Knowledge

Eocene

Source 📝

2388: 1421:. As a result of the warmer climate and the sea level rise associated with the early Eocene, more wetlands, more forests, and more coal deposits would have been available for methane release. If we compare the early Eocene production of methane to current levels of atmospheric methane, the early Eocene would have produced triple the amount of methane. The warm temperatures during the early Eocene could have increased methane production rates, and methane that is released into the atmosphere would in turn warm the troposphere, cool the stratosphere, and produce water vapor and carbon dioxide through oxidation. Biogenic production of methane produces carbon dioxide and water vapor along with the methane, as well as yielding infrared radiation. The breakdown of methane in an atmosphere containing oxygen produces carbon monoxide, water vapor and infrared radiation. The carbon monoxide is not stable, so it eventually becomes carbon dioxide and in doing so releases yet more infrared radiation. Water vapor traps more infrared than does carbon dioxide. At about the beginning of the Eocene Epoch (55.8–33.9 Ma) the 1646:; however, data on the exact timing of metamorphic release of atmospheric carbon dioxide is not well resolved in the data. Recent studies have mentioned, however, that the removal of the ocean between Asia and India could have released significant amounts of carbon dioxide. Another hypothesis still implicates a diminished negative feedback of silicate weathering as a result of continental rocks having become less weatherable during the warm Early and Middle Eocene, allowing volcanically released carbon dioxide to persist in the atmosphere for longer. Yet another explanation hypothesises that MECO warming was caused by the simultaneous occurrence of minima in both the 400 kyr and 2.4 Myr eccentricity cycles. During the MECO, sea surface temperatures in the Tethys Ocean jumped to 32–36 °C, and Tethyan seawater became more dysoxic. A decline in carbonate accumulation at ocean depths of greater than three kilometres took place synchronously with the peak of the MECO, signifying 2372: 1502:. Using all different ranges of greenhouse gasses that occurred during the early Eocene, models were unable to produce the warming that was found at the poles and the reduced seasonality that occurs with winters at the poles being substantially warmer. The models, while accurately predicting the tropics, tend to produce significantly cooler temperatures of up to 20 °C (36 °F) colder than the actual determined temperature at the poles. This error has been classified as the "equable climate problem". To solve this problem, the solution would involve finding a process to warm the poles without warming the tropics. Some hypotheses and tests which attempt to find the process are listed below. 2420: 2452: 1562:
where in most situations the presence of water vapor in the lower stratosphere is rare. When methane is oxidized, a significant amount of water vapor is released. Another requirement for polar stratospheric clouds is cold temperatures to ensure condensation and cloud production. Polar stratospheric cloud production, since it requires the cold temperatures, is usually limited to nighttime and winter conditions. With this combination of wetter and colder conditions in the lower stratosphere, polar stratospheric clouds could have formed over wide areas in Polar Regions.
1603:
the sea floor, they became part of the sediments on the seabed and effectively sequestered the carbon by locking it out of the atmosphere for good. The ability for the azolla to sequester carbon is exceptional, and the enhanced burial of azolla could have had a significant effect on the world atmospheric carbon content and may have been the event to begin the transition into an ice house climate. The azolla event could have led to a draw down of atmospheric carbon dioxide of up to 470 ppm. Assuming the carbon dioxide concentrations were at 900 ppmv prior to the
2608: 2528: 1674:
remained predominant in East Asia. The cooling during the initial stages of the opening of the Drake Passage ~38.5 Ma was not global, as evidenced by an absence of cooling in the North Atlantic. During the cooling period, benthic oxygen isotopes show the possibility of ice creation and ice increase during this later cooling. The end of the Eocene and beginning of the Oligocene is marked with the massive expansion of area of the Antarctic ice sheet that was a major step into the icehouse climate. Multiple proxies, such as oxygen isotopes and
2560: 2404: 1065:(ICS), in 1969, standardized stratigraphy based on the prevailing opinions in Europe: the Cenozoic Era subdivided into the Tertiary and Quaternary sub-eras, and the Tertiary subdivided into the Paleogene and Neogene periods. In 1978, the Paleogene was officially defined as the Paleocene, Eocene, and Oligocene epochs; and the Neogene as the Miocene and Pliocene epochs. In 1989, Tertiary and Quaternary were removed from the time scale due to the arbitrary nature of their boundary, but Quaternary was reinstated in 2009. 9175: 2436: 1923: 1708: 2059: 1554:. Polar stratospheric clouds are clouds that occur in the lower stratosphere at very low temperatures. Polar stratospheric clouds have a great impact on radiative forcing. Due to their minimal albedo properties and their optical thickness, polar stratospheric clouds act similar to a greenhouse gas and trap outgoing longwave radiation. Different types of polar stratospheric clouds occur in the atmosphere: polar stratospheric clouds that are created due to interactions with nitric or 2500: 2516: 2160: 1566:
20 °C in the winter months. A multitude of feedbacks also occurred in the models due to the polar stratospheric clouds' presence. Any ice growth was slowed immensely and would lead to any present ice melting. Only the poles were affected with the change in temperature and the tropics were unaffected, which with an increase in atmospheric carbon dioxide would also cause the tropics to increase in temperature. Due to the warming of the troposphere from the increased
9164: 1724: 114: 2576: 2544: 2468: 2592: 2484: 1394:, while model simulations suggest a concentration of 1,680 ppm fits best with deep sea, sea surface, and near-surface air temperatures of the time. Other proxies such as pedogenic (soil building) carbonate and marine boron isotopes indicate large changes of carbon dioxide of over 2,000 ppm over periods of time of less than 1 million years. This large influx of carbon dioxide could be attributed to volcanic out-gassing due to 1586:. The transition from a warming climate into a cooling climate began at around 49 Ma. Isotopes of carbon and oxygen indicate a shift to a global cooling climate. The cause of the cooling has been attributed to a significant decrease of >2,000 ppm in atmospheric carbon dioxide concentrations. One proposed cause of the reduction in carbon dioxide during the warming to cooling transition was the 1445:, with a higher rate of fluvial sedimentation as a consequence of the warmer temperatures. Unlike the PETM, the lesser hyperthermals of the Early Eocene had negligible consequences for terrestrial mammals. These Early Eocene hyperthermals produced a sustained period of extremely hot climate known as the Early Eocene Climatic Optimum (EECO). During the early and middle EECO, the superabundance of the 1194: 2191: 1574:
were used to determine the sustainability of the polar stratospheric clouds. It was determined that in order to maintain the lower stratospheric water vapor, methane would need to be continually released and sustained. In addition, the amounts of ice and condensation nuclei would need to be high in order for the polar stratospheric cloud to sustain itself and eventually expand.
1633:
release during this short-term warming. A sharp increase in atmospheric carbon dioxide was observed with a maximum of 4,000 ppm: the highest amount of atmospheric carbon dioxide detected during the Eocene. Other studies suggest a more modest rise in carbon dioxide levels. The increase in atmospheric carbon dioxide has also been hypothesised to have been driven by increased
1221:
isolated cold water channel developed between the two continents. However, modeling results call into question the thermal isolation model for late Eocene cooling, and decreasing carbon dioxide levels in the atmosphere may have been more important. Once the Antarctic region began to cool down, the ocean surrounding Antarctica began to freeze, sending cold water and
1520:
ocean water during the early Eocene, one common hypothesis was that due to these increases there would be a greater transport of heat from the tropics to the poles. Simulating these differences, the models produced lower heat transport due to the lower temperature gradients and were unsuccessful in producing an equable climate from only ocean heat transport.
1441:(ETM2), and the Eocene Thermal Maximum 3 (ETM3), were analyzed and found that orbital control may have had a role in triggering the ETM2 and ETM3. An enhancement of the biological pump proved effective at sequestering excess carbon during the recovery phases of these hyperthermals. These hyperthermals led to increased perturbations in planktonic and benthic 1511:
inserted into North America and a climate model was run using varying carbon dioxide levels. The model runs concluded that while the lake did reduce the seasonality of the region greater than just an increase in carbon dioxide, the addition of a large lake was unable to reduce the seasonality to the levels shown by the floral and faunal data.
1345:. Because of this the maximum sea level was 150 meters higher than current levels. Following the maximum was a descent into an icehouse climate from the Eocene Optimum to the Eocene–Oligocene transition at 34 Ma. During this decrease, ice began to reappear at the poles, and the Eocene–Oligocene transition is the period of time when the 6827:
Cramwinckel, Margot J.; Van der Ploeg, Robin; Van Helmond, Niels A. G. M.; Waarlo, Niels; Agnini, Claudia; Bijl, Peter K.; Van der Boon, Annique; Brinkhuis, Henk; Frieling, Joost; Krijgsman, Wout; Mather, Tamsin A.; Middelburg, Jack J.; Peterse, Francien; Slomp, Caroline P.; Sluijs, Appy (1 September
3616:
Bijl, P. K.; Bendle, J. A. P.; Bohaty, S. M.; Pross, J.; Schouten, S.; Tauxe, L.; Stickley, C. E.; McKay, R. M.; Rohl, U.; Olney, M.; Sluijs, A.; Escutia, C.; Brinkhuis, H.; Klaus, A.; Fehr, A.; Williams, T.; Carr, S. A.; Dunbar, R. B.; Gonzalez, J. J.; Hayden, T. G.; Iwai, M.; Jimenez-Espejo, F. J.;
1977:
forms reigned. All the members of the new mammal orders were small, under 10 kg; based on comparisons of tooth size, Eocene mammals were only 60% of the size of the primitive Palaeocene mammals that preceded them. They were also smaller than the mammals that followed them. It is assumed that the
1682:. Along with the decrease of atmospheric carbon dioxide reducing the global temperature, orbital factors in ice creation can be seen with 100,000-year and 400,000-year fluctuations in benthic oxygen isotope records. Another major contribution to the expansion of the ice sheet was the creation of the 1661:
making its way down to the seafloor and causing a corresponding decline in populations of benthic foraminifera. An abrupt decrease in lakewater salinity in western North America occurred during this warming interval. This warming is short lived, as benthic oxygen isotope records indicate a return to
1541:
were modified in different model runs to determine all the possible different scenarios that could occur and their effects on temperature. One particular case led to warmer winters and cooler summer by up to 30% in the North American continent, and it reduced the seasonal variation of temperature by
1389:
of silicates. For the early Eocene there is much discussion on how much carbon dioxide was in the atmosphere. This is due to numerous proxies representing different atmospheric carbon dioxide content. For example, diverse geochemical and paleontological proxies indicate that at the maximum of global
1220:
remained connected, and warm equatorial currents may have mixed with colder Antarctic waters, distributing the heat around the planet and keeping global temperatures high. When Australia split from the southern continent around 45 Ma, the warm equatorial currents were routed away from Antarctica. An
4833:
Goudsmit-Harzevoort, Barbara; Lansu, Angelique; Baatsen, Michiel L. J.; von der Heydt, Anna S.; de Winter, Niels J.; Zhang, Yurui; Abe-Ouchi, Ayako; de Boer, Agatha; Chan, Wing-Le; Donnadieu, Yannick; Hutchinson, David K.; Knorr, Gregor; Ladant, Jean-Baptiste; Morozova, Polina; Niezgodzki, Igor (17
1432:
composition in the ocean. These isotope changes occurred due to the release of carbon from the ocean into the atmosphere that led to a temperature increase of 4–8 °C (7.2–14.4 °F) at the surface of the ocean. Recent analysis of and research into these hyperthermals in the early Eocene has
1098:
The middle Eocene was characterized by the shift towards a cooler climate at the end of the EECO, around 47.8 Ma, which was briefly interrupted by another warming event called the middle Eocene climatic optimum (MECO). Lasting for about 400,000 years, the MECO was responsible for a globally uniform
1607:
they would have dropped to 430 ppmv, or 30 ppmv more than they are today, after the Azolla Event. This cooling trend at the end of the EECO has also been proposed to have been caused by increased siliceous plankton productivity and marine carbon burial, which also helped draw carbon dioxide out of
1602:
blooms across the Arctic Ocean. Compared to current carbon dioxide levels, these azolla grew rapidly in the enhanced carbon dioxide levels found in the early Eocene. The isolation of the Arctic Ocean, evidenced by euxinia that occurred at this time, led to stagnant waters and as the azolla sank to
1519:
The transport of heat from the tropics to the poles, much like how ocean heat transport functions in modern times, was considered a possibility for the increased temperature and reduced seasonality for the poles. With the increased sea surface temperatures and the increased temperature of the deep
1510:
Due to the nature of water as opposed to land, less temperature variability would be present if a large body of water is also present. In an attempt to try to mitigate the cooling polar temperatures, large lakes were proposed to mitigate seasonal climate changes. To replicate this case, a lake was
1173:
covered the Early Eocene through early Oligocene, and three of the four were given informal early/late substages. Wolfe tentatively deemed the Franklinian as Early Eocene, the Fultonian as Middle Eocene, the Ravenian as Late, and the Kummerian as Early Oligocene. The beginning of the Kummerian was
1743:
During the early-middle Eocene, forests covered most of the Earth including the poles. Tropical forests extended across much of modern Africa, South America, Central America, India, South-east Asia and China.  Paratropical forests grew over North America, Europe and Russia, with broad-leafed
1573:
While the polar stratospheric clouds could explain the reduction of the equator to pole temperature gradient and the increased temperatures at the poles during the early Eocene, there are a few drawbacks to maintaining polar stratospheric clouds for an extended period of time. Separate model runs
1561:
Methane is an important factor in the creation of the primary Type II polar stratospheric clouds that were created in the early Eocene. Since water vapor is the only supporting substance used in Type II polar stratospheric clouds, the presence of water vapor in the lower stratosphere is necessary
4331:
Ding, Huixia; Zhang, Zeming; Dong, Xin; Tian, Zuolin; Xiang, Hua; Mu, Hongchen; Gou, Zhengbin; Shui, Xinfang; Li, Wangchao; Mao, Lingjuan (February 2016). "Early Eocene ( c . 50 Ma) collision of the Indian and Asian continents: Constraints from the North Himalayan metamorphic rocks, southeastern
1632:
analysis showed a large negative change in the proportion of heavier oxygen isotopes to lighter oxygen isotopes, which indicates an increase in global temperatures. The warming is considered to be primarily due to carbon dioxide increases, because carbon isotope signatures rule out major methane
1565:
To test the polar stratospheric clouds effects on the Eocene climate, models were run comparing the effects of polar stratospheric clouds at the poles to an increase in atmospheric carbon dioxide. The polar stratospheric clouds had a warming effect on the poles, increasing temperatures by up to
1673:
At the end of the MECO, the MLEC resumed. Cooling and the carbon dioxide drawdown continued through the late Eocene and into the Eocene–Oligocene transition around 34 Ma. The post-MECO cooling brought with it a major aridification trend in Asia, enhanced by retreating seas. A monsoonal climate
6189:
Speelman, E. N.; Van Kempen, M. M. L.; Barke, J.; Brinkhuis, H.; Reichart, G. J.; Smolders, A. J. P.; Roelofs, J. G. M.; Sangiorgi, F.; De Leeuw, J. W.; Lotter, A. F.; Sinninghe Damsté, J. S. (27 March 2009). "The Eocene Arctic Azolla bloom: environmental conditions, productivity, and carbon
7920:
Bertrand, Ornella C.; Shelley, Sarah L.; Williamson, Thomas E.; Wible, John R.; Chester, Stephen G. B.; Flynn, John J.; Holbrook, Luke T.; Lyson, Tyler R.; Meng, Jin; Miller, Ian M.; Püschel, Hans P.; Smith, Thierry; Spaulding, Michelle; Tseng, Z. Jack; Brusatte, Stephen L. (April 2022).
1494:
analyses point to a maximum low latitude sea surface temperature of 36.3 °C (97.3 °F) ± 1.9 °C (35.4 °F) during the EECO. Relative to present-day values, bottom water temperatures are 10 °C (18 °F) higher according to isotope proxies. With these bottom water
4473:
Cramwinckel, Margot J.; Huber, Matthew; Kocken, Ilja J.; Agnini, Claudia; Bijl, Peter K.; Bohaty, Steven M.; Frieling, Joost; Goldner, Aaron; Hilgen, Frederik J.; Kip, Elizabeth L.; Peterse, Francien; Van der Ploeg, Robin; Röhl, Ursula; Schouten, Stefan; Sluijs, Appy (2 July 2018).
3986:
Gohn, G. S.; Koeberl, C.; Miller, K. G.; Reimold, W. U.; Browning, J. V.; Cockell, C. S.; Horton, J. W.; Kenkmann, T.; Kulpecz, A. A.; Powars, D. S.; Sanford, W. E.; Voytek, M. A. (2008-06-27). "Deep Drilling into the Chesapeake Bay Impact Structure".
5068:
Galeotti, S.; Krishnan, Srinath; Pagani, Mark; Lanci, Luca; Gaudio, Alberto; Zachos, James C.; Monechi, Simonetta; Morelli, Guia; Lourens, Lucas (2010). "Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy".
1385:, that reduced the atmospheric carbon dioxide. This event was similar in magnitude to the massive release of greenhouse gasses at the beginning of the PETM, and it is hypothesized that the sequestration was mainly due to organic carbon burial and 3265:
Zhang, Q.; Willems, H.; Ding, L.; Xu, X. (2019). "Response of larger benthic foraminifera to the Paleocene–Eocene thermal maximum and the position of the Paleocene/Eocene boundary in the Tethyan shallow benthic zones: Evidence from south Tibet".
1099:
4° to 6°C warming of both the surface and deep oceans, as inferred from foraminiferal stable oxygen isotope records. The resumption of a long-term gradual cooling trend resulted in a glacial maximum at the late Eocene/early Oligocene boundary.
2908:
From p. 55: "The period next antecedent we shall call Eocene, from ήως, aurora, and χαινος, recens, because the extremely small proportion of living species contained in these strata, indicates what may be considered the first commencement, or
4890:
Royer, Dana L.; Wing, Scott L.; Beerling, David J.; Jolley, David W.; Koch, Paul L.; Hickey1, Leo J.; Berner, Robert A. (22 June 2001). "Paleobotanical Evidence for Near Present-Day Levels of Atmospheric CO2 During Part of the Tertiary".
1292:
to the north. Planktonic foraminifera in the northwestern Peri-Tethys are very similar to those of the Tethys in the middle Lutetian but become completely disparate in the Bartonian, indicating biogeographic separation. Though the North
4669:
Galeotti, Simone; Deconto, Robert; Naish, Timothy; Stocchi, Paolo; Florindo, Fabio; Pagani, Mark; Barrett, Peter; Bohaty, Steven M.; Lanci, Luca; Pollard, David; Sandroni, Sonia; Talarico, Franco M.; Zachos, James C. (10 March 2016).
5875:
Evans, David; Sagoo, Navjit; Renema, Willem; Cotton, Laura J.; Müller, Wolfgang; Todd, Jonathan A.; Saraswati, Pratul Kumar; Stassen, Peter; Ziegler, Martin; Pearson, Paul N.; Valdes, Paul J.; Affek, Hagit P. (22 January 2018).
1641:
in the region. One possible cause of atmospheric carbon dioxide increase could have been a sudden increase due to metamorphic release due to continental drift and collision of India with Asia and the resulting formation of the
3727:
Francis, J.E.; Marenssi, S.; Levy, R.; Hambrey, M.; Thorn, V.C.; Mohr, B.; Brinkhuis, H.; Warnaar, J.; Zachos, J.; Bohaty, S.; DeConto, R. (2008). "Chapter 8 From Greenhouse to Icehouse – The Eocene/Oligocene in Antarctica".
1699:, sediments indicate the opening occurred ~41 Ma while tectonics indicate that this occurred ~32 Ma. Solar activity did not change significantly during the greenhouse-icehouse transition across the Eocene-Oligocene boundary. 1528:
While typically seen as a control on ice growth and seasonality, the orbital parameters were theorized as a possible control on continental temperatures and seasonality. Simulating the Eocene by using an ice free planet,
1259:. The Kishenehn Basin, around 1.5 km in elevation during the Lutetian, was uplifted to an altitude of 2.5 km by the Priabonian. Huge lakes formed in the high flat basins among uplifts, resulting in the deposition of the 1616:. Many regions of the world became more arid and cold over the course of the stage, such as the Fushun Basin. In East Asia, lake level changes were in sync with global sea level changes over the course of the MLEC. 1337:, and arguably the warmest time interval since the Permian-Triassic mass extinction and Early Triassic, and ends in an icehouse climate. The evolution of the Eocene climate began with warming after the end of the 5882: 3623: 1405:
During the early Eocene, methane was another greenhouse gas that had a drastic effect on the climate. Methane has 30 times more of a warming effect than carbon dioxide on a 100-year scale (i.e., methane has a
4209:
Licht, Alexis; Métais, Grégoire; Coster, Pauline; İbilioğlu, Deniz; Ocakoğlu, Faruk; Westerweel, Jan; Mueller, Megan; Campbell, Clay; Mattingly, Spencer; Wood, Melissa C.; Beard, K. Christopher (2022-03-01).
