635: 1603: 1576: 1574: 1532: 1530: 1488: 1486: 1447: 1445: 1376: 1374: 1305: 1303: 1249: 1220: 1084:Strict total order 13988: 13987: 13946:Partially ordered 13755:Symmetric closure 13740:Reflexive closure 13483: 13215:Table of contents 13176:Dedekind, Richard 13074:978-3-7643-6996-5 13053:978-0-13-022269-5 13047:. Prentice-Hall. 13015:978-0-521-78451-1 12934:Springer-Verlag. 12749:, Theorem 10.21, 12636:Springer-Verlag. 12465:(theory and tool) 12384: 12383: 12214:{\displaystyle L} 12160:{\displaystyle L} 12140:{\displaystyle a} 12097:{\displaystyle x} 12070:{\displaystyle L} 11959:{\displaystyle L} 11939:{\displaystyle x} 11919:{\displaystyle L} 11895:{\displaystyle L} 11824: 11708:{\displaystyle x} 11657: 11594:{\displaystyle L} 11522: 11457:{\displaystyle x} 11415:{\displaystyle x} 11384:{\displaystyle X} 11274:{\displaystyle X} 11125:{\displaystyle z} 11049:{\displaystyle y} 10947:{\displaystyle y} 10740:{\displaystyle y} 10720:{\displaystyle x} 10648:{\displaystyle x} 10635:If for any pair, 10530:of this chain is 10274:{\displaystyle y} 10233:pseudo-complement 10224:{\displaystyle z} 10069:{\displaystyle c} 10049:{\displaystyle b} 10029:{\displaystyle a} 9999: 9907: 9870:{\displaystyle L} 9850:{\displaystyle y} 9830:{\displaystyle x} 9810:{\displaystyle L} 9771:algebraic lattice 9737:continuous posets 9650:{\displaystyle x} 9575:{\displaystyle y} 9555:{\displaystyle x} 9512:{\displaystyle y} 9492:{\displaystyle x} 8662: 8661: 8639: 8638: 8271:Dedekind complete 8175:for all elements 8145:{\displaystyle z} 8043:convex sublattice 8034:{\displaystyle L} 8014:{\displaystyle M} 7969:{\displaystyle M} 7842:{\displaystyle L} 7822:{\displaystyle M} 7809:is a lattice and 7802:{\displaystyle L} 7759:{\displaystyle L} 7739:{\displaystyle L} 7705:{\displaystyle f} 7621:{\displaystyle f} 7299: 7245:{\displaystyle M} 7225:{\displaystyle L} 7205:{\displaystyle f} 7173:{\displaystyle f} 7061: 6440:{\displaystyle f} 6229:Although the set 6165: 6164: 6152:{\displaystyle d} 6132:{\displaystyle c} 6106: 6105: 6098:least upper bound 6037:{\displaystyle c} 6017:{\displaystyle b} 5991: 5990: 5910:{\displaystyle b} 5890:{\displaystyle a} 5808:{\displaystyle 0} 5788:{\displaystyle 1} 5746:{\displaystyle a} 5636: 5558:positive integers 5489:{\displaystyle A} 5412:{\displaystyle A} 5388:{\displaystyle A} 5364:{\displaystyle A} 5109:universal algebra 5074:{\displaystyle 0} 4583:{\displaystyle B} 4395:{\displaystyle B} 4375:{\displaystyle A} 4264: 4221: 4207:of a poset it is 4200:{\displaystyle x} 4093:{\displaystyle 1} 4046:{\displaystyle 0} 3919: 3863:{\displaystyle 0} 3628: 3568:for all elements 3538: 3508: 3485: 3459:{\displaystyle L} 3016:{\displaystyle L} 2953:{\displaystyle L} 2872:{\displaystyle H} 2834:partial functions 2778:It follows by an 2559:binary operations 2344:The sub-field of 2319:universal algebra 2227: 2226: 1886: 1885: 1753:{\displaystyle R} 1704: 1703: 1676: 1624: 1570: 1526: 1482: 1430: 1339: 1017:Strict weak order 203:Total, Semiconnex 99: 98: 91: 16:(Redirected from 14013: 13730:Linear extension 13479: 13459:Mirsky's theorem 13319: 13312: 13305: 13296: 13295: 13283: 13262: 13261: 13243: 13213: 13199: 13198: 13184: 13170: 13152: 13130: 13119: 13117: 13094:Johnstone, P. T. 13078: 13066: 13027:Garrett Birkhoff 13018: 12996:Priestley, H. A. 12985:. W. H. Freeman. 12912: 12906: 12900: 12894: 12888: 12887: 12871: 12865: 12859: 12853: 12852: 12824: 12818: 12817: 12787: 12781: 12780: 12760: 12754: 12751:pp. 238–239 12744: 12738: 12733:, Theorem 4.10, 12728: 12719: 12714:, Exercise 4.1, 12709: 12703: 12702: 12680: 12674: 12673: 12671: 12669: 12660: 12651: 12645: 12627: 12621: 12612: 12610: 12609: 12604: 12536: 12530: 12520: 12474:Information flow 12413:Closure operator 12379: 12376: 12370: 12361:You can help by 12343: 12342: 12335: 12316: 12307: 12297:Eulerian lattice 12292: 12220: 12218: 12217: 12212: 12195: 12193: 12192: 12187: 12166: 12164: 12163: 12158: 12146: 12144: 12143: 12138: 12126: 12124: 12123: 12118: 12103: 12101: 12100: 12095: 12076: 12074: 12073: 12068: 12056: 12054: 12053: 12048: 12021: 12019: 12018: 12013: 11995: 11993: 11992: 11987: 11965: 11963: 11962: 11957: 11945: 11943: 11942: 11937: 11925: 11923: 11922: 11917: 11902:is distributive. 11901: 11899: 11898: 11893: 11873: 11871: 11870: 11865: 11847: 11845: 11844: 11839: 11825: 11822: 11804: 11802: 11801: 11796: 11762: 11760: 11759: 11754: 11738: 11736: 11735: 11730: 11714: 11712: 11711: 11706: 11695: 11693: 11692: 11687: 11682: 11681: 11671: 11649: 11647: 11646: 11641: 11623: 11621: 11620: 11615: 11600: 11598: 11597: 11592: 11580: 11578: 11577: 11572: 11545: 11543: 11542: 11537: 11523: 11520: 11502: 11500: 11499: 11494: 11469:Join irreducible 11463: 11461: 11460: 11455: 11444: 11442: 11441: 11436: 11421: 11419: 11418: 11413: 11393: 11390: 11388: 11387: 11382: 11367: 11365: 11364: 11359: 11332: 11330: 11329: 11324: 11309: 11307: 11306: 11301: 11283:free semilattice 11280: 11278: 11277: 11272: 11247: 11245: 11244: 11239: 11218: 11216: 11215: 11210: 11192: 11190: 11189: 11184: 11166: 11164: 11163: 11158: 11131: 11129: 11128: 11123: 11111: 11109: 11108: 11103: 11082: 11080: 11079: 11074: 11060:another element 11055: 11053: 11052: 11047: 11028: 11026: 11025: 11020: 10978: 10976: 10975: 10970: 10953: 10951: 10950: 10945: 10933: 10931: 10930: 10925: 10907: 10905: 10904: 10899: 10863: 10861: 10860: 10855: 10853: 10841: 10839: 10838: 10833: 10831: 10790: 10788: 10787: 10782: 10746: 10744: 10743: 10738: 10726: 10724: 10723: 10718: 10706: 10704: 10703: 10698: 10677: 10675: 10674: 10669: 10654: 10652: 10651: 10646: 10632: 10630: 10629: 10624: 10597: 10595: 10594: 10589: 10587: 10586: 10564: 10562: 10561: 10556: 10554: 10553: 10525: 10523: 10522: 10517: 10512: 10511: 10493: 10492: 10480: 10479: 10467: 10466: 10450: 10448: 10447: 10442: 10437: 10433: 10432: 10431: 10413: 10412: 10400: 10399: 10378: 10376: 10375: 10370: 10368: 10367: 10351: 10349: 10348: 10343: 10341: 10340: 10312: 10310: 10309: 10304: 10280: 10278: 10277: 10272: 10260: 10258: 10257: 10252: 10230: 10228: 10227: 10222: 10209:Heyting algebras 10200: 10198: 10197: 10192: 10173: 10171: 10170: 10165: 10141: 10139: 10138: 10133: 10109: 10107: 10106: 10101: 10075: 10073: 10072: 10067: 10055: 10053: 10052: 10047: 10035: 10033: 10032: 10027: 10011: 10009: 10008: 10003: 10001: 9992: 9982: 9980: 9979: 9974: 9960: 9934: 9932: 9931: 9926: 9908: 9905: 9876: 9874: 9873: 9868: 9856: 9854: 9853: 9848: 9836: 9834: 9833: 9828: 9816: 9814: 9813: 9808: 9793:pseudocomplement 9749:compact elements 9722: 9720: 9719: 9714: 9702: 9700: 9699: 9694: 9679: 9677: 9676: 9671: 9656: 9654: 9653: 9648: 9636: 9634: 9633: 9628: 9610: 9608: 9607: 9602: 9581: 9579: 9578: 9573: 9561: 9559: 9558: 9553: 9541: 9539: 9538: 9533: 9518: 9516: 9515: 9510: 9498: 9496: 9495: 9490: 9467: 9465: 9464: 9459: 9376: 9374: 9373: 9368: 9322:normal subgroups 9314:two-sided ideals 9289: 9287: 9286: 9281: 9224: 9222: 9221: 9216: 9195:Modular identity 9192: 9190: 9189: 9184: 9103: 9101: 9100: 9095: 9056: 9054: 9053: 9048: 8963: 8961: 8960: 8955: 8884: 8882: 8881: 8876: 8864: 8862: 8861: 8856: 8841: 8839: 8838: 8833: 8762: 8760: 8759: 8754: 8742: 8740: 8739: 8734: 8718: 8716: 8715: 8710: 8641: 8640: 8633: 8631: 8630: 8625: 8556: 8554: 8553: 8548: 8477: 8475: 8474: 8469: 8433: 8431: 8430: 8425: 8389: 8387: 8386: 8381: 8349: 8348: 8340: 8338: 8337: 8332: 8317: 8315: 8314: 8309: 8246:complete lattice 8239:Complete lattice 8215: 8213: 8212: 8207: 8174: 8172: 8171: 8166: 8151: 8149: 8148: 8143: 8131: 8129: 8128: 8123: 8099: 8097: 8096: 8091: 8067: 8065: 8064: 8059: 8040: 8038: 8037: 8032: 8020: 8018: 8017: 8012: 7998: 7996: 7995: 7990: 7975: 7973: 7972: 7967: 7955: 7953: 7952: 7947: 7932: 7930: 7929: 7924: 7906: 7904: 7903: 7898: 7880: 7878: 7877: 7872: 7848: 7846: 7845: 7840: 7828: 7826: 7825: 7820: 7808: 7806: 7805: 7800: 7788: 7786: 7785: 7780: 7765: 7763: 7762: 7757: 7745: 7743: 7742: 7737: 7711: 7709: 7708: 7703: 7691: 7689: 7688: 7683: 7651: 7650: 7627: 7625: 7624: 7619: 7607: 7605: 7604: 7599: 7567: 7566: 7533: 7531: 7530: 7525: 7523: 7519: 7506: 7504: 7503: 7498: 7496: 7476: 7474: 7473: 7468: 7466: 7462: 7449: 7447: 7446: 7441: 7439: 7383:order-preserving 7363: 7361: 7360: 7355: 7350: 7349: 7337: 7333: 7332: 7310: 7308: 7307: 7302: 7300: 7297: 7292: 7291: 7279: 7275: 7274: 7251: 7249: 7248: 7243: 7231: 7229: 7228: 7223: 7211: 7209: 7208: 7203: 7179: 7177: 7176: 7171: 7157: 7155: 7154: 7149: 7132: 7131: 7107: 7103: 7099: 7098: 7072: 7070: 7069: 7064: 7062: 7059: 7042: 7041: 7017: 7013: 7009: 7008: 6982: 6980: 6979: 6974: 6947: 6945: 6944: 6939: 6903: 6901: 6900: 6895: 6890: 6886: 6885: 6884: 6872: 6871: 6844: 6842: 6841: 6836: 6834: 6830: 6829: 6828: 6816: 6815: 6777: 6775: 6774: 6769: 6728: 6727: 6712: 6710: 6709: 6704: 6693: 6691: 6690: 6685: 6683: 6682: 6670: 6669: 6657: 6656: 6610: 6608: 6607: 6602: 6564: 6563: 6548: 6546: 6545: 6540: 6529: 6527: 6526: 6521: 6519: 6518: 6506: 6505: 6493: 6492: 6446: 6444: 6443: 6438: 6409: 6407: 6406: 6401: 6351: 6349: 6348: 6343: 6310: 6308: 6307: 6302: 6272: 6270: 6269: 6264: 6225: 6223: 6222: 