Knowledge

Large countable ordinal

Source 📝

180:. Briefly, an ordinal notation is either the name zero (describing the ordinal 0), or the successor of an ordinal notation (describing the successor of the ordinal described by that notation), or a Turing machine (computable function) that produces an increasing sequence of ordinal notations (that describe the ordinal that is the limit of the sequence), and ordinal notations are (partially) ordered so as to make the successor of 6725:. Every recursively enumerable (or even hyperarithmetic) nonempty subset of this total ordering has a least element. So it resembles a well-ordering in some respects. For example, one can define the arithmetic operations on it. Yet it is not possible to effectively determine exactly where the initial well-ordered part ends and the part lacking a least element begins. 604: 165:. There are several equivalent definitions of this: the simplest is to say that a computable ordinal is the order-type of some recursive (i.e., computable) well-ordering of the natural numbers; so, essentially, an ordinal is recursive when we can present the set of smaller ordinals in such a way that a computer ( 1699:. It can be described as the set of all ordinals that can be written as finite expressions, starting from zero, using only the Veblen hierarchy and addition. The Feferman–Schütte ordinal is important because, in a sense that is complicated to make precise, it is the smallest (infinite) ordinal that cannot be (" 3619:
axioms, one gets some extremely large recursive ordinals. (Strictly speaking it is not known that all of these really are ordinals: by construction, the ordinal strength of a theory can only be proved to be an ordinal from an even stronger theory. So for the large cardinal axioms this becomes quite
1794:
To go far beyond the Feferman–Schütte ordinal, one needs to introduce new methods. Unfortunately there is not yet any standard way to do this: every author in the subject seems to have invented their own system of notation, and it is quite hard to translate between the different systems. The first
203:
It is tempting to forget about ordinal notations, and only speak of the recursive ordinals themselves: and some statements are made about recursive ordinals which, in fact, concern the notations for these ordinals. This leads to difficulties, however, as even the smallest infinite ordinal, ω, has
3602:
By dropping the requirement of having a concrete description, even larger recursive countable ordinals can be obtained as the ordinals measuring the strengths of various strong theories; roughly speaking, these ordinals are the smallest order types of "natural" ordinal notations that the theories
4870:
into a smaller ordinal. (This is trivially true for regular cardinals; however, we are mainly interested in countable ordinals.) Being nonprojectible is a much stronger condition than being admissible, recursively inaccessible, or even recursively Mahlo. By Jensen's method of projecta, this
1827:) is defined to be the smallest ordinal that cannot be constructed by starting with 0, 1, ω and Ω, and repeatedly applying addition, multiplication and exponentiation, and ψ to previously constructed ordinals (except that ψ can only be applied to arguments less than 461: 1815:, and Pohlers. However most systems use the same basic idea, of constructing new countable ordinals by using the existence of certain uncountable ordinals. Here is an example of such a definition, described in much greater detail in the article on 192:
of ordinal notations itself is highly non-recursive, owing to the impossibility of deciding whether a given Turing machine does indeed produce a sequence of notations); a recursive ordinal is then an ordinal described by some ordinal notation.
307:, and, in fact, merely adding to Peano's axioms the axioms that state the well-ordering of all ordinals below the Bachmann–Howard ordinal is sufficient to obtain all arithmetical consequences of Kripke–Platek set theory. 3412:
Next is the last unnamed ordinal, referred by David Madore as the proof-theoretic ordinal of Stability. This is the proof-theoretic ordinal of Stability, an extension of Kripke-Platek set theory. Its value is equal to
1428: 1876:
To construct still larger ordinals, we can extend the definition of ψ by throwing in more ways of constructing uncountable ordinals. There are several ways to do this, described to some extent in the article on
2433: 5951: 4438:
is recursively Mahlo and more, but even if we limit ourselves to countable ordinals, ZFC proves the existence of recursively Mahlo ordinals. They are, however, beyond the reach of Kripke–Platek set theory.)
5407: 2364: 7313: 1032: 6666: 6461: 6341: 6217: 6060: 1906:. Indeed, the main importance of these large ordinals, and the reason to describe them, is their relation to certain formal systems as explained above. However, such powerful formal systems as full 6872: 3456: 2486: 4405: 2579: 1616: 1548: 832: 599:{\displaystyle \varepsilon _{0}+1,\qquad \omega ^{\varepsilon _{0}+1}=\varepsilon _{0}\cdot \omega ,\qquad \omega ^{\omega ^{\varepsilon _{0}+1}}=(\varepsilon _{0})^{\omega },\qquad {\text{etc.}}} 1719:
It is, of course, possible to describe ordinals beyond the Feferman–Schütte ordinal. One could continue to seek fixed points in a more and more complicated manner: enumerate the fixed points of
983: 4066: 4001: 3293: 1750: 6688:
some represent ordinals and some do not. One can define a recursive total ordering that is a subset of the Kleene notations and has an initial segment which is well-ordered with order-type
747: 1666: 1967: 874: 6723: 3945: 3812: 3717: 3680: 1259: 1223: 1088: 449: 7819: 5231: 4129: 2526: 783: 3156: 3018: 2912: 2695: 2619: 660: 368: 2169: 2003: 5689: 5599: 5490: 6802: 3192: 687: 133:, but they are large among those that have constructive notations (descriptions). Larger and larger ordinals can be defined, but they become more and more difficult to describe. 6926: 4247: 2051: 5756:
These are weakened variants of stable ordinals. There are ordinals with these properties smaller than the aforementioned least nonprojectible ordinal, for example an ordinal is
3054: 2948: 2778: 2226: 1574: 1506: 1312: 1285: 1161: 1135: 921: 6612: 1480: 415: 60:). However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not (for reasons somewhat analogous to the unsolvability of the 2088: 5721: 5631: 2870: 1454: 2652: 2133: 5815: 4359: 4161: 3244: 3110: 2834: 2288: 2258: 1342: 7845: 5658: 5568: 5521: 5290: 5133: 5057: 5034: 4958: 4931: 4904: 4535: 3904: 3839: 3775: 3748: 3503: 3340: 2722: 1697: 260:
can easily be arithmetically described (it is countable), the Peano axioms are not strong enough to show that it is indeed an ordinal; in fact, transfinite induction on ε
714: 5888: 3570: 3550: 3407: 3387: 5066:
work on projecta. The least ordinals that are nonprojectible relative to a given set are tied to Harrington's construction of the smallest reflecting Spector 2-class.