1619:
Global cooling continued until there was a major reversal from cooling to warming in the Bartonian. This warming event, signifying a sudden and temporary reversal of the cooling conditions, is known as the
1694:
of colder bottom waters. The issue with this hypothesis of the consideration of this being a factor for the Eocene-Oligocene transition is the timing of the creation of the circulation is uncertain. For
1608:
the atmosphere. Cooling after this event, part of a trend known as the Middle-Late Eocene Cooling (MLEC), continued due to continual decrease in atmospheric carbon dioxide from organic productivity and
1078:
The Eocene is a dynamic epoch that represents global climatic transitions between two climatic extremes, transitioning from the hot house to the cold house. The beginning of the Eocene is marked by the
2352:
is common in fossil faunas from presently temperate areas, but only lives in the tropics and subtropics today. Platypleurin cicadas diversified during the Eocene. Ostracods flourished in the oceans.
1341:(PETM) at 56 Ma to a maximum during the Eocene Optimum at around 49 Ma. During this period of time, little to no ice was present on Earth with a smaller difference in temperature from the equator to 8251:"Late Eocene to Early Miocene calcareous nannofossil biostratigraphy from the ANH-San Jacinto- 1 well: Stratigraphic implications for the Sinú-San Jacinto basin in the Caribbean region of Colombia" 5390: 8157:"Out of Africa? A dated molecular phylogeny of the cicada tribe Platypleurini Schmidt (Hemiptera: Cicadidae), with a focus on African genera and the genus Platypleura Amyot & Audinet-Serville" 7241:
Bosboom, Roderic; Dupont-Nivet, Guillaume; Grothe, Arjen; Brinkhuis, Henk; Villa, Giuliana; Mandic, Oleg; Stoica, Marius; Kouwenhoven, Tanja; Huang, Wentao; Yang, Wei; Guo, ZhaoJie (1 June 2014).
2387: 3617:
Katsuki, K.; Kong, G. S.; Nakai, M.; Passchier, S.; Pekar, S. F.; Riesselman, C.; Sakai, T.; Shrivastava, P. K.; Sugisaki, S.; Tuo, S.; van de Flierdt, T.; Welsh, K.; Yamane, M. (2013-06-11).
1095:
of the health of a marine ecosystem)—one of the largest in the Cenozoic. This event happened around 55.8 Ma, and was one of the most significant periods of global change during the Cenozoic.
3554:
Wolfe, J.A. (1968). Paleogene Biostratigraphy of nonmarine rocks in King County, Washington (Report). Professional Paper. Vol. 571. United States Geological Survey. pp. 1–29.
7139:"The Early to Middle Eocene Transition: An Integrated Calcareous Nannofossil and Stable Isotope Record From the Northwest Atlantic Ocean (Integrated Ocean Drilling Program Site U1410)" 1325:. The incipient subcontinent collided with the Kohistan–Ladakh Arc around 50.2 Ma and with Karakoram around 40.4 Ma, with the final collision between Asia and India occurring ~40 Ma. 6386:
Ma, Yiquan; Fan, Majie; Li, Mingsong; Ogg, James G.; Zhang, Chen; Feng, Jun; Zhou, Chunhua; Liu, Xiaofeng; Lu, Yongchao; Liu, Huimin; Eldrett, James S.; Ma, Chao (15 January 2023).
1467:
support the presence of a warmer equable climate being present during this period of time. A few of these proxies include the presence of fossils native to warm climates, such as
1307:
and Asia. About 40 Ma, Balkanatolia and Asia were connected, while Europe was connected 34 Ma. The Fushun Basin contained large, suboxic lakes known as the paleo-Jijuntun Lakes.
1686:. The creation of the Antarctic circumpolar current would isolate the cold water around the Antarctic, which would reduce heat transport to the Antarctic along with creating 8213:"Implication of middle Eocene to early Miocene ostracodes from the N. El Faras-1X Well, Qattara Depression, Egypt, for paleobathymetry and paleobiogeographic reconstruction" 7084:
Pagani, M.; Zachos, J. C.; Freeman, Katherine H.; Tipple, Brett; Bohaty, Stephen (2005). "Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene".
5466:
Reinhardt, Lutz; Von Gosen, Werner; Lückge, Andreas; Blumenberg, Martin; Galloway, Jennifer M.; West, Christopher K.; Sudermann, Markus; Dolezych, Martina (7 January 2022).
1463:
One of the unique features of the Eocene's climate as mentioned before was the equable and homogeneous climate that existed in the early parts of the Eocene. A multitude of
5468:"Geochemical indications for the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM-2) hyperthermals in terrestrial sediments of the Canadian Arctic" 3414:
Bijl, Peter K.; Houben, Alexander J. P.; Schouten, Stefan; Bohaty, Steven M.; Sluijs, Appy; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.; Brinkhuis, Henk (2010-11-05).
1628:
drilling sites indicated a warming event for 600,000 years. A similar shift in carbon isotopes is known from the Northern Hemisphere in the Scaglia Limestones of Italy.
3678:
Huber, Matthew; Brinkhuis, Henk; Stickley, Catherine E.; Döös, Kristofer; Sluijs, Appy; Warnaar, Jeroen; Schellenberg, Stephen A.; Williams, Graham L. (December 2004).
6446: 1582:
The Eocene is not only known for containing the warmest period during the Cenozoic; it also marked the decline into an icehouse climate and the rapid expansion of the
1433:
led to hypotheses that the hyperthermals are based on orbital parameters, in particular eccentricity and obliquity. The hyperthermals in the early Eocene, notably the
2206:
Eocene birds include some enigmatic groups with resemblances to modern forms, some of which continued from the Paleocene. Bird taxa of the Eocene include carnivorous
6653:
Henehan, Michael J.; Edgar, Kirsty M.; Foster, Gavin L.; Penman, Donald E.; Hull, Pincelli M.; Greenop, Rosanna; Anagnostou, Eleni; Pearson, Paul N. (9 March 2020).
4176:
Denk, Thomas; Grímsson, Friðgeir; Zetter, Reinhard; Símonarson, Leifur A. (2011). "The Biogeographic History of Iceland – the North Atlantic Land Bridge Revisited".
2016:. Older primitive forms of mammals declined in variety and importance. Important Eocene land fauna fossil remains have been found in western North America, Europe, 1981:
Rodents were widespread. East Asian rodent faunas declined in diversity when they shifted from ctenodactyloid-dominant to cricetid–dipodid-dominant after the MECO.
3576: 1817:
Cooling began mid-period, and by the end of the Eocene continental interiors had begun to dry, with forests thinning considerably in some areas. The newly evolved
1678:, indicate that at the Eocene–Oligocene transition, the atmospheric carbon dioxide concentration had decreased to around 750–800 ppm, approximately twice that of 6829: 5108:"Large-Amplitude Variations in Carbon Cycling and Terrestrial Weathering during the Latest Paleocene and Earliest Eocene: The Record at Mead Stream, New Zealand" 1542:
up to 75%. While orbital parameters did not produce the warming at the poles, the parameters did show a great effect on seasonality and needed to be considered.
737: 4418: 2342:, England. Insects found in Eocene deposits mostly belong to genera that exist today, though their range has often shifted since the Eocene. For instance the 8544: 4063:
Frizon de Lamotte, Dominique; Raulin, Camille; Mouchot, Nicolas; Wrobel-Daveau, Jean-Christophe; Blanpied, Christian; Ringenbach, Jean-Claude (17 May 2011).
763: 6768:
Giorgioni, Martino; Jovane, Luigi; Rego, Eric S.; Rodelli, Daniel; Frontalini, Fabrizio; Coccioni, Rodolfo; Catanzariti, Rita; Özcan, Ercan (27 June 2019).
5266:
Sexton, Philip F.; Norris, Richard D.; Wilson, Paul A.; Pälike, Heiko; Westerhold, Thomas; Röhl, Ursula; Bolton, Clara T.; Gibbs, Samantha (16 March 2011).
5467: 3332:"Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene–Eocene Thermal Maximum: Implications for the benthic extinction" 2751:
Aubry, Marie-Pierre; Ouda, Khaled; Dupuis, Christian; William A. Berggren; John A. Van Couvering; Working Group on the Paleocene/Eocene Boundary (2007).
7436:
Diester-Haass, L.; Zahn, R. (1996). "Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity".
2892:
William Whewell, D. D., Master of Trinity College, Cambridge: An account of his writings with selections from his literary and scientific correspondence
5106:
Slotnick, Benjamin S.; Cickens, Gerald R.; Nicolo, Micah J.; Hollis, Christopher J.; Crampton, James S.; Zachos, James C.; Sluijs, Appy (11 May 2012).
751: 5514:
Abels, Hemmo A.; Clyde, William C.; Gingerich, Philip D.; Hilgen, Frederik J.; Fricke, Henry C.; Bowen, Gabriel J.; Lourens, Lucas J. (1 April 2012).
7515: 7303: 7247: 6978: 6555: 6056: 5677: 8045:"Oldest co-occurrence of Varanus and Python from Africa—first record of squamates from the early Miocene of Moghra Formation, Western Desert, Egypt" 7020:
Mulch, Andreas; Chamberlain, C. P.; Cosca, Michael A.; Teyssier, Christian; Methner, Katharina; Hren, Michael T.; Graham, Stephan A. (April 2015).
6245:"Significance of euxinic condition in the middle Eocene paleo-Arctic basin: A geochemical study on the IODP Arctic Coring Expedition 302 sediments" 3877: 1398:
or oxidation of methane stored in large reservoirs deposited from the PETM event in the sea floor or wetland environments. For contrast, today the
4258: 3953:
Grande, Lance (2001). "An Updated Review of the Fish Faunas from the Green River Formation, the World's Most Productive Freshwater Lagerstätten".
2116:, but whales as a group had become very diverse during the Eocene, which is when the major transitions from being terrestrial to fully aquatic in 5611:
Crouch, E. M.; Shepherd, C. L.; Morgans, H. E. G.; Naafs, B. D. A.; Dallanave, E.; Phillips, A.; Hollis, C. J.; Pancost, R. D. (1 January 2020).
4936: 8104:
Wolfe, Alexander P.; Tappert, Ralf; Muehlenbachs, Karlis; Boudreau, Marc; McKellar, Ryan C.; Basinger, James F.; Garrett, Amber (1 July 2009).
7997:"Stratigraphic distribution of large flightless birds in the Palaeogene of Europe and its palaeobiological and palaeogeographical implications" 4975:
Sloan, L. C.; Walker, C. G.; Moore, T. C. Jr.; Rea, D. K.; Zachos, J. C. (1992). "Possible methane-induced polar warming in the early Eocene".
1410:
of 29.8±11). Most of the methane released to the atmosphere during this period of time would have been from wetlands, swamps, and forests. The
1297:
was opening, a land connection appears to have remained between North America and Europe since the faunas of the two regions are very similar.
7673:
Wing, Scott L.; Greenwood, David R. (28 August 1993). "Fossils and fossil climate: the case for equable continental interiors in the Eocene".
6445:
Jovane, Luigi; Florindo, Fabio; Coccioni, Rodolfo; Marsili, Andrea; Monechi, Simonetta; Roberts, Andrew P.; Sprovieri, Mario (1 March 2007).
3680:"Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters?: Did the East Australian Current Warm Antarctica?" 2055:, in which the former two, unlike the latter, did not belong to ungulates but groups that became extinct shortly after their establishments. 6709:
Van der Ploeg, Robin; Selby, David; Cramwinckel, Margot J.; Li, Yang; Bohaty, Steven M.; Middelburg, Jack J.; Sluijs, Appy (23 July 2018).
3006: 1495:
temperatures, temperatures in areas where deep water forms near the poles are unable to be much cooler than the bottom water temperatures.
1087:
brought about by the release of carbon en masse into the atmosphere and ocean systems, which led to a mass extinction of 30–50% of benthic
6876:
Spofforth, D. J. A.; Agnini, C.; Pälike, H.; Rio, D.; Fornaciari, E.; Giusberi, L.; Luciani, V.; Lanci, L.; Muttoni, G. (24 August 2010).
5675:
Sloan, L. C.; Rea, D. K. (1995). "Atmospheric carbon dioxide and early Eocene climate: a general circulation modeling sensitivity study".
4546:
West, Christopher K.; Greenwood, David R.; Reichgelt, Tammo; Lowe, Alexander J.; Vachon, Janelle M.; Basinger, James F. (4 August 2020).
4417:
Rennie, Victoria C. F.; Paris, Guillaume; Sessions, Alex L.; Abramovich, Sigal; Turchyn, Alexandra V.; Adkins, Jess F. (13 August 2018).
3487:"Eocene-Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event" 1931: 1118:
The Eocene is conventionally divided into early (56–47.8 Ma), middle (47.8–38 Ma), and late (38–33.9 Ma) subdivisions. The corresponding
8249:
Arias-Villegas, Viviana; Bedoya Agudelo, Erika L.; Vallejo-Hincapié, Felipe; Aubry, Marie-Pierre; Pardo-Trujillo, Andrés (August 2023).
1570:
of the polar stratospheric clouds, the stratosphere would cool and would potentially increase the amount of polar stratospheric clouds.
8412: 4133:"A high resolution lutetian-Bartonian planktonic foraminiferal zonation in the Crimean-Caucasus region of the northeastern Peri-Tethys" 1988:(hoofed animals) became prevalent because of a major radiation between Europe and North America, along with carnivorous ungulates like 1852:
tropical species. By the end of the period, deciduous forests covered large parts of the northern continents, including North America,
7399:; Bailey, T. R.; Pearson, P.N.; Coxall, H. K.; Rosenthal, Y. (2008). "Cooling and ice growth across the Eocene-Oligocene transition". 4065:"The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes" 8537: 7851:"Rodent faunas, their paleogeographic pattern, and responses to climate changes from the early Eocene to the early Oligocene in Asia" 5974:
Sloan, L. C. (1994). "Equable climates during the early Eocene: Significance of regional paleogeography for North American climate".
548: 8359: 7193:
Bosboom, Roderic E.; Abels, Hemmo A.; Hoorn, Carina; Van den Berg, Bas C. J.; Guo, Zhaojie; Dupont-Nivet, Guillaume (1 March 2014).
8255: 6655:"Revisiting the Middle Eocene Climatic Optimum "Carbon Cycle Conundrum" With New Estimates of Atmospheric pCO2 From Boron Isotopes" 1062: 616: 566: 6094:
Sloan, L. C.; Pollard, D. (1998). "Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world".
2694:
Zachos, J. C.; Kump, L. R. (2005). "Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene".
2371: 1797:
during the early Eocene, although they became less abundant as the climate cooled. Dawn redwoods were far more extensive as well.
1365:, played a significant role during the Eocene in controlling the surface temperature. The end of the PETM was met with very large 7892: 7022:"Rapid change in high-elevation precipitation patterns of western North America during the Middle Eocene Climatic Optimum (MECO)" 5613:"Climatic and environmental changes across the early Eocene climatic optimum at mid-Waipara River, Canterbury Basin, New Zealand" 5039: 4287:"Characterization of depositional conditions for lacustrine oil shales in the Eocene Jijuntun Formation, Fushun Basin, NE China" 3373:"Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates" 3114:
Odin, G. S.; Curry, D.; Hunziker, J. Z. (1978). "Radiometric dates from NW European glauconites and the Palaeogene time-scale".
8339: 7021: 6834: 6451: 3882: 3581: 3268: 1712: 7822:. (2017) Repetitive mammalian dwarfing during ancient greenhouse warming events.Sci. Adv.3,e1601430.DOI:10.1126/sciadv.1601430 6495:"Cyclostratigraphy and astronomical tuning of the middle eocene terrestrial successions in the Bohai Bay Basin, Eastern China" 4734:
Bowen, J. G.; Zachos, J. C. (2010). "Rapid carbon sequestration at the termination of the Palaeocene-Eocene Thermal Maximum".
4606:"Paleocene–Eocene and Plio–Pleistocene sea-level changes as "species pumps" in Southeast Asia: Evidence from Althepus spiders" 7351: 7143: 7137:
Cappelli, C.; Bown, P. R.; Westerhold, T.; Bohaty, S. M.; De Riu, M.; Loba, V.; Yamamoto, Y.; Agnini, C. (15 November 2019).
6930: 6882: 6659: 4840: 4610: 4193: 3970: 3878:"Late Paleogene paleotopographic evolution of the northern Cordilleran orogenic front: Implications for demise of the orogen" 3684: 3377: 2136: 1434: 1103: 965: 8043:
Georgalis, Georgios L.; Abdel Gawad, Mohamed K.; Hassan, Safiya M.; El-Barkooky, Ahmed N.; Hamdan, Mohamed A. (2020-05-22).
8530: 6974:"Benthic foraminiferal response to the Middle Eocene Climatic Optimum (MECO) in the South-Eastern Atlantic (ODP Site 1263)" 6551:"New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes" 2753:"The Global Standard Stratotype-section and Point (GSSP) for the base of the Eocene Series in the Dababiya section (Egypt)" 1338: 1080: 673: 508: 7700:
Jahren, A. Hope (28 August 1993). "Fossils and fossil climate: the case for equable continental interiors in the Eocene".
2419: 956:. The average temperature of Earth at the beginning of the Eocene was about 27 degrees Celsius. The end is set at a major 7476:
Barker, P. F.; Thomas, E. (2004). "Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current".
7199: 6392: 6249: 5176: 5071: 4548:"Paleobotanical proxies for early Eocene climates and ecosystems in northern North America from middle to high latitudes" 4375: 4334: 1395: 8369: 6830:"Deoxygenation and organic carbon sequestration in the Tethyan realm associated with the middle Eocene climatic optimum" 5172:"Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals" 8110: 7855: 5332:"Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals" 4137: 7513:
Huber, M.; Nof, D. (2006). "The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene".
8322: 7657: 7297:
Li, Qijia; Utescher, Torsten; Liu, Yusheng (Christopher); Ferguson, David; Jia, Hui; Quan, Cheng (1 September 2022).
4047: 3774: 3749: 3116: 2842: 1767:. Even at that time, Ellesmere Island was only a few degrees in latitude further south than it is today. Fossils of 869: 8354: 6549:
Edgar, Kirsty M.; Wilson, P. A.; Sexton, P. F.; Gibbs, S. J.; Roberts, Andrew P.; Norris, R. D. (20 November 2010).
922: 9208: 7594:"Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China" 5766: 3679: 1894:
was wiped out, and by the beginning of the Oligocene, the continent hosted deciduous forests and vast stretches of
1255:
came to an end in the Eocene, and compression was replaced with crustal extension that ultimately gave rise to the
8304: 4951: 4780:
Pearson, P. N.; Palmer, M. R. (2000). "Atmospheric carbon dioxide concentrations over the past 60 million years".
3790:
English, Joseph M.; Johnston, Stephen T. (September 2004). "The Laramide Orogeny: What Were the Driving Forces?".
1949:. At the beginning of the Eocene, several new mammal groups arrived in North America. These modern mammals, like 988:
that define the start and end of the epoch are well identified, though their exact dates are slightly uncertain.
825: 7459: 5997: 8405: 5960: 5562:
Slotnick, B. S.; Dickens, G. R.; Hollis, C. J.; Crampton, J. S.; Strong, C. Percy; Phillips, A. (17 Sep 2015).
5330:
Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koijiro; Ikehara, Minoru; Kato, Yasuhiro (12 September 2017).
1621: 7347:"Bipolar Atlantic deepwater circulation in the middle-late Eocene: Effects of Southern Ocean gateway openings" 1590:. With the equable climate during the early Eocene, warm temperatures in the arctic allowed for the growth of 4419:"Cenozoic record of δ34S in foraminiferal calcite implies an early Eocene shift to deep-ocean sulfide burial" 3069: 2901: 2607: 2072:
Large terrestrial mammalian predators had already existed since the Paleocene, but new forms now arose like
1683: 777: 694: 8349: 5218:
Turner, Sandra Kirtland; Sexton, Philip D.; Charles, Christopher D.; Norris, Richard D. (7 September 2014).
4212:"Balkanatolia: The insular mammalian biogeographic province that partly paved the way to the Grande Coupure" 2451: 1498:
An issue arises, however, when trying to model the Eocene and reproduce the results that are found with the
8155:
Price, Benjamin W.; Marshall, David C.; Barker, Nigel P.; Simon, Chris; Villet, Martin H. (29 March 2019).
6349:
Bohaty, S. M.; Zachos, J. C. (2003). "Significant Southern Ocean warming event in the late middle Eocene".
6096: 6017: 3792: 1422: 1270: 977: 7194: 6973: 6550: 6494: 6244: 5171: 5170:
Zachos, James C.; McCarren, Heather; Murphy, Brandon; Röhl, Ursula; Westerhold, Thomas (15 October 2010).
4370: 2945:
Burke, K. D.; Williams, J. W.; Chandler, M. A.; Haywood, A. M.; Lunt, D. J.; Otto-Bliesner, B. L. (2018).