6217: 6196: 6194: 6193: 6188: 6158: 6156: 6155: 6150: 6138: 6136: 6135: 6130: 6108: 6107: 6095: 6093: 6092: 6087: 6072: 6070: 6069: 6064: 6043: 6041: 6040: 6035: 6023: 6021: 6020: 6015: 5993: 5992: 5980: 5978: 5977: 5972: 5957: 5955: 5954: 5949: 5916: 5914: 5913: 5908: 5896: 5894: 5893: 5888: 5866: 5865: 5848:join-semilattice 5835:compact elements 5820:complete lattice 5814: 5812: 5811: 5806: 5794: 5792: 5791: 5786: 5775: 5773: 5772: 5767: 5752: 5750: 5749: 5744: 5732: 5730: 5729: 5724: 5691: 5689: 5688: 5683: 5659: 5657: 5656: 5651: 5637: 5634: 5616: 5614: 5613: 5608: 5565:Cartesian square 5548: 5546: 5545: 5540: 5521: 5519: 5518: 5513: 5495: 5493: 5492: 5487: 5475: 5473: 5472: 5467: 5452: 5450: 5449: 5444: 5425:set intersection 5418: 5416: 5415: 5410: 5397:subset inclusion 5394: 5392: 5391: 5386: 5370: 5368: 5367: 5362: 5350: 5348: 5347: 5342: 5316: 5307: 5305: 5304: 5299: 5278: 5264: 5262: 5261: 5256: 5208: 5189: 5171: 5169: 5168: 5163: 5125: 5103: 5101: 5100: 5095: 5080: 5078: 5077: 5072: 5028: 5026: 5025: 5020: 5018: 5014: 5013: 5012: 4994: 4993: 4966: 4964: 4963: 4958: 4956: 4955: 4937: 4936: 4905: 4903: 4902: 4897: 4895: 4894: 4876: 4875: 4841: 4839: 4838: 4833: 4806: 4804: 4803: 4798: 4778: 4774: 4759: 4755: 4740: 4736: 4696: 4694: 4693: 4688: 4671: 4667: 4652: 4648: 4633: 4629: 4589: 4587: 4586: 4581: 4569: 4567: 4566: 4561: 4559: 4555: 4540: 4536: 4496: 4494: 4493: 4488: 4486: 4482: 4467: 4463: 4424: 4422: 4421: 4416: 4401: 4399: 4398: 4393: 4381: 4379: 4378: 4373: 4360: 4358: 4357: 4352: 4331: 4329: 4328: 4323: 4299: 4297: 4296: 4291: 4265: 4262: 4253: 4251: 4250: 4245: 4222: 4219: 4206: 4204: 4203: 4198: 4184: 4182: 4181: 4176: 4153: 4151: 4150: 4145: 4122: 4120: 4119: 4114: 4099: 4097: 4096: 4091: 4079: 4077: 4076: 4071: 4055:identity element 4052: 4050: 4049: 4044: 4032: 4030: 4029: 4024: 3994: 3992: 3991: 3986: 3942: 3940: 3939: 3934: 3920: 3917: 3892: 3890: 3888: 3887: 3882: 3869: 3867: 3866: 3861: 3829: 3827: 3825: 3824: 3819: 3805: 3803: 3802: 3797: 3767:greatest element 3748: 3746: 3745: 3740: 3725: 3723: 3722: 3717: 3702: 3700: 3699: 3694: 3629: 3626: 3602: 3600: 3599: 3594: 3567: 3565: 3564: 3559: 3539: 3536: 3519: 3517: 3516: 3511: 3509: 3506: 3486: 3483: 3465: 3463: 3462: 3457: 3445: 3443: 3442: 3437: 3425: 3423: 3422: 3417: 3381: 3379: 3378: 3373: 3343: 3341: 3340: 3335: 3320: 3318: 3317: 3312: 3280: 3278: 3277: 3272: 3248: 3246: 3245: 3240: 3214: 3212: 3211: 3206: 3183: 3181: 3180: 3175: 3145: 3143: 3142: 3137: 3102: 3100: 3099: 3094: 3054: 3052: 3051: 3046: 3022: 3020: 3019: 3014: 3002: 3000: 2999: 2994: 2982: 2980: 2979: 2974: 2959: 2957: 2956: 2951: 2939: 2937: 2936: 2931: 2885: 2884: 2878: 2876: 2875: 2870: 2858: 2856: 2855: 2850: 2831: 2829: 2828: 2823: 2775: 2773: 2772: 2767: 2762: 2761: 2749: 2748: 2736: 2735: 2723: 2722: 2706: 2704: 2703: 2698: 2696: 2695: 2683: 2682: 2670: 2669: 2657: 2656: 2640: 2638: 2637: 2632: 2630: 2629: 2617: 2616: 2600: 2598: 2597: 2592: 2590: 2589: 2577: 2576: 2557: 2555: 2554: 2549: 2535: 2533: 2532: 2527: 2513: 2511: 2510: 2505: 2479: 2477: 2476: 2471: 2449: 2447: 2446: 2441: 2403: 2401: 2400: 2395: 2346:abstract algebra 2331:Boolean algebras 2245:abstract algebra 2219: 2212: 2205: 1994:Commutative ring 1923:Rack and quandle 1888: 1887: 1879: 1877: 1876: 1871: 1850: 1848: 1847: 1842: 1824: 1822: 1821: 1816: 1798: 1796: 1795: 1790: 1759: 1757: 1756: 1751: 1733: 1729: 1726: 1725: 1720: 1716: 1713: 1712: 1700: 1698: 1697: 1692: 1690: 1677: 1674: 1644: 1642: 1641: 1636: 1625: 1622: 1612: 1610: 1609: 1604: 1585: 1583: 1582: 1577: 1575: 1571: 1568: 1541: 1539: 1538: 1533: 1531: 1527: 1524: 1497: 1495: 1494: 1489: 1487: 1483: 1480: 1456: 1454: 1453: 1448: 1446: 1431: 1428: 1405: 1385: 1383: 1382: 1377: 1375: 1366: 1340: 1337: 1314: 1312: 1311: 1306: 1304: 1289: 1270: 1258: 1256: 1255: 1250: 1229: 1227: 1226: 1221: 1150: 1147: 1146: 1140: 1137: 1136: 1130: 1125: 1120: 1115: 1110: 1107: 1106: 1100: 1097: 1096: 1090: 1078: 1075: 1074: 1068: 1065: 1064: 1058: 1053: 1048: 1043: 1038: 1033: 1030: 1029: 1023: 1011: 1008: 1007: 1001: 998: 997: 991: 986: 981: 976: 971: 966: 963: 962: 956: 944: 939: 934: 931: 930: 924: 921: 920: 914: 909: 904: 899: 896: 895: 889: 883:Meet-semilattice 877: 872: 867: 864: 863: 857: 852: 849: 848: 842: 837: 832: 829: 828: 822: 816:Join-semilattice 810: 805: 800: 797: 796: 790: 787: 786: 780: 777: 776: 770: 765: 760: 757: 756: 750: 738: 733: 728: 725: 724: 718: 713: 708: 705: 704: 698: 695: 694: 688: 685: 684: 678: 666: 661: 656: 653: 652: 646: 641: 636: 633: 632: 626: 621: 616: 611: 602: 597: 592: 589: 588: 582: 577: 572: 569: 568: 562: 559: 558: 552: 547: 535: 530: 525: 522: 521: 515: 510: 505: 500: 497: 496: 490: 487: 486: 480: 468: 463: 458: 455: 454: 448: 443: 438: 433: 430: 429: 423: 418: 406: 401: 396: 393: 392: 386: 381: 376: 371: 366: 363: 362: 356: 344: 339: 334: 331: 330: 324: 319: 314: 309: 304: 299: 294: 292: 282: 277: 272: 269: 268: 262: 257: 252: 247: 242: 237: 234: 233: 227: 145: 144: 135: 128: 121: 114: 112:binary relations 103: 102: 94: 87: 83: 80: 74: 69:this article by 60:inline citations 47: 46: 39: 21: 14021: 14020: 14016: 14015: 14014: 14012: 14011: 14010: 13991: 13990: 13989: 13984: 13980:Young's lattice 13836: 13764: 13703: 13553:Heyting algebra 13501:Boolean algebra 13473: 13454:Laver's theorem 13402: 13368:Boolean algebra 13363:Binary relation 13351: 13328: 13323: 13293: 13228: 13224: 13219: 13212:. Van Nostrand. 13182: 13150:10.1.1.594.8898 13129:(2nd ed.). 13115: 13075: 13016: 12979:Grätzer, George 12921: 12916: 12915: 12907: 12903: 12895: 12891: 12872: 12868: 12860: 12856: 12841:10.2307/1968883 12825: 12821: 12806:10.2307/1969001 12788: 12784: 12778: 12761: 12757: 12745: 12741: 12729: 12722: 12710: 12706: 12699: 12681: 12677: 12667: 12665: 12658: 12652: 12648: 12628: 12624: 12550: 12547: 12546: 12537: 12533: 12521: 12517: 12512: 12494:Knowledge space 12380: 12374: 12371: 12360: 12344: 12340: 12333: 12314: 12305: 12290: 12260:Map of lattices 12250: 12232:The notions of 12206: 12203: 12202: 12172: 12169: 12168: 12152: 12149: 12148: 12132: 12129: 12128: 12109: 12106: 12105: 12089: 12086: 12085: 12062: 12059: 12058: 12027: 12024: 12023: 12001: 11998: 11997: 11975: 11972: 11971: 11951: 11948: 11947: 11931: 11928: 11927: 11911: 11908: 11907: 11887: 11884: 11883: 11853: 11850: 11849: 11821: 11810: 11807: 11806: 11778: 11775: 11774: 11748: 11745: 11744: 11724: 11721: 11720: 11700: 11697: 11696: 11677: 11673: 11661: 11655: 11652: 11651: 11629: 11626: 11625: 11606: 11603: 11602: 11586: 11583: 11582: 11551: 11548: 11547: 11519: 11508: 11505: 11504: 11476: 11473: 11472: 11449: 11446: 11445: 11427: 11424: 11423: 11407: 11404: 11403: 11400: 11391: 11376: 11373: 11372: 11350: 11347: 11346: 11315: 11312: 11311: 11289: 11286: 11285: 11266: 11263: 11262: 11259: 11253: 11224: 11221: 11220: 11198: 11195: 11194: 11172: 11169: 11168: 11137: 11134: 11133: 11117: 11114: 11113: 11088: 11085: 11084: 11065: 11062: 11061: 11041: 11038: 11037: 10984: 10981: 10980: 10961: 10958: 10957: 10939: 10936: 10935: 10913: 10910: 10909: 10869: 10866: 10865: 10849: 10847: 10844: 10843: 10827: 10813: 10810: 10809: 10764: 10761: 10760: 10757: 10732: 10729: 10728: 10712: 10709: 10708: 10683: 10680: 10679: 10660: 10657: 10656: 10640: 10637: 10636: 10603: 10600: 10599: 10576: 10572: 10570: 10567: 10566: 10549: 10545: 10543: 10540: 10539: 10507: 10503: 10488: 10484: 10475: 10471: 10462: 10458: 10456: 10453: 10452: 10427: 10423: 10408: 10404: 10395: 10391: 10390: 10386: 10384: 10381: 10380: 10363: 10359: 10357: 10354: 10353: 10336: 10332: 10330: 10327: 10326: 10319: 10286: 10283: 10282: 10266: 10263: 10262: 10240: 10237: 10236: 10235:, also denoted 10216: 10213: 10212: 10183: 10180: 10179: 10147: 10144: 10143: 10118: 10115: 10114: 10092: 10089: 10088: 10085:Boolean algebra 10061: 10058: 10057: 10041: 10038: 10037: 10021: 10018: 10017: 10015: 9990: 9988: 9985: 9984: 9956: 9942: 9939: 9938: 9906: and  9904: 9886: 9883: 9882: 9862: 9859: 9858: 9842: 9839: 9838: 9822: 9819: 9818: 9802: 9799: 9798: 9795: 9789: 9729: 9708: 9705: 9704: 9688: 9685: 9684: 9662: 9659: 9658: 9642: 9639: 9638: 9616: 9613: 9612: 9587: 9584: 9583: 9567: 9564: 9563: 9547: 9544: 9543: 9524: 9521: 9520: 9504: 9501: 9500: 9484: 9481: 9480: 9384: 9381: 9380: 9359: 9356: 9355: 9348: 9342: 9303: 9300:isomorphic to N 9295: 9293: 9230: 9227: 9226: 9204: 9201: 9200: 9198: 9196: 9109: 9106: 9105: 9068: 9065: 9064: 9061: 9024: 9021: 9020: 9017: 9015:Modular lattice 9011: 8989: 8985: 8982:isomorphic to M 8977: 8973: 8892: 8889: 8888: 8870: 8867: 8866: 8850: 8847: 8846: 8770: 8767: 8766: 8748: 8745: 8744: 8728: 8725: 8724: 8683: 8680: 8679: 8668: 8655: 8562: 8559: 8558: 8485: 8482: 8481: 8479: 8439: 8436: 8435: 8395: 8392: 8391: 8369: 8366: 8365: 8363: 8347: 8323: 8320: 8319: 8300: 8297: 8296: 8273: 8267: 8247: 8241: 8235: 8227: 8225:Map of lattices 8221: 8180: 8177: 8176: 8157: 8154: 8153: 8137: 8134: 8133: 8105: 8102: 8101: 8073: 8070: 8069: 8050: 8047: 8046: 8026: 8023: 8022: 8006: 8003: 8002: 7981: 7978: 7977: 7961: 7958: 7957: 7938: 7935: 7934: 7912: 7909: 7908: 7886: 