4796: 4737: 4700: 4649: 4614: 6524: 6501: 6404: 6381: 6284: 6261: 6160: 6127: 6104: 5973: 5859: 5741: 5450: 5346: 5326: 5263: 5186: 5106: 4868: 4848: 4824: 4555: 4506: 4485: 4465: 4319: 4299: 4279: 4204: 4184: 4087: 4021: 2308: 1367: 1187: 1108: 1052: 388: 6481: 6361: 6237: 6080: 6003: 941: 894: 627: 6946: 6892: 4575: 4425: 3530: 3367: 6586: 6553: 5783: 3212: 4984: 5007: 5835: 5541: 5430: 5156: 4769: 4673: 3476: 3313: 3074: 2968: 2798: 2742: 7087: 3641:
be described in a recursive way. (It is not the order type of any recursive well-ordering of the integers.) That ordinal is a countable ordinal called the
5088:(a hypothesis stronger than the mere hypothesis of consistency, and implied by the existence of an inaccessible cardinal), then there exists a countable 6980:(for Veblen hierarchy and some impredicative ordinals). This is probably the most readable book on large countable ordinals (which is not saying much). 4430:
But note that we are still talking about possibly countable ordinals here. (While the existence of inaccessible or Mahlo cardinals cannot be proved in
7146: 7047: 7019: 6965: 204:
many notations, some of which cannot be proved to be equivalent to the obvious notation (the simplest program that enumerates all natural numbers).
7071: 6735:
or another recursively axiomatizable theory that has an ω-model but no hyperarithmetical ω-models, and (if needed) conservatively extend S with
3962:, the countable admissible ordinals are exactly those constructed in a manner similar to the Church–Kleene ordinal but for Turing machines with 196:
Any ordinal smaller than a recursive ordinal is itself recursive, so the set of all recursive ordinals forms a certain (countable) ordinal, the
1375: 7224: 7585:. In: Barwise, J. (eds) The Syntax and Semantics of Infinitary Languages. Lecture Notes in Mathematics, vol 72. Springer, Berlin, Heidelberg. 6808:) (for the first n formulas φ with one numeric free variable; ⌈φ⌉ is the Gödel number) has no inconsistency proof shorter than n. Then the 8005: 7091: 2376: 3719:
is the smallest non-recursive ordinal, and there is no hope of precisely "describing" any ordinals from this point on—we can only
269: 8145: 5896: 5135:
is a model of ZFC. Such ordinals are beyond the strength of ZFC in the sense that it cannot (by construction) prove their existence.
2097:
are isomorphic to Buchholz's ordinal notation, the ordinals up to this point can be expressed using hydras from the game. For example
8121: 2175: 5351: 749:, but since the Greek alphabet does not have transfinitely many letters it is better to use a more robust notation: define ordinals 2313: 17: 7254: 4069:
is the smallest limit of admissible ordinals (mentioned later), yet the ordinal itself is not admissible. It is also the smallest
6729: 1704: 988: 7661: 6617: 6412: 6292: 6168: 6011: 7234: 6818: 3416: 2441: 4364: 2534: 1579: 1511: 788: 1922:
Beyond this, there are multiple recursive ordinals which aren't as well known as the previous ones. The first of these is
946: 129:
is used throughout, except where otherwise noted. The ordinals described here are not as large as the ones described in
3863:) was the smallest ordinal for which KP does not prove transfinite induction, the Church–Kleene ordinal is the smallest 3575:
Next is a group of ordinals which not that much are known about, but are still fairly significant (in ascending order):
4034: 3969: 3253: 1722: 7930: 7769: 7347: 7121: 7041: 7013: 6995: 6977: 4702:-reflecting ordinal is also the supremum of the closure ordinals of monotonic inductive definitions whose graphs are 1839:
is the first uncountable ordinal. It is put in because otherwise the function ψ gets "stuck" at the smallest ordinal
6672:
Stronger weakenings of stability have appeared in proof-theoretic publications, including analysis of subsystems of
3586:
A possible limit of Taranovsky's C ordinal notation. (Conjectural, assuming well-foundedness of the notation system)
719: 7998: 1629: 1929: 837: 6691: 5081: 4431: 3913: 3780: 3685: 3648: 3612: 3590: 1911: 1228: 1192: 1057: 420: 8046: 7793: 5191: 4092: 2491: 1669: 752: 6956:
Most books describing large countable ordinals are on proof theory, and unfortunately tend to be out of print.