1650:
took place in the deep ocean. On top of that, MECO warming caused an increase in the respiration rates of
1428:
During the warming in the early Eocene between 55 and 52 Ma, there were a series of short-term changes of
8553: 7598: 7026: 6499: 6013:"Heat transport, deeps waters, and thermal gradients: Coupled simulation of an Eocene Greenhouse Climate" 2930: 2925: 1333:
The Eocene Epoch contained a wide variety of climate conditions that includes the warmest climate in the
605: 17: 6925: 6877: 6654: 4285:
Xu, Sheng-Chuan; Liu, Zhao-Jun; Zhang, Pu; Boak, Jeremy M.; Liu, Rong; Meng, Qing-Tao (1 October 2016).
2527: 1637:
rates and metamorphic decarbonation reactions between Australia and Antarctica and increased amounts of
1471:, located in the higher latitudes, the presence in the high latitudes of frost-intolerant flora such as 9203: 7805: 5435:
Stassen, Peter; Steurbaut, Etienne; Morsi, Abdel-Mohsen; Schulte, Peter; Speijer, Robert (1 May 2021).
2830: 7593: 7242: 6387: 6294:
Scotese, Christopher Robert; Song, Haijun; Mills, Benjamin J.W.; van der Meer, Douwe G. (April 2021).
5612: 4605: 4211: 2673:
In Lyell's time, epochs were divided into periods. In modern geology, periods are divided into epochs.
8398: 8379: 8156: 5646: 5564:"The onset of the Early Eocene Climatic Optimum at Branch Stream, Clarence River valley, New Zealand" 3047: 3043: 2403: 1551: 1042: 7299:"Monsoonal climate of East Asia in Eocene times inferred from an analysis of plant functional types" 7243:"Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China)" 6447:"The middle Eocene climatic optimum event in the Contessa Highway section, Umbrian Apennines, Italy" 2559: 2515: 7550:
Barker, P. F.; Filippelli, Gabriel M.; Florindo, Fabio; Martin, Ellen E.; Scher, Howard D. (2007).
7346: 7138: 4836:"The Relationship Between the Global Mean Deep-Sea and Surface Temperature During the Early Eocene" 4835: 4064: 4040:
The Chesapeake Bay Crater : Geology and Geophysics of a Late Eocene Submarine Impact Structure
2435: 1438: 1407: 1256: 973: 6878:"Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys" 908: 8826: 8821: 8385: 8355:
The UPenn Fossil Forest Project, focusing on the Eocene polar forests in Ellesmere Island, Canada
8344: 8250: 8212: 7996: 7298: 6295: 4286: 2033: 1558:
and water (Type I) or polar stratospheric clouds that are created with only water ice (Type II).
1487: 1154: 5391:"Ecological Response of Shallow-Marine Foraminifera to Early Eocene Warming in Equatorial India" 3029: 2729: 6296:"Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years" 5112: 2144: 1890:
forest existed there. It became much colder as the period progressed; the heat-loving tropical
1342: 2890: 8161: 8001: 7551: 7478: 6715: 6300: 5617: 4930: 3575:
Retallack, G.J.; Orr, W.N.; Prothero, D.R.; Duncan, R.A.; Kester, P.R.; Ambers, C.P. (2004).
3212: 2171: 1260: 945:
Epoch. The start of the Eocene is marked by a brief period in which the concentration of the
650: 7212: 6405: 6388:"East Asian lake hydrology modulated by global sea-level variations in the Eocene warmhouse" 6262: 5189: 5084: 4388: 4347: 1061:
for the Miocene and Pliocene in 1853. After decades of inconsistent usage, the newly formed
8264: 8170: 8010: 7938: 7742: 7607: 7566: 7524: 7487: 7447: 7410: 7360: 7312: 7256: 7208: 7152: 7095: 7035: 6987: 6939: 6891: 6783: 6724: 6668: 6611: 6564: 6508: 6460: 6401: 6360: 6309: 6258: 6201: 6192: 6154: 6105: 6065: 6026: 5985: 5948: 5891: 5823: 5780: 5626: 5575: 5529: 5481: 5402: 5345: 5281: 5233: 5185: 5121: 5107: 5080: 4986: 4902: 4849: 4791: 4745: 4685: 4619: 4561: 4489: 4432: 4384: 4343: 4298: 4223: 4078: 3996: 3848: 3801: 3632: 3590: 3501: 3427: 3386: 3345: 3277: 3221: 3175: 3125: 2958: 2703: 2634: 2499: 1530: 1366: 1146: 2808: 2772: 1978:
hot Eocene temperatures favored smaller animals that were better able to manage the heat.
1479:
found in the tropics that would require much higher average temperatures to sustain them.
1141:
The Western North American floras of the Eocene were divided into four floral "stages" by
8: 9157: 6924:
Bohaty, Steven M.; Zachos, James C.; Florindo, Fabio; Delaney, Margaret L. (9 May 2009).
6145: 6054:
Sloan, L. C.; Morrill, C. (1998). "Orbital forcing and Eocene continental temperatures".
5771: 5516:"Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals" 5472: 4672:"Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition" 4552: 4069: 3876:
Fan, Majie; Constenius, Kurt N.; Phillips, Rachel F.; Dettman, David L. (17 March 2021).
1776: 1771:
and even tropical trees and plants from the Eocene also have been found in Greenland and
1679: 1647: 1583: 1414: 1411: 1399: 1346: 1084: 8268: 8174: 8014: 7942: 7746: 7702:
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
7675:
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
7611: 7570: 7528: 7491: 7451: 7414: 7364: 7316: 7260: 7156: 7099: 7039: 6991: 6943: 6895: 6787: 6770:"Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum" 6728: 6672: 6615: 6568: 6512: 6464: 6364: 6313: 6205: 6158: 6109: 6069: 6030: 5989: 5952: 5895: 5827: 5784: 5630: 5579: 5533: 5485: 5406: 5349: 5285: 5268:"Eocene global warming events driven by ventilation of oceanic dissolved organic carbon" 5237: 5125: 4990: 4906: 4853: 4795: 4749: 4689: 4623: 4565: 4493: 4436: 4369:
Bouilhol, Pierre; Jagoutz, Oliver; Hanchar, John M.; Dudas, Francis O. (15 March 2013).
4302: 4259:"Balkanatolia: Forgotten Continent Discovered by Team of Paleontologists and Geologists" 4227: 4082: 4000: 3852: 3837:"Kinematic history of the Laramide orogeny in latitudes 35°-49°N, western United States" 3805: 3636: 3594: 3505: 3431: 3390: 3349: 3281: 3225: 3179: 3129: 2962: 2707: 2575: 2543: 2147:, "likely driven by a need for greater cognition in increasingly complex environments". 2104:
to appear. Their groups became highly successful and continued to live past the Eocene.
1181:(2004) as 40 Mya, with a refined end at the Eocene-Oligocene boundary where the younger 885:
that lasted from about 56 to 33.9 million years ago (Ma). It is the second epoch of the
8132: 8105: 8081: 8044: 7970: 7765: 7728: 7168: 7119: 7051: 6851: 6804: 6774: 6769: 6745: 6710: 6684: 6635: 6524: 6225: 6121: 5914: 5877: 5857: 5844: 5814: 5809: 5742: 5593: 5366: 5336: 5331: 5305: 5145: 5020: 4815: 4709: 4651: 4579: 4521: 4448: 4020: 3817: 3709: 3655: 3618: 3517: 3467: 3293: 3242: 3207: 3141: 1658: 1634: 1418: 1391: 7923: 6243:
Ogawa, Yusuke; Takahashi, Kozo; Yamanaka, Toshiro; Onodera, Jonaotaro (30 July 2009).
6077: 5047: 4671: 3741: 3415: 3023: 2591: 8955: 8919: 8318: 8186: 8137: 8086: 8068: 7974: 7962: 7954: 7929: 7874: 7770: 7653: 7623: 7438: 7401: 7272: 7172: 7111: 7086: 7055: 6855: 6809: 6750: 6688: 6627: 6602: 6528: 6417: 6351: 6217: 6213: 6125: 5976: 5939: 5919: 5861: 5849: 5746: 5734: 5690: 5650: 5597: 5520: 5371: 5297: 5224: 5220:"Persistence of carbon release events through the peak of early Eocene global warmth" 5012: 4918: 4893: 4865: 4819: 4807: 4736: 4701: 4676: 4643: 4635: 4583: 4513: 4452: 4423: 4239: 4189: 4132: 4094: 4043: 4012: 3966: 3899: 3821: 3770: 3745: 3660: 3521: 3486: 3471: 3459: 3451: 3336: 3331: 3313:"Terminal Paleocene Mass Extinction in the Deep Sea: Association with Global Warming" 3297: 3247: 3145: 2976: 2838: 2483: 2467: 2280: 1613: 1567: 1370: 1175: 1038: 8022: 7835:. (2023) Melting climates shrink North American small mammals. 120 (50) e2310855120 7619: 7592:
Shi, Juye; Jin, Zhijun; Liu, Quanyou; Fan, Tailiang; Gao, Zhiqian (1 October 2021).
7499: 7123: 7059: 6639: 6520: 6321: 6229: 5638: 5309: 5149: 4713: 4655: 4525: 4475: 4235: 4024: 3713: 3161:"Examining the case for the use of the Tertiary as a formal period or informal unit" 2857: 2788: 2715: 1269:
At about 35 Ma, an asteroid impact on the eastern coast of North America formed the
9049: 8924: 8893: 8690: 8272: 8228: 8224: 8178: 8127: 8119: 8076: 8058: 8018: 7946: 7864: 7760: 7750: 7709: 7682: 7615: 7574: 7532: 7495: 7455: 7418: 7368: 7320: 7264: 7216: 7195:"Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO)" 7160: 7103: 7043: 6995: 6947: 6899: 6843: 6799: 6791: 6740: 6732: 6676: 6619: 6572: 6516: 6468: 6409: 6368: 6317: 6266: 6209: 6162: 6113: 6073: 6034: 5993: 5956: 5909: 5899: 5839: 5831: 5788: 5724: 5715: 5686: 5642: 5634: 5583: 5537: 5489: 5410: 5361: 5353: 5289: 5272: 5241: 5193: 5137: 5129: 5088: 5024: 5002: 4994: 4977: 4910: 4857: 4799: 4782: 4753: 4693: 4627: 4569: 4547: 4505: 4497: 4480: 4440: 4392: 4351: 4306: 4231: 4181: 4086: 4004: 3958: 3933: 3891: 3856: 3809: 3737: 3701: 3693: 3650: 3640: 3598: 3555: 3509: 3443: 3435: 3394: 3353: 3285: 3237: 3229: 3183: 3160: 3133: 3081: 3077: 2966: 2803: 2767: 2711: 1974: 1806:
fossils were dated from 51.9 Ma, and were found in the Laguna del Hunco deposit in
1760: 1732: 1491: 1490:
of 40 °C (104 °F) to 45 °C (113 °F) at low latitudes, although
1252: 957: 952:
in the atmosphere was exceptionally low in comparison with the more common isotope
889: 831: 5588: 5563: 4952:"Chapter 7: The Earth's energy budget, climate feedbacks, and climate sensitivity" 4914: 3536: 3095:
George, T. N.; Harland, W. B. (1969). "Recommendations on stratigraphical usage".
3065: 1910:
orders first appeared in the Eocene. The Eocene oceans were warm and teeming with
1050: 9198: 9149: 9145: 9141: 9018: 8914: 8852: 8747: 8716: 8685: 8364: 8276: 8248: 7755: 7536: 7324: 7268: 6999: 6576: 5878:"Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry" 4185: 3188: 2880: 2862: 2614: 2335: 2253: 2215: 2211: 1807: 1794: 1727: 1716: 1499: 1464: 1280:
finally closed with the collision of Africa and Eurasia, while the uplift of the
1206: 1018:
meaning "new" or "recent", as the epoch saw the dawn of recent, or modern, life.
981: 882: 640: 311: 41: 9174: 6711:"Middle Eocene greenhouse warming facilitated by diminished weathering feedback" 5937:
Sloan, L. C.; Barron, E. J. (1990). ""Equable" climates during Earth history?".
5437:"Biotic impact of Eocene thermal maximum 2 in a shelf setting (Dababiya, Egypt)" 4631: 3962: 3312: 1922: 9168: 8987: 8857: 8752: 8721: 7578: 7220: 6795: 6736: 6493:
Shi, Juye; Jin, Zhijun; Liu, Quanyou; Zhang, Rui; Huang, Zhenkai (March 2019).
6413: 6270: 5883:
Proceedings of the National Academy of Sciences of the United States of America
5835: 5357: 5197: 5092: 4396: 4355: 4310: 3813: 3624:
Proceedings of the National Academy of Sciences of the United States of America
3233: 2360:
Calcareous nannoplankton were a prominent feature of Eocene marine ecosystems.
2047: 2025: 1954: 1891: 1629: 1625: 1429: 1358: 1318: 1294: 1229: 1119: 946: 8522: 7924:"Brawn before brains in placental mammals after the end-Cretaceous extinction" 5267: 4501: 4444: 2752: 1707: 1263: 9192: 8888: 8878: 8847: 8810: 8742: 8711: 8314: 8190: 8072: 7958: 7878: 7869: 7850: 7627: 7396: 7276: 6600:
Pearson, P. N. (2010). "Increased Atmospheric CO2 During the Middle Eocene".
6421: 5654: 4869: 4639: 4243: 4098: 3903: 3455: 3137: 3019: 2884: 2653: 2458: 2442: 2410: 2394: 2339: 2327: 2241: 2232: 2226: 2092:
meanwhile established themselves as some of the largest omnivores. The first
2064: 2058: 1906:
During the Eocene, plants and marine faunas became quite modern. Many modern
1857: 1848:
trees, better able to cope with large temperature changes, began to overtake
1780: 1696: 1555: 1285: 1245: 1142: 1022: 997: 904: 896: 792: 779: 709: 696: 72: 7950: 7107: 6926:"Coupled greenhouse warming and deep-sea acidification in the middle Eocene" 6623: 5904: 4832: 4697: 4574: 4008: 3769:. Cambridge, United Kingdom: Cambridge University Press. pp. 242, 251. 3645: 3513: 3439: 2997:
became generally accepted as marking the Eocene-Oligocene boundary; in 1998
2971: 2946: 1598:. The significantly high amounts of carbon dioxide also acted to facilitate 9179: 9110: 8960: 8883: 8141: 8123: 8090: 7966: 7897: 7774: 7713: 7686: 7115: 6813: 6754: 6631: 6221: 5923: 5853: 5738: 5515: 5436: 5414: 5375: 5301: 5219: 5016: 4922: 4811: 4705: 4647: 4517: 4062: 4016: 3664: 3463: 3251: 2994: 2980: 2534: 2426: 2378: 2315: 2268: 2207: 2108: 2052: 2041: 1752: 1651: 1604: 1595: 1587: 1442: 1382: 1334: 1310: 1304: 1092: 1088: 741: 7836: 6972:
Boscolo Galazzo, Flavia; Thomas, Ellen; Giusberti, Luca (1 January 2015).
5793: 3577:"Eocene–Oligocene extinction and paleoclimatic change near Eugene, Oregon" 9105: 8974: 8950: 8795: 8590: 7372: 7164: 6951: 6903: 6826: 6680: 6167: 6140: 6039: 6012: 5007: 4861: 4090: 3697: 3399: 3372: 3054:. Vol. 17. London, England: Charles Knight and Co. pp. 153–154. 2642: 2582: 2566: 2550: 2323: 2314:
Several rich fossil insect faunas are known from the Eocene, notably the
2274: 2258: 2245: 2237: 2089: 2009: 1950: 1768: 1756: 1723: 1654: 1550:
Another method considered for producing the warm polar temperatures were
1289: 1150: 47: 7727:
Gandolfo, MA; Hermsen, EJ; Zamaloa, MC; Nixon, KC; González, CC (2011).
7345:
Borrelli, Chiara; Cramer, Benjamin S.; Katz, Miriam E. (27 March 2014).
5293: 3074:
Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde
2159: 2124:
were evolving at this time, and would eventually evolve into the extant
1994:. Early forms of many other modern mammalian orders appeared, including 113: 9100: 9060: 9003: 8903: 8800: 8674: 8574: 8490: 8182: 8063: 7047: 5493: 4509: 3705: 3447: 2998: 2647: 2598: 2343: 2319: 2200: 2195: 2140: 2029: 1879: 1875: 1802: 1715:
was humid subtropical forest vegetation of high diversity dominated by
1687: 1609: 1538: 1472: 1446: 1386: 1277: 1217: 1127: 745: 452: 267: 92: 57: 9163: 8374: 7893:"Mammals' bodies outpaced their brains right after the dinosaurs died" 7422: 6117: 5141: 3861: 3836: 3052:
Penny Cyclopaedia of the Society for the Diffusion of Useful Knowledge
1025:(ignoring the Quaternary) divided the Tertiary Epoch into the Eocene, 9115: 9065: 9039: 8998: 8945: 8790: 8766: 8647: 8637: 8626: 8485: 8464: 8459: 8444: 8434: 8421: 8042: 6847: 6472: 6372: 5541: 5245: 4998: 4803: 4757: 3895: 3602: 3416:"Transient Middle Eocene Atmospheric CO 2 and Temperature Variations" 3357: 3289: 2506: 2490: 2474: 2220: 2101: 2093: 2085: 2084:(the earliest lineage of a once-successful predatory family known as 2080: 2074: 2017: 1883: 1869: 1849: 1845: 1811: 1790: 1691: 1643: 1638: 1534: 1468: 1378: 1241: 1213: 1202: 1135: 1054: 953: 949: 942: 938: 886: 669: 528: 443: 416: 406: 365: 319: 277: 97: 5729: 5710: 4476:"Synchronous tropical and polar temperature evolution in the Eocene" 1624:(MECO). At around 41.5 Ma, stable isotopic analysis of samples from 9075: 9070: 9034: 8934: 8867: 8836: 8731: 8700: 8661: 8611: 8585: 8561: 8506: 8501: 8480: 8475: 8390: 8302:
Overview of Global Boundary Stratotype Sections and Points (GSSP's)
7849:
Li, Qian; Li, Qi; Xu, Rancheng; Wang, Yuanqing (7 September 2022).
7733: 6141:"Maintenance of polar stratospheric clouds in a moist stratosphere" 5133: 3938: 3925: 2947:"Pliocene and Eocene provide best analogs for near-future climates" 2286: 2097: 2000: 1985: 1675: 1449: 1322: 1303:
was separated in three different landmasses 50 Ma; Western Europe,
1233: 1131: 1123: 1046: 1034: 1030: 893: 470: 461: 434: 425: 243: 230: 87: 82: 67: 62: 52: 7240: 5465: 3619:"Eocene cooling linked to early flow across the Tasmanian Gateway" 3560: 2750: 1744:
evergreen and broad-leafed deciduous forests at higher latitudes.
9089: 9029: 8779: 8616: 8600: 8384:
Eocene Epoch. (2011). In Encyclopædia Britannica. Retrieved from
4371:"Dating the India–Eurasia collision through arc magmatic records" 2331: 2299: 2249: 2125: 2121: 2117: 1990: 1958: 1853: 1834: 1818: 1362: 1300: 1222: 1058: 1026: 985: 389: 303: 102: 77: 8106:"A new proposal concerning the botanical origin of Baltic amber" 8103: 6188: 1455:
in New Zealand indicates elevated ocean salinity in the region.
1193: 9125: 9008: 8454: 8211:
Shahin, Abdalla; El Khawagah, Samar; Shahin, Banan (May 2023).
6708: 5329: 4112: 3002: 2348: 2303: 2129: 2013: 1946: 1942: 1895: 1878:
began the Eocene fringed with a warm temperate to sub-tropical
1861: 1841: 1784: 1772: 1764: 1748: 1737: 1599: 1591: 1476: 1237: 969: 767: 397: 7919: 7549: 6971: 2895:. Vol. 2. London, England: Macmillan and Co. p. 111. 1475:
which cannot survive during sustained freezes, and fossils of
1049:
in 1840 in place of the Tertiary, and Austrian paleontologist
858: 846: 837: 8049: 7729:"Oldest Known Eucalyptus Macrofossils Are from South America" 7192: 7019: 6444: 6242: 5561: 4416: 4124: 2628: 2190: 2113: 2021: 1995: 1970: 1935: 1887: 1865: 1830: 1822: 1480: 1390:
warmth the atmospheric carbon dioxide values were at 700–900
1010: 1000: 931: 771: 688: 684: 7136: 6293: 5434: 4950:
Forster, P.; Storelvmo, T.; Armour, K.; Collins, W. (2021).