7883: 7882: 7854: 7851: 7850: 7834: 7831: 7830: 7829:is a subset of 7814: 7811: 7810: 7794: 7791: 7790: 7771: 7768: 7767: 7751: 7748: 7747: 7746:is a subset of 7731: 7728: 7727: 7724: 7718: 7697: 7694: 7693: 7643: 7639: 7637: 7634: 7633: 7613: 7610: 7609: 7559: 7555: 7553: 7550: 7549: 7515: 7514: 7512: 7509: 7508: 7492: 7490: 7487: 7486: 7458: 7457: 7455: 7452: 7451: 7435: 7433: 7430: 7429: 7419: 7413: 7403: 7345: 7341: 7328: 7324: 7320: 7315: 7312: 7311: 7298: and  7296: 7287: 7283: 7270: 7266: 7262: 7257: 7254: 7253: 7237: 7234: 7233: 7217: 7214: 7213: 7197: 7194: 7193: 7165: 7162: 7161: 7127: 7123: 7094: 7090: 7086: 7082: 7077: 7074: 7073: 7060: and  7058: 7037: 7033: 7004: 7000: 6996: 6992: 6987: 6984: 6983: 6953: 6950: 6949: 6921: 6918: 6917: 6880: 6876: 6867: 6863: 6856: 6852: 6850: 6847: 6846: 6824: 6820: 6811: 6807: 6800: 6796: 6794: 6791: 6790: 6723: 6719: 6717: 6714: 6713: 6698: 6695: 6694: 6678: 6674: 6665: 6661: 6652: 6648: 6616: 6613: 6612: 6559: 6555: 6553: 6550: 6549: 6534: 6531: 6530: 6514: 6510: 6501: 6497: 6488: 6484: 6452: 6449: 6448: 6432: 6429: 6428: 6418: 6359: 6356: 6355: 6316: 6313: 6312: 6278: 6275: 6274: 6234: 6231: 6230: 6202: 6199: 6198: 6176: 6173: 6172: 6144: 6141: 6140: 6124: 6121: 6120: 6078: 6075: 6074: 6049: 6046: 6045: 6029: 6026: 6025: 6009: 6006: 6005: 5963: 5960: 5959: 5922: 5919: 5918: 5902: 5899: 5898: 5882: 5879: 5878: 5864: 5800: 5797: 5796: 5780: 5777: 5776: 5758: 5755: 5754: 5738: 5735: 5734: 5712: 5709: 5708: 5665: 5662: 5661: 5635: and  5633: 5622: 5619: 5618: 5572: 5569: 5568: 5531: 5528: 5527: 5504: 5501: 5500: 5481: 5478: 5477: 5458: 5455: 5454: 5435: 5432: 5431: 5404: 5401: 5400: 5380: 5377: 5376: 5356: 5353: 5352: 5333: 5330: 5329: 5323: 5317: 5308: 5289: 5286: 5285: 5279: 5270: 5223: 5220: 5219: 5209: 5200: 5190: 5181: 5136: 5133: 5132: 5126: 5117: 5086: 5083: 5082: 5066: 5063: 5062: 5035: 5008: 5004: 4989: 4985: 4984: 4980: 4972: 4969: 4968: 4951: 4947: 4932: 4928: 4911: 4908: 4907: 4890: 4886: 4871: 4867: 4850: 4847: 4846: 4812: 4809: 4808: 4767: 4763: 4748: 4744: 4729: 4725: 4702: 4699: 4698: 4660: 4656: 4641: 4637: 4622: 4618: 4595: 4592: 4591: 4575: 4572: 4571: 4548: 4544: 4529: 4525: 4502: 4499: 4498: 4475: 4471: 4456: 4452: 4429: 4426: 4425: 4407: 4404: 4403: 4387: 4384: 4383: 4367: 4364: 4363: 4337: 4334: 4333: 4305: 4302: 4301: 4261: 4259: 4256: 4255: 4218: 4216: 4213: 4212: 4192: 4189: 4188: 4158: 4155: 4154: 4127: 4124: 4123: 4105: 4102: 4101: 4085: 4082: 4081: 4062: 4059: 4058: 4038: 4035: 4034: 4000: 3997: 3996: 3950: 3947: 3946: 3916: 3898: 3895: 3894: 3876: 3873: 3872: 3871: 3855: 3852: 3851: 3848: 3842: 3835: 3813: 3810: 3809: 3807: 3788: 3785: 3784: 3781: 3775: 3768: 3761:bounded lattice 3757: 3755:Bounded lattice 3731: 3728: 3727: 3711: 3708: 3707: 3625: 3608: 3605: 3604: 3573: 3570: 3569: 3535: 3524: 3521: 3520: 3505: 3482: 3471: 3468: 3467: 3451: 3448: 3447: 3431: 3428: 3427: 3390: 3387: 3386: 3349: 3346: 3345: 3326: 3323: 3322: 3306: 3303: 3302: 3299: 3254: 3251: 3250: 3222: 3219: 3218: 3188: 3185: 3184: 3157: 3154: 3153: 3150:idempotent laws 3107: 3104: 3103: 3064: 3061: 3060: 3057:absorption laws 3028: 3025: 3024: 3008: 3005: 3004: 2988: 2985: 2984: 2968: 2965: 2964: 2945: 2942: 2941: 2907: 2904: 2903: 2893: 2883:partial lattice 2882: 2881: 2864: 2861: 2860: 2841: 2838: 2837: 2808: 2805: 2804: 2757: 2753: 2744: 2740: 2731: 2727: 2718: 2714: 2712: 2709: 2708: 2691: 2687: 2678: 2674: 2665: 2661: 2652: 2648: 2646: 2643: 2642: 2625: 2621: 2612: 2608: 2606: 2603: 2602: 2585: 2581: 2572: 2568: 2566: 2563: 2562: 2541: 2538: 2537: 2519: 2516: 2515: 2493: 2490: 2489: 2459: 2456: 2455: 2417: 2414: 2413: 2377: 2374: 2373: 2366: 2358: 2339:order-theoretic 2285:natural numbers 2259:) and a unique 2229: 2228: 2223: 2194: 2193: 2192: 2163:Non-associative 2145: 2134: 2133: 2123: 2103: 2092: 2091: 2080:Map of lattices 2076: 2072:Boolean algebra 2067:Heyting algebra 2041: 2030: 2029: 2023: 2004:Integral domain 1968: 1957: 1956: 1950: 1904: 1880: 1856: 1853: 1852: 1830: 1827: 1826: 1804: 1801: 1800: 1769: 1766: 1765: 1745: 1742: 1741: 1735: 1727: 1723: 1714: 1710: 1688: 1687: 1673: 1670: 1669: 1653: 1651: 1648: 1647: 1621: 1619: 1616: 1615: 1592: 1589: 1588: 1573: 1572: 1567: 1564: 1563: 1550: 1548: 1545: 1544: 1529: 1528: 1523: 1520: 1519: 1506: 1504: 1501: 1500: 1485: 1484: 1479: 1476: 1475: 1465: 1463: 1460: 1459: 1444: 1443: 1432: 1427: 1415: 1414: 1406: 1404: 1394: 1392: 1389: 1388: 1373: 1372: 1367: 1365: 1353: 1352: 1341: 1338: and  1336: 1323: 1321: 1318: 1317: 1302: 1301: 1290: 1288: 1282: 1281: 1267: 1265: 1262: 1261: 1235: 1232: 1231: 1209: 1206: 1205: 1148: 1144: 1138: 1134: 1108: 1104: 1098: 1094: 1076: 1072: 1066: 1062: 1031: 1027: 1009: 1005: 999: 995: 964: 960: 932: 928: 922: 918: 897: 893: 865: 861: 850: 846: 830: 826: 798: 794: 788: 784: 778: 774: 758: 754: 726: 722: 706: 702: 696: 692: 686: 682: 654: 650: 634: 630: 607: 590: 586: 570: 566: 560: 556: 541:Prewellordering 523: 519: 498: 494: 488: 484: 456: 452: 431: 427: 394: 390: 364: 360: 332: 328: 290: 287: 270: 266: 235: 231: 223: 215: 139: 106: 95: 84: 78: 75: 65:Please help to 64: 48: 44: 35: 32:Lattice (group) 28: 23: 22: 15: 12: 11: 5: 14019: 14009: 14008: 14003: 14001:Lattice theory 13986: 13985: 13983: 13982: 13977: 13972: 13971: 13970: 13960: 13959: 13958: 13953: 13948: 13938: 13937: 13936: 13926: 13921: 13920: 13919: 13914: 13907:Order morphism 13904: 13903: 13902: 13892: 13887: 13882: 13877: 13872: 13871: 13870: 13860: 13855: 13850: 13844: 13842: 13838: 13837: 13835: 13834: 13833: 13832: 13827: 13825:Locally convex 13822: 13817: 13807: 13805:Order topology 13802: 13801: 13800: 13798:Order topology 13795: 13785: 13775: 13773: 13766: 13765: 13763: 13762: 13757: 13752: 13747: 13742: 13737: 13732: 13727: 13722: 13717: 13711: 13709: 13705: 13704: 13702: 13701: 13691: 13681: 13676: 13671: 13666: 13661: 13656: 13651: 13646: 13645: 13644: 13634: 13629: 13628: 13627: 13622: 13617: 13612: 13610:Chain-complete 13602: 13597: 13596: 13595: 13590: 13585: 13580: 13575: 13565: 13560: 13555: 13550: 13545: 13535: 13530: 13525: 13520: 13515: 13510: 13509: 13508: 13498: 13493: 13487: 13485: 13475: 13474: 13472: 13471: 13466: 13461: 13456: 13451: 13446: 13441: 13436: 13431: 13426: 13421: 13416: 13410: 13408: 13404: 13403: 13401: 13400: 13395: 13390: 13385: 13380: 13375: 13370: 13365: 13359: 13357: 13353: 13352: 13350: 13349: 13344: 13339: 13333: 13330: 13329: 13322: 13321: 13314: 13307: 13299: 13292: 13291: 13279: 13274:Ralph Freese, 13272: 13263: 13244: 13225: 13223: 13222:External links 13220: 13218: 13217: 13201: 13200: 13172: 13132: 13126:Lattice Theory 13120: 13102: 13101: 13091: 13080: 13079: 13073: 13056: 13038: 13031:Lattice Theory 13020: 13019: 13014: 12994:Davey, B. A.; 12987: 12986: 12976: 12973:Lattice Theory 12961: 12960: 12943: 12922: 12920: 12917: 12914: 12913: 12901: 12889: 12866: 12854: 12835:(1): 104–115. 12819: 12800:(1): 325–329. 12782: 12776: 12755: 12739: 12720: 12704: 12697: 12691:. p. 14. 12675: 12646: 12622: 12602: 12599: 12596: 12593: 12590: 12587: 12584: 12581: 12578: 12575: 12572: 12569: 12566: 12563: 12560: 12557: 12554: 12531: 12514: 12513: 12511: 12508: 12507: 12506: 12501: 12496: 12491: 12486: 12481: 12476: 12471: 12466: 12456: 12451: 12446: 12441: 12436: 12431: 12425: 12420: 12415: 12410: 12405: 12403:Spectral space 12400: 12395: 12382: 12381: 12347: 12345: 12338: 12332: 12329: 12328: 12327: 12322: 12317: 12311:Tamari lattice 12308: 12302:Post's lattice 12299: 12294: 12284: 12283:(dual notions) 12274: 12268: 12263: 12257: 12249: 12246: 12227: 12226: 12210: 12196: 12185: 12182: 12179: 12176: 12156: 12136: 12116: 12113: 12093: 12066: 12046: 12043: 12040: 12037: 12034: 12031: 12011: 12008: 12005: 11985: 11982: 11979: 11955: 11935: 11915: 11904: 11903: 11891: 11863: 11860: 11857: 11837: 11834: 11831: 11828: 11823: or  11820: 11817: 11814: 11794: 11791: 11788: 11785: 11782: 11768: 11752: 11728: 11704: 11685: 11680: 11676: 11670: 11667: 11664: 11660: 11639: 11636: 11633: 11613: 11610: 11590: 11570: 11567: 11564: 11561: 11558: 11555: 11535: 11532: 11529: 11526: 11521: or  11518: 11515: 11512: 11492: 11489: 11486: 11483: 11480: 11453: 11434: 11431: 11411: 11399: 11396: 11380: 11357: 11354: 11322: 11319: 11299: 11296: 11293: 11270: 11255:Main article: 11252: 11249: 11237: 11234: 11231: 11228: 11208: 11205: 11202: 11182: 11179: 11176: 11156: 11153: 11150: 11147: 11144: 11141: 11121: 11101: 11098: 11095: 11092: 11072: 11069: 11045: 11018: 11015: 11012: 11009: 11006: 11003: 11000: 10997: 10994: 10991: 10988: 10968: 10965: 10943: 10923: 10920: 10917: 10897: 10894: 10891: 10888: 10885: 10882: 10879: 10876: 10873: 10852: 10830: 10826: 10823: 10820: 10817: 10780: 10777: 10774: 10771: 10768: 10756: 10753: 10736: 10716: 10696: 10693: 10690: 10687: 10667: 10664: 10644: 10622: 10619: 10616: 10613: 10610: 10607: 10585: 10582: 10579: 10575: 10552: 10548: 10515: 10510: 10506: 10502: 10499: 10496: 10491: 10487: 10483: 10478: 10474: 10470: 10465: 10461: 10440: 10436: 10430: 10426: 10422: 10419: 10416: 10411: 10407: 10403: 10398: 10394: 10389: 10366: 10362: 10339: 