3119: 2981: 2875: 2657: 2584: 1716:
enumerates the ordinals that cannot be obtained from smaller ordinals using addition and the Veblen functions.
632: 340: 2138: 1972: 7056: 5666: 5576: 331: 250: 7558: 5455: 4616:-reflection schema. They can also be considered "recursive analogues" of some uncountable cardinals such as 2840:
augmented by the recursive inaccessibility of the class of ordinals (KPi), or, on the arithmetical side, of
6742: 3856: 3247: 3164: 3113: 2975: 2837: 1903: 665: 300: 7906: 327: 8085: 7991: 6897: 4986:) is not a strong enough axiom schema to imply nonprojectibility, in fact there are transitive models of 4213: 2008: 1886: 1878: 1816: 1789: 304: 7498: 3026: 2920: 2750: 2370: 2181: 1553: 1485: 1290: 1264: 1140: 1113: 899: 299:
But we can do this for systems far beyond Peano's axioms. For example, the proof-theoretic strength of
188:
and to make the limit greater than any term of the sequence (this order is computable; however, the set
67:
Since there are only countably many notations, all ordinals with notations are exhausted well below the
7026:
Math. Intelligencer 4 (1982), no. 4, 182–189; contains an informal description of the Veblen hierarchy.
6591: 5075: 1459: 393: 7975: 4249:. An ordinal that is both recursively inaccessible and a limit of recursively inaccessibles is called 2060: 8178: 7438: 7250: 5694: 5604: 5159: 3642: 2843: 1902:) with the notation above) is an important one, because it describes the proof-theoretic strength of 1433: 197: 68: 4253:. There exists a theory of large ordinals in this manner that is highly parallel to that of (small) 227:
Certain computable ordinals are so large that while they can be given by a certain ordinal notation
8203: 6809: 4586: 4434:, that of recursively inaccessible or recursively Mahlo ordinals is a theorem of ZFC: in fact, any 3947:
is the smallest admissible ordinal (beyond ω in case the axiom of infinity is not included in KP).
2624: 2366:. It is the supremum of the range of Buchholz's psi functions. It was first named by David Madore. 2100: 293: 7734: 6739:. Let T be the tree of (essentially) finite partial ω-models of S: A sequence of natural numbers 5788: 4328: 4134: 3217: 3083: 2807: 2263: 2231: 1317: 7823: 7601: 6673: 5636: 5546: 5499: 5268: 5111: 5039: 5012: 4936: 4909: 4882: 4617: 4513: 4254: 3882: 3817: 3753: 3726: 3604: 3580: 3481: 3318: 3077: 2700: 2053:, a first-order theory of arithmetic allowing quantification over the natural numbers as well as 1907: 1869:≤Ω. However the fact that we included Ω allows us to get past this point: ψ(Ω+1) is greater than 1675: 273: 64:); various more-concrete ways of defining ordinals that definitely have notations are available. 692: 161:(or recursive ordinals) are certain countable ordinals: loosely speaking those represented by a 5864: 5744: 5293: 4872: 4703: 4621: 3868: 3555: 3535: 3392: 3372: 277: 4774: 4715: 4678: 4627: 4592: 8208: 8102: 6509: 6486: 6389: 6366: 6269: 6246: 6132: 6112: 6089: 5958: 5844: 5726: 5435: 5331: 5311: 5248: 5171: 5091: 4853: 4833: 4809: 4740: 4540: 4491: 4470: 4450: 4304: 4284: 4264: 4189: 4169: 4072: 4006: 2801: 2293: 1352: 1172: 1093: 1037: 373: 236: 7559:"Ordinal proof theory of Kripke-Platek set theory augmented by strong reflection principles" 6466: 6346: 6222: 6065: 5978: 5304:; the existence of these ordinals can be proved in ZFC, and they are closely related to the 926: 879: 612: 8164: 8075: 8065: 7809:, Studies in Logic and the Foundations of Mathematics (vol. 79, 1974). Accessed 2022-12-04. 7357: 7332:
Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies
6931: 6877: 4560: 4410: 3508: 3345: 1873:. The key property of Ω that we used is that it is greater than any ordinal produced by ψ. 1777: 1773: 6562: 6529: 5759: 3197: 8: 7453:"Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM" 4963: 4166:
An ordinal that is both admissible and a limit of admissibles, or equivalently such that
3161:
Next is another unnamed ordinal, referred by David Madore as the "countable" collapse of
3023:
Next is another unnamed ordinal, referred by David Madore as the "countable" collapse of
2917:
Next is another unnamed ordinal, referred by David Madore as the "countable" collapse of
173: 162: 50: 4989: 122:). Countable ordinals larger than this may still be defined, but do not have notations. 8150: 7955: 7691: 7480: 7110: 7061: 7029: 6240: 6083: 5820: 5526: 5415: 5141: 4754: 4658: 3850: 3608: 3461: 3298: 3059: 2953: 2783: 2727: 158: 142: 126: 42: 7922: 7753: 7633: 8055: 7936: 7926: 7775: 7765: 7615: 7596: 7472: 7343: 7230: 7205: 7200: 7183: 7117: 7037: 7009: 6991: 6973: 3634: 243: 7484: 7410: 2747:
Next is an unnamed ordinal, referred by David Madore as the "countable" collapse of
7918: 7757: 7749: 7610: 7526: 7464: 7335: 7327: 7195: 5085: 4748: 4435: 2531:
This next ordinal is, once again, mentioned in this same piece of code, defined as
2438:
The next ordinal is mentioned in the same piece of code as earlier, and defined as
1803:
manner), and different extensions and variations of it were described by Buchholz,