4472: 4175: 3875: 3317:
Effects of Past Global Change on Life: Studies in Geophysics
2993:
The extinction of the Hantkeninidae, a planktonic family of
2944: 7726: 7460:
10.1130/0091-7613(1996)024<0163:eotits>2.3.co;2
6923: 6289: 6287: 5998:
10.1130/0091-7613(1994)022<0881:ecdtee>2.3.co;2
5105: 5067: 4668: 4368: 4280: 4278: 4157: 2263: 1966: 1911: 1907: 1856:
and the Arctic, and rainforests held on only in equatorial
1826: 1374: 1314: 1281: 861: 840: 8334: 6767: 5961:
10.1130/0091-7613(1990)018<0489:ecdeh>2.3.co;2
5808:
Grossman, Ethan L.; Joachimski, Michael M. (27 May 2022).
5610: 4545: 4208: 3726: 3677: 3574: 3484: 3208:"A probabilistic assessment of the rapidity of PETM onset" 2833:(2003) , Peter Roach; James Hartmann; Jane Setter (eds.), 968:, which may be related to the impact of one or more large 7083: 5513: 5389:
Khanolkar, Sonal; Saraswati, Pratul Kumar (1 July 2015).
5217: 2005: 1962: 917: 8154: 6875: 6652: 6284: 5265: 5169: 4275: 4180:. Topics in Geobiology. Vol. 35. pp. 647–668. 3985: 3413: 3159:
Knox, R. W. O.'B.; Pearson, P. N.; Barry, T. L. (2012).
2906:. Vol. 3. London, England: John Murray. p. 55. 2693: 1122:
are referred to as lower, middle, and upper Eocene. The
8210: 7395: 6379: 5810:"Ocean temperatures through the Phanerozoic reassessed" 4889: 7781: 6548: 5874: 2789:"Decision on the Eocene-Oligocene boundary stratotype" 7552:"Onset and Role of the Antarctic Circumpolar Current" 7296: 6138: 3957:. Topics in Geobiology. Vol. 18. pp. 1–38. 3615: 3028:. Vol. 3. Geological Society of London. p.  870: 849: 843: 5767:"The early Eocene equable climate problem revisited" 1945:
of most of the modern mammal orders appear within a
930:, "new") and refers to the "dawn" of modern ('new') 4974: 3485:Hooker, J.J.; Collinson, M.E.; Sille, N.P. (2004). 2298:Reptile fossils from this time, such as fossils of 855: 834: 130: 7995:Buffetaut, Eric; Angst, Delphine (November 2014). 7922: 7344: 5807: 5388: 5031: 4042:. Berlin, Heidelberg: Springer Berlin Heidelberg. 3264: 3205: 7516:Palaeogeography, Palaeoclimatology, Palaeoecology 7435: 7304:Palaeogeography, Palaeoclimatology, Palaeoecology 7248:Palaeogeography, Palaeoclimatology, Palaeoecology 6979:Palaeogeography, Palaeoclimatology, Palaeoecology 6556:Palaeogeography, Palaeoclimatology, Palaeoecology 6057:Palaeogeography, Palaeoclimatology, Palaeoecology 5678:Palaeogeography, Palaeoclimatology, Palaeoecology 4330: 4131:Benyamovskiy, Vladimir Naumovich (January 2012). 3926:"The varves and climate of the Green River epoch" 3206:Turner, S. K.; Hull, P. M.; Ridgwell, A. (2017). 3113: 2913:, of the existing state of the animate creation." 9190: 4949: 3730:Developments in Earth and Environmental Sciences 3158: 3072:[Reports addressed to Professor Bronn]. 2039:Established megafauna of the Eocene include the 1425:in the Earth's atmosphere more or less doubled. 1188: 8552: 8380:Eocene Microfossils: 60+ images of Foraminifera 8370:Detailed maps of Tertiary Western North America 3789: 3370: 3097:Proceedings of the Geological Society of London 2951:Proceedings of the National Academy of Sciences 2787:Silva, Isabella; Jenkins, D. (September 1993). 2135:It is thought that millions of years after the 1969:capable of grasping, as well as differentiated 7994: 6492: 6139:Kirk-Davidoff, D. B.; Lamarque, J. F. (2008). 5764: 4826: 4284: 3765:Torsvik, Trond H.; Cocks, L. Robin M. (2017). 2100:, established themselves as amongst the first 1288:, and created another shallow sea with island 937:The Eocene spans the time from the end of the 565:Subdivision of the Paleogene according to the 8538: 8406: 8365:Basilosaurus - The plesiosaur that wasn't.... 7672: 5568:New Zealand Journal of Geology and Geophysics 4779: 3568: 3535:Rafferty, John P.; et al., eds. (2013). 3329: 3201: 3199: 3094: 1545: 1486:BAYSPAR measurements indicate extremely high 1102:The end of the Eocene was also marked by the 7591: 7475: 7471: 7469: 7079: 7077: 6440: 6438: 6348: 6184: 6182: 6180: 6178: 6093: 6053: 4163: 4130: 4118: 3764: 3070:"Mittheilungen an Professor Bronn gerichtet" 3007:Global Boundary Stratotype Section and Point 2786: 2746: 2744: 2742: 1751:and even preserved remains of trees such as 1711:Eocene vegetation of the Clarno Nut Beds in 1197:Map of the Earth in the early Eocene (50 Ma) 118:Map of the Earth in the early Eocene (50 Ma) 6595: 6593: 5936: 4935:: CS1 maint: numeric names: authors list ( 4775: 4773: 4771: 4769: 4767: 4733: 3310: 2918: 2735:. International Commission on Stratigraphy. 1736:shows it in an open landscape dominated by 1594:, which is a floating aquatic fern, on the 8545: 8531: 8413: 8399: 7848: 7429: 7391: 7389: 6385: 6344: 6342: 6340: 6338: 6089: 6087: 6010: 5760: 5758: 5756: 5704: 5702: 5700: 5061: 5037: 3196: 3168:Proceedings of the Geologists' Association 2318:found mainly along the south coast of the 1458: 572:Vertical axis scale: millions of years ago 8131: 8080: 8062: 7868: 7764: 7754: 7543: 7466: 7074: 6803: 6744: 6435: 6175: 6166: 6038: 5913: 5903: 5843: 5792: 5728: 5647:1983/aedc04cc-bba8-44c6-8f9d-ba398bb24607 5587: 5365: 5006: 4970: 4968: 4604:Li, Fengyuan; Li, Shuqiang (2018-10-01). 4573: 3937: 3930:U.S. Geological Survey Professional Paper 3860: 3654: 3644: 3559: 3547: 3398: 3241: 3187: 2970: 2888: 2837:, Cambridge: Cambridge University Press, 2807: 2771: 2739: 2730:"International Chronostratigraphic Chart" 1932:French National Museum of Natural History 1091:(single-celled species which are used as 964:(the "Great Break" in continuity) or the 8256:Journal of South American Earth Sciences 7512: 7506: 6590: 5674: 4764: 3534: 3371:Schmidt, G. A.; Shindell, D. T. (2003). 3042: 2687: 2189: 2068:, Dinosaurier Museum Altmühltal, Germany 2057: 1921: 1793:were growing as far north as Alaska and 1722: 1706: 1192: 1138:stages are united as the middle Eocene. 1083:, a short period of intense warming and 1063:International Commission on Stratigraphy 7837:https://doi.org/10.1073/pnas.2310855120 7386: 6599: 6335: 6084: 6047: 6004: 5967: 5930: 5753: 5697: 5668: 3923: 1657:, leading to a decreased proportion of 1514: 14: 9191: 7799: 7787: 7699: 7647: 6835:Geological Society of America Bulletin 6452:Geological Society of America Bulletin 6132: 4965: 4883: 4727: 3952: 3883:Geological Society of America Bulletin 3582:Geological Society of America Bulletin 3304: 3269:Geological Society of America Bulletin 3064: 1829:shores, and had not yet expanded into 1713:John Day Fossil Beds National Monument 562: 8526: 8394: 8305:Global Stratotype Sections and Points 7352:Paleoceanography and Paleoclimatology 7144:Paleoceanography and Paleoclimatology 6931:Paleoceanography and Paleoclimatology 6883:Paleoceanography and Paleoclimatology 6660:Paleoceanography and Paleoclimatology 5973: 5708: 4841:Paleoceanography and Paleoclimatology 4611:Molecular Phylogenetics and Evolution 4291:International Journal of Coal Geology 3685:Paleoceanography and Paleoclimatology 3553: 3378:Paleoceanography and Paleoclimatology 3018: 2899: 2829: 2137:Cretaceous-Paleogene extinction event 1523: 8420: 8360:Basilosaurus Primitive Eocene Whales 8286:– via Elsevier Science Direct. 8238:– via Elsevier Science Direct. 8032:– via Elsevier Science Direct. 7637:– via Elsevier Science Direct. 7334:– via Elsevier Science Direct. 7286:– via Elsevier Science Direct. 4603: 4256: 4037: 3834: 3311:Kennet, J. P.; Stott, L. D. (1995). 3005:, central Italy, was designated the 2154: 1947:brief period during the early Eocene 1747:Polar forests were quite extensive. 537: 516: 498: 27:Second epoch of the Paleogene Period 9144:= kiloannum (thousands years ago); 7200:Earth and Planetary Science Letters 6393:Earth and Planetary Science Letters 6250:Earth and Planetary Science Letters 5177:Earth and Planetary Science Letters 5072:Earth and Planetary Science Letters 4376:Earth and Planetary Science Letters 4335:Earth and Planetary Science Letters 2028:. Marine fauna are best known from 1759:from the Eocene have been found on 1225:north and reinforcing the cooling. 24: 9148:= megaannum (millions years ago); 8317:: W.H. Freeman and Company, 1999. 8294: 8111:Proceedings of the Royal Society B 7856:Frontiers in Ecology and Evolution 5441:Austrian Journal of Earth Sciences 4138:Austrian Journal of Earth Sciences 2987: 996:The term "Eocene" is derived from 25: 9220: 9152:= gigaannum (billions years ago). 8328: 8200:– via Wiley Online Library. 5765:Huber, M.; Caballero, R. (2011). 5395:Journal of Foraminiferal Research 4108:– via Wiley Online Library. 3767:Earth history and palaeogeography 3494:Journal of the Geological Society 3117:Journal of the Geological Society 2870: 2850: 2823: 2278:, and primitive penguins such as 2218:, large flightless forms such as 1435:Palaeocene–Eocene Thermal Maximum 1126:Stage constitutes the lower, the 1104:Eocene–Oligocene extinction event 966:Eocene–Oligocene extinction event 9173: 9162: 8242: 8204: 8148: 8097: 8036: 7988: 7913: 7885: 7842: 7825: 7812: 7793: 7720: 7693: 7666: 7641: 7585: 7338: 7290: 7234: 7186: 7130: 7013: 6214:10.1111/j.1472-4669.2009.00195.x 6011:Huber, M.; Sloan, L. C. (2001). 4178:Late Cainozoic Floras of Iceland 3330:Winguth, C.; Thomas, E. (2012). 2606: 2590: 2574: 2558: 2542: 2526: 2514: 2498: 2482: 2466: 2450: 2434: 2418: 2402: 2386: 2370: 2272:, primitive swifts of the genus 2158: 1577: 1357:Greenhouse gases, in particular 1339:Paleocene–Eocene Thermal Maximum 1284:isolated its final remnant, the 1212:At the beginning of the period, 1209:toward their present positions. 1081:Paleocene–Eocene Thermal Maximum 934:that appeared during the epoch. 830: 112: 45: 8023:10.1016/j.earscirev.2014.07.001 7620:10.1016/j.gloplacha.2021.103614 7559:Topical Studies in Oceanography 7500:10.1016/j.earscirev.2003.10.003 6965: 6917: 6869: 6820: 6761: 6702: 6646: 6542: 6521:10.1016/j.gloplacha.2019.01.001 6486: 6322:10.1016/j.earscirev.2021.103503 6236: 5868: 5801: 5639:10.1016/j.earscirev.2019.102961 5604: 5555: 5507: 5459: 5428: 5382: 5323: 5259: 5211: 5163: 5099: 4943: 4662: 4597: 4539: 4466: 4410: 4362: 4324: 4250: 4236:10.1016/j.earscirev.2022.103929 4202: 4169: 4056: 4031: 3979: 3946: 3917: 3869: 3828: 3783: 3758: 3720: 3671: 3609: 3528: 3478: 3407: 3364: 3323: 3319:. National Academy of Sciences. 3258: 3152: 3107: 3088: 3058: 3036: 3012: 2809:10.18814/epiiugs/1993/v16i3/002 2773:10.18814/epiiugs/2007/v30i4/003 2716:10.1016/j.gloplacha.2005.01.001 2667: 1961:, had features like long, thin 1352: 1113: 8229:10.1016/j.marmicro.2023.102244 2938: 2889:Todhunter, Isaac, ed. (1876). 2863:Merriam-Webster.com Dictionary 2835:English Pronouncing Dictionary 2780: 2722: 1779:grew as far north as northern 1668: 1622:Middle Eocene Climatic Optimum 1505: 1251:In western North America, the 941:Epoch to the beginning of the 497: 13: 1: 8591:Pleistocene (11.7 ka–2.58 Ma) 6078:10.1016/s0031-0182(98)00091-1 5589:10.1080/00288306.2015.1063514 4915:10.1126/science.292.5525.2310 3932:. Professional Paper. 158-E. 3742:10.1016/S1571-9197(08)00008-6 2680: 2309: 1684:Antarctic Circumpolar Current 1321:to initiate formation of the 1189:Palaeogeography and tectonics 1073: 8386:Eocene Epoch | geochronology 8350:Eocene and Oligocene Fossils 8277:10.1016/j.jsames.2023.104470 7756:10.1371/journal.pone.0021084 7537:10.1016/j.palaeo.2005.07.037 7325:10.1016/j.palaeo.2022.111138 7269:10.1016/j.palaeo.2014.03.035 7000:10.1016/j.palaeo.2014.10.004 6577:10.1016/j.palaeo.2010.09.016 6097:Geophysical Research Letters 6018:Geophysical Research Letters 5691:10.1016/0031-0182(95)00012-7 4186:10.1007/978-94-007-0372-8_12 3835:Bird, Peter (October 1998). 3793:International Geology Review 3189:10.1016/j.pgeola.2012.05.004 2112:is a very well-known Eocene 1271:Chesapeake Bay impact crater 991: 7: 8554:Geological history of Earth 7599:Global and Planetary Change 7027:American Journal of Science 6500:Global and Planetary Change 5711:"Snakes tell a torrid tale" 4632:10.1016/j.ympev.2018.05.014 3963:10.1007/978-1-4615-1271-4_1 2931:Online Etymology Dictionary 2696:Global and Planetary Change 2622: 2355: 2293: 2199:, an early relative of the 2012:(elephants), primates, and 1041:in 1833. British geologist 762:Massignano quarry section, 668:Strong negative anomaly in 563: 225: 10: 9225: 8827:Mississippian (323–359 Ma) 8822:Pennsylvanian (299–323 Ma) 8586:Holocene (present–11.7 ka) 7806:Princeton University Press 7579:10.1016/j.dsr2.2007.07.028 7221:10.1016/j.epsl.2013.12.014 6796:10.1038/s41598-019-45763-2 6737:10.1038/s41467-018-05104-9 6414:10.1016/j.epsl.2022.117925 6271:10.1016/j.epsl.2009.06.011 5836:10.1038/s41598-022-11493-1 5358:10.1038/s41598-017-11470-z 5198:10.1016/j.epsl.2010.09.004 5093:10.1016/j.epsl.2009.12.021 4397:10.1016/j.epsl.2013.01.023 4356:10.1016/j.epsl.2015.12.006 4311:10.1016/j.coal.2016.09.004 3814:10.2747/0020-6814.46.9.833 3234:10.1038/s41467-017-00292-2 2887:dated 31 January 1831 in: 2363: 1917: 1552:polar stratospheric clouds 1546:Polar stratospheric clouds 1402:are at 400 ppm or 0.04%. 1369:dioxide into the forms of 1328: 1068: 1011: 1001: 921: 907: 9139: 9124: 9111:Paleoarchean (3.2–3.6 Ga) 9088: 9048: 9017: 8986: 8973: 8961:Terreneuvian (521–539 Ma) 8933: 8902: 8866: 8835: 8809: 8778: 8765: 8730: 8699: 8673: 8660: 8625: 8599: 8573: 8560: 8428: 7652:. Elsevier. p116 Fig 40. 4502:10.1038/s41586-018-0272-2 4445:10.1038/s41561-018-0200-y 2254:various pseudotooth birds 1840:The cooling also brought 1349:began to rapidly expand. 1149:) based on work with the 1130:Stage the upper; and the 808: 758: 734:Upper boundary definition 733: 725: 679: 665:Lower boundary definition 664: 656: 646: 636: 631: 623: 611: 601: 596: 588: 583: 128: 123: 111: 37: 32: 9106:Mesoarchean (2.8–3.2 Ga) 8951:Miaolingian (497–509 Ma) 8796:Guadalupian (260–272 Ma) 8648:Paleocene (56.0–66.0 Ma) 8638:Oligocene (23.0–33.9 Ma) 8307:Accessed April 30, 2006. 8217:Marine Micropaleontology 7870:10.3389/fevo.2022.955779 7800:Bender, Michael (2013). 