10335: 10318: 10315: 10302: 10299: 10296: 10293: 10290: 10270: 10250: 10247: 10244: 10220: 10190: 10187: 10163: 10160: 10157: 10154: 10151: 10131: 10128: 10125: 10122: 10099: 10096: 10065: 10045: 10025: 10016:, the element 10013: 9998: 9995: 9972: 9969: 9966: 9963: 9959: 9955: 9952: 9949: 9946: 9924: 9921: 9918: 9915: 9912: 9902: 9899: 9896: 9893: 9890: 9866: 9846: 9826: 9806: 9788: 9785: 9776: 9775: 9766: 9728: 9725: 9712: 9692: 9681: 9680: 9669: 9666: 9646: 9626: 9623: 9620: 9600: 9597: 9594: 9591: 9571: 9551: 9531: 9528: 9508: 9488: 9475:'s condition: 9469: 9468: 9457: 9454: 9451: 9448: 9445: 9442: 9439: 9436: 9433: 9430: 9427: 9424: 9421: 9418: 9415: 9412: 9409: 9406: 9403: 9400: 9397: 9394: 9391: 9388: 9366: 9363: 9344:Main article: 9341: 9340:Semimodularity 9338: 9301: 9291: 9279: 9276: 9273: 9270: 9267: 9264: 9261: 9258: 9255: 9252: 9249: 9246: 9243: 9240: 9237: 9234: 9214: 9211: 9208: 9194: 9182: 9179: 9176: 9173: 9170: 9167: 9164: 9161: 9158: 9155: 9152: 9149: 9146: 9143: 9140: 9137: 9134: 9131: 9128: 9125: 9122: 9119: 9116: 9113: 9093: 9090: 9087: 9084: 9081: 9078: 9075: 9072: 9059: 9046: 9043: 9040: 9037: 9034: 9031: 9028: 9013:Main article: 9010: 9007: 8987: 8983: 8975: 8971: 8953: 8950: 8947: 8944: 8941: 8938: 8935: 8932: 8929: 8926: 8923: 8920: 8917: 8914: 8911: 8908: 8905: 8902: 8899: 8896: 8886: 8885: 8874: 8854: 8831: 8828: 8825: 8822: 8819: 8816: 8813: 8810: 8807: 8804: 8801: 8798: 8795: 8792: 8789: 8786: 8783: 8780: 8777: 8774: 8764: 8763: 8752: 8732: 8708: 8705: 8702: 8699: 8696: 8693: 8690: 8687: 8664:Main article: 8660: 8659: 8653: 8637: 8636: 8623: 8620: 8617: 8614: 8611: 8608: 8605: 8602: 8599: 8596: 8593: 8590: 8587: 8584: 8581: 8578: 8575: 8572: 8569: 8566: 8546: 8543: 8540: 8537: 8534: 8531: 8528: 8525: 8522: 8519: 8516: 8513: 8510: 8507: 8504: 8501: 8498: 8495: 8492: 8489: 8467: 8464: 8461: 8458: 8455: 8452: 8449: 8446: 8443: 8423: 8420: 8417: 8414: 8411: 8408: 8405: 8402: 8399: 8379: 8376: 8373: 8361: 8346: 8345:Distributivity 8343: 8330: 8327: 8307: 8304: 8286: 8282: 8269:Main article: 8266: 8263: 8252: 8245: 8237:Main article: 8234: 8231: 8220: 8217: 8205: 8202: 8199: 8196: 8193: 8190: 8187: 8184: 8164: 8161: 8141: 8121: 8118: 8115: 8112: 8109: 8089: 8086: 8083: 8080: 8077: 8057: 8054: 8044: 8030: 8010: 7988: 7985: 7965: 7945: 7942: 7922: 7919: 7916: 7896: 7893: 7890: 7870: 7867: 7864: 7861: 7858: 7838: 7818: 7798: 7778: 7775: 7755: 7735: 7722: 7717: 7714: 7712:separates 1). 7701: 7681: 7678: 7675: 7672: 7669: 7666: 7663: 7660: 7657: 7654: 7649: 7646: 7642: 7617: 7597: 7594: 7591: 7588: 7585: 7582: 7579: 7576: 7573: 7570: 7565: 7562: 7558: 7547:if and only if 7522: 7518: 7495: 7465: 7461: 7438: 7417: 7411: 7401: 7353: 7348: 7344: 7340: 7336: 7331: 7327: 7323: 7319: 7295: 7290: 7286: 7282: 7278: 7273: 7269: 7265: 7261: 7241: 7221: 7201: 7169: 7147: 7144: 7141: 7138: 7135: 7130: 7126: 7122: 7119: 7116: 7113: 7110: 7106: 7102: 7097: 7093: 7089: 7085: 7081: 7057: 7054: 7051: 7048: 7045: 7040: 7036: 7032: 7029: 7026: 7023: 7020: 7016: 7012: 7007: 7003: 6999: 6995: 6991: 6972: 6969: 6966: 6963: 6960: 6957: 6937: 6934: 6931: 6928: 6925: 6916:is a function 6893: 6889: 6883: 6879: 6875: 6870: 6866: 6862: 6859: 6855: 6833: 6827: 6823: 6819: 6814: 6810: 6806: 6803: 6799: 6767: 6764: 6761: 6758: 6755: 6752: 6749: 6746: 6743: 6740: 6737: 6734: 6731: 6726: 6722: 6702: 6681: 6677: 6673: 6668: 6664: 6660: 6655: 6651: 6647: 6644: 6641: 6638: 6635: 6632: 6629: 6626: 6623: 6620: 6600: 6597: 6594: 6591: 6588: 6585: 6582: 6579: 6576: 6573: 6570: 6567: 6562: 6558: 6538: 6517: 6513: 6509: 6504: 6500: 6496: 6491: 6487: 6483: 6480: 6477: 6474: 6471: 6468: 6465: 6462: 6459: 6456: 6436: 6427:Monotonic map 6417: 6414: 6413: 6412: 6399: 6396: 6393: 6390: 6387: 6384: 6381: 6378: 6375: 6372: 6369: 6366: 6363: 6352: 6341: 6338: 6335: 6332: 6329: 6326: 6323: 6320: 6300: 6297: 6294: 6291: 6288: 6285: 6282: 6262: 6259: 6256: 6253: 6250: 6247: 6244: 6241: 6238: 6227: 6215: 6212: 6209: 6206: 6186: 6183: 6180: 6163: 6162: 6148: 6128: 6104: 6103: 6085: 6082: 6062: 6059: 6056: 6053: 6033: 6013: 5989: 5988: 5970: 5967: 5947: 5944: 5941: 5938: 5935: 5932: 5929: 5926: 5906: 5886: 5863: 5860: 5856: 5855: 5831: 5816: 5804: 5784: 5765: 5762: 5742: 5722: 5719: 5716: 5693: 5681: 5678: 5675: 5672: 5669: 5649: 5646: 5643: 5640: 5632: 5629: 5626: 5606: 5603: 5600: 5597: 5594: 5591: 5588: 5585: 5582: 5579: 5576: 5561: 5554: 5538: 5535: 5511: 5508: 5497: 5485: 5465: 5462: 5442: 5439: 5428: 5408: 5384: 5360: 5340: 5337: 5325: 5324: 5318: 5311: 5309: 5297: 5294: 5280: 5273: 5271: 5254: 5251: 5248: 5245: 5242: 5239: 5236: 5233: 5230: 5227: 5210: 5203: 5201: 5191: 5184: 5182: 5161: 5158: 5155: 5152: 5149: 5146: 5143: 5140: 5127: 5120: 5116: 5113: 5093: 5090: 5070: 5051:absorption law 5034: 5031: 5017: 5011: 5007: 5003: 5000: 4997: 4992: 4988: 4983: 4979: 4976: 4954: 4950: 4946: 4943: 4940: 4935: 4931: 4927: 4924: 4921: 4918: 4915: 4906:(respectively 4893: 4889: 4885: 4882: 4879: 4874: 4870: 4866: 4863: 4860: 4857: 4854: 4831: 4828: 4825: 4822: 4819: 4816: 4796: 4793: 4790: 4787: 4784: 4781: 4777: 4773: 4770: 4766: 4762: 4758: 4754: 4751: 4747: 4743: 4739: 4735: 4732: 4728: 4724: 4721: 4718: 4715: 4712: 4709: 4706: 4686: 4683: 4680: 4677: 4674: 4670: 4666: 4663: 4659: 4655: 4651: 4647: 4644: 4640: 4636: 4632: 4628: 4625: 4621: 4617: 4614: 4611: 4608: 4605: 4602: 4599: 4579: 4558: 4554: 4551: 4547: 4543: 4539: 4535: 4532: 4528: 4524: 4521: 4518: 4515: 4512: 4509: 4506: 4485: 4481: 4478: 4474: 4470: 4466: 4462: 4459: 4455: 4451: 4448: 4445: 4442: 4439: 4436: 4433: 4414: 4411: 4391: 4371: 4350: 4347: 4344: 4341: 4321: 4318: 4315: 4312: 4309: 4289: 4286: 4283: 4280: 4277: 4274: 4271: 4268: 4243: 4240: 4237: 4234: 4231: 4228: 4225: 4209:vacuously true 4196: 4174: 4171: 4168: 4165: 4162: 4143: 4140: 4137: 4134: 4131: 4112: 4109: 4089: 4069: 4066: 4042: 4033:is a lattice, 4022: 4019: 4016: 4013: 4010: 4007: 4004: 3984: 3981: 3978: 3975: 3972: 3969: 3966: 3963: 3960: 3957: 3954: 3932: 3929: 3926: 3923: 3914: 3911: 3908: 3905: 3902: 3893:which satisfy 3880: 3859: 3846: 3840: 3833: 3817: 3795: 3792: 3779: 3773: 3766: 3756: 3753: 3738: 3735: 3715: 3692: 3689: 3686: 3683: 3680: 3677: 3674: 3671: 3668: 3665: 3662: 3659: 3656: 3653: 3650: 3647: 3644: 3641: 3638: 3635: 3632: 3624: 3621: 3618: 3615: 3612: 3592: 3589: 3586: 3583: 3580: 3577: 3557: 3554: 3551: 3548: 3545: 3542: 3537: if  3534: 3531: 3528: 3507: or  3504: 3501: 3498: 3495: 3492: 3489: 3484: if  3481: 3478: 3475: 3455: 3435: 3415: 3412: 3409: 3406: 3403: 3400: 3397: 3394: 3371: 3368: 3365: 3362: 3359: 3356: 3353: 3333: 3330: 3310: 3298: 3295: 3270: 3267: 3264: 3261: 3258: 3238: 3235: 3232: 3229: 3226: 3204: 3201: 3198: 3195: 3192: 3173: 3170: 3167: 3164: 3161: 3151: 3135: 3132: 3129: 3126: 3123: 3120: 3117: 3114: 3111: 3092: 3089: 3086: 3083: 3080: 3077: 3074: 3071: 3068: 3058: 3044: 3041: 3038: 3035: 3032: 3012: 2992: 2972: 2949: 2929: 2926: 2923: 2920: 2917: 2914: 2911: 2892: 2889: 2868: 2848: 2845: 2821: 2818: 2815: 2812: 2765: 2760: 2756: 2752: 2747: 2743: 2739: 2734: 2730: 2726: 2721: 2717: 2694: 2690: 2686: 2681: 2677: 2673: 2668: 2664: 2660: 2655: 2651: 2628: 2624: 2620: 2615: 2611: 2588: 2584: 2580: 2575: 2571: 2546: 2524: 2503: 2500: 2497: 2469: 2466: 2463: 2439: 2436: 2433: 2430: 2427: 2424: 2421: 2393: 2390: 2387: 2384: 2381: 2365: 2362: 2357: 2354: 2350:lattice theory 2225: 2224: 2222: 2221: 2214: 2207: 2199: 2196: 2195: 2191: 2190: 2185: 2180: 2175: 2170: 2165: 2160: 2154: 2153: 2152: 2146: 2140: 2139: 2136: 2135: 2132: 2131: 2128:Linear algebra 2122: 2121: 2116: 2111: 2105: 2104: 2098: 2097: 2094: 2093: 2090: 2089: 2086:Lattice theory 2082: 2075: 2074: 2069: 2064: 2059: 2054: 2049: 2043: 2042: 2036: 2035: 2032: 2031: 2022: 2021: 2016: 2011: 2006: 2001: 1996: 1991: 1986: 1981: 1976: 1970: 1969: 1963: 1962: 1959: 1958: 1949: 1948: 1943: 1938: 1932: 1931: 1930: 1925: 1920: 1911: 1905: 1899: 1898: 1895: 1894: 1884: 1883: 1869: 1866: 1863: 1860: 1840: 1837: 1834: 1814: 1811: 1808: 1788: 1785: 1782: 1779: 1776: 1773: 1749: 1706: 1705: 1702: 1701: 1686: 1683: 1680: 1672: 1671: 1668: 1665: 1662: 1659: 1656: 1655: 1645: 1634: 1631: 1628: 1613: 1602: 1599: 1596: 1586: 1566: 1565: 1562: 1559: 1556: 1553: 1552: 1542: 1522: 1521: 1518: 1515: 1512: 1509: 1508: 1498: 1478: 1477: 1474: 1471: 1468: 1467: 1457: 1442: 1439: 1436: 1433: 1429: or  1426: 1423: 1420: 1417: 1416: 1413: 1410: 1407: 1403: 1400: 1397: 1396: 1386: 1371: 1368: 1364: 1361: 1358: 1355: 1354: 1351: 1348: 1345: 1342: 1335: 1332: 1329: 1326: 1325: 1315: 1300: 1297: 1294: 1291: 1287: 1284: 1283: 1280: 1277: 1274: 1271: 1269: 1259: 1248: 1245: 1242: 1239: 1219: 1216: 1213: 1201: 1200: 1195: 1190: 1185: 1180: 1175: 1170: 1165: 1160: 1155: 1152: 1151: 1141: 1131: 1126: 1121: 1116: 1111: 1101: 1091: 1086: 1080: 1079: 1069: 1059: 1054: 1049: 1044: 1039: 1034: 1024: 1019: 1013: 1012: 1002: 992: 987: 982: 977: 972: 967: 957: 952: 946: 945: 940: 935: 925: 915: 910: 905: 900: 890: 885: 879: 878: 873: 868: 858: 853: 843: 838: 833: 823: 818: 812: 811: 806: 801: 791: 781: 771: 766: 761: 751: 746: 740: 739: 734: 