1703:") described using smaller ordinals. It measures the strength of such systems as " 1165: 177: 153: 57: 53: 41:. The smallest ones can be usefully and non-circularly expressed in terms of their 7162: 8025: 7353: 7334:. Lecture Notes in Mathematics. Vol. 897. Springer-Verlag, Berlin-New York. 7150: 6736: 3951: 1345: 321: 265: 130: 61: 7680:, Studies in Logic and the Foundation of Mathematics vol. 94 (1978), pp.147--183 7001: 3603:
cannot prove are well ordered. By taking stronger and stronger theories such as
1812: 272:, Peano's axioms cannot formalize that reasoning. (This is at the basis of the 8034: 7859: 7806: 6556: 6407: 6287: 6163: 6006: 5891: 4322: 3963: 3616: 2971: 2094: 1796: 166: 38: 5080:
We can imagine even larger ordinals that are still countable. For example, if
1923: 8197: 7940: 7779: 7476: 7229:. Perspectives in Logic (2 ed.). Cambridge: Cambridge University Press. 7209: 6983: 6685: 5063: 3955: 3859:, but now in a different way: whereas the Bachmann–Howard ordinal (described 1804: 1700: 213: 35: 7711: 7983: 7872: 7690:
Arai, Toshiyasu (2015). "A simplified analysis of first-order reflection".
3959: 2310:-times iterated inductive definitions". In this notation, it is defined as 246: 221: 46: 4321:
contains an admissible ordinal (a recursive analog of the definition of a
1169:(there are inessential variations in the definition, such as letting, for 7105: 4023:-th ordinal that is either admissible or a limit of smaller admissibles. 1808: 1423:{\displaystyle \varphi _{\alpha }(\beta )<\varphi _{\gamma }(\delta )} 7735:"Inductive Definitions and Reflecting Properties of Admissible Ordinals" 7676:
A. Kechris, "Spector Second-order Classes and Reflection". Appearing in
7076: 231:, a given formal system might not be sufficiently powerful to show that 7761: 7678:
Generalized Recursion Theory II: Proceedings of the 1977 Oslo Symposium
7468: 7339: 7154: 7081: 7065: 3750:. However, as its symbol suggests, it behaves in many ways rather like 217: 31: 7713:
Inductive Definitions and Reflection Properties of Admissible Ordinals
7696: 7582: 7452: 1287:: this essentially just shifts the indices by 1, which is harmless). 7960: 7954:
Arai, Toshiyasu (1996). "Introducing the hardline in proof theory".
7860:
An introduction to the fine structure of the constructible hierarchy
7807:
An introduction to the fine structure of the constructible hierarchy
2428:{\displaystyle \psi _{0}(\Omega _{\omega +1}\cdot \varepsilon _{0})} 2005:, using the previous notation. It is the proof-theoretic ordinal of 7876: 3723:
them. But it is still far less than the first uncountable ordinal,
315: 75: 7112:
Admissible Sets and Structures: an Approach to Definability Theory
3777:. For instance, one can define ordinal collapsing functions using 2090:, the "formal theory of finitely iterated inductive definitions". 5946:{\displaystyle L_{\alpha }\prec _{\Sigma _{1}}L_{\alpha +\beta }} 3246:-indescribable cardinal. This is the proof-theoretic ordinal of 3112:-indescribable) cardinal. This is the proof-theoretic ordinal of 2836:-indescribable) cardinal. This is the proof-theoretic ordinal of 4577:. These ordinals appear in ordinal analysis of theories such as 7880: 5402:{\displaystyle L_{\alpha }\prec _{\Sigma _{1}}L_{\omega _{1}}} 3597: 2974:. This is the proof-theoretic ordinal of KPM, an extension of 2872:-comprehension + transfinite induction. Its value is equal to 7077:
Transfinite Ordinals and Their Notations: For The Uninitiated
6728:
For an example of a recursive pseudo-well-ordering, let S be
2359:{\displaystyle \psi _{0}(\varepsilon _{\Omega _{\omega }+1})} 169:, say) can manipulate them (and, essentially, compare them). 7308:{\displaystyle (\Pi _{1}^{1}{\mathsf {-CA}}){\mathsf {+BI}}} 7044:(describes recursive ordinals and the Church–Kleene ordinal) 5245:, can be defined by indescribability conditions or as those 2369:
The next ordinal is mentioned in a piece of code describing
451:, ... The next ordinal satisfying this equation is called ε 212:
There is a relation between computable ordinals and certain
7325: 7140: 6363:
is the least recursively inaccessible ordinal larger than
1917: 1768:
steps of this process, and continue diagonalizing in this
1621: 1027:{\displaystyle \varphi _{1}(\beta )=\varepsilon _{\beta }} 235:
is, indeed, an ordinal notation: the system does not show
7034:
Theory of Recursive Functions and Effective Computability
6661:{\displaystyle L_{\alpha }\prec _{\Sigma _{1}}L_{\beta }} 6456:{\displaystyle L_{\alpha }\prec _{\Sigma _{1}}L_{\beta }} 6336:{\displaystyle L_{\alpha }\prec _{\Sigma _{1}}L_{\beta }} 6212:{\displaystyle L_{\alpha }\prec _{\Sigma _{1}}L_{\beta }} 6055:{\displaystyle L_{\alpha }\prec _{\Sigma _{1}}L_{\beta }} 97:(not to be confused with the first uncountable ordinal, ω 4739:-reflecting ordinals also have a characterization using 4210:, and the least recursively inaccessible may be denoted 207: 7116:. Perspectives in Mathematical Logic. Springer-Verlag. 5158:
is a recursively enumerable set theory consistent with
264:
proves the consistency of Peano's axioms (a theorem by
119: 7135:. Perspectives in Mathematical Logic. Springer-Verlag. 7016:(for Veblen hierarchy and some impredicative ordinals) 6867:{\displaystyle \omega _{1}^{CK}\times (1+\eta )+\rho } 5233:
is less than the least stable ordinal, which follows.