4164:Torsvik & Cocks 2017 4119:Torsvik & Cocks 2017 3138:10.1144/gsjgs.135.5.0481 2903:Principles of Geology, … 2660: 2150: 1901: 1886:from the Eocene suggest 1800:The earliest definitive 1702: 1488:sea surface temperatures 1439:Eocene Thermal Maximum 2 1408:global warming potential 1257:Basin and Range Province 133: 9209:Paleogene geochronology 9101:Neoarchean (2.5–2.8 Ga) 9066:Orosirian (1.8–2.05 Ga) 9061:Statherian (1.6–1.8 Ga) 9004:Cryogenian (635–720 Ma) 8894:Llandovery (433–444 Ma) 8801:Cisuralian (272–299 Ma) 8612:Pliocene (2.59–5.33 Ma) 7951:10.1126/science.abl5584 7213:2014E&PSL.389...34B 7108:10.1126/science.1110063 6624:10.1126/science.1197894 6406:2023E&PSL.60217925M 6263:2009E&PSL.285..190O 5905:10.1073/pnas.1714744115 5190:2010E&PSL.299..242Z 5085:2010E&PSL.290..192G 5038:O'Neil, Dennis (2012). 4698:10.1126/science.aab0669 4575:10.5194/cp-16-1387-2020 4389:2013E&PSL.366..163B 4348:2016E&PSL.435...64D 4038:Poag, C. Wylie (2004). 4009:10.1126/science.1158708 3924:Bradley, W. H. (1930). 3646:10.1073/pnas.1220872110 3514:10.1144/0016-764903-091 3440:10.1126/science.1193654 3082:2027/hvd.32044106271273 2972:10.1073/pnas.1809600115 2900:Lyell, Charles (1833). 2246:putative rail relatives 2034:southeast United States 1821:were still confined to 1459:Equable climate problem 1367:sequestration of carbon 1201:During the Eocene, the 1155:King County, Washington 742:Planktonic Foraminifers 9071:Rhyacian (2.05–2.3 Ga) 9040:Calymmian (1.4–1.6 Ga) 8999:Ediacaran (539–635 Ma) 8946:Furongian (485–497 Ma) 8791:Lopingian (252–260 Ma) 8617:Miocene (5.33–23.0 Ma) 8300:Ogg, Jim; June, 2004, 8124:10.1098/rspb.2009.0806 7818:Abigail R. D’Ambrosia 7714:10.1098/rstb.1993.0109 7687:10.1098/rstb.1993.0109 5415:10.2113/gsjfr.45.3.293 5113:The Journal of Geology 3076:(in German): 806–810. 2203: 2069: 1984:Both groups of modern 1938: 1740: 1720: 1396:North Atlantic rifting 1236:began to fragment, as 1198: 1009:) meaning "Dawn", and 216:−25 — 206:−30 — 196:−35 — 186:−40 — 176:−45 — 166:−50 — 156:−55 — 146:−60 — 136:−65 — 9076:Siderian (2.3–2.5 Ga) 9035:Ectasian (1.2–1.4 Ga) 8956:Series 2 (509–521 Ma) 8643:Eocene (33.9–56.0 Ma) 8345:PBS Deep Time: Eocene 8312:Earth System History. 8162:Systematic Entomology 8002:Earth-Science Reviews 7831:Katherina B. Searing 7648:Briggs, John (1995). 7479:Earth-Science Reviews 6716:Nature Communications 6301:Earth-Science Reviews 5794:10.5194/cp-7-603-2011 5618:Earth-Science Reviews 4216:Earth-Science Reviews 3213:Nature Communications 3025:Principles of Geology 2638:(with link directory) 2230:, long legged falcon 2193: 2061: 1973:adapted for chewing. 1925: 1730:'s reconstruction of 1726: 1710: 1417:is 0.000179% or 1.79 1400:carbon dioxide levels 1381:at the bottom of the 1261:Green River Formation 1196: 1185:floral stage starts. 9116:Eoarchean (3.6–4 Ga) 9009:Tonian (720 Ma–1 Ga) 8889:Wenlock (427–433 Ma) 8879:Pridoli (419–423 Ma) 7565:(21–22): 2388–2398. 7373:10.1002/2012PA002444 7165:10.1029/2019PA003686 6952:10.1029/2008PA001676 6904:10.1029/2009PA001738 6681:10.1029/2019PA003713 6168:10.5194/cp-4-69-2008 6040:10.1029/2001GL012943 5040:"The First Primates" 4862:10.1029/2022PA004532 4091:10.1029/2010TC002691 3890:(11–12): 2549–2566. 3698:10.1029/2004PA001014 3400:10.1029/2002PA000757 2635:List of fossil sites 2521:Eocene turtle fossil 2120:occurred. The first 1914:and other sea life. 1777:Tropical rainforests 1659:primary productivity 1515:Ocean heat transport 1157:. The four stages, 1106:, also known as the 1033:, and New Pliocene ( 529:permanent ice-sheets 9171: • 9160: • 9158:Geologic time scale 8920:Middle (458–470 Ma) 8884:Ludlow (423–427 Ma) 8853:Middle (383–393 Ma) 8748:Middle (237–247 Ma) 8717:Middle (164–174 Ma) 8375:Map of Eocene Earth 8310:Stanley, Steven M. 8269:2023JSAES.12804470A 8175:2019SysEn..44..842P 8118:(1972): 3403–3412. 8015:2014ESRv..138..394B 7943:2022Sci...376...80B 7747:2011PLoSO...621084G 7650:Global Biogeography 7612:2021GPC...20503614S 7571:2007DSRII..54.2388B 7529:2006PPP...231....9H 7492:2004ESRv...66..143B 7452:1996Geo....24..163D 7415:2008Geo....36..251L 7365:2014PalOc..29..308B 7317:2022PPP...60111138L 7261:2014PPP...403..101B 7157:2019PaPa...34.1913C 7100:2005Sci...309..600P 7040:2015AmJS..315..317M 6992:2015PPP...417..432B 6944:2009PalOc..24.2207B 6896:2010PalOc..25.3210S 6788:2019NatSR...9.9357G 6729:2018NatCo...9.2877V 6673:2020PaPa...35.3713H 6616:2010Sci...330..763P 6569:2010PPP...297..670E 6513:2019GPC...174..115S 6465:2007GSAB..119..413J 6365:2003Geo....31.1017B 6314:2021ESRv..21503503S 6206:2009Gbio....7..155S 6159:2008CliPa...4...69K 6146:Climate of the Past 6110:1998GeoRL..25.3517S 6070:1998PPP...144...21S 6031:2001GeoRL..28.3481H 5990:1994Geo....22..881C 5953:1990Geo....18..489C 5896:2018PNAS..115.1174E 5828:2022NatSR..12.8938G 5785:2011CliPa...7..603H 5772:Climate of the Past 5631:2020ESRv..20002961C 5580:2015NZJGG..58..262S 5534:2012NatGe...5..326A 5486:2022Geosp..18..327R 5407:2015JForR..45..293K 5350:2017NatSR...711304Y 5294:10.1038/nature09826 5286:2011Natur.471..349S 5238:2014NatGe...7..748K 5126:2012JG....120..487S 4991:1992Natur.357..320S 4985:(6376): 1129–1131. 4907:2001Sci...292.2310R 4901:(5525): 2310–2313. 4854:2023PaPa...38.4532G 4796:2000Natur.406..695P 4750:2010NatGe...3..866B 4690:2016Sci...352...76G 4624:2018MolPE.127..545L 4566:2020CliPa..16.1387W 4553:Climate of the Past 4494:2018Natur.559..382C 4437:2018NatGe..11..761R 4303:2016IJCG..167...10X 4257:CNRS (2022-03-01). 4228:2022ESRv..22603929L 4121:, pp. 242–245. 4083:2011Tecto..30.3002F 4001:2008Sci...320.1740G 3995:(5884): 1740–1745. 3955:Eocene Biodiversity 3853:1998Tecto..17..780B 3806:2004IGRv...46..833E 3637:2013PNAS..110.9645B 3595:2004GSAB..116..817R 3506:2004JGSoc.161..161H 3432:2010Sci...330..819B 3391:2003PalOc..18.1004S 3350:2012Geo....40..263W 3282:2019GSAB..131...84Z 3226:2017NatCo...8..353K 3180:2012PrGA..123..390K 3130:1978JGSoc.135..481O 2963:2018PNAS..11513288B 2957:(52): 13288–13293. 2708:2005GPC....47...51Z 2145:started to increase 1928:Uintatherium anceps 1690:that result in the 1662:cooling at ~40 Ma. 1648:ocean acidification 1584:Antarctic ice sheet 1415:concentration today 1412:atmospheric methane 1347:Antarctic ice sheet 1085:ocean acidification 1057:for the Eocene and 1021:Scottish geologist 976:and in what is now 809:Upper GSSP ratified 793:43.5328°N 13.6011°E 789: /  759:Upper boundary GSSP 726:Lower GSSP ratified 710:25.5000°N 32.5311°E 706: /  680:Lower boundary GSSP 657:Time span formality 9169:Geology portal 9030:Stenian (1–1.2 Ga) 8925:Early (470–485 Ma) 8858:Early (393–419 Ma) 8753:Early (247–252 Ma) 8722:Early (174–201 Ma) 8691:Early (100–145 Ma) 8686:Late (66.0–100 Ma) 8340:Paleos Eocene page 8183:10.1111/syen.12360 8064:10.7717/peerj.9092 7048:10.2475/04.2015.02 6842:(5–6): 1280–1296. 6775:Scientific Reports 5815:Scientific Reports 5709:Huber, M. (2009). 5494:10.1130/GES02398.1 5337:Scientific Reports 5044:anthro.palomar.edu 3103:(1, 656): 139–166. 3048:"Palæozoic series" 2866:. Merriam-Webster. 2204: 2170:. You can help by 2070: 2062:Reconstruction of 1998:(most notably the 1939: 1882:. Pollen found in 1741: 1721: 1635:seafloor spreading 1524:Orbital parameters 1199: 881:) is a geological 683:Dababiya section, 647:Stratigraphic unit 637:Chronological unit 624:Time scale(s) used 9204:Geological epochs 9186: 9185: 9084: 9083: 9050:Paleoproterozoic 8969: 8968: 8915:Late (444–458 Ma) 8848:Late (359–383 Ma) 8761: 8760: 8743:Late (201–237 Ma) 8712:Late (145–164 Ma) 8656: 8655: 8577:(present–2.58 Ma) 8565:(present–66.0 Ma) 8520: 8519: 8515: 8514: 7708:(1297): 243–252. 7681:(1297): 243–252. 7423:10.1130/g24584a.1 7151:(12): 1913–1930. 7094:(5734): 600–603. 6610:(6005): 763–764. 6359:(11): 1017–1020. 6118:10.1029/98gl02492 6104:(18): 3517–3520. 6025:(18): 3481–3484. 5723:(7230): 669–671. 5521:Nature Geoscience 5280:(7338): 349–352. 5225:Nature Geoscience 4959:IPCC AR6 WG1 2021 4790:(6797): 695–699. 4737:Nature Geoscience 4488:(7714): 382–386. 4424:Nature Geoscience 4195:978-94-007-0371-1 3972:978-1-4613-5471-0 3862:10.1029/98TC02698 3631:(24): 9645–9650. 3426:(6005): 819–821. 2322:, amber from the 2281:Archaeospheniscus 2188: 2187: 1941:The oldest known 1614:mountain building 1568:greenhouse effect 1371:methane clathrate 1176:Gregory Retallack 816: 815: 597:Usage information 578: 577: 558: 557: 536: 535: 515: 514: 16:(Redirected from 9216: 9180:World portal 9178: 9177: 9167: 9166: 9129: 9093: 9053: 9022: 9019:Mesoproterozoic 8991: 8984: 8983: 8979: 8938: 8907: 8871: 8840: 8814: 8783: 8776: 8775: 8771: 8735: 8704: 8678: 8671: 8670: 8666: 8630: 8604: 8578: 8571: 8570: 8566: 8547: 8540: 8533: 8524: 8523: 8431: 8430: 8422:Paleogene Period 8415: 8408: 8401: 8392: 8391: 8335:PaleoMap Project 8288: 8287: 8285: 8283: 8246: 8240: 8239: 8237: 8235: 8208: 8202: 8201: 8199: 8197: 8152: 8146: 8145: 8135: 8101: 8095: 8094: 8084: 8066: 8040: 8034: 8033: 8031: 8029: 7992: 7986: 7985: 7983: 7981: 7926: 7917: 7911: 7910: 7908: 7906: 7889: 7883: 7882: 7872: 7846: 7840: 7829: 7823: 7816: 7810: 7809: 7797: 7791: 7785: 7779: 7778: 7768: 7758: 7724: 7718: 7717: 7697: 7691: 7690: 7670: 7664: 7663: 7645: 7639: 7638: 7636: 7634: 7589: 7583: 7582: 7556: 7547: 7541: 7540: 7510: 7504: 7503: 7486:(1–2): 143–162. 7473: 7464: 7463: 7433: 7427: 7426: 7393: 7384: 7383: 7381: 7379: 7342: 7336: 7335: 7333: 7331: 7294: 7288: 7287: 7285: 7283: 7238: 7232: 7231: 7229: 7227: 7190: 7184: 7183: 7181: 7179: 7134: 7128: 7127: 7081: 7072: 7071: 7069: 7067: 7058:. Archived from 7017: 7011: 7010: 7008: 7006: 6969: 6963: 6962: 6960: 6958: 6921: 6915: 6914: 6912: 6910: 6873: 6867: 6866: 6864: 6862: 6848:10.1130/B36280.1 6824: 6818: 6817: 6807: 6765: 6759: 6758: 6748: 6706: 6700: 6699: 6697: 6695: 6650: 6644: 6643: 6597: 6588: 6587: 6585: 6583: 6563:(3–4): 670–682. 6546: 6540: 6539: 6537: 6535: 6490: 6484: 6483: 6481: 6479: 6473:10.1130/B25917.1 6459:(3–4): 413–427. 6442: 6433: 6432: 6430: 6428: 6383: 6377: 6376: 6373:10.1130/g19800.1 6346: 6333: 6332: 6330: 6328: 6291: 6282: 6281: 6279: 6277: 6257:(1–2): 190–197. 6240: 6234: 6233: 6186: 6173: 6172: 6170: 6136: 6130: 6129: 6091: 6082: 6081: 6051: 6045: 6044: 6042: 6008: 6002: 6001: 5971: 5965: 5964: 5934: 5928: 5927: 5917: 5907: 5890:(6): 1174–1179. 5872: 5866: 5865: 5847: 5805: 5799: 5798: 5796: 5762: 5751: 5750: 5732: 5706: 5695: 5694: 5685:(3–4): 275–292. 5672: 5666: 5665: 5663: 5661: 5608: 5602: 5601: 5591: 5559: 5553: 5552: 5550: 5548: 5542:10.1038/ngeo1427 5511: 5505: 5504: 5502: 5500: 5463: 5457: 5456: 5454: 5452: 5432: 5426: 5425: 5423: 5421: 5386: 5380: 5379: 5369: 5327: 5321: 5320: 5318: 5316: 5263: 5257: 5256: 5254: 5252: 5246:10.1038/ngeo2240 5215: 5209: 5208: 5206: 5204: 5184:(1–2): 242–249. 5167: 5161: 5160: 5158: 5156: 5103: 5097: 5096: 5079:(1–2): 192–200. 5065: 5059: 5058: 5056: 5055: 5046:. Archived from 5035: 5029: 5028: 5010: 4999:10.1038/357320a0 4972: 4963: 4962: 4956: 4947: 4941: 4940: 4934: 4926: 4887: 4881: 4880: 4878: 4876: 4834:February 2023). 4830: 4824: 4823: 4804:10.1038/35021000 4777: 4762: 4761: 4758:10.1038/ngeo1014 4731: 4725: 4724: 4722: 4720: 4666: 4660: 4659: 4601: 4595: 4594: 4592: 4590: 4577: 4560:(4): 1387–1410. 4543: 4537: 4536: 4534: 4532: 4470: 4464: 4463: 4461: 4459: 4414: 4408: 4407: 4405: 4403: 4366: 4360: 4359: 4328: 4322: 4321: 4319: 4317: 4282: 4273: 4272: 4270: 4269: 4254: 4248: 4247: 4206: 4200: 4199: 4173: 4167: 4161: 4155: 4154: 4152: 4150: 4128: 4122: 4116: 4110: 4109: 4107: 4105: 4060: 4054: 4053: 4035: 4029: 4028: 3983: 3977: 3976: 3950: 3944: 3943: 3941: 3921: 3915: 3914: 3912: 3910: 3896:10.1130/B35919.1 3873: 3867: 3866: 3864: 3832: 3826: 3825: 3787: 3781: 3780: 3762: 3756: 3755: 3724: 3718: 3717: 3675: 3669: 3668: 3658: 3648: 3613: 3607: 3606: 3603:10.1130/B25281.1 3589:(7–8): 817–839. 3572: 3566: 3565: 3563: 3551: 3545: 3544: 3532: 3526: 3525: 3491: 3482: 3476: 3475: 3411: 3405: 3404: 3402: 3368: 3362: 3361: 3358:10.1130/G32529.1 3327: 3321: 3320: 3308: 3302: 3301: 3290:10.1130/B31813.1 3262: 3256: 3255: 3245: 3203: 3194: 3193: 3191: 3165: 3156: 3150: 3149: 3111: 3105: 3104: 3092: 3086: 3085: 3062: 3056: 3055: 3040: 3034: 3033: 3016: 3010: 2991: 2985: 2984: 2974: 2942: 2936: 2935: 2922: 2916: 2907: 2896: 2874: 2868: 2867: 2854: 2848: 2847: 2827: 2821: 2820: 2818: 2816: 2811: 2793: 2784: 2778: 2777: 2775: 2757: 2748: 2737: 2736: 2734: 2726: 2720: 2719: 2691: 2674: 2671: 2610: 2594: 2578: 2562: 2546: 2530: 2518: 2502: 2486: 2470: 2454: 2438: 2422: 2406: 2390: 2374: 2306:, are abundant. 2183: 2180: 2162: 2155: 1761:Ellesmere Island 1423:amount of oxygen 1253:Laramide Orogeny 1014: 1013: 1004: 1003: 982:geologic periods 980:. As with other 958:extinction event 925: 911: 877: 873: 868: 867: 864: 863: 860: 857: 852: 851: 848: 845: 842: 839: 836: 829: 804: 803: 801: 800: 799: 798:43.5328; 13.6011 794: 790: 787: 786: 785: 782: 752:Cribrohantkenina 721: 720: 718: 717: 716: 715:25.5000; 32.5311 711: 707: 704: 703: 702: 699: 553: 543: 538: 531: 527:First Antarctic 522: 517: 504: 499: 473: 464: 455: 446: 437: 428: 419: 410: 400: 384: 359: 340: 297: 261: 236: 222: 217: 212: 207: 202: 197: 192: 187: 182: 177: 172: 167: 162: 157: 152: 147: 142: 137: 131: 116: 107: 44: 30: 29: 21: 9224: 9223: 9219: 9218: 9217: 9215: 9214: 9213: 9189: 9188: 9187: 9182: 9172: 9161: 9153: 9135: 9127: 9120: 9091: 9080: 9051: 9044: 9020: 9013: 8989: 8988:Neoproterozoic 8978:(539 Ma–2.5 Ga) 8977: 8976: 8975:Proterozoic Eon 8965: 8936: 8929: 8905: 8898: 8869: 8862: 8838: 8831: 8812: 8805: 8781: 8769: 8768: 8757: 8733: 8726: 8702: 8695: 8676: 8664: 8663: 8652: 8628: 8621: 8602: 8595: 8576: 8564: 8563: 8556: 8551: 8521: 8516: 8511: 8495: 8469: 8445:Oligocene Epoch 8435:Paleocene Epoch 8424: 8419: 8331: 8297: 8295:Further reading 8292: 8291: 8281: 8279: 8247: 8243: 8233: 8231: 8209: 8205: 8195: 8193: 8153: 8149: 8102: 8098: 8041: 8037: 8027: 8025: 7993: 7989: 7979: 7977: 7937:(6588): 80–85. 7918: 7914: 7904: 7902: 7901:. 31 March 2022 7891: 7890: 7886: 7847: 7843: 7830: 7826: 7817: 7813: 7798: 7794: 7786: 7782: 7725: 7721: 7698: 7694: 7671: 7667: 7660: 7646: 7642: 7632: 7630: 7590: 7586: 7554: 7548: 7544: 7511: 7507: 7474: 7467: 7434: 7430: 7394: 7387: 7377: 7375: 7343: 7339: 7329: 7327: 7295: 7291: 7281: 7279: 7239: 7235: 7225: 7223: 7191: 7187: 7177: 7175: 7135: 7131: 7082: 7075: 7065: 7063: 7018: 7014: 7004: 7002: 6970: 6966: 6956: 6954: 6922: 6918: 6908: 6906: 6874: 6870: 6860: 6858: 6825: 6821: 6766: 6762: 6707: 6703: 6693: 6691: 6651: 6647: 6598: 6591: 6581: 6579: 6547: 6543: 6533: 6531: 6491: 6487: 6477: 6475: 6443: 6436: 6426: 6424: 6384: 6380: 6347: 6336: 6326: 6324: 6292: 6285: 6275: 6273: 6241: 6237: 6187: 6176: 6137: 6133: 6092: 6085: 6052: 6048: 6009: 6005: 5984:(10): 881–884. 