729: 719: 714: 709: 699: 689: 679: 674: 668: 667: 662: 657: 647: 642: 637: 627: 622: 617: 612: 604: 603: 598: 593: 583: 578: 573: 563: 553: 548: 543: 537: 536: 531: 526: 516: 511: 506: 501: 491: 481: 476: 470: 469: 464: 459: 449: 444: 439: 434: 424: 419: 414: 412:Total preorder 408: 407: 402: 397: 387: 382: 377: 372: 367: 357: 352: 346: 345: 340: 335: 325: 320: 315: 310: 305: 300: 295: 284: 283: 278: 273: 263: 258: 253: 248: 243: 238: 228: 220: 219: 217: 212: 210: 208: 206: 204: 201: 199: 197: 194: 193: 188: 183: 178: 173: 168: 163: 158: 153: 148: 141: 140: 138: 137: 130: 123: 115: 101: 100: 97: 96: 51: 49: 42: 26: 9: 6: 4: 3: 2: 14018: 14007: 14004: 14002: 13999: 13998: 13996: 13981: 13978: 13976: 13973: 13969: 13966: 13965: 13964: 13961: 13957: 13954: 13952: 13949: 13947: 13944: 13943: 13942: 13939: 13935: 13932: 13931: 13930: 13929:Ordered field 13927: 13925: 13922: 13918: 13915: 13913: 13910: 13909: 13908: 13905: 13901: 13898: 13897: 13896: 13893: 13891: 13888: 13886: 13885:Hasse diagram 13883: 13881: 13878: 13876: 13873: 13869: 13866: 13865: 13864: 13863:Comparability 13861: 13859: 13856: 13854: 13851: 13849: 13846: 13845: 13843: 13839: 13831: 13828: 13826: 13823: 13821: 13818: 13816: 13813: 13812: 13811: 13808: 13806: 13803: 13799: 13796: 13794: 13791: 13790: 13789: 13786: 13784: 13780: 13777: 13776: 13774: 13771: 13767: 13761: 13758: 13756: 13753: 13751: 13748: 13746: 13743: 13741: 13738: 13736: 13735:Product order 13733: 13731: 13728: 13726: 13723: 13721: 13718: 13716: 13713: 13712: 13710: 13708:Constructions 13706: 13700: 13696: 13692: 13689: 13685: 13682: 13680: 13677: 13675: 13672: 13670: 13667: 13665: 13662: 13660: 13657: 13655: 13652: 13650: 13647: 13643: 13640: 13639: 13638: 13635: 13633: 13630: 13626: 13623: 13621: 13618: 13616: 13613: 13611: 13608: 13607: 13606: 13605:Partial order 13603: 13601: 13598: 13594: 13593:Join and meet 13591: 13589: 13586: 13584: 13581: 13579: 13576: 13574: 13571: 13570: 13569: 13566: 13564: 13561: 13559: 13556: 13554: 13551: 13549: 13546: 13544: 13540: 13536: 13534: 13531: 13529: 13526: 13524: 13521: 13519: 13516: 13514: 13511: 13507: 13504: 13503: 13502: 13499: 13497: 13494: 13492: 13491:Antisymmetric 13489: 13488: 13486: 13482: 13476: 13470: 13467: 13465: 13462: 13460: 13457: 13455: 13452: 13450: 13447: 13445: 13442: 13440: 13437: 13435: 13432: 13430: 13427: 13425: 13422: 13420: 13417: 13415: 13412: 13411: 13409: 13405: 13399: 13398:Weak ordering 13396: 13394: 13391: 13389: 13386: 13384: 13383:Partial order 13381: 13379: 13376: 13374: 13371: 13369: 13366: 13364: 13361: 13360: 13358: 13354: 13348: 13345: 13343: 13340: 13338: 13335: 13334: 13331: 13327: 13320: 13315: 13313: 13308: 13306: 13301: 13300: 13297: 13290: 13288: 13280: 13277: 13273: 13270: 13269: 13265:J.B. Nation, 13264: 13259: 13258: 13253: 13250: 13245: 13241: 13237: 13236: 13231: 13227: 13226: 13216: 13211: 13206: 13205: 13204: 13197: 13192: 13188: 13181: 13177: 13173: 13168: 13164: 13160: 13156: 13151: 13146: 13142: 13138: 13133: 13128: 13127: 13121: 13114: 13113: 13107: 13106: 13105: 13099: 13095: 13092: 13089: 13085: 13084: 13083: 13076: 13070: 13065: 13064: 13057: 13054: 13050: 13046: 13042: 13039: 13036: 13032: 13028: 13025: 13024: 13023: 13017: 13011: 13007: 13003: 13002: 12997: 12992: 12991: 12990: 12984: 12980: 12977: 12974: 12970: 12969: 12968: 12966: 12958: 12957:0-387-56314-8 12954: 12950: 12949: 12944: 12941: 12940:3-540-90578-2 12937: 12933: 12932: 12927: 12926: 12925: 12910: 12905: 12898: 12893: 12885: 12881: 12877: 12870: 12864:, p. 53. 12863: 12858: 12850: 12846: 12842: 12838: 12834: 12830: 12823: 12815: 12811: 12807: 12803: 12799: 12795: 12794: 12786: 12779: 12777:0-521-66351-2 12773: 12769: 12765: 12759: 12752: 12748: 12743: 12736: 12732: 12727: 12725: 12717: 12713: 12708: 12700: 12698:9780821826942 12694: 12690: 12686: 12679: 12664: 12657: 12650: 12643: 12642:3-540-90578-2 12639: 12635: 12633: 12626: 12620: 12616: 12615:Dedekind 1897 12600: 12597: 12594: 12591: 12582: 12579: 12576: 12570: 12567: 12561: 12558: 12555: 12552: 12544: 12540: 12539:Birkhoff 1948 12535: 12528: 12524: 12519: 12515: 12505: 12502: 12500: 12497: 12495: 12492: 12490: 12487: 12485: 12484:Quantum logic 12482: 12480: 12477: 12475: 12472: 12470: 12467: 12464: 12463:Lattice Miner 12460: 12457: 12455: 12452: 12450: 12447: 12445: 12444:Domain theory 12442: 12440: 12437: 12435: 12432: 12429: 12426: 12424: 12421: 12419: 12416: 12414: 12411: 12409: 12406: 12404: 12401: 12399: 12396: 12394: 12391: 12390: 12389: 12388: 12378: 12369:is available. 12368: 12364: 12358: 12357: 12353: 12348:This article 12346: 12337: 12336: 12326: 12323: 12321: 12318: 12312: 12309: 12303: 12300: 12298: 12295: 12288: 12285: 12282: 12278: 12275: 12272: 12269: 12267: 12264: 12261: 12258: 12255: 12254:Join and meet 12252: 12251: 12245: 12243: 12239: 12235: 12230: 12224: 12208: 12200: 12197: 12183: 12180: 12177: 12174: 12154: 12134: 12114: 12111: 12091: 12083: 12080: 12079: 12078: 12064: 12044: 12041: 12038: 12035: 12032: 12029: 12009: 12006: 12003: 11983: 11980: 11977: 11969: 11953: 11933: 11913: 11889: 11881: 11877: 11861: 11858: 11855: 11835: 11832: 11829: 11826: 11818: 11815: 11812: 11792: 11789: 11786: 11783: 11780: 11772: 11769: 11766: 11750: 11742: 11726: 11718: 11702: 11683: 11678: 11674: 11668: 11665: 11662: 11658: 11637: 11634: 11631: 11611: 11608: 11588: 11568: 11565: 11562: 11559: 11556: 11553: 11533: 11530: 11527: 11524: 11516: 11513: 11510: 11490: 11487: 11484: 11481: 11478: 11470: 11467: 11466: 11465: 11451: 11432: 11429: 11409: 11395: 11378: 11370: 11355: 11352: 11344: 11340: 11336: 11320: 11317: 11297: 11294: 11291: 11284: 11268: 11258: 11251:Free lattices 11248: 11235: 11232: 11229: 11226: 11206: 11203: 11200: 11180: 11177: 11174: 11154: 11151: 11148: 11145: 11142: 11139: 11119: 11099: 11096: 11093: 11090: 11070: 11067: 11059: 11043: 11034: 11032: 11016: 11013: 11007: 11001: 10998: 10992: 10986: 10966: 10963: 10956: 10941: 10921: 10918: 10915: 10892: 10886: 10883: 10877: 10871: 10842:sometimes to 10821: 10818: 10815: 10808: 10807:rank function 10804: 10800: 10796: 10795: 10775: 10772: 10769: 10755:Graded/ranked 10752: 10750: 10734: 10714: 10694: 10691: 10688: 10685: 10665: 10662: 10642: 10633: 10620: 10617: 10614: 10611: 10608: 10605: 10583: 10580: 10577: 10573: 10550: 10546: 10537: 10533: 10529: 10513: 10508: 10504: 10500: 10497: 10494: 10489: 10485: 10481: 10476: 10472: 10468: 10463: 10459: 10438: 10434: 10428: 10424: 10420: 10417: 10414: 10409: 10405: 10401: 10396: 10392: 10387: 10364: 10360: 10337: 10333: 10324: 10314: 10300: 10297: 10294: 10291: 10288: 10268: 10248: 10245: 10234: 10218: 10210: 10206: 10204: 10188: 10185: 10177: 10161: 10158: 10155: 10152: 10129: 10126: 10123: 10111: 10097: 10094: 10086: 10081: 10079: 10063: 10043: 10023: 9996: 9993: 9967: 9964: 9961: 9957: 9953: 9950: 9947: 9935: 9922: 9919: 9916: 9913: 9910: 9900: 9897: 9894: 9891: 9888: 9880: 9864: 9844: 9824: 9804: 9794: 9784: 9782: 9773: 9772: 9767: 9764: 9763: 9758: 9757: 9756: 9754: 9750: 9746: 9742: 9738: 9734: 9733:domain theory 9724: 9710: 9690: 9667: 9664: 9644: 9624: 9621: 9618: 9598: 9595: 9592: 9589: 9569: 9549: 9529: 9526: 9506: 9486: 9478: 9477: 9476: 9474: 9455: 9449: 9446: 9443: 9437: 9434: 9428: 9425: 9422: 9416: 9413: 9407: 9401: 9398: 9392: 9386: 9379: 9378: 9377: 9364: 9361: 9353: 9347: 9337: 9335: 9331: 9327: 9323: 9319: 9315: 9311: 9307: 9299: 9277: 9274: 9271: 9265: 9262: 9259: 9253: 9247: 9244: 9241: 9235: 9232: 9212: 9209: 9206: 9180: 9177: 9174: 9168: 9165: 9159: 9156: 9153: 9144: 9138: 9135: 9132: 9126: 9120: 9117: 9114: 9091: 9088: 9085: 9082: 9079: 9076: 9073: 9070: 9062: 9041: 9038: 9035: 9032: 9029: 9016: 9006: 9004: 9000: 8996: 8991: 8981: 8969: 8964: 8951: 8945: 8942: 8939: 8933: 8927: 8924: 8921: 8915: 8909: 8906: 8903: 8897: 8894: 8872: 8852: 8844: 8843: 8842: 8829: 8823: 8820: 8817: 8811: 8805: 8802: 8799: 8793: 8787: 8784: 8781: 8775: 8772: 8750: 8730: 8722: 8721: 8720: 8706: 8703: 8700: 8697: 8694: 8691: 8688: 8685: 8677: 8673: 8667: 8651: 8650:Pic. 10: 8647: 8643: 8642: 8621: 8615: 8612: 8609: 8603: 8597: 8594: 8591: 8585: 8579: 8576: 8573: 8567: 8564: 8544: 8538: 8535: 8532: 8526: 8520: 8517: 8514: 8508: 8502: 8499: 8496: 8490: 8487: 8465: 8462: 8459: 8456: 8450: 8447: 8444: 8421: 8418: 8412: 8409: 8406: 8400: 8397: 8377: 8374: 8371: 8359: 8358:Pic. 11: 8355: 8351: 8350: 8342: 8328: 8325: 8305: 8302: 8294: 8290: 8284: 8280: 8278: 8272: 8262: 8259: 8255: 8250: 8248: 8240: 8230: 8226: 8216: 8203: 8200: 8197: 8194: 8191: 8188: 8185: 8182: 8162: 8159: 8139: 8132:implies that 8119: 8116: 8113: 8110: 8107: 8087: 8084: 8081: 8078: 8075: 8055: 8052: 8042: 8028: 8021:of a lattice 8008: 8001:A sublattice 7999: 7986: 7983: 7963: 7943: 7940: 7920: 7917: 7914: 7894: 7891: 7888: 7868: 7865: 7862: 7859: 7856: 7836: 7816: 7796: 7776: 7773: 7753: 7733: 7726:of a lattice 7725: 7713: 7699: 7676: 7670: 7661: 7655: 7647: 7644: 7640: 7631: 7615: 7592: 7586: 7577: 7571: 7563: 7560: 7556: 7548: 7545: 7541: 7537: 7520: 7484: 7480: 7463: 7426: 7424: 7420: 7414: 7408: 7404: 7398: 7393: 7391: 7387: 7384: 7380: 7376: 7371: 