3451:{\displaystyle \Psi _{X}^{\varepsilon _{\Upsilon +1}}} 2481:{\displaystyle \psi _{0}(\Omega _{\omega ^{\omega }})} 7976:
The countable admissible ordinal equivalence relation
7826: 7257: 6934: 6900: 6880: 6821: 6745: 6694: 6620: 6594: 6565: 6532: 6512: 6489: 6469: 6415: 6392: 6369: 6349: 6295: 6272: 6249: 6225: 6171: 6135: 6115: 6092: 6068: 6014: 5981: 5961: 5899: 5867: 5847: 5823: 5791: 5762: 5729: 5697: 5669: 5639: 5607: 5579: 5549: 5529: 5502: 5458: 5438: 5418: 5354: 5334: 5314: 5305: 5271: 5251: 5194: 5174: 5144: 5114: 5094: 5042: 5015: 4992: 4966: 4939: 4912: 4885: 4856: 4836: 4812: 4777: 4757: 4718: 4681: 4661: 4630: 4595: 4563: 4543: 4516: 4494: 4473: 4453: 4413: 4400:{\displaystyle L_{\rho }\cap {\mathcal {P}}(\omega )} 4367: 4331: 4307: 4287: 4267: 4216: 4192: 4172: 4137: 4095: 4075: 4037: 4009: 3972: 3916: 3885: 3820: 3783: 3756: 3729: 3688: 3651: 3558: 3538: 3511: 3484: 3464: 3419: 3395: 3375: 3348: 3321: 3301: 3256: 3220: 3200: 3167: 3122: 3086: 3062: 3029: 2984: 2956: 2923: 2878: 2846: 2810: 2786: 2753: 2730: 2703: 2660: 2627: 2587: 2574:{\displaystyle \psi _{0}(\Omega _{\varepsilon _{0}})} 2537: 2494: 2444: 2379: 2316: 2296: 2266: 2234: 2184: 2141: 2103: 2063: 2011: 1975: 1932: 1725: 1678: 1632: 1611:{\displaystyle \varphi _{\alpha }(\beta )<\delta } 1582: 1556: 1543:{\displaystyle \beta <\varphi _{\gamma }(\delta )} 1514: 1488: 1462: 1436: 1378: 1355: 1320: 1293: 1267: 1231: 1195: 1175: 1143: 1116: 1096: 1060: 1040: 991: 949: 929: 902: 882: 840: 827:{\displaystyle \varphi _{0}(\beta )=\omega ^{\beta }} 791: 755: 722: 695: 668: 635: 615: 464: 423: 396: 376: 343: 136: 7499:"Ordinal notations based on a weakly Mahlo cardinal" 7060:, volume 41, number 2, June 1976, pages 439 to 459, 2228:; and another subsystem of second-order arithmetic: 7911:
Studies in Logic and the Foundations of Mathematics
7742:
Studies in Logic and the Foundations of Mathematics
7184:"A new system of proof-theoretic ordinal functions" 7052:
Normal Functions and Constructive Ordinal Notations
6483:is the least recursively Mahlo ordinal larger than 978:{\displaystyle \varphi _{\gamma }(\alpha )=\alpha } 249:do not prove transfinite induction for (or beyond) 7839: 7441:(1984) (lemmata 1.3 and 1.8). Accessed 2022-05-04. 7307: 7109: 6940: 6920: 6886: 6866: 6796: 6717: 6660: 6606: 6580: 6547: 6518: 6495: 6475: 6455: 6398: 6375: 6355: 6335: 6278: 6255: 6231: 6211: 6154: 6121: 6098: 6074: 6054: 5997: 5967: 5945: 5882: 5853: 5829: 5809: 5777: 5735: 5715: 5683: 5652: 5625: 5593: 5562: 5535: 5515: 5484: 5444: 5432:has some definability-related properties. Letting 5424: 5401: 5340: 5320: 5308:from a model-theoretic perspective. For countable 5284: 5257: 5225: 5180: 5150: 5127: 5100: 5069: 5051: 5028: 5001: 4978: 4952: 4925: 4898: 4871:statement is equivalent to the statement that the 4862: 4842: 4818: 4790: 4763: 4731: 4694: 4667: 4643: 4608: 4569: 4549: 4529: 4500: 4479: 4459: 4419: 4399: 4353: 4313: 4293: 4273: 4241: 4198: 4178: 4155: 4123: 4081: 4060: 4015: 3995: 3939: 3898: 3833: 3806: 3769: 3742: 3711: 3674: 3564: 3544: 3524: 3497: 3470: 3450: 3401: 3381: 3361: 3334: 3307: 3287: 3238: 3206: 3186: 3150: 3104: 3068: 3048: 3012: 2962: 2942: 2906: 2864: 2828: 2792: 2772: 2736: 2716: 2689: 2646: 2613: 2573: 2520: 2480: 2427: 2358: 2302: 2282: 2252: 2220: 2163: 2127: 2082: 2045: 1997: 1961: 1744: 1691: 1660: 1610: 1568: 1542: 1500: 1474: 1448: 1422: 1361: 1336: 1306: 1279: 1253: 1217: 1181: 1155: 1129: 1102: 1082: 1046: 1026: 977: 935: 915: 888: 868: 826: 777: 741: 708: 681: 654: 621: 598: 443: 409: 382: 362: 7796:" (2013, unpublished). Accessed 18 November 2022. 