5972: 5968: 5935: 5931: 5873: 5869: 5806: 5802: 5763: 5754: 5730:10.1038/457669a 5707: 5698: 5673: 5669: 5659: 5657: 5609: 5605: 5560: 5556: 5546: 5544: 5512: 5508: 5498: 5496: 5464: 5460: 5450: 5448: 5433: 5429: 5419: 5417: 5387: 5383: 5328: 5324: 5314: 5312: 5264: 5260: 5250: 5248: 5216: 5212: 5202: 5200: 5168: 5164: 5154: 5152: 5104: 5100: 5066: 5062: 5053: 5051: 5036: 5032: 4973: 4966: 4954: 4948: 4944: 4928: 4927: 4888: 4884: 4874: 4872: 4831: 4827: 4778: 4765: 4744:(12): 866–869. 4732: 4728: 4718: 4716: 4684:(6281): 76–80. 4667: 4663: 4602: 4598: 4588: 4586: 4544: 4540: 4530: 4528: 4471: 4467: 4457: 4455: 4431:(10): 761–765. 4415: 4411: 4401: 4399: 4367: 4363: 4329: 4325: 4315: 4313: 4283: 4276: 4267: 4265: 4255: 4251: 4207: 4203: 4196: 4174: 4170: 4166:, pp. 251. 4162: 4158: 4148: 4146: 4129: 4125: 4117: 4113: 4103: 4101: 4061: 4057: 4050: 4036: 4032: 3984: 3980: 3973: 3951: 3947: 3922: 3918: 3908: 3906: 3874: 3870: 3833: 3829: 3788: 3784: 3777: 3763: 3759: 3752: 3725: 3721: 3676: 3672: 3614: 3610: 3573: 3569: 3552: 3548: 3533: 3529: 3489: 3483: 3479: 3412: 3408: 3369: 3365: 3328: 3324: 3309: 3305: 3263: 3259: 3204: 3197: 3163: 3157: 3153: 3112: 3108: 3093: 3089: 3063: 3059: 3041: 3037: 3017: 3013: 2992: 2988: 2943: 2939: 2924: 2923: 2919: 2881:William Whewell 2875: 2871: 2856: 2855: 2851: 2845: 2828: 2824: 2814: 2812: 2791: 2785: 2781: 2755: 2749: 2740: 2732: 2728: 2727: 2723: 2692: 2688: 2683: 2678: 2677: 2672: 2668: 2663: 2625: 2618: 2615:Pseudocrypturus 2611: 2602: 2595: 2586: 2579: 2570: 2563: 2554: 2547: 2538: 2531: 2522: 2519: 2510: 2503: 2494: 2487: 2478: 2471: 2462: 2455: 2446: 2439: 2430: 2423: 2414: 2407: 2398: 2391: 2382: 2375: 2366: 2358: 2336:Bembridge Marls 2312: 2296: 2216:Halcyornithidae 2212:Messelasturidae 2184: 2178: 2175: 2168:needs expansion 2153: 2143:of mammals now 1920: 1904: 1808:Chubut province 1795:northern Europe 1728:Heinrich Harder 1705: 1671: 1665: 1580: 1548: 1526: 1517: 1508: 1492:clumped isotope 1484: 1461: 1355: 1331: 1248:drifted apart. 1191: 1116: 1076: 1071: 1053:introduced the 994: 903:comes from the 875: 871: 854: 833: 824: 823: 797: 795: 791: 788: 783: 780: 778: 776: 775: 774: 714: 712: 708: 705: 700: 697: 695: 693: 692: 691: 579: 574: 573: 571: 554: 550: 547: 541: 532: 526: 520: 511: 502: 495: 494: 490: 489: 485: 484: 480: 479: 475: 474: 469: 466: 465: 460: 457: 456: 451: 448: 447: 442: 439: 438: 433: 430: 429: 424: 421: 420: 415: 412: 411: 409: 405: 402: 401: 396: 393: 392: 386: 385: 381: 379: 377: 375: 373: 371: 369: 367: 364: 361: 360: 356: 354: 352: 350: 348: 345: 342: 341: 339: 338: 335: 333: 331: 329: 327: 325: 323: 321: 318: 315: 314: 308: 307: 299: 298: 293: 291: 289: 287: 285: 283: 281: 279: 275: 272: 271: 263: 262: 257: 255: 253: 251: 249: 247: 245: 241: 238: 237: 232: 228: 223: 220: 218: 215: 213: 210: 208: 205: 203: 200: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 119: 106: 105: 100: 95: 90: 85: 80: 75: 70: 65: 60: 55: 50: 39: 38: 28: 23: 22: 15: 12: 11: 5: 9222: 9212: 9211: 9206: 9201: 9184: 9183: 9140: 9137: 9136: 9133: 9131: 9122: 9121: 9119: 9118: 9113: 9108: 9103: 9097: 9095: 9086: 9085: 9082: 9081: 9079: 9078: 9073: 9068: 9063: 9057: 9055: 9046: 9045: 9043: 9042: 9037: 9032: 9026: 9024: 9015: 9014: 9012: 9011: 9006: 9001: 8995: 8993: 8981: 8971: 8970: 8967: 8966: 8964: 8963: 8958: 8953: 8948: 8942: 8940: 8931: 8930: 8928: 8927: 8922: 8917: 8911: 8909: 8900: 8899: 8897: 8896: 8891: 8886: 8881: 8875: 8873: 8864: 8863: 8861: 8860: 8855: 8850: 8844: 8842: 8833: 8832: 8830: 8829: 8824: 8818: 8816: 8811:Carboniferous 8807: 8806: 8804: 8803: 8798: 8793: 8787: 8785: 8773: 8763: 8762: 8759: 8758: 8756: 8755: 8750: 8745: 8739: 8737: 8728: 8727: 8725: 8724: 8719: 8714: 8708: 8706: 8697: 8696: 8694: 8693: 8688: 8682: 8680: 8668: 8658: 8657: 8654: 8653: 8651: 8650: 8645: 8640: 8634: 8632: 8629:(23.0–66.0 Ma) 8623: 8622: 8620: 8619: 8614: 8608: 8606: 8603:(2.58–23.0 Ma) 8597: 8596: 8594: 8593: 8588: 8582: 8580: 8568: 8558: 8557: 8550: 8549: 8542: 8535: 8527: 8518: 8517: 8513: 8512: 8510: 8509: 8504: 8498: 8496: 8494: 8493: 8488: 8483: 8478: 8472: 8470: 8468: 8467: 8462: 8457: 8451: 8448: 8447: 8442: 8437: 8429: 8426: 8425: 8418: 8417: 8410: 8403: 8395: 8389: 8388: 8382: 8377: 8372: 8367: 8362: 8357: 8352: 8347: 8342: 8337: 8330: 8329:External links 8327: 8326: 8325: 8308: 8296: 8293: 8290: 8289: 8241: 8203: 8169:(4): 842–861. 8147: 8096: 8035: 7987: 7912: 7884: 7841: 7824: 7811: 7808:. p. 108. 7792: 7790:, p. 118. 7780: 7719: 7692: 7665: 7658: 7640: 7584: 7542: 7505: 7465: 7446:(2): 163–166. 7428: 7409:(3): 251–254. 7385: 7359:(4): 308–327. 7337: 7289: 7233: 7185: 7129: 7073: 7062:on 19 May 2023 7034:(4): 317–336. 7012: 6964: 6916: 6868: 6819: 6760: 6701: 6645: 6589: 6541: 6485: 6434: 6378: 6334: 6283: 6235: 6200:(2): 155–170. 6174: 6131: 6083: 6064:(1–2): 21–35. 6046: 6003: 5966: 5947:(6): 489–492. 5929: 5867: 5800: 5779:(2): 603–633. 5752: 5696: 5667: 5603: 5574:(3): 262–280. 5554: 5528:(5): 326–329. 5506: 5480:(1): 327–349. 5458: 5427: 5401:(3): 293–304. 5381: 5322: 5258: 5232:(1): 748–751. 5210: 5162: 5134:10.1086/666743 5120:(5): 487–505. 5098: 5060: 5030: 4964: 4942: 4882: 4825: 4763: 4726: 4661: 4596: 4538: 4465: 4409: 4361: 4323: 4274: 4249: 4201: 4194: 4168: 4156: 4123: 4111: 4055: 4048: 4030: 3978: 3971: 3945: 3939:10.3133/pp158E 3916: 3868: 3847:(5): 780–801. 3827: 3800:(9): 833–838. 3782: 3775: 3757: 3750: 3719: 3670: 3608: 3567: 3546: 3537:"Eocene Epoch" 3527: 3500:(2): 161–172. 3477: 3406: 3363: 3344:(3): 263–266. 3322: 3303: 3276:(1–2): 84–98. 3257: 3195: 3174:(3): 390–393. 3151: 3124:(5): 481–497. 3106: 3087: 3057: 3035: 3011: 2986: 2937: 2917: 2915: 2914: 2897: 2869: 2849: 2843: 2822: 2802:(3): 379–382. 2779: 2766:(4): 271–286. 2738: 2721: 2685: 2684: 2682: 2679: 2676: 2675: 2665: 2664: 2662: 2659: 2658: 2657: 2651: 2645: 2640: 2632: 2624: 2621: 2620: 2619: 2612: 2605: 2603: 2596: 2589: 2587: 2580: 2573: 2571: 2564: 2557: 2555: 2548: 2541: 2539: 2532: 2525: 2523: 2520: 2513: 2511: 2504: 2497: 2495: 2488: 2481: 2479: 2472: 2465: 2463: 2456: 2449: 2447: 2440: 2433: 2431: 2424: 2417: 2415: 2408: 2401: 2399: 2392: 2385: 2383: 2376: 2369: 2365: 2362: 2357: 2354: 2326:, France, the 2311: 2308: 2295: 2292: 2248:of the family 2186: 2185: 2165: 2163: 2152: 2149: 2048:Arsinoitherium 2026:southeast Asia 1955:perissodactyls 1919: 1916: 1903: 1900: 1733:Arsinoitherium 1704: 1701: 1680:present levels 1670: 1667: 1630:Oxygen isotope 1626:Southern Ocean 1579: 1576: 1547: 1544: 1525: 1522: 1516: 1513: 1507: 1504: 1482: 1460: 1457: 1430:carbon isotope 1359:carbon dioxide 1354: 1351: 1330: 1327: 1313:collided with 1230:supercontinent 1190: 1187: 1115: 1112: 1108:Grande Coupure 1075: 1072: 1070: 1067: 993: 990: 978:Chesapeake Bay 962:Grande Coupure 947:carbon isotope 892:in the modern 814: 813: 810: 806: 805: 760: 756: 755: 735: 731: 730: 727: 723: 722: 681: 677: 676: 672:values at the 666: 662: 661: 658: 654: 653: 648: 644: 643: 638: 634: 633: 629: 628: 627:ICS Time Scale 625: 621: 620: 613: 612:Regional usage 609: 608: 603: 602:Celestial body 599: 598: 594: 593: 590: 589:Name formality 586: 585: 581: 580: 576: 575: 560: 559: 556: 555: 546: 544: 534: 533: 525: 523: 513: 512: 507: 505: 496: 492: 491: 487: 486: 482: 481: 477: 476: 468: 467: 459: 458: 450: 449: 441: 440: 432: 431: 423: 422: 414: 413: 404: 403: 395: 394: 388: 387: 363: 362: 344: 343: 317: 316: 310: 309: 301: 300: 274: 273: 265: 264: 240: 239: 227: 226: 224: 219: 214: 209: 204: 199: 194: 189: 184: 179: 174: 169: 164: 159: 154: 149: 144: 139: 134: 129: 126: 125: 121: 120: 117: 109: 108: 101: 96: 91: 86: 81: 76: 71: 66: 61: 56: 51: 46: 40:56.0 – 33.9 35: 34: 26: 9: 6: 4: 3: 2: 9221: 9210: 9207: 9205: 9202: 9200: 9197: 9196: 9194: 9181: 9176: 9170: 9165: 9159: 9156: 9151: 9147: 9143: 9138: 9132: 9130: 9123: 9117: 9114: 9112: 9109: 9107: 9104: 9102: 9099: 9098: 9096: 9094: 9087: 9077: 9074: 9072: 9069: 9067: 9064: 9062: 9059: 9058: 9056: 9054: 9047: 9041: 9038: 9036: 9033: 9031: 9028: 9027: 9025: 9023: 9016: 9010: 9007: 9005: 9002: 9000: 8997: 8996: 8994: 8992: 8990:(539 Ma–1 Ga) 8985: 8982: 8980: 8972: 8962: 8959: 8957: 8954: 8952: 8949: 8947: 8944: 8943: 8941: 8939: 8932: 8926: 8923: 8921: 8918: 8916: 8913: 8912: 8910: 8908: 8901: 8895: 8892: 8890: 8887: 8885: 8882: 8880: 8877: 8876: 8874: 8872: 8865: 8859: 8856: 8854: 8851: 8849: 8846: 8845: 8843: 8841: 8834: 8828: 8825: 8823: 8820: 8819: 8817: 8815: 8808: 8802: 8799: 8797: 8794: 8792: 8789: 8788: 8786: 8784: 8777: 8774: 8772: 8767:Paleozoic Era 8764: 8754: 8751: 8749: 8746: 8744: 8741: 8740: 8738: 8736: 8729: 8723: 8720: 8718: 8715: 8713: 8710: 8709: 8707: 8705: 8698: 8692: 8689: 8687: 8684: 8683: 8681: 8679: 8677:(66.0–145 Ma) 8672: 8669: 8667: 8665:(66.0–252 Ma) 8659: 8649: 8646: 8644: 8641: 8639: 8636: 8635: 8633: 8631: 8624: 8618: 8615: 8613: 8610: 8609: 8607: 8605: 8598: 8592: 8589: 8587: 8584: 8583: 8581: 8579: 8572: 8569: 8567: 8559: 8555: 8548: 8543: 8541: 8536: 8534: 8529: 8528: 8525: 8508: 8505: 8503: 8500: 8499: 8497: 8492: 8489: 8487: 8484: 8482: 8479: 8477: 8474: 8473: 8471: 8466: 8463: 8461: 8458: 8456: 8453: 8452: 8450: 8449: 8446: 8443: 8441: 8438: 8436: 8433: 8432: 8427: 8423: 8416: 8411: 8409: 8404: 8402: 8397: 8396: 8393: 8387: 8383: 8381: 8378: 8376: 8373: 8371: 8368: 8366: 8363: 8361: 8358: 8356: 8353: 8351: 8348: 8346: 8343: 8341: 8338: 8336: 8333: 8332: 8324: 8323:0-7167-2882-6 8320: 8316: 8313: 8309: 8306: 8303: 8299: 8298: 8278: 8274: 8270: 8266: 8262: 8258: 8257: 8252: 8245: 8230: 8226: 8222: 8218: 8214: 8207: 8192: 8188: 8184: 8180: 8176: 8172: 8168: 8164: 8163: 8158: 8151: 8143: 8139: 8134: 8129: 8125: 8121: 8117: 8113: 8112: 8107: 8100: 8092: 8088: 8083: 8078: 8074: 8070: 8065: 8060: 8056: 8052: 8051: 8046: 8039: 8024: 8020: 8016: 8012: 8008: 8004: 8003: 7998: 7991: 7976: 7972: 7968: 7964: 7960: 7956: 7952: 7948: 7944: 7940: 7936: 7932: 7931: 7925: 7916: 7900: 7899: 7894: 7888: 7880: 7876: 7871: 7866: 7862: 7858: 7857: 7852: 7845: 7838: 7834: 7828: 7821: 7815: 7807: 7803: 7796: 7789: 7784: 7776: 7772: 7767: 7762: 7757: 7752: 7748: 7744: 7741:(6): e21084. 7740: 7736: 7735: 7730: 7723: 7715: 7711: 7707: 7703: 7696: 7688: 7684: 7680: 7676: 7669: 7661: 7659:0-444-88297-9 7655: 7651: 7644: 7629: 7625: 7621: 7617: 7613: 7609: 7605: 7601: 7600: 7595: 7588: 7580: 7576: 7572: 7568: 7564: 7560: 7553: 7546: 7538: 7534: 7530: 7526: 7523:(1–2): 9–28. 7522: 7518: 7517: 7509: 7501: 7497: 7493: 7489: 7485: 7481: 7480: 7472: 7470: 7461: 7457: 7453: 7449: 7445: 7441: 7440: 7432: 7424: 7420: 7416: 7412: 7408: 7404: 7403: 7398: 7392: 7390: 7374: 7370: 7366: 7362: 7358: 7354: 7353: 7348: 7341: 7326: 7322: 7318: 7314: 7310: 7306: 7305: 7300: 7293: 7278: 7274: 7270: 7266: 7262: 7258: 7254: 7250: 7249: 7244: 7237: 7222: 7218: 7214: 7210: 7206: 7202: 7201: 7196: 7189: 7174: 7170: 7166: 7162: 7158: 7154: 7150: 7146: 7145: 7140: 7133: 7125: 7121: 7117: 7113: 7109: 7105: 7101: 7097: 7093: 7089: 7088: 7080: 7078: 7061: 7057: 7053: 7049: 7045: 7041: 7037: 7033: 7029: 7028: 7023: 7016: 7001: 6997: 6993: 6989: 6985: 6981: 6980: 6975: 6968: 6953: 6949: 6945: 6941: 6937: 6933: 6932: 6927: 6920: 6905: 6901: 6897: 6893: 6889: 6885: 6884: 6879: 6872: 6857: 6853: 6849: 6845: 6841: 6837: 6836: 6831: 6823: 6815: 6811: 6806: 6801: 6797: 6793: 6789: 6785: 6781: 6777: 6776: 6771: 6764: 6756: 6752: 6747: 6742: 6738: 6734: 6730: 6726: 6722: 6718: 6717: 6712: 6705: 6690: 6686: 6682: 6678: 6674: 6670: 6666: 6662: 6661: 6656: 6649: 6641: 6637: 6633: 6629: 6625: 6621: 6617: 6613: 6609: 6605: 6604: 6596: 6594: 6578: 6574: 6570: 6566: 6562: 6558: 6557: 6552: 6545: 6530: 6526: 6522: 6518: 6514: 6510: 6506: 6502: 6501: 6496: 6489: 6474: 6470: 6466: 6462: 6458: 6454: 6453: 6448: 6441: 6439: 6423: 6419: 6415: 6411: 6407: 6403: 6399: 6395: 6394: 6389: 6382: 6374: 6370: 6366: 6362: 6358: 6354: 6353: 6345: 6343: 6341: 6339: 6323: 6319: 6315: 6311: 6307: 6303: 6302: 6297: 6290: 6288: 6272: 6268: 6264: 6260: 6256: 6252: 6251: 6246: 6239: 6231: 6227: 6223: 6219: 6215: 6211: 6207: 6203: 6199: 6195: 6194: 6185: 6183: 6181: 6179: 6169: 6164: 6160: 6156: 6152: 6148: 6147: 6142: 6135: 6127: 6123: 6119: 6115: 6111: 6107: 6103: 6099: 6098: 6090: 6088: 6079: 6075: 6071: 6067: 6063: 6059: 6058: 6050: 6041: 6036: 6032: 6028: 6024: 6020: 6019: 6014: 6007: 5999: 5995: 5991: 5987: 5983: 5979: 5978: 5970: 5962: 5958: 5954: 5950: 5946: 5942: 5941: 5933: 5925: 5921: 5916: 5911: 5906: 5901: 5897: 5893: 5889: 5885: 5884: 5879: 5871: 5863: 5859: 5855: 5851: 5846: 5841: 5837: 5833: 5829: 5825: 5821: 5817: 5816: 5811: 5804: 5795: 5790: 5786: 5782: 5778: 5774: 5773: 5768: 5761: 5759: 5757: 5748: 5744: 5740: 5736: 5731: 5726: 5722: 5718: 5717: 5712: 5705: 5703: 5701: 5692: 5688: 5684: 5680: 5679: 5671: 5656: 5652: 5648: 5644: 5640: 5636: 5632: 5628: 5624: 5620: 5619: 5614: 5607: 5599: 5595: 5590: 5585: 5581: 5577: 5573: 5569: 5565: 5558: 5543: 5539: 5535: 5531: 5527: 5523: 5522: 5517: 5510: 5495: 5491: 5487: 5483: 5479: 5475: 5474: 5469: 5462: 5446: 5442: 5438: 5431: 5416: 5412: 5408: 5404: 5400: 5396: 5392: 5385: 5377: 5373: 5368: 5363: 5359: 5355: 5351: 5347: 5343: 5339: 5338: 5333: 5326: 5311: 5307: 5303: 5299: 5295: 5291: 5287: 5283: 5279: 5275: 5274: 5269: 5262: 5247: 5243: 5239: 5235: 5231: 5227: 5226: 5221: 5214: 5199: 5195: 5191: 5187: 5183: 5179: 5178: 5173: 5166: 5151: 5147: 5143: 5139: 5135: 5131: 5127: 5123: 5119: 5115: 5114: 5109: 5102: 5094: 5090: 5086: 5082: 5078: 5074: 5073: 5064: 5050:on 2015-12-25 5049: 5045: 5041: 5034: 5026: 5022: 5018: 5014: 5009: 5008:2027.42/62963 5004: 5000: 4996: 4992: 4988: 4984: 4980: 4979: 4971: 4969: 4960: 4953: 4946: 4938: 4932: 4924: 4920: 4916: 4912: 4908: 4904: 4900: 4896: 4895: 4886: 4871: 4867: 4863: 4859: 4855: 4851: 4847: 4843: 4842: 4837: 4829: 4821: 4817: 4813: 4809: 4805: 4801: 4797: 4793: 4789: 4785: 4784: 4776: 4774: 4772: 4770: 4768: 4759: 4755: 4751: 4747: 4743: 4739: 4738: 4730: 4715: 4711: 4707: 4703: 4699: 4695: 4691: 4687: 4683: 4679: 4678: 4673: 4665: 4657: 4653: 4649: 4645: 4641: 4637: 4633: 4629: 4625: 4621: 4617: 4613: 4612: 4607: 4600: 4585: 4581: 4576: 4571: 4567: 4563: 4559: 4555: 4554: 4549: 4542: 4527: 4523: 4519: 4515: 4511: 4507: 4503: 4499: 