7369: 7364: 7351: 7346: 7342: 7338: 7334: 7329: 7325: 7321: 7317: 7293: 7288: 7284: 7280: 7276: 7271: 7267: 7263: 7259: 7239: 7219: 7199: 7191: 7187: 7183: 7167: 7158: 7145: 7139: 7133: 7128: 7124: 7117: 7111: 7108: 7104: 7100: 7095: 7091: 7087: 7083: 7079: 7055: 7049: 7043: 7038: 7034: 7027: 7021: 7018: 7014: 7010: 7005: 7001: 6997: 6993: 6989: 6970: 6967: 6964: 6961: 6958: 6955: 6935: 6929: 6926: 6923: 6915: 6911: 6907: 6891: 6887: 6881: 6877: 6873: 6868: 6864: 6860: 6857: 6853: 6831: 6825: 6821: 6817: 6812: 6808: 6804: 6801: 6797: 6788: 6784: 6765: 6759: 6756: 6753: 6747: 6744: 6738: 6732: 6729: 6720: 6700: 6675: 6671: 6662: 6658: 6649: 6645: 6639: 6633: 6630: 6624: 6618: 6595: 6592: 6589: 6583: 6580: 6574: 6568: 6565: 6556: 6536: 6511: 6507: 6498: 6494: 6485: 6481: 6475: 6469: 6466: 6460: 6454: 6434: 6426: 6422: 6394: 6391: 6388: 6385: 6382: 6379: 6376: 6373: 6370: 6367: 6364: 6353: 6339: 6333: 6330: 6327: 6324: 6321: 6295: 6292: 6289: 6286: 6283: 6257: 6254: 6251: 6248: 6245: 6242: 6239: 6228: 6213: 6210: 6207: 6204: 6184: 6181: 6178: 6170: 6169: 6168: 6146: 6126: 6118: 6114: 6110: 6109: 6099: 6083: 6080: 6060: 6057: 6054: 6051: 6031: 6011: 6003: 5999: 5995: 5994: 5984: 5968: 5965: 5945: 5942: 5939: 5936: 5933: 5930: 5927: 5924: 5904: 5884: 5876: 5872: 5868: 5867: 5859: 5853: 5852:domain theory 5849: 5845: 5840: 5836: 5832: 5829: 5825: 5821: 5817: 5802: 5782: 5763: 5760: 5740: 5720: 5717: 5714: 5706: 5702: 5698: 5694: 5676: 5673: 5670: 5647: 5644: 5641: 5638: 5630: 5627: 5624: 5601: 5598: 5595: 5589: 5583: 5580: 5577: 5566: 5562: 5559: 5555: 5552: 5536: 5533: 5525: 5509: 5506: 5498: 5483: 5463: 5460: 5440: 5437: 5429: 5426: 5422: 5406: 5398: 5382: 5374: 5358: 5338: 5335: 5327: 5326: 5321: 5315: 5310: 5295: 5292: 5283: 5277: 5272: 5268: 5252: 5246: 5243: 5240: 5237: 5234: 5231: 5228: 5217: 5213: 5207: 5202: 5198: 5194: 5188: 5183: 5180:depicting it. 5179: 5178:Hasse diagram 5175: 5174:set inclusion 5159: 5153: 5150: 5147: 5144: 5141: 5130: 5124: 5119: 5118: 5112: 5110: 5105: 5091: 5088: 5068: 5058: 5056: 5052: 5048: 5044: 5040: 5030: 5015: 5009: 5005: 5001: 4998: 4995: 4990: 4986: 4981: 4977: 4974: 4952: 4948: 4944: 4941: 4938: 4933: 4929: 4925: 4922: 4919: 4916: 4913: 4891: 4887: 4883: 4880: 4877: 4872: 4868: 4864: 4861: 4858: 4855: 4852: 4842: 4829: 4826: 4823: 4817: 4814: 4794: 4791: 4788: 4785: 4782: 4779: 4775: 4771: 4768: 4764: 4760: 4756: 4749: 4745: 4741: 4737: 4733: 4730: 4726: 4722: 4713: 4710: 4704: 4684: 4681: 4678: 4675: 4672: 4668: 4664: 4661: 4657: 4653: 4649: 4642: 4638: 4634: 4630: 4626: 4623: 4619: 4615: 4606: 4603: 4597: 4577: 4570:hold. Taking 4556: 4552: 4549: 4545: 4541: 4537: 4533: 4530: 4526: 4522: 4516: 4513: 4510: 4504: 4483: 4479: 4476: 4472: 4468: 4464: 4460: 4457: 4453: 4449: 4443: 4440: 4437: 4431: 4412: 4409: 4389: 4369: 4348: 4345: 4339: 4319: 4316: 4313: 4307: 4287: 4284: 4281: 4278: 4275: 4269: 4266: 4241: 4238: 4235: 4232: 4226: 4223: 4210: 4194: 4185: 4172: 4169: 4166: 4163: 4160: 4141: 4138: 4135: 4132: 4129: 4110: 4107: 4087: 4067: 4064: 4056: 4040: 4017: 4014: 4011: 4008: 4005: 3979: 3976: 3973: 3970: 3967: 3964: 3961: 3958: 3955: 3943: 3930: 3927: 3924: 3921: 3912: 3909: 3906: 3903: 3900: 3857: 3850:, denoted by 3849: 3843: 3838:(also called 3837: 3836: 3834:least element 3793: 3790: 3782: 3776: 3771:(also called 3770: 3769: 3762: 3752: 3749: 3736: 3733: 3713: 3704: 3690: 3687: 3684: 3681: 3678: 3675: 3669: 3666: 3663: 3657: 3651: 3648: 3645: 3639: 3636: 3633: 3630: 3622: 3619: 3616: 3613: 3610: 3590: 3587: 3584: 3581: 3578: 3575: 3555: 3552: 3549: 3546: 3543: 3540: 3532: 3529: 3526: 3502: 3499: 3496: 3493: 3490: 3487: 3479: 3476: 3473: 3453: 3433: 3413: 3407: 3404: 3401: 3398: 3395: 3383: 3366: 3363: 3360: 3357: 3354: 3331: 3328: 3308: 3294: 3292: 3291:partial order 3288: 3284: 3265: 3262: 3259: 3233: 3230: 3227: 3215: 3202: 3199: 3196: 3193: 3190: 3171: 3168: 3165: 3162: 3159: 3149: 3146: 3133: 3130: 3124: 3121: 3118: 3112: 3109: 3090: 3087: 3081: 3078: 3075: 3069: 3066: 3056: 3042: 3039: 3036: 3033: 3030: 3010: 2990: 2970: 2963: 2947: 2924: 2921: 2918: 2915: 2912: 2902: 2898: 2888: 2886: 2866: 2846: 2843: 2835: 2819: 2816: 2813: 2810: 2801: 2799: 2795: 2791: 2787: 2786: 2781: 2776: 2763: 2758: 2754: 2750: 2745: 2741: 2737: 2732: 2728: 2724: 2719: 2715: 2692: 2688: 2684: 2679: 2675: 2671: 2666: 2662: 2658: 2653: 2649: 2641:implies that 2626: 2622: 2618: 2613: 2609: 2586: 2582: 2578: 2573: 2569: 2560: 2544: 2522: 2501: 2498: 2495: 2487: 2483: 2467: 2464: 2461: 2453: 2437: 2434: 2428: 2425: 2422: 2411: 2407: 2388: 2385: 2382: 2371: 2361: 2353: 2351: 2347: 2342: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2309: 2305: 2300: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2220: 2215: 2213: 2208: 2206: 2201: 2200: 2198: 2197: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2155: 2151: 2148: 2147: 2143: 2138: 2137: 2130: 2129: 2125: 2124: 2120: 2117: 2115: 2112: 2110: 2107: 2106: 2101: 2096: 2095: 2088: 2087: 2083: 2081: 2078: 2077: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2044: 2039: 2034: 2033: 2028: 2027: 2020: 2017: 2015: 2014:Division ring 2012: 2010: 2007: 2005: 2002: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1971: 1966: 1961: 1960: 1955: 1954: 1947: 1944: 1942: 1939: 1937: 1936:Abelian group 1934: 1933: 1929: 1926: 1924: 1921: 1919: 1915: 1912: 1910: 1907: 1906: 1902: 1897: 1896: 1893: 1890: 1889: 1882: 1867: 1864: 1861: 1858: 1838: 1835: 1832: 1812: 1809: 1806: 1786: 1783: 1780: 1777: 1774: 1771: 1763: 1747: 1740: 1708: 1707: 1684: 1681: 1678: 1663: 1660: 1657: 1646: 1632: 1629: 1626: 1614: 1600: 1597: 1594: 1587: 1560: 1557: 1554: 1543: 1516: 1513: 1510: 1499: 1472: 1458: 1440: 1437: 1434: 1424: 1421: 1418: 1408: 1401: 1398: 1387: 1369: 1362: 1359: 1349: 1346: 1343: 1333: 1330: 1327: 1316: 1298: 1295: 1292: 1278: 1275: 1272: 1260: 1246: 1240: 1237: 1217: 1214: 1211: 1203: 1202: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1163:Antisymmetric 1161: 1159: 1156: 1154: 1153: 1142: 1132: 1127: 1122: 1117: 1112: 1102: 1092: 1087: 1085: 1082: 1081: 1070: 1060: 1055: 1050: 1045: 1040: 1035: 1025: 1020: 1018: 1015: 1014: 1003: 993: 988: 983: 978: 973: 968: 958: 953: 951: 948: 947: 941: 936: 926: 916: 911: 906: 901: 891: 886: 884: 881: 880: 874: 869: 859: 854: 844: 839: 834: 824: 819: 817: 814: 813: 807: 802: 792: 782: 772: 767: 762: 752: 747: 745: 742: 741: 735: 730: 720: 715: 710: 700: 690: 680: 675: 673: 672:Well-ordering 670: 669: 663: 658: 648: 643: 638: 628: 623: 618: 613: 610: 606: 605: 599: 594: 584: 579: 574: 564: 554: 549: 544: 542: 539: 538: 532: 527: 517: 512: 507: 502: 492: 482: 477: 475: 472: 471: 465: 460: 450: 445: 440: 435: 425: 420: 415: 413: 410: 409: 403: 398: 388: 383: 378: 373: 368: 358: 353: 351: 350:Partial order 348: 347: 341: 336: 326: 321: 316: 311: 306: 301: 296: 293: 286: 285: 279: 274: 264: 259: 254: 249: 244: 239: 229: 226: 222: 221: 218: 213: 211: 209: 207: 205: 202: 200: 198: 196: 195: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 156:Antisymmetric 154: 152: 149: 147: 146: 143: 142: 136: 131: 129: 124: 122: 117: 116: 113: 109: 105: 104: 93: 90: 82: 72: 68: 62: 61: 55: 50: 41: 40: 37: 33: 19: 18:Lattice order 13772:& Orders 13750:Star product 13679:Well-founded 13632:Prefix order 13588:Distributive 13578:Complemented 13567: 13548:Foundational 13513:Completeness 13469:Zorn's lemma 13377: 13373:Cyclic order 13356:Key concepts 13326:Order theory 13286: 13267: 13255: 13233: 13209: 13202: 13186: 13143:(1): 47–68. 13140: 13136: 13125: 13111: 13103: 13098:Stone spaces 13097: 13081: 13062: 13044: 13030: 13021: 13000: 12988: 12982: 12972: 12962: 12946: 12929: 12923: 12909:Grätzer 2003 12904: 12897:Grätzer 2003 12892: 12875: 12869: 12857: 12832: 12828: 12822: 12797: 12791: 12785: 12767: 12758: 12742: 12707: 12684: 12678: 12666:. Retrieved 12662: 12649: 12631: 12625: 12534: 12523:Grätzer 2003 12518: 12489:Median graph 12469:Bloom filter 12386: 12385: 12372: 12367:Editing help 12349: 12287:Skew lattice 12231: 12228: 11905: 11879: 11875: 11770: 11765:real numbers 11740: 11716: 11468: 11401: 11343:free lattice 11342: 11282: 11260: 11257:Free lattice 11035: 11030: 10806: 10803:Ranked poset 10798: 10797:, sometimes 10792: 10758: 10748: 10634: 10535: 10531: 10527: 10322: 10320: 10207: 10112: 10082: 9936: 9878: 9796: 9777: 9769: 9760: 9741:directed set 9730: 9682: 9637:covers both 9470: 9349: 9309: 9058: 9018: 8992: 8967: 8965: 8887: 8765: 8669: 8649: 8357: 8293:real numbers 8276: 8274: 8260: 8256: 8244: 8242: 8233:Completeness 8228: 8000: 7789:That is, if 7721: 7719: 7629: 7543: 7539: 7535: 7482: 7478: 7427: 7416: 7410: 7400: 7397:isomorphisms 7394: 7372: 7365: 7189: 7186:semilattices 7182:homomorphism 7159: 6913: 6909: 6905: 6780: 6425:Pic. 9: 6424: 6166: 6117:Pic. 6: 6116: 6002:Pic. 7: 6001: 5875:Pic. 8: 5874: 5857: 5705:divisibility 5499:For any set 5430:For any set 5371:(called the 5328:For any set 5320:Pic. 5: 5319: 5282:Pic. 4: 5281: 5266: 5265:ordered by " 5212:Pic. 3: 5211: 5196: 5193:Pic. 2: 5192: 5129:Pic. 1: 5128: 5106: 5059: 5036: 4843: 4186: 3944: 3845: 3839: 3831: 3778: 3772: 3764: 3760: 3758: 3750: 3705: 3384: 3300: 3283:semilattices 3216: 3147: 2896: 2894: 2880: 2879:is called a 2802: 2783: 2777: 2405: 2404:is called a 2367: 2359: 2349: 2343: 2335:lattice-like 2334: 2323:Semilattices 2315:order theory 2301: 2289:divisibility 2281:intersection 2241:order theory 2237:mathematical 2232: 2230: 2188:Hopf algebra 2126: 2119:Vector space 2085: 2084: 2046: 2037: 2024: 1953:Group theory 1951: 1916: / 1736: 1173:Well-founded 743: 291:(Quasiorder) 166:Well-founded 85: 76: 57: 36: 13956:Riesz space 13917:Isomorphism 13793:Normal cone 13715:Composition 13649:Semilattice 13558:Homogeneous 13543:Equivalence 13393:Total order 12975:. Pergamon. 