7728: 7726: 7724: 7722: 7439:A new system of proof-theoretic ordinal functions 7161:. (Cambridge University Press, 1999) 219–279. At 4537:satisfies a certain reflection property for each 4061:{\displaystyle \omega _{\omega }^{\mathrm {CK} }} 3996:{\displaystyle \omega _{\alpha }^{\mathrm {CK} }} 3288:{\displaystyle \Psi _{X}^{\varepsilon _{\Xi +1}}} 2978:based on a Mahlo cardinal. Its value is equal to 1756:, and so on, and then look for the first ordinal 8195: 7794:Indescribable Cardinals and Admissible Analogues 7597:"Countable admissible ordinals and hyperdegrees" 1745:{\displaystyle \alpha \mapsto \Gamma _{\alpha }} 337:, which is the smallest satisfying the equation 316:Predicative definitions and the Veblen hierarchy 5743:-recursively enumerable, in the terminology of 5036:-separation of any countable admissible height 4960:-separation on its own (not in the presence of 3020:using one of Buchholz's various psi functions. 8146:the theories of iterated inductive definitions 7719: 7672: 7670: 7098: 6243:larger than an admissible ordinal larger than 5751: 3855:The Church–Kleene ordinal is again related to 3615:, or Zermelo–Fraenkel set theory with various 1772:manner. This leads to the definition of the " 742:{\displaystyle \varepsilon _{\alpha }=\alpha } 310: 102: 7999: 7907:"Short Course on Admissible Recursion Theory" 7883:page), Państwowe Wydawn. Accessed 2022-12-01. 4026: 2621:. In general, the proof-theoretic ordinal of 2260:- comprehension + transfinite induction, and 1661:{\displaystyle \varphi _{\alpha }(0)=\alpha } 220:, that is, at least a reasonable fragment of 45:. Beyond that, many ordinals of relevance to 34:, there are many ways of describing specific 8013: 7732: 4743:on ordinal functions, lending them the name 4325:). The 1-section of Harrington's functional 3628: 3623: 2371:large countable ordinals and numbers in Agda 1962:{\displaystyle \psi _{0}(\Omega _{\omega })} 1163:. This family of functions is known as the 869:{\displaystyle \varphi _{\gamma +1}(\beta )} 7733:Richter, Wayne; Aczel, Peter (1974-01-01). 7667: 7664:" (1976), p.387. Accessed 13 February 2023. 7330:; Pohlers, Wolfram; Sieg, Wilfried (1981). 6815:Any such construction must have order type 6718:{\displaystyle \omega _{1}^{\mathrm {CK} }} 5241:Even larger countable ordinals, called the 3940:{\displaystyle \omega _{1}^{\mathrm {CK} }} 3860: 3807:{\displaystyle \omega _{1}^{\mathrm {CK} }} 3712:{\displaystyle \omega _{1}^{\mathrm {CK} }} 3675:{\displaystyle \omega _{1}^{\mathrm {CK} }} 1254:{\displaystyle \varphi _{\gamma }(\alpha )} 1218:{\displaystyle \varphi _{\delta }(\alpha )} 1083:{\displaystyle \varphi _{\delta }(\alpha )} 444:{\displaystyle \omega ^{\omega ^{\omega }}} 370:, so it is the limit of the sequence 0, 1, 8006: 7992: 7978:(2017), p.1233. Accessed 28 December 2022. 5226:{\displaystyle (L_{\alpha },\in )\vDash T} 4124:{\displaystyle L_{\alpha }\cap P(\omega )} 2521:{\displaystyle ID_{<\omega ^{\omega }}} 1807:(ordinal diagrams), Feferman (θ systems), 778:{\displaystyle \varphi _{\gamma }(\beta )} 7959: 7695: 7614: 7199: 6905: 6679: 5677: 5587: 3151:{\displaystyle \Psi (\varepsilon _{K+1})} 3013:{\displaystyle \psi (\varepsilon _{M+1})} 2907:{\displaystyle \psi (\varepsilon _{I+1})} 2690:{\displaystyle \psi _{0}(\Omega _{\nu })} 2614:{\displaystyle ID_{<\varepsilon _{0}}} 1783: 785:by transfinite induction as follows: let 655:{\displaystyle \omega ^{\alpha }=\alpha } 363:{\displaystyle \omega ^{\alpha }=\alpha } 7181: 7141:Both recursive and nonrecursive ordinals 6959: 6812:of T is a recursive pseudowellordering. 4427:is the least recursively Mahlo ordinal. 