4495: 4491: 4487: 4483: 4482: 4477: 4469: 4454: 4450: 4446: 4442: 4438: 4434: 4430: 4426: 4425: 4420: 4413: 4398: 4394: 4390: 4386: 4382: 4378: 4377: 4372: 4365: 4357: 4353: 4349: 4345: 4341: 4337: 4336: 4327: 4312: 4308: 4304: 4300: 4296: 4292: 4288: 4281: 4279: 4264: 4260: 4253: 4245: 4241: 4237: 4233: 4229: 4225: 4221: 4217: 4213: 4205: 4197: 4191: 4187: 4183: 4179: 4172: 4165: 4160: 4144: 4140: 4139: 4134: 4127: 4120: 4115: 4100: 4096: 4092: 4088: 4084: 4080: 4076: 4072: 4071: 4066: 4059: 4051: 4049:9783642189005 4045: 4041: 4034: 4026: 4022: 4018: 4014: 4010: 4006: 4002: 3998: 3994: 3990: 3982: 3974: 3968: 3964: 3960: 3956: 3949: 3940: 3935: 3931: 3927: 3920: 3905: 3901: 3897: 3893: 3889: 3885: 3884: 3879: 3872: 3863: 3858: 3854: 3850: 3846: 3842: 3838: 3831: 3823: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3794: 3786: 3778: 3776:9781107105324 3772: 3768: 3761: 3753: 3751:9780444528476 3747: 3743: 3739: 3735: 3731: 3723: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3687: 3686: 3681: 3674: 3666: 3662: 3657: 3652: 3647: 3642: 3638: 3634: 3630: 3626: 3625: 3620: 3612: 3604: 3600: 3596: 3592: 3588: 3584: 3583: 3578: 3571: 3562: 3561:10.3133/pp571 3557: 3550: 3542: 3538: 3531: 3523: 3519: 3515: 3511: 3507: 3503: 3499: 3495: 3488: 3481: 3473: 3469: 3465: 3461: 3457: 3453: 3449: 3445: 3441: 3437: 3433: 3429: 3425: 3421: 3417: 3410: 3401: 3396: 3392: 3388: 3384: 3380: 3379: 3374: 3367: 3359: 3355: 3351: 3347: 3343: 3339: 3338: 3333: 3326: 3318: 3314: 3307: 3299: 3295: 3291: 3287: 3283: 3279: 3275: 3271: 3270: 3261: 3253: 3249: 3244: 3239: 3235: 3231: 3227: 3223: 3219: 3215: 3214: 3209: 3202: 3200: 3190: 3185: 3181: 3177: 3173: 3169: 3162: 3155: 3147: 3143: 3139: 3135: 3131: 3127: 3123: 3119: 3118: 3110: 3102: 3098: 3091: 3083: 3079: 3075: 3071: 3067: 3061: 3053: 3049: 3045: 3039: 3031: 3027: 3026: 3021: 3015: 3008: 3004: 3000: 2996: 2990: 2982: 2978: 2973: 2968: 2964: 2960: 2956: 2952: 2948: 2941: 2933: 2932: 2927: 2921: 2912: 2905: 2904: 2898: 2894: 2893: 2886: 2885:Charles Lyell 2882: 2878: 2877: 2873: 2865: 2864: 2859: 2853: 2846: 2844:3-12-539683-2 2840: 2836: 2832: 2831:Jones, Daniel 2826: 2810: 2805: 2801: 2797: 2790: 2783: 2774: 2769: 2765: 2761: 2754: 2747: 2745: 2743: 2731: 2725: 2717: 2713: 2709: 2705: 2701: 2697: 2690: 2686: 2670: 2666: 2655: 2654:Wadi El Hitan 2652: 2649: 2646: 2644: 2641: 2639: 2636: 2633: 2630: 2627: 2626: 2617: 2616: 2609: 2604: 2601: 2600: 2593: 2588: 2585: 2584: 2577: 2572: 2569: 2568: 2561: 2556: 2553: 2552: 2545: 2540: 2537: 2536: 2529: 2524: 2517: 2512: 2509: 2508: 2501: 2496: 2493: 2492: 2485: 2480: 2477: 2476: 2469: 2464: 2461: 2460: 2459:Borealosuchus 2453: 2448: 2445: 2444: 2443:Andrewsarchus 2437: 2432: 2429: 2428: 2421: 2416: 2413: 2412: 2411:Brontotherium 2405: 2400: 2397: 2396: 2395:Hyracotherium 2389: 2384: 2381: 2380: 2373: 2368: 2367: 2361: 2353: 2351: 2350: 2345: 2341: 2340:Isle of Wight 2337: 2333: 2329: 2328:Fur Formation 2325: 2321: 2317: 2307: 2305: 2301: 2291: 2289: 2288: 2283: 2282: 2277: 2276: 2271: 2270: 2265: 2261: 2260: 2255: 2251: 2247: 2243: 2242:Gallinuloides 2239: 2235: 2234: 2233:Masillaraptor 2229: 2228: 2227:Eleutherornis 2223: 2222: 2217: 2213: 2209: 2208:psittaciforms 2202: 2198: 2197: 2192: 2182: 2173: 2169: 2166:This section 2164: 2161: 2157: 2156: 2148: 2146: 2142: 2138: 2133: 2131: 2127: 2123: 2119: 2115: 2111: 2110: 2105: 2103: 2099: 2095: 2091: 2087: 2083: 2082: 2077: 2076: 2067: 2066: 2065:Andrewsarchus 2060: 2056: 2054: 2050: 2049: 2044: 2043: 2037: 2035: 2031: 2027: 2023: 2019: 2015: 2011: 2010:proboscidians 2007: 2003: 2002: 1997: 1993: 1992: 1987: 1982: 1979: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1937: 1933: 1929: 1924: 1915: 1913: 1909: 1899: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1871: 1867: 1863: 1859: 1858:South America 1855: 1851: 1847: 1843: 1838: 1836: 1832: 1828: 1824: 1820: 1815: 1813: 1809: 1805: 1804: 1798: 1796: 1792: 1788: 1786: 1782: 1781:North America 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1753:swamp cypress 1750: 1745: 1739: 1735: 1734: 1729: 1725: 1718: 1714: 1709: 1700: 1698: 1697:Drake Passage 1693: 1689: 1685: 1681: 1677: 1666: 1663: 1660: 1656: 1653: 1649: 1645: 1640: 1636: 1631: 1627: 1623: 1617: 1615: 1611: 1606: 1601: 1597: 1593: 1589: 1585: 1578:Middle Eocene 1575: 1571: 1569: 1563: 1559: 1557: 1556:sulfuric acid 1553: 1543: 1540: 1536: 1532: 1521: 1512: 1503: 1501: 1496: 1493: 1489: 1485: 1478: 1474: 1470: 1466: 1456: 1454: 1451: 1448: 1444: 1440: 1436: 1431: 1426: 1424: 1420: 1416: 1413: 1409: 1403: 1401: 1397: 1393: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1350: 1348: 1344: 1340: 1336: 1326: 1324: 1320: 1316: 1312: 1308: 1306: 1302: 1298: 1296: 1291: 1287: 1286:Mediterranean 1283: 1279: 1274: 1272: 1267: 1265: 1262: 1258: 1254: 1249: 1247: 1246:North America 1243: 1239: 1235: 1231: 1228:The northern 1226: 1224: 1219: 1215: 1210: 1208: 1205:continued to 1204: 1195: 1186: 1184: 1180: 1177: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1139: 1137: 1133: 1129: 1125: 1121: 1111: 1109: 1105: 1100: 1096: 1094: 1093:bioindicators 1090: 1086: 1082: 1066: 1064: 1060: 1056: 1052: 1051:Moritz Hörnes 1048: 1045:proposed the 1044: 1043:John Phillips 1040: 1036: 1032: 1028: 1024: 1023:Charles Lyell 1019: 1017: 1008: 999: 998:Ancient Greek 989: 987: 983: 979: 975: 971: 967: 963: 959: 955: 951: 948: 944: 940: 935: 933: 929: 924: 919: 915: 910: 906: 905:Ancient Greek 902: 898: 895: 891: 888: 884: 880: 879: 866: 827: 821: 811: 807: 802: 773: 769: 765: 761: 757: 754: 753: 748: 747: 743: 739: 736: 732: 728: 724: 719: 690: 686: 682: 678: 675: 671: 667: 663: 659: 655: 652: 649: 645: 642: 639: 635: 630: 626: 622: 618: 614: 610: 607: 604: 600: 595: 591: 587: 582: 570: 569:, as of 2021. 568: 561: 552: 545: 540: 539: 530: 524: 519: 518: 510: 506: 501: 500: 472: 463: 454: 445: 436: 427: 418: 408: 399: 391: 383: 358: 337: 313: 306: 305: 296: 295: 270: 269: 260: 259: 235: 234: 132: 127: 122: 115: 110: 104: 99: 94: 89: 84: 79: 74: 69: 64: 59: 54: 49: 43: 36: 31: 19: 9154: 9090:Archean Eon 9052:(1.6–2.5 Ga) 8937:(485–539 Ma) 8906:(444–485 Ma) 8870:(419–444 Ma) 8839:(359–419 Ma) 8813:(299–359 Ma) 8782:(252–299 Ma) 8770:(252–539 Ma) 8734:(201–252 Ma) 8703:(145–201 Ma) 8662:Mesozoic Era 8642: 8562:Cenozoic Era 8440:Eocene Epoch 8439: 8311: 8301: 8280:. Retrieved 8260: 8254: 8244: 8232:. Retrieved 8220: 8216: 8206: 8194:. Retrieved 8166: 8160: 8150: 8115: 8109: 8099: 8054: 8048: 8038: 8026:. Retrieved 8006: 8000: 7990: 7978:. Retrieved 7934: 7928: 7915: 7903:. Retrieved 7898:Science News 7896: 7887: 7860: 7854: 7844: 7832: 7827: 7819: 7814: 7802:Paleoclimate 7801: 7795: 7783: 7738: 7732: 7722: 7705: 7701: 7695: 7678: 7674: 7668: 7649: 7643: 7631:. Retrieved 7603: 7597: 7587: 7562: 7558: 7545: 7520: 7514: 7508: 7483: 7477: 7443: 7437: 7431: 7406: 7400: 7376:. Retrieved 7356: 7350: 7340: 7328:. Retrieved 7308: 7302: 7292: 7280:. Retrieved 7252: 7246: 7236: 7224:. Retrieved 7204: 7198: 7188: 7176:. Retrieved 7148: 7142: 7132: 7091: 7085: 7064:. Retrieved 7060:the original 7031: 7025: 7015: 7003:. Retrieved 6983: 6977: 6967: 6955:. Retrieved 6935: 6929: 6919: 6907:. Retrieved 6887: 6881: 6871: 6859:. Retrieved 6839: 6833: 6822: 6779: 6773: 6763: 6720: 6714: 6704: 6692:. Retrieved 6664: 6658: 6648: 6607: 6601: 6580:. Retrieved 6560: 6554: 6544: 6532:. Retrieved 6504: 6498: 6488: 6476:. Retrieved 6456: 6450: 6427:24 September 6425:. Retrieved 6397: 6391: 6381: 6356: 6350: 6327:24 September 6325:. Retrieved 6305: 6299: 6274:. Retrieved 6254: 6248: 6238: 6197: 6191: 6153:(1): 69–78. 6150: 6144: 6134: 6101: 6095: 6061: 6055: 6049: 6022: 6016: 6006: 5981: 5975: 5969: 5944: 5938: 5932: 5887: 5881: 5870: 5819: 5813: 5803: 5776: 5770: 5720: 5714: 5682: 5676: 5670: 5660:11 September 5658:. Retrieved 5622: 5616: 5606: 5571: 5567: 5557: 5545:. Retrieved 5525: 5519: 5509: 5497:. Retrieved 5477: 5471: 5461: 5449:. Retrieved 5444: 5440: 5430: 5418:. Retrieved 5398: 5394: 5384: 5344:(1): 11304. 5341: 5335: 5325: 5313:. Retrieved 5277: 5271: 5261: 5249:. Retrieved 5229: 5223: 5213: 5201:. Retrieved 5181: 5175: 5165: 5153:. Retrieved 5117: 5111: 5101: 5076: 5070: 5063: 5052:. Retrieved 5048:the original 5043: 5033: 4982: 4976: 4958: 4945: 4931:cite journal 4898: 4892: 4885: 4875:24 September 4873:. Retrieved 4845: 4839: 4828: 4787: 4781: 4741: 4735: 4729: 4717:. Retrieved 4681: 4675: 4664: 4615: 4609: 4599: 4587:. Retrieved 4557: 4551: 4541: 4531:21 September 4529:. Retrieved 4485: 4479: 4468: 4456:. Retrieved 4428: 4422: 4412: 4400:. Retrieved 4380: 4374: 4364: 4339: 4333: 4326: 4316:24 September 4314:. Retrieved 4294: 4290: 4266:. Retrieved 4263:SciTechDaily 4262: 4252: 4219: 4215: 4204: 4177: 4171: 4159: 4149:24 September 4147:. Retrieved 4145:(1): 117–128 4142: 4136: 4126: 4114: 4102:. Retrieved 4074: 4068: 4058: 4039: 4033: 3992: 3988: 3981: 3954: 3948: 3929: 3919: 3909:11 September 3907:. Retrieved 3887: 3881: 3871: 3844: 3840: 3830: 3797: 3791: 3785: 3766: 3760: 3733: 3729: 3722: 3689: 3683: 3673: 3628: 3622: 3611: 3586: 3580: 3570: 3549: 3540: 3530: 3497: 3493: 3480: 3423: 3419: 3409: 3382: 3376: 3366: 3341: 3335: 3325: 3316: 3306: 3273: 3267: 3260: 3220:(353): 353. 3217: 3211: 3171: 3167: 3154: 3121: 3115: 3109: 3100: 3096: 3090: 3073: 3060: 3051: 3044:Phillips, J. 3038: 3024: 3014: 2995:foraminifera 2989: 2954: 2950: 2940: 2929: 2920: 2910: 2902: 2891: 2879:Letter from 2872: 2861: 2852: 2834: 2825: 2813:. Retrieved 2799: 2795: 2782: 2763: 2759: 2724: 2702:(1): 51–66. 2699: 2695: 2689: 2669: 2637: 2613: 2597: 2581: 2565: 2549: 2535:Leptictidium 2533: 2505: 2489: 2473: 2457: 2441: 2427:Basilosaurus 2425: 2409: 2393: 2379:Moeritherium 2377: 2359: 2347: 2316:Baltic amber 2313: 2297: 2285: 2279: 2273: 2269:Rhynchaeites 2267: 2257: 2231: 2225: 2219: 2205: 2194: 2176: 2172:adding to it 2167: 2134: 2109:Basilosaurus 2107: 2106: 2096:, including 2079: 2073: 2071: 2063: 2053:brontotheres 2046: 2042:Uintatherium 2040: 2038: 1999: 1989: 1983: 1980: 1965:, feet, and 1951:artiodactyls 1940: 1927: 1905: 1874: 1839: 1816: 1801: 1799: 1789: 1757:dawn redwood 1746: 1742: 1731: 1672: 1664: 1655:heterotrophs 1618: 1605:Azolla Event 1596:Arctic Ocean 1588:azolla event 1581: 1572: 1564: 1560: 1549: 1531:eccentricity 1527: 1518: 1509: 1497: 1462: 1453:Homotryblium 1452: 1443:foraminifera 1437:(PETM), the 1427: 1404: 1383:Arctic Ocean 1356: 1353:Early Eocene 1335:Cenozoic Era 1332: 1309: 1305:Balkanatolia 1299: 1290:archipelagos 1278:Tethys Ocean 1275: 1268: 1250: 1227: 1211: 1200: 1182: 1178: 1170: 1166: 1162: 1158: 1140: 1117: 1114:Stratigraphy 1107: 1101: 1097: 1089:foraminifera 1077: 1020: 1015: 1006: 995: 961: 936: 927: 913: 900: 819: 817: 750: 744: 564: 346: 302: 276: 266: 242: 229: 9126:Hadean Eon 8904:Ordovician 8675:Cretaceous 8575:Quaternary 8009:: 394–408. 7980:19 November 7788:Briggs 1995 7633:26 December 7397:Lear, C. H. 7282:26 December 7255:: 101–118. 7005:19 November 6986:: 432–444. 6938:(2): 1–16. 6890:(3): 1–11. 6782:(1): 9357. 6723:(1): 2877. 6507:: 115–126. 6190:drawdown". 5822:(1): 8938. 4848:(3): 1–18. 4618:: 545–555. 4510:1874/366626 4458:26 December 4402:25 December 4383:: 163–175. 4104:15 December 4077:(3): 1–22. 3736:: 309–368. 3706:1874/385798 3448:1874/385803 2815:13 December 2643:London Clay 2583:Tritemnodon 2567:Hesperocyon 2551:Peratherium 2324:Paris Basin 2275:Aegialornis 2259:Gigantornis 2141:brain sizes 2090:Entelodonts 1769:subtropical 1717:angiosperms 1688:ocean gyres 1669:Late Eocene 1506:Large lakes 1264:lagerstätte 1174:refined by 1159:Franklinian 1153:fossils of 1151:Puget Group 960:called the 899:. The name 796: / 713: / 18:Late Eocene 9193:Categories 9128:(4–4.6 Ga) 9092:(2.5–4 Ga) 9021:(1–1.6 Ga) 8627:Paleogene 8491:Priabonian 8263:: 104470. 8223:: 102244. 7606:: 103614. 7311:: 111138. 6400:: 117925. 6308:: 103503. 6193:Geobiology 5625:: 102961. 5142:1911/88269 5054:2014-05-13 4268:2023-02-06 4222:: 103929. 3541:Britannica 3385:(1): n/a. 3066:Hörnes, M. 2999:Massignano 2681:References 2650:in Germany 2648:Messel pit 2599:Coryphodon 2334:, and the 2320:Baltic Sea 2310:Arthropods 2250:Songziidae 2238:galliforms 2236:, ancient 2210:, such as 2196:Primobucco 2030:South Asia 1880:rainforest 1876:Antarctica 1825:banks and 1803:Eucalyptus 1791:Palm trees 1610:weathering 1539:precession 1500:proxy data 1473:palm trees 1469:crocodiles 1447:euryhaline 1387:weathering 1218:Antarctica 1203:continents 1143:Jack Wolfe 1128:Priabonian 1074:Boundaries 784:13°36′04″E 781:43°31′58″N 764:Massignano 746:Hantkenina 701:32°31′52″E 698:25°30′00″N 632:Definition 551:extinction 453:Priabonian 124:Chronology 9155:See also: 8935:Cambrian 8868:Silurian 8837:Devonian 8732:Triassic 8701:Jurassic 8486:Bartonian 8465:Thanetian 8460:Selandian 8191:0307-6970 8073:2167-8359 8057:: e9092. 7975:247853831 7959:0036-8075 7879:2296-701X 7628:0921-8181 7277:0031-0182 7207:: 34–42. 7173:210245165 7056:129918182 6856:252033074 6689:216309293 6534:3 January 6529:135265513 6422:0012-821X 6126:128392518 5862:249128273 5747:205044111 5655:0012-8252 5598:130982094 5473:Geosphere 5447:: 154–160 4870:2572-4517 4820:205008176 4640:1055-7903 4589:8 January 4584:236890548 4453:134126659 4342:: 64–73. 4297:: 10–30. 4244:0012-8252 4099:0278-7407 4070:Tectonics 3904:0016-7606 3841:Tectonics 3822:129901811 3522:140576090 3472:206528256 3456:0036-8075 3298:134560025 3146:129095948 3020:Lyell, C. 2507:Hyracodon 2491:Pakicetus 2475:Gastornis 2338:from the 2266:relative 2221:Gastornis 2179:July 2020 2122:sirenians 2118:cetaceans 2102:feliforms 2094:nimravids 2086:bear dogs 2081:Daphoenus 2075:Hyaenodon 2018:Patagonia 1986:ungulates 1884:Prydz Bay 1870:Australia 1850:evergreen 1846:Deciduous 1844:changes. 1812:Argentina 1692:upwelling 1676:alkenones 1644:Himalayas 1639:volcanism 1535:obliquity 1379:crude oil 1343:the poles 1323:Himalayas 1242:Greenland 1214:Australia 1183:Angoonian 1171:Kummerian 1163:Fultonian 1136:Bartonian 1055:Paleogene 992:Etymology 943:Oligocene 939:Paleocene 887:Paleogene 874:-ə-seen, 584:Etymology 549:K-Pg mass 444:Bartonian 417:Thanetian 407:Selandian 8780:Permian 8601:Neogene 8507:Chattian 8502:Rupelian 8481:Lutetian 8476:Ypresian 8315:New York 8142:19570786 8091:32509449 7967:35357913 7775:21738605 7734:PLOS ONE 7178:17 March 7124:20277445 7116:15961630 6814:31249387 6755:30038400 6640:20253252 6632:21051620 6230:13206343 6222:19323694 5924:29358374 5854:35624298 5739:19194439 5376:28900142 5310:26081460 5302:21412336 5150:55327247 5017:11536496 4923:11423657 4812:10963587 4719:17 March 4714:24154493 4706:27034370 4656:29155499 4648:29778723 4526:49556944 4518:29967546 4332:Tibet". 