12716:p. 104 12271:Total order 12077:is called: 11464:is called: 11394:s members. 11345:over a set 11056:is said to 9879:complements 9582:both cover 9352:semimodular 9292:Modular law 8672:distributes 8152:belongs to 7716:Sublattices 5833:The set of 5795:is bottom; 5549:ordered by 5214:Lattice of 5131:Subsets of 4402:of a poset 3466:by setting 2410:semilattice 2173:Lie algebra 2158:Associative 2062:Total order 2052:Semilattice 2026:Ring theory 1193:Irreflexive 474:Total order 186:Irreflexive 71:introducing 13995:Categories 13924:Order type 13858:Cofinality 13699:Well-order 13674:Transitive 13563:Idempotent 13496:Asymmetric 12919:References 12735:p. 89 12617:, p.  12541:, p.  12525:, p.  12375:March 2017 12167:such that 12022:such that 11880:meet prime 11771:Join prime 11715:is called 11341:. For the 11132:such that 10791:is called 10759:A lattice 10281:such that 9791:See also: 9298:sublattice 9009:Modularity 8980:sublattice 7723:sublattice 7628:separates 7544:separating 7534:is called 7405:is just a 7368:preserving 5839:arithmetic 5822:(also see 5551:refinement 5524:partitions 5496:is finite. 5216:partitions 5043:semigroups 3995:such that 2962:operations 2356:Definition 2311:identities 1764:: for all 1762:transitive 1198:Asymmetric 191:Asymmetric 108:Transitive 54:references 13975:Upper set 13912:Embedding 13848:Antichain 13669:Tolerance 13659:Symmetric 13654:Semiorder 13600:Reflexive 13518:Connected 13289:elements) 13257:MathWorld 13252:"Lattice" 13240:EMS Press 13145:CiteSeerX 12598:∨ 12580:∨ 12571:∧ 12562:∨ 12545:. "since 12428:Fuzzy set 12225:of atoms. 12199:Atomistic 12178:≤ 12007:∈ 11859:≠ 11830:≤ 11816:≤ 11790:∨ 11784:≤ 11751:∧ 11727:∨ 11666:∈ 11659:⋁ 11635:≠ 11563:∈ 11488:∨ 11335:set union 11230:≠ 11204:≤ 10908:whenever 10825:→ 10801:(but see 10776:≤ 10615:≤ 10609:≤ 10581:− 10498:… 10418:… 10379:is a set 10292:∧ 10243:¬ 10176:operation 10150:¬ 10121:¬ 9914:∧ 9892:∨ 9753:algebraic 9745:way-below 9711:∧ 9691:∨ 9622:∨ 9593:∧ 9479:for each 9447:∨ 9426:∧ 9414:≥ 9365:: 9272:∧ 9263:∨ 9245:∧ 9236:∨ 9210:≤ 9175:∧ 9166:∨ 9157:∧ 9136:∧ 9127:∨ 9118:∧ 9086:∈ 9042:∧ 9036:∨ 8943:∧ 8934:∨ 8925:∧ 8907:∨ 8898:∧ 8873:∨ 8853:∧ 8821:∨ 8812:∧ 8803:∨ 8785:∧ 8776:∨ 8751:∧ 8731:∨ 8701:∈ 8613:∨ 8604:∧ 8595:∨ 8577:∧ 8568:∨ 8536:∧ 8527:∨ 8518:∧ 8500:∨ 8491:∧ 8457:∧ 8448:∨ 8410:∧ 8401:∨ 8375:≤ 8341:or both. 8198:∈ 8117:∈ 8085:≤ 8079:≤ 7918:∨ 7892:∧ 7866:∈ 7645:− 7561:− 7407:bijective 7386:bijection 7125:∧ 7092:∧ 7035:∨ 7002:∨ 6965:∈ 6933:→ 6878:∧ 6865:∨ 6822:∧ 6809:∨ 6757:∧ 6725:′ 6701:≠ 6680:′ 6667:′ 6659:∧ 6654:′ 6631:∧ 6593:∨ 6561:′ 6537:≠ 6516:′ 6503:′ 6495:∨ 6490:′ 6467:∨ 6182:≤ 5718:≤ 5660:The pair 5642:≤ 5628:≤ 5590:≤ 5421:set union 5373:power set 5293:≤ 4999:… 4945:∧ 4942:⋯ 4939:∧ 4920:⋀ 4884:∨ 4881:⋯ 4878:∨ 4859:⋁ 4821:∅ 4818:∪ 4789:⋀ 4780:∧ 4769:⋀ 4753:∅ 4750:⋀ 4742:∧ 4731:⋀ 4717:∅ 4714:∪ 4705:⋀ 4682:⋁ 4673:∨ 4662:⋁ 4646:∅ 4643:⋁ 4635:∨ 4624:⋁ 4610:∅ 4607:∪ 4598:⋁ 4550:⋀ 4542:∧ 4531:⋀ 4514:∪ 4505:⋀ 4477:⋁ 4469:∨ 4458:⋁ 4441:∪ 4432:⋁ 4343:∅ 4340:⋀ 4311:∅ 4308:⋁ 4282:≤ 4273:∅ 4270:∈ 4239:≤ 4230:∅ 4227:∈ 4164:∧ 4133:∨ 4108:∧ 4065:∨ 4018:∧ 4012:∨ 3968:∧ 3962:∨ 3925:∈ 3910:≤ 3904:≤ 3879:⊥ 3816:⊤ 3734:∧ 3714:∨ 3688:∨ 3676:∨ 3667:∧ 3649:∧ 3640:∨ 3620:∧ 3585:∈ 3550:∨ 3530:≤ 3497:∧ 3477:≤ 3434:≤ 3408:∧ 3402:∨ 3367:∧ 3361:∨ 3329:∧ 3309:∨ 3266:∧ 3234:∨ 3194:∧ 3163:∨ 3122:∨ 3113:∧ 3079:∧ 3070:∨ 3040:∈ 2991:∧ 2971:∨ 2925:∧ 2919:∨ 2814:⊆ 2780:induction 2751:∧ 2738:≤ 2725:∧ 2685:∨ 2672:≤ 2659:∨ 2619:≤ 2579:≤ 2545:∨ 2523:∧ 2499:∧ 2465:∨ 2435:⊆ 2389:≤ 2308:axiomatic 2273:inclusion 2269:power set 2183:Bialgebra 1989:Near-ring 1946:Lie group 1914:Semigroup 1675:not  1667:⇒ 1623:not  1558:∧ 1514:∨ 1412:⇒ 1402:≠ 1357:⇒ 1286:⇒ 1244:∅ 1241:≠ 1188:Reflexive 1183:Has meets 1178:Has joins 1168:Connected 1158:Symmetric 289:Preorder 216:reflexive 181:Reflexive 176:Has meets 171:Has joins 161:Connected 151:Symmetric 13770:Topology 13637:Preorder 13620:Eulerian 13583:Complete 13533:Directed 13523:Covering 13388:Preorder 13347:Category 13342:Glossary 13178:(1897), 13167:11012081 13137:Synthese 13096:, 1982. 13029:, 1967. 12998:(2002), 12981:, 1971. 12766:(1997), 12248:See also 12223:supremum 11805:implies 11546:for all 11503:implies 11261:Any set 10598:for all 10203:negation 9473:Birkhoff 9225:implies 8281:nonempty 7521:′ 7464:′ 7423:category 7375:monotone 6783:morphism 6354:The set 6197:implies 5828:examples 5753:divides 5115:Examples 4967:) where 2372:(poset) 2333:. These 2253:supremum 2019:Lie ring 1984:Semiring 1732:✗ 1719:✗ 1129:✗ 1124:✗ 1119:✗ 1114:✗ 1089:✗ 1057:✗ 1052:✗ 1047:✗ 1042:✗ 1037:✗ 1022:✗ 990:✗ 985:✗ 980:✗ 975:✗ 970:✗ 955:✗ 943:✗ 938:✗ 913:✗ 908:✗ 903:✗ 888:✗ 876:✗ 871:✗ 856:✗ 841:✗ 836:✗ 821:✗ 809:✗ 804:✗ 769:✗ 764:✗ 749:✗ 737:✗ 732:✗ 717:✗ 712:✗ 677:✗ 665:✗ 660:✗ 645:✗ 640:✗ 625:✗ 620:✗ 615:✗ 601:✗ 596:✗ 581:✗ 576:✗ 551:✗ 546:✗ 534:✗ 529:✗ 514:✗ 509:✗ 504:✗ 479:✗ 467:✗ 462:✗ 447:✗ 442:✗ 437:✗ 422:✗ 417:✗ 405:✗ 400:✗ 385:✗ 380:✗ 375:✗ 370:✗ 355:✗ 343:✗ 338:✗ 323:✗ 318:✗ 313:✗ 308:✗ 303:✗ 298:✗ 281:✗ 276:✗ 261:✗ 256:✗ 251:✗ 246:✗ 241:✗ 79:May 2009 13875:Duality 13853:Cofinal 13841:Related 13820:FrĂ©chet 13697:)  13573:Bounded 13568:Lattice 13541:)  13539:Partial 13407:Results 13378:Lattice 13242:, 2001 12849:1968883 12814:1969001 12242:subsets 12238:filters 11369:Whitman 10565:covers 10536:maximal 9310:modular 9308:(hence 9060:modular 8291:of the 8283:subset 7933:are in 7390:inverse 5703:, with 5267:refines 5197:divides 5047:monoids 3841:minimum 3774:maximum 2897:lattice 2406:lattice 2327:Heyting 2261:infimum 2233:lattice 2150:Algebra 2142:Algebra 2047:Lattice 2038:Lattice 744:Lattice 67:improve 13900:Subnet 13880:Filter 13830:Normed 13815:Banach 13781:& 13688:Better 13625:Strict 13615:Graded 13506:topics 13337:Topics 13165:  13147:  13071:  13051:  13012:  12955:  12938:  12847:  12812:  12774:  12695:  12668:8 June 12640:  12430:theory 12350:is in 12281:filter 12234:ideals 12082:Atomic 11966:is an 11193:means 11167:Here, 10955:covers 10799:ranked 10794:graded 10678:where 10528:length 10451:where 9328:. The 9306:module 9001:, see 8995:frames 8390:, but 7632:) and 5837:of an 5818:Every 5172:under 5049:. The 3870:or by 3847:bottom 3830:and a 2899:is an 2482:dually 2480:) and 2450:has a 2178:Graded 2109:Module 2100:Module 1999:Domain 1918:Monoid 1569:exists 1525:exists 1481:exists 110:  56:, but 13890:Ideal 13868:Graph 13664:Total 13642:Total 13528:Dense 13183:(PDF) 13163:S2CID 13116:(PDF) 12845:JSTOR 12810:JSTOR 12659:(PDF) 12510:Notes 12356:prose 12277:Ideal 12221:is a 12057:Then 11392:' 11058:cover 10979:then 10325:from 10323:chain 10178:over 9611:then 9326:group 9324:of a 9316:of a 8974:and N 8865:over 8743:over 8041:is a 7956:then 7881:both 7180:is a 7160:Thus 6908:from 6787:above 5824:below 4211:that 3844:, or 3777:, or 2277:union 2144:-like 2102:-like 2040:-like 2009:Field 1967:-like 1941:Magma 1909:Group 1903:-like 1901:Group 1851:then 214:Anti- 13481:list 13282:OEIS 13069:ISBN 13049:ISBN 13010:ISBN 12953:ISBN 12936:ISBN 12772:ISBN 12693:ISBN 12670:2022 12638:ISBN 12461:and 12352:list 12039:< 12033:< 11981:< 11968:atom 11906:Let 11719:(or 11219:and 11178:> 11149:> 11143:> 11094:> 11031:rank 10919:< 10884:< 10689:< 10655:and 10526:The 10501:< 10495:< 10482:< 10469:< 10056:and 9877:are 9837:and 9797:Let 9703:and 9657:and 9562:and 9499:and 9318:ring 8997:and 8986:or N 8676:dual 8434:and 8100:and 7907:and 7481:and 7450:and 7428:Let 7232:and 6845:and 6611:and 6139:and 6073:and 6024:and 5958:and 5897:and 5699:and 5563:The 5556:The 5081:and 4697:and 4497:and 4382:and 4254:and 4080:and 3726:and 3321:and 3287:dual 3281:are 3249:and 2983:and 2707:and 2601:and 2536:and 2486:meet 2452:join 2329:and 2317:and 2265:meet 2257:join 2243:and 1974:Ring 1965:Ring 1825:and 1230:and 13895:Net 13695:Pre 13191:doi 13155:doi 13141:183 12880:doi 12837:doi 12802:doi 12147:of 12104:of 11970:if 11946:of 11773:if 11581:If 11471:if 11083:if 10727:to 10538:if 10352:to 9857:of 9768:An 9731:In 9542:if 9519:in 9057:is 8251:all 8249:if 8068:if 8045:of 7507:to 6912:to 5733:if 5617:if 5526:of 5375:of 5218:of 5055:rig 3808:by 3806:or 3780:top 3446:on 3059:): 3003:on 1979:Rng 1799:if 1760:be 1470:min 13997:: 13254:. 13238:, 13232:, 13189:, 13185:, 13161:. 13153:. 13139:. 13008:, 13004:, 12967:: 12843:. 12833:43 12831:. 12808:. 12798:42 12796:. 12723:^ 12661:. 12543:18 12527:52 11033:. 11017:1. 10751:. 10321:A 10301:0. 10080:. 9923:0. 9783:. 9759:A 9336:. 9005:. 8719:: 8364:. 