2164:{\displaystyle \psi (\Omega _{\omega })} 1998:{\displaystyle \psi (\Omega _{\omega })} 125:Due to the focus on countable ordinals, 7904: 7634:"Subsystems of Second-Order Arithmetic" 7556: 7450: 7222: 7104: 5684:{\displaystyle x\subseteq \mathbb {N} } 5594:{\displaystyle x\subseteq \mathbb {N} } 2488:. It is the proof-theoretic ordinal of 1918:Beyond even the Bachmann-Howard ordinal 1622:The Feferman–Schütte ordinal and beyond 14: 8196: 7405: 7403: 7401: 7399: 7397: 7395: 7393: 7391: 7389: 7387: 7300: 7297: 7294: 7284: 7281: 7278: 7149:, "The realm of ordinal analysis." in 7130: 5485:{\displaystyle L_{\sigma }\prec _{1}L} 4850:-recursive injective function mapping 4771:, a similar property corresponding to 4301:-recursive closed unbounded subset of 3844: 2697:— note that in this certain instance, 27:Ordinals in mathematics and set theory 7987: 7900: 7898: 7628: 7626: 7594: 7552: 7550: 7385: 7383: 7381: 7379: 7377: 7375: 7373: 7371: 7369: 7367: 7226:Subsystems of Second Order Arithmetic 6797:{\displaystyle x_{1},x_{2},...,x_{n}} 3187:{\displaystyle \varepsilon _{\Xi +1}} 1831:, to ensure that it is well defined). 1752:, then enumerate the fixed points of 682:{\displaystyle \varepsilon _{\iota }} 270:Gödel's second incompleteness theorem 208:Relationship to systems of arithmetic 7953: 7689: 7169: 7024:The varieties of arboreal experience 5062:Nonprojectible ordinals are tied to 4801: 3458:using Stegert's Psi function, where 3295:using Stegert's Psi function, where 2581:, is the proof-theoretic ordinal of 1914:, seem beyond reach for the moment. 147: 6921:{\displaystyle (\mathbb {Q} ,<)} 4242:{\displaystyle \omega _{1}^{E_{1}}} 2373:, and defined by "AndrasKovacs" as 2046:{\displaystyle \Pi _{1}^{1}-CA_{0}} 24: 7905:Simpson, Stephen G. (1978-01-01). 7895: 7862:(1974). Accessed 21 February 2023. 7828: 7623: 7547: 7364: 7262: 7080:, expository article (8 pages, in 6709: 6706: 6637: 6432: 6312: 6188: 6031: 5916: 5793: 5699: 5609: 5504: 5371: 5236: 5017: 4941: 4914: 4779: 4720: 4683: 4632: 4597: 4544: 4495: 4454: 4383: 4346: 4206:-th admissible ordinal, is called 4139: 4052: 4049: 3987: 3984: 3931: 3928: 3867:such that the construction of the 3798: 3795: 3703: 3700: 3666: 3663: 3435: 3421: 3272: 3258: 3222: 3201: 3173: 3123: 3116:+ Π3 - Ref. Its value is equal to 3088: 3049:{\displaystyle \varepsilon _{K+1}} 2943:{\displaystyle \varepsilon _{M+1}} 2848: 2812: 2773:{\displaystyle \varepsilon _{I+1}} 2705: 2675: 2552: 2459: 2394: 2336: 2236: 2221:{\displaystyle \Pi _{1}^{1}-CA+BI} 2186: 2149: 2013: 1983: 1947: 1733: 1705:arithmetical transfinite recursion 1680: 1569:{\displaystyle \alpha >\gamma } 1501:{\displaystyle \alpha <\gamma } 1307:{\displaystyle \varphi _{\gamma }} 1280:{\displaystyle \gamma <\delta } 1156:{\displaystyle \gamma <\delta } 1130:{\displaystyle \varphi _{\gamma }} 916:{\displaystyle \varphi _{\gamma }} 716:as the smallest ordinal such that 455:: it is the limit of the sequence 284:prove that any ordinal less than ε 137:Generalities on recursive ordinals 30:In the mathematical discipline of 25: 8220: 8122:Takeuti–Feferman–Buchholz ordinal 7581:Friedman, H., Jensen, R. (1968). 6607:{\displaystyle \beta >\alpha } 3598:"Unrecursable" recursive ordinals 2178:, the proof-theoretic ordinal of 2176:Takeuti-Feferman-Buchholz ordinal 1475:{\displaystyle \beta <\delta } 410:{\displaystyle \omega ^{\omega }} 7849:" (2014). Accessed 2022 July 23. 7188:Annals of Pure and Applied Logic 6804:is in T iff S plus ∃m φ(m) ⇒ φ(x 4879:, up to stage α, yields a model 4624:. For example, an ordinal which 3906:of KP. Such ordinals are called 3250:+ Πω-Ref. Its value is equal to 2083:{\displaystyle ID_{<\omega }} 326:We have already mentioned (see 7968: 7947: 7886: 7865: 7852: 7812: 7799: 7786: 7704: 7683: 7654: 7588: 7575: 7451:Rathjen, Michael (1994-01-01). 7133:Recursion-theoretic hierarchies 5716:{\displaystyle \Sigma _{2}^{1}} 5626:{\displaystyle \Delta _{2}^{1}} 3589:The proof-theoretic ordinal of 3579:The proof-theoretic ordinal of 3158:using Rathjen's Psi function. 2865:{\displaystyle \Delta _{2}^{1}} 1626:The smallest ordinal such that 1449:{\displaystyle \alpha =\gamma } 590: 530: 484: 7660:F. G. Abramson, G. E. Sacks, " 7519: 7491: 7457:Archive for Mathematical Logic 7444: 7431: 7319: 7289: 7258: 7243: 7216: 7175: 6915: 6901: 6855: 6843: 6575: 6566: 6542: 6533: 6286:is called inaccessibly-stable 6149: 6137: 5992: 5983: 5877: 5868: 5772: 5763: 5214: 5195: 4394: 4388: 4257:. For example, we can define 4118: 4112: 3145: 3126: 3007: 2988: 2901: 2882: 2684: 2671: 2568: 2548: 2475: 2455: 2422: 2390: 2353: 2327: 2158: 2145: 2122: 2119: 2113: 2107: 1992: 1979: 1956: 1943: 1795:such system was introduced by 1729: 1649: 1643: 1599: 1593: 1537: 1531: 1417: 1411: 1395: 1389: 1248: 1242: 1212: 1206: 1110:-th common fixed point of the 1077: 1071: 1008: 1002: 966: 960: 863: 857: 808: 802: 772: 766: 578: 564: 288:is well ordered, we say that ε 13: 1: 8153: < ω‍ 7923:10.1016/S0049-237X(08)70941-8 7754:10.1016/S0049-237X(08)70592-5 7057:The Journal of Symbolic Logic 6951: 6686:scheme of notations of Kleene 4442: 4251:recursively hyperinaccessible 3637:is the smallest ordinal that 2744:, the first nonzero ordinal. 2647:{\displaystyle ID_{<\nu }} 2128:{\displaystyle +(0(\omega ))} 1861:for any ordinal α satisfying 8144:Proof-theoretic ordinals of 7892:Barwise (1976), theorem 7.2. 7820:Locally countable models of 7616:10.1016/0001-8708(76)90187-0 7527:"Proof Theory of Reflection" 7223:Simpson, Stephen G. (2009). 7201:10.1016/0168-0072(86)90052-7 5817:-reflecting for all natural 5810:{\displaystyle \Pi _{n}^{0}} 4354:{\displaystyle {}^{2}S^{\#}} 4156:{\displaystyle \Pi _{1}^{1}} 3239:{\displaystyle \Pi _{0}^{2}} 3105:{\displaystyle \Pi _{1}^{1}} 2914:using an unknown function. 2829:{\displaystyle \Pi _{0}^{1}} 2283:{\displaystyle ID_{\omega }} 2253:{\displaystyle \Pi _{1}^{1}} 1337:{\displaystyle \gamma ^{th}} 172:A different definition uses 7: 7840:{\displaystyle \Sigma _{1}} 7583:Note on admissible ordinals 7251:An independence result for 7182:Buchholz, W. (1986-01-01). 5752:Variants of stable ordinals 5653:{\displaystyle L_{\sigma }} 5563:{\displaystyle L_{\sigma }} 5516:{\displaystyle \Sigma _{1}} 5285:{\displaystyle L_{\alpha }} 5128:{\displaystyle L_{\alpha }} 5052:{\displaystyle >\omega } 5029:{\displaystyle \Sigma _{1}} 4953:{\displaystyle \Sigma _{1}} 4926:{\displaystyle \Sigma _{1}} 4899:{\displaystyle L_{\alpha }} 4747:. An unpublished paper by 4530:{\displaystyle L_{\alpha }} 4432:Zermelo–Fraenkel set theory 3899:{\displaystyle L_{\alpha }} 3834:{\displaystyle \omega _{1}} 3770:{\displaystyle \omega _{1}} 3743:{\displaystyle \omega _{1}} 3633:The supremum of the set of 3613:Zermelo–Fraenkel set theory 3498:{\displaystyle \omega ^{+}} 3335:{\displaystyle \omega ^{+}} 2717:{\displaystyle \Omega _{0}} 1912:Zermelo–Fraenkel set theory 1890:(sometimes just called the 1879:ordinal collapsing function 1817:ordinal collapsing function 1790:Ordinal collapsing function 1692:{\displaystyle \Gamma _{0}} 1054:is a limit ordinal, define 311:Specific recursive ordinals 280:.) Since Peano arithmetic 69:first uncountable ordinal ω 10: 8225: 8167: ≥ ω‍ 7662:Uncountable Gandy Ordinals 7557:Stegert, Jan-Carl (2010). 5412:The least stable level of 5076:Minimal model (set theory) 5073: 4751:supplies, for each finite 4653:recursively weakly compact 4259:recursively Mahlo ordinals 4027:Beyond admissible ordinals 3848: 1787: 709:{\displaystyle \zeta _{0}} 319: 151: 140: 8179:First uncountable ordinal 8021: 7595:Sacks, Gerald E. (1976). 7131:Hinman, Peter G. (1978). 7099:Beyond recursive ordinals 7094:, manuscript in progress. 6948:is a recursive ordinal. 5883:{\displaystyle (+\beta )} 3629:The Church–Kleene ordinal 3624:Beyond recursive ordinals 3565:{\displaystyle \epsilon } 3545:{\displaystyle \