4025:27071176 4017:18583604 3714:15123861 3665:23720311 3464:21051636 3252:28842564 3068:(1853). 3046:(1840). 3022:(1833). 2981:30530685 2926:"Eocene" 2858:"Eocene" 2796:Episodes 2760:Episodes 2656:in Egypt 2631:in Italy 2623:See also 2356:Microbes 2344:bibionid 2294:Reptiles 2287:Inkayacu 2256:such as 2240:such as 2126:manatees 2098:Dinictis 2032:and the 2001:Eohippus 1959:primates 1926:Cast of 1842:seasonal 1835:savannas 1450:dinocyst 1295:Atlantic 1234:Laurasia 1223:icefloes 1167:Ravenian 1132:Lutetian 1124:Ypresian 1047:Cenozoic 1035:Holocene 1031:Pliocene 894:Cenozoic 615:Global ( 471:Chattian 462:Rupelian 435:Lutetian 426:Ypresian 8282:20 July 8265:Bibcode 8234:20 July 8196:20 July 8171:Bibcode 8133:2817186 8082:7255343 8028:20 July 8011:Bibcode 7939:Bibcode 7930:Science 7766:3125177 7743:Bibcode 7608:Bibcode 7567:Bibcode 7525:Bibcode 7488:Bibcode 7448:Bibcode 7439:Geology 7411:Bibcode 7402:Geology 7378:7 April 7361:Bibcode 7330:20 July 7313:Bibcode 7257:Bibcode 7209:Bibcode 7153:Bibcode 7096:Bibcode 7087:Science 7036:Bibcode 6988:Bibcode 6940:Bibcode 6892:Bibcode 6828:2022). 6805:6597698 6784:Bibcode 6746:6056486 6725:Bibcode 6669:Bibcode 6612:Bibcode 6603:Science 6565:Bibcode 6509:Bibcode 6461:Bibcode 6402:Bibcode 6361:Bibcode 6352:Geology 6310:Bibcode 6276:6 April 6259:Bibcode 6202:Bibcode 6155:Bibcode 6106:Bibcode 6066:Bibcode 6027:Bibcode 5986:Bibcode 5977:Geology 5949:Bibcode 5940:Geology 5915:5819407 5892:Bibcode 5845:9142518 5824:Bibcode 5781:Bibcode 5627:Bibcode 5576:Bibcode 5547:22 June 5530:Bibcode 5499:23 June 5482:Bibcode 5451:23 June 5420:23 June 5403:Bibcode 5367:5595800 5346:Bibcode 5315:22 June 5282:Bibcode 5251:22 June 5234:Bibcode 5203:23 June 5186:Bibcode 5155:23 June 5122:Bibcode 5081:Bibcode 5025:4348331 4987:Bibcode 4903:Bibcode 4894:Science 4850:Bibcode 4792:Bibcode 4746:Bibcode 4686:Bibcode 4677:Science 4620:Bibcode 4562:Bibcode 4490:Bibcode 4433:Bibcode 4385:Bibcode 4344:Bibcode 4299:Bibcode 4224:Bibcode 4079:Bibcode 3997:Bibcode 3989:Science 3849:Bibcode 3802:Bibcode 3656:3683727 3633:Bibcode 3591:Bibcode 3502:Bibcode 3428:Bibcode 3420:Science 3387:Bibcode 3346:Bibcode 3337:Geology 3278:Bibcode 3243:5572461 3222:Bibcode 3176:Bibcode 3126:Bibcode 3009:(GSSP). 2959:Bibcode 2704:Bibcode 2364:Gallery 2332:Denmark 2304:turtles 2300:pythons 2130:dugongs 2014:rodents 1991:Mesonyx 1943:fossils 1930:skull, 1918:Mammals 1854:Eurasia 1819:grasses 1763:in the 1749:Fossils 1652:pelagic 1465:proxies 1363:methane 1329:Climate 1319:folding 1301:Eurasia 1069:Geology 1059:Neogene 1039:Periods 1027:Miocene 974:Siberia 970:bolides 920:") and 542:← 521:← 503:← 390:Miocene 221:– 211:– 201:– 191:– 181:– 171:– 161:– 151:– 141:– 9199:Eocene 9134:  8455:Danian 8321:  8189:  8140:  8130:  8089:  8079:  8071:  7973:  7965:  7957:  7905:14 May 7877:  7773:  7763:  7656:  7626:  7275:  7226:18 May 7171:  7122:  7114:  7066:18 May 7054:  6957:20 May 6909:18 May 6861:18 May 6854:  6812:  6802:  6753:  6743:  6694:18 May 6687:  6638:  6630:  6582:18 May 6527:  6478:18 May 6420:  6228:  6220:  6124:  5922:  5912:  5860:  5852:  5842:  5745:  5737:  5716:Nature 5653:  5596:  5374:  5364:  5308:  5300:  5273:Nature 5148:  5023:  5015:  4978:Nature 4921:  4868:  4818:  4810:  4783:Nature 4712:  4704:  4654:  4646:  4638:  4582:  4524:  4516:  4481:Nature 4451:  4242:  4192:  4097:  4046:  4023:  4015:  3969:  3902:  3820:  3773:  3748:  3712:  3663:  3653:  3520:  3470:  3462:  3454:  3296:  3250:  3240:  3144:  3003:Umbria 2979:  2841:  2349:Plecia 2346:genus 2262:, the 2201:roller 2051:, and 2024:, and 1996:horses 1957:, and 1896:tundra 1862:Africa 1831:plains 1785:Europe 1773:Alaska 1765:Arctic 1738:Poales 1600:azolla 1592:azolla 1537:, and 1477:snakes 1377:, and 1238:Europe 1169:, and 1016:kainos 1012:καινός 986:strata 984:, the 928:kainós 923:καινός 901:Eocene 890:Period 820:Eocene 768:Ancona 660:Formal 651:Series 592:Formal 493:  488:  483:  478:  398:Danian 312:Late K 33:Eocene 8050:PeerJ 7971:S2CID 7833:et al 7820:et al 7555:(PDF) 7169:S2CID 7120:S2CID 7052:S2CID 6852:S2CID 6685:S2CID 6667:(6). 6636:S2CID 6525:S2CID 6226:S2CID 6122:S2CID 5858:S2CID 5743:S2CID 5594:S2CID 5306:S2CID 5146:S2CID 5021:S2CID 4955:(PDF) 4816:S2CID 4710:S2CID 4652:S2CID 4580:S2CID 4522:S2CID 4449:S2CID 4021:S2CID 3818:S2CID 3710:S2CID 3692:(4). 3518:S2CID 3490:(PDF) 3468:S2CID 3294:S2CID 3164:(PDF) 3142:S2CID 2876:See: 2792:(PDF) 2756:(PDF) 2733:(PDF) 2661:Notes 2629:Bolca 2151:Birds 2114:whale 2022:Egypt 1975:Dwarf 1971:teeth 1967:hands 1936:Paris 1902:Fauna 1892:flora 1888:taiga 1866:India 1823:river 1703:Flora 1612:from 1311:India 1207:drift 1179:et al 1120:rocks 932:fauna 883:epoch 772:Italy 689:Egypt 685:Luxor 641:Epoch 606:Earth 8319:ISBN 8284:2024 8236:2024 8198:2024 8187:ISSN 8138:PMID 8087:PMID 8069:ISSN 8030:2024 7982:2023 7963:PMID 7955:ISSN 7907:2022 7875:ISSN 7771:PMID 7654:ISBN 7635:2023 7624:ISSN 7380:2023 7332:2024 7284:2023 7273:ISSN 7228:2023 7180:2023 7112:PMID 7068:2023 7007:2023 6959:2023 6911:2023 6863:2023 6810:PMID 6751:PMID 6696:2023 6628:PMID 6584:2023 6536:2023 6480:2023 6429:2023 6418:ISSN 6329:2023 6278:2023 6218:PMID 5920:PMID 5850:PMID 5735:PMID 5662:2023 5651:ISSN 5549:2023 5501:2023 5453:2023 5422:2023 5372:PMID 5317:2023 5298:PMID 5253:2023 5205:2023 5157:2023 5013:PMID 4937:link 4919:PMID 4877:2023 4866:ISSN 4808:PMID 4721:2023 4702:PMID 4644:PMID 4636:ISSN 4591:2023 4533:2022 4514:PMID 4460:2022 4404:2022 4318:2023 4240:ISSN 4190:ISBN 4151:2023 4106:2023 4095:ISSN 4044:ISBN 4013:PMID 3967:ISBN 3911:2023 3900:ISSN 3771:ISBN 3746:ISBN 3661:PMID 3460:PMID 3452:ISSN 3248:PMID 2977:PMID 2911:dawn 2839:ISBN 2817:2020 2302:and 2284:and 2264:ibis 2224:and 2128:and 2078:and 2006:bats 1963:legs 1912:fish 1908:bird 1868:and 1833:and 1827:lake 1783:and 1755:and 1419:ppmv 1375:coal 1361:and 1315:Asia 1282:Alps 1276:The 1244:and 1216:and 1147:1968 1134:and 918:Dawn 878:-oh- 818:The 812:1992 749:and 729:2003 674:PETM 509:PETM 48:PreꞒ 8273:doi 8261:128 8225:doi 8221:181 8179:doi 8128:PMC 8120:doi 8116:276 8077:PMC 8059:doi 8019:doi 8007:138 7947:doi 7935:376 7865:doi 7761:PMC 7751:doi 7710:doi 7706:341 7683:doi 7679:341 7616:doi 7604:205 7575:doi 7533:doi 7521:231 7496:doi 7456:doi 7419:doi 7369:doi 7321:doi 7309:601 7265:doi 7253:403 7217:doi 7205:389 7161:doi 7104:doi 7092:309 7044:doi 7032:315 6996:doi 6984:417 6948:doi 6900:doi 6844:doi 6840:135 6800:PMC 6792:doi 6741:PMC 6733:doi 6677:doi 6620:doi 6608:330 6573:doi 6561:297 6517:doi 6505:174 6469:doi 6457:119 6410:doi 6398:602 6369:doi 6318:doi 6306:215 6267:doi 6255:285 6210:doi 6163:doi 6114:doi 6074:doi 6062:144 6035:doi 5994:doi 5957:doi 5910:PMC 5900:doi 5888:115 5840:PMC 5832:doi 5789:doi 5725:doi 5721:457 5687:doi 5683:119 5643:hdl 5635:doi 5623:200 5584:doi 5538:doi 5490:doi 5445:109 5411:doi 5362:PMC 5354:doi 5290:doi 5278:471 5242:doi 5194:doi 5182:299 5138:hdl 5130:doi 5118:120 5089:doi 5077:290 5003:hdl 4995:doi 4983:357 4911:doi 4899:292 4858:doi 4800:doi 4788:406 4754:doi 4694:doi 4682:352 4628:doi 4616:127 4570:doi 4506:hdl 4498:doi 4486:559 4441:doi 4393:doi 4381:366 4352:doi 4340:435 4307:doi 4295:167 4232:doi 4220:226 4182:doi 4143:105 4087:doi 4005:doi 3993:320 3959:doi 3934:doi 3892:doi 3888:133 3857:doi 3810:doi 3738:doi 3702:hdl 3694:doi 3651:PMC 3641:doi 3629:110 3599:doi 3587:116 3556:doi 3510:doi 3498:161 3444:hdl 3436:doi 3424:330 3395:doi 3354:doi 3286:doi 3274:131 3238:PMC 3230:doi 3184:doi 3172:123 3134:doi 3122:135 3101:156 3078:hdl 3030:378 3001:in 2967:doi 2955:115 2883:to 2804:doi 2768:doi 2712:doi 2174:. 2088:). 2004:), 1810:in 1481:TEX 1392:ppm 1232:of 1007:Ēṓs 1002:Ἠώς 972:in 916:, " 914:Ēṓs 909:Ἠώς 897:Era 826:IPA 740:of 738:LAD 617:ICS 567:ICS 9195:: 9150:Ga 9146:Ma 9142:ka 8271:. 8259:. 8253:. 8219:. 8215:. 8185:. 8177:. 8167:44 8165:. 8159:. 8136:. 8126:. 8114:. 8108:. 8085:. 8075:. 8067:. 8053:. 8047:. 8017:. 8005:. 7999:. 7969:. 7961:. 7953:. 7945:. 7933:. 7927:. 7895:. 7873:. 7863:. 7861:10 7859:. 7853:. 7804:. 7769:. 7759:. 7749:. 7737:. 7731:. 7704:. 7677:. 7622:. 7614:. 7602:. 7596:. 7573:. 7563:54 7561:. 7557:. 7531:. 7519:. 7494:. 7484:66 7482:. 7468:^ 7454:. 7444:24 7442:. 7417:. 7407:36 7405:. 7388:^ 7367:. 7357:29 7355:. 7349:. 7319:. 7307:. 7301:. 7271:. 7263:. 7251:. 7245:. 7215:. 7203:. 7197:. 7167:. 7159:. 7149:34 7147:. 7141:. 7118:. 7110:. 7102:. 7090:. 7076:^ 7050:. 7042:. 7030:. 7024:. 6994:. 6982:. 6976:. 6946:. 6936:24 6934:. 6928:. 6898:. 6888:25 6886:. 6880:. 6850:. 6838:. 6832:. 6808:. 6798:. 6790:. 6778:. 6772:. 6749:. 6739:. 6731:. 6719:. 6713:. 6683:. 6675:. 6665:35 6663:. 6657:. 6634:. 6626:. 6618:. 6606:. 6592:^ 6571:. 6559:. 6553:. 6523:. 6515:. 6503:. 6497:. 6467:. 6455:. 6449:. 6437:^ 6416:. 6408:. 6396:. 6390:. 6367:. 6357:31 6355:. 6337:^ 6316:. 6304:. 6298:. 6286:^ 6265:. 6253:. 6247:. 6224:. 6216:. 6208:. 6196:. 6177:^ 6161:. 6149:. 6143:. 6120:. 6112:. 6102:25 6100:. 6086:^ 6072:. 6060:. 6033:. 6023:28 6021:. 6015:. 5992:. 5982:22 5980:. 5955:. 5945:18 5943:. 5918:. 5908:. 5898:. 5886:. 5880:. 5856:. 5848:. 5838:. 5830:. 5820:12 5818:. 5812:. 5787:. 5775:. 5769:. 5755:^ 5741:. 5733:. 5719:. 5713:. 5699:^ 5681:. 5649:. 5641:. 5633:. 5621:. 5615:. 5592:. 5582:. 5572:58 5570:. 5566:. 5536:. 5524:. 5518:. 5488:. 5478:18 5476:. 5470:. 5443:. 5439:. 5409:. 5399:45 5397:. 5393:. 5370:. 5360:. 5352:. 5340:. 5334:. 5304:. 5296:. 5288:. 5276:. 5270:. 5240:. 5228:. 5222:. 5192:. 5180:. 5174:. 5144:. 5136:. 5128:. 5116:. 5110:. 5087:. 5075:. 5042:. 5019:. 5011:. 5001:. 4993:. 4981:. 4967:^ 4957:. 4933:}} 4929:{{ 4917:. 4909:. 4897:. 4864:. 4856:. 4846:38 4844:. 4838:. 4814:. 4806:. 4798:. 4786:. 4766:^ 4752:. 4740:. 4708:. 4700:. 4692:. 4680:. 4674:. 4650:. 4642:. 4634:. 4626:. 4614:. 4608:. 4578:. 4568:. 4558:16 4556:. 4550:. 4520:. 4512:. 4504:. 4496:. 4484:. 4478:. 4447:. 4439:. 4429:11 4427:. 4421:. 4391:. 4379:. 4373:. 4350:. 4338:. 4305:. 4293:. 4289:. 4277:^ 4261:. 4238:. 4230:. 4218:. 4214:. 4188:. 4141:. 4135:. 4093:. 4085:. 4075:30 4073:. 4067:. 4019:. 4011:. 4003:. 3991:. 3965:. 3928:. 3898:. 3886:. 3880:. 3855:. 3845:17 3843:. 3839:. 3816:. 3808:. 3798:46 3796:. 3744:. 3732:. 3708:. 3700:. 3690:19 3688:. 3682:. 3659:. 3649:. 3639:. 3627:. 3621:. 3597:. 3585:. 3579:. 3539:. 3516:. 3508:. 3496:. 3492:. 3466:. 3458:. 3450:. 3442:. 3434:. 3422:. 3418:. 3393:. 3383:18 3381:. 3375:. 3352:. 3342:40 3340:. 3334:. 3315:. 3292:. 3284:. 3272:. 3246:. 3236:. 3228:. 3216:. 3210:. 3198:^ 3182:. 3170:. 3166:. 3140:. 3132:. 3120:. 3099:. 3050:. 2975:. 2965:. 2953:. 2949:. 2928:. 2860:. 2800:16 2798:. 2794:. 2764:30 2762:. 2758:. 2741:^ 2710:. 2700:47 2698:. 2330:, 2290:. 2252:, 2244:, 2214:, 2139:, 2132:. 2045:, 2036:. 2020:, 2008:, 1953:, 1934:, 1898:. 1872:. 1864:, 1860:, 1837:. 1814:. 1787:. 1775:. 1533:, 1483:86 1373:, 1317:, 1273:. 1266:. 1240:, 1165:, 1161:, 1110:. 1037:) 1029:, 876:EE 872:EE 865:-/ 862:oʊ 859:iː 847:iː 838:iː 828:: 770:, 766:, 687:, 670:δC 98:Pg 42:Ma 8546:e 8539:t 8532:v 8414:e 8407:t 8400:v 8275:: 8267:: 8227:: 8181:: 8173:: 8144:. 8122:: 8093:. 8061:: 8055:8 8021:: 8013:: 7984:. 7949:: 7941:: 7909:. 7881:. 7867:: 7839:. 7777:. 7753:: 7745:: 7739:6 7716:. 7712:: 7689:. 7685:: 7662:. 7618:: 7610:: 7581:. 7577:: 7569:: 7539:. 7535:: 7527:: 7502:. 7498:: 7490:: 7462:. 7458:: 7450:: 7425:. 7421:: 7413:: 7382:. 7371:: 7363:: 7323:: 7315:: 7267:: 7259:: 7230:. 7219:: 7211:: 7182:. 7163:: 7155:: 7126:. 7106:: 7098:: 7070:. 7046:: 7038:: 7009:. 6998:: 6990:: 6961:. 6950:: 6942:: 6913:. 6902:: 6894:: 6865:. 6846:: 6816:. 6794:: 6786:: 6780:9 6757:. 6735:: 6727:: 6721:9 6698:. 6679:: 6671:: 6642:. 6622:: 6614:: 6586:. 6575:: 6567:: 6538:. 6519:: 6511:: 6482:. 6471:: 6463:: 6431:. 6412:: 6404:: 6375:. 6371:: 6363:: 6331:. 6320:: 6312:: 6280:. 6269:: 6261:: 6232:. 6212:: 6204:: 6198:7 6171:. 6165:: 6157:: 6151:4 6128:. 6116:: 6108:: 6080:. 6076:: 6068:: 6043:. 6037:: 6029:: 6000:. 5996:: 5988:: 5963:. 5959:: 5951:: 5926:. 5902:: 5894:: 5864:. 5834:: 5826:: 5797:. 5791:: 5783:: 5777:7 5749:. 5727:: 5693:. 5689:: 5664:. 5645:: 5637:: 5629:: 5600:. 5586:: 5578:: 5551:. 5540:: 5532:: 5526:5 5503:. 5492:: 5484:: 5455:. 5424:. 5413:: 5405:: 5378:. 5356:: 5348:: 5342:7 5319:. 5292:: 5284:: 5255:. 5244:: 5236:: 5230:7 5207:. 5196:: 5188:: 5159:. 5140:: 5132:: 5124:: 5095:. 5091:: 5083:: 5057:. 5027:. 5005:: 4997:: 4989:: 4961:. 4939:) 4925:. 4913:: 4905:: 4879:. 4860:: 4852:: 4822:. 4802:: 4794:: 4760:. 4756:: 4748:: 4742:3 4723:. 4696:: 4688:: 4658:. 4630:: 4622:: 4593:. 4572:: 4564:: 4535:. 4508:: 4500:: 4492:: 4462:. 4443:: 4435:: 4406:. 4395:: 4387:: 4358:. 4354:: 4346:: 4320:. 4309:: 4301:: 4271:. 4246:. 4234:: 4226:: 4198:. 4184:: 4153:. 4089:: 4081:: 4052:. 4027:. 4007:: 3999:: 3975:. 3961:: 3942:. 3936:: 3913:. 3894:: 3865:. 3859:: 3851:: 3824:. 3812:: 3804:: 3779:. 3754:. 3740:: 3734:8 3716:. 3704:: 3696:: 3667:. 3643:: 3635:: 3605:. 3601:: 3593:: 3564:. 3558:: 3543:. 3524:. 3512:: 3504:: 3474:. 3446:: 3438:: 3430:: 3403:. 3397:: 3389:: 3360:. 3356:: 3348:: 3300:. 3288:: 3280:: 3254:. 3232:: 3224:: 3218:8 3192:. 3186:: 3178:: 3148:. 3136:: 3128:: 3084:. 3080:: 3032:. 2983:. 2969:: 2961:: 2934:. 2819:. 2806:: 2776:. 2770:: 2718:. 2714:: 2706:: 2181:) 2177:( 1719:. 1145:( 1005:( 954:C 950:C 926:( 912:( 856:ˈ 853:, 850:n 844:s 841:ə 835:ˈ 832:/ 822:( 619:) 382:e 380:n 378:e 376:c 374:o 372:g 370:i 368:l 366:O 357:e 355:n 353:e 351:c 349:o 347:E 336:e 334:n 332:e 330:c 328:o 326:e 324:l 322:a 320:P 304:N 294:e 292:n 290:e 288:g 286:o 284:e 282:l 280:a 278:P 268:K 258:c 256:i 254:o 252:z 250:o 248:n 246:e 244:C 233:Z 231:M 103:N 93:K 88:J 83:T 78:P 73:C 68:D 63:S 58:O 53:Ꞓ 20:)

Index

Late Eocene
Ma
PreꞒ

O
S
D
C
P
T
J
K
Pg
N

M
Z

C
e
n
o
z
o
i
c

K
P
a
l
e
o
g
e
n
e

N
Late K
P
a
l
e
o
c
e
n
e

E
o
c
e
n
e

O
l
i
g
o
c
e
n
e

Miocene
Danian
Selandian
Thanetian
Ypresian
Lutetian

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.