8275:A 7720:A 7425:. 6904:a 6395:36 6389:18 6383:12 5269:". 5199:". 5111:. 4349:1. 3891:), 3759:A 3293:. 3152:. 2895:A 2800:. 2484:a 2368:A 2352:. 2321:. 2299:. 2231:A 13693:( 13690:) 13686:( 13537:( 13484:) 13318:e 13311:t 13304:v 13287:n 13278:. 13260:. 13193:: 13169:. 13157:: 13090:. 13077:. 13055:. 13037:. 12959:. 12942:. 12886:. 12882:: 12851:. 12839:: 12816:. 12804:: 12753:. 12737:. 12718:. 12701:. 12672:. 12644:. 12634:. 12619:8 12601:a 12595:a 12592:= 12589:) 12586:) 12583:a 12577:a 12574:( 12568:a 12565:( 12559:a 12556:= 12553:a 12529:. 12377:) 12373:( 12359:. 12209:L 12184:; 12181:x 12175:a 12155:L 12135:a 12115:, 12112:L 12092:x 12065:L 12045:. 12042:x 12036:y 12030:0 12010:L 12004:y 11984:x 11978:0 11954:L 11934:x 11914:L 11890:L 11862:0 11856:x 11836:. 11833:b 11827:x 11819:a 11813:x 11793:b 11787:a 11781:x 11743:( 11703:x 11684:, 11679:i 11675:a 11669:I 11663:i 11638:0 11632:x 11612:, 11609:0 11589:L 11569:. 11566:L 11560:b 11557:, 11554:a 11534:. 11531:b 11528:= 11525:x 11517:a 11514:= 11511:x 11491:b 11485:a 11482:= 11479:x 11452:x 11433:. 11430:L 11410:x 11379:X 11356:, 11353:X 11321:, 11318:X 11298:. 11295:X 11292:F 11269:X 11236:. 11233:y 11227:x 11207:y 11201:x 11181:x 11175:y 11155:. 11152:x 11146:z 11140:y 11120:z 11100:, 11097:x 11091:y 11071:, 11068:x 11044:y 11014:+ 11011:) 11008:x 11005:( 11002:r 10999:= 10996:) 10993:y 10990:( 10987:r 10967:, 10964:x 10942:y 10922:y 10916:x 10896:) 10893:y 10890:( 10887:r 10881:) 10878:x 10875:( 10872:r 10851:Z 10829:N 10822:L 10819:: 10816:r 10779:) 10773:, 10770:L 10767:( 10735:y 10715:x 10695:, 10692:y 10686:x 10666:, 10663:y 10643:x 10621:. 10618:n 10612:i 10606:1 10584:1 10578:i 10574:x 10551:i 10547:x 10532:n 10514:. 10509:n 10505:x 10490:2 10486:x 10477:1 10473:x 10464:0 10460:x 10439:, 10435:} 10429:n 10425:x 10421:, 10415:, 10410:1 10406:x 10402:, 10397:0 10393:x 10388:{ 10365:n 10361:x 10338:0 10334:x 10298:= 10295:y 10289:x 10269:y 10249:. 10246:x 10219:z 10189:, 10186:L 10162:. 10159:x 10156:= 10153:y 10130:y 10127:= 10124:x 10098:, 10095:x 10064:c 10044:b 10024:a 10014:5 9997:2 9994:1 9971:} 9968:1 9965:, 9962:2 9958:/ 9954:1 9951:, 9948:0 9945:{ 9920:= 9917:y 9911:x 9901:1 9898:= 9895:y 9889:x 9865:L 9845:y 9825:x 9805:L 9668:. 9665:y 9645:x 9625:y 9619:x 9599:, 9596:y 9590:x 9570:y 9550:x 9530:, 9527:L 9507:y 9487:x 9456:. 9453:) 9450:y 9444:x 9441:( 9438:r 9435:+ 9432:) 9429:y 9423:x 9420:( 9417:r 9411:) 9408:y 9405:( 9402:r 9399:+ 9396:) 9393:x 9390:( 9387:r 9362:r 9302:5 9294:) 9290:( 9278:. 9275:c 9269:) 9266:b 9260:a 9257:( 9254:= 9251:) 9248:c 9242:b 9239:( 9233:a 9213:c 9207:a 9197:) 9193:( 9181:. 9178:c 9172:) 9169:b 9163:) 9160:c 9154:a 9151:( 9148:( 9145:= 9142:) 9139:c 9133:b 9130:( 9124:) 9121:c 9115:a 9112:( 9092:, 9089:L 9083:c 9080:, 9077:b 9074:, 9071:a 9045:) 9039:, 9033:, 9030:L 9027:( 8988:5 8984:3 8976:5 8972:3 8952:. 8949:) 8946:c 8940:a 8937:( 8931:) 8928:b 8922:a 8919:( 8916:= 8913:) 8910:c 8904:b 8901:( 8895:a 8830:. 8827:) 8824:c 8818:a 8815:( 8809:) 8806:b 8800:a 8797:( 8794:= 8791:) 8788:c 8782:b 8779:( 8773:a 8707:, 8704:L 8698:c 8695:, 8692:b 8689:, 8686:a 8656:. 8654:3 8622:. 8619:) 8616:b 8610:c 8607:( 8601:) 8598:a 8592:c 8589:( 8586:= 8583:) 8580:b 8574:a 8571:( 8565:c 8545:, 8542:) 8539:b 8533:c 8530:( 8524:) 8521:a 8515:c 8512:( 8509:= 8506:) 8503:b 8497:a 8494:( 8488:c 8466:c 8463:= 8460:c 8454:) 8451:a 8445:b 8442:( 8422:b 8419:= 8416:) 8413:c 8407:a 8404:( 8398:b 8378:c 8372:b 8362:5 8329:, 8326:0 8306:, 8303:1 8204:. 8201:L 8195:z 8192:, 8189:y 8186:, 8183:x 8163:, 8160:M 8140:z 8120:M 8114:y 8111:, 8108:x 8088:y 8082:z 8076:x 8056:, 8053:L 8029:L 8009:M 7987:. 7984:L 7964:M 7944:, 7941:M 7921:b 7915:a 7895:b 7889:a 7869:M 7863:b 7860:, 7857:a 7837:L 7817:M 7797:L 7777:. 7774:L 7754:L 7734:L 7700:f 7692:( 7680:} 7677:1 7674:{ 7671:= 7668:} 7665:) 7662:1 7659:( 7656:f 7653:{ 7648:1 7641:f 7630:0 7616:f 7608:( 7596:} 7593:0 7590:{ 7587:= 7584:} 7581:) 7578:0 7575:( 7572:f 7569:{ 7564:1 7557:f 7542:- 7540:1 7538:, 7536:0 7517:L 7494:L 7483:1 7479:0 7460:L 7437:L 7352:. 7347:M 7343:1 7339:= 7335:) 7330:L 7326:1 7322:( 7318:f 7294:, 7289:M 7285:0 7281:= 7277:) 7272:L 7268:0 7264:( 7260:f 7240:M 7220:L 7200:f 7168:f 7146:. 7143:) 7140:b 7137:( 7134:f 7129:M 7121:) 7118:a 7115:( 7112:f 7109:= 7105:) 7101:b 7096:L 7088:a 7084:( 7080:f 7056:, 7053:) 7050:b 7047:( 7044:f 7039:M 7031:) 7028:a 7025:( 7022:f 7019:= 7015:) 7011:b 7006:L 6998:a 6994:( 6990:f 6971:: 6968:L 6962:b 6959:, 6956:a 6936:M 6930:L 6927:: 6924:f 6914:M 6910:L 6892:, 6888:) 6882:M 6874:, 6869:M 6861:, 6858:M 6854:( 6832:) 6826:L 6818:, 6813:L 6805:, 6802:L 6798:( 6766:. 6763:) 6760:v 6754:u 6751:( 6748:f 6745:= 6742:) 6739:0 6736:( 6733:f 6730:= 6721:0 6676:u 6672:= 6663:u 6650:u 6646:= 6643:) 6640:v 6637:( 6634:f 6628:) 6625:u 6622:( 6619:f 6599:) 6596:v 6590:u 6587:( 6584:f 6581:= 6578:) 6575:1 6572:( 6569:f 6566:= 6557:1 6512:u 6508:= 6499:u 6486:u 6482:= 6479:) 6476:v 6473:( 6470:f 6464:) 6461:u 6458:( 6455:f 6435:f 6398:} 6392:, 6386:, 6380:, 6377:3 6374:, 6371:2 6368:, 6365:1 6362:{ 6340:. 6337:} 6334:6 6331:, 6328:3 6325:, 6322:2 6319:{ 6299:} 6296:3 6293:, 6290:2 6287:, 6284:1 6281:{ 6261:} 6258:6 6255:, 6252:3 6249:, 6246:2 6243:, 6240:1 6237:{ 6214:, 6211:y 6208:= 6205:x 6185:y 6179:x 6147:d 6127:c 6100:. 6084:, 6081:f 6061:, 6058:e 6055:, 6052:d 6032:c 6012:b 5985:. 5969:, 5966:i 5946:, 5943:h 5940:, 5937:g 5934:, 5931:d 5928:, 5925:0 5905:b 5885:a 5854:. 5830:. 5803:0 5783:1 5764:. 5761:b 5741:a 5721:b 5715:a 5680:) 5677:0 5674:, 5671:0 5668:( 5648:. 5645:d 5639:b 5631:c 5625:a 5605:) 5602:d 5599:, 5596:c 5593:( 5587:) 5584:b 5581:, 5578:a 5575:( 5537:, 5534:A 5510:, 5507:A 5484:A 5464:, 5461:A 5441:, 5438:A 5407:A 5383:A 5359:A 5339:, 5336:A 5296:, 5253:, 5250:} 5247:4 5244:, 5241:3 5238:, 5235:2 5232:, 5229:1 5226:{ 5160:, 5157:} 5154:z 5151:, 5148:y 5145:, 5142:x 5139:{ 5092:, 5089:1 5069:0 5016:} 5010:n 5006:a 5002:, 4996:, 4991:1 4987:a 4982:{ 4978:= 4975:L 4953:n 4949:a 4934:1 4930:a 4926:= 4923:L 4917:= 4914:0 4892:n 4888:a 4873:1 4869:a 4865:= 4862:L 4856:= 4853:1 4830:. 4827:A 4824:= 4815:A 4795:, 4792:A 4786:= 4783:1 4776:) 4772:A 4765:( 4761:= 4757:) 4746:( 4738:) 4734:A 4727:( 4723:= 4720:) 4711:A 4708:( 4685:A 4679:= 4676:0 4669:) 4665:A 4658:( 4654:= 4650:) 4639:( 4631:) 4627:A 4620:( 4616:= 4613:) 4604:A 4601:( 4578:B 4557:) 4553:B 4546:( 4538:) 4534:A 4527:( 4523:= 4520:) 4517:B 4511:A 4508:( 4484:) 4480:B 4473:( 4465:) 4461:A 4454:( 4450:= 4447:) 4444:B 4438:A 4435:( 4413:, 4410:L 4390:B 4370:A 4346:= 4320:, 4317:0 4314:= 4288:, 4285:x 4279:a 4276:, 4267:a 4242:a 4236:x 4233:, 4224:a 4195:x 4173:a 4170:= 4167:1 4161:a 4142:a 4139:= 4136:0 4130:a 4111:. 4088:1 4068:, 4041:0 4021:) 4015:, 4009:, 4006:L 4003:( 3983:) 3980:1 3977:, 3974:0 3971:, 3965:, 3959:, 3956:L 3953:( 3931:. 3928:L 3922:x 3913:1 3907:x 3901:0 3858:0 3828:) 3794:, 3791:1 3737:. 3691:b 3685:a 3682:= 3679:b 3673:) 3670:b 3664:a 3661:( 3658:= 3655:) 3652:a 3646:b 3643:( 3637:b 3634:= 3631:b 3623:b 3617:a 3614:= 3611:a 3591:. 3588:L 3582:b 3579:, 3576:a 3556:, 3553:b 3547:a 3544:= 3541:b 3533:b 3527:a 3503:, 3500:b 3494:a 3491:= 3488:a 3480:b 3474:a 3454:L 3414:, 3411:) 3405:, 3399:, 3396:L 3393:( 3370:) 3364:, 3358:, 3355:L 3352:( 3332:. 3269:) 3263:, 3260:L 3257:( 3237:) 3231:, 3228:L 3225:( 3203:a 3200:= 3197:a 3191:a 3172:a 3169:= 3166:a 3160:a 3134:a 3131:= 3128:) 3125:b 3119:a 3116:( 3110:a 3091:a 3088:= 3085:) 3082:b 3076:a 3073:( 3067:a 3043:L 3037:b 3034:, 3031:a 3011:L 2948:L 2928:) 2922:, 2916:, 2913:L 2910:( 2867:H 2847:. 2844:H 2820:, 2817:L 2811:H 2764:. 2759:2 2755:b 2746:2 2742:a 2733:1 2729:b 2720:1 2716:a 2693:2 2689:b 2680:2 2676:a 2667:1 2663:b 2654:1 2650:a 2627:2 2623:b 2614:1 2610:b 2587:2 2583:a 2574:1 2570:a 2502:b 2496:a 2468:b 2462:a 2438:L 2432:} 2429:b 2426:, 2423:a 2420:{ 2392:) 2386:, 2383:L 2380:( 2218:e 2211:t 2204:v 1868:. 1865:c 1862:R 1859:a 1839:c 1836:R 1833:b 1813:b 1810:R 1807:a 1787:, 1784:c 1781:, 1778:b 1775:, 1772:a 1748:R 1728:Y 1715:Y 1685:a 1682:R 1679:b 1664:b 1661:R 1658:a 1633:a 1630:R 1627:a 1601:a 1598:R 1595:a 1561:b 1555:a 1517:b 1511:a 1473:S 1441:a 1438:R 1435:b 1425:b 1422:R 1419:a 1409:b 1399:a 1370:b 1363:= 1360:a 1350:a 1347:R 1344:b 1334:b 1331:R 1328:a 1299:a 1296:R 1293:b 1279:b 1276:R 1273:a 1247:: 1238:S 1218:b 1215:, 1212:a 1149:Y 1139:Y 1109:Y 1099:Y 1077:Y 1067:Y 1032:Y 1010:Y 1000:Y 965:Y 933:Y 923:Y 898:Y 866:Y 851:Y 831:Y 799:Y 789:Y 779:Y 759:Y 727:Y 707:Y 697:Y 687:Y 655:Y 635:Y 591:Y 571:Y 561:Y 524:Y 499:Y 489:Y 457:Y 432:Y 395:Y 365:Y 333:Y 271:Y 236:Y 134:e 127:t 120:v 92:) 86:( 81:) 77:( 63:. 34:. 20:)

Index

Lattice order
Lattice (group)
references
inline citations
improve
introducing
Learn how and when to remove this message
Transitive
binary relations
v
t
e
Symmetric
Antisymmetric
Connected
Well-founded
Has joins
Has meets
Reflexive
Irreflexive
Asymmetric
Equivalence relation
Preorder (Quasiorder)
Partial order
Total preorder
Total order
Prewellordering
Well-quasi-ordering
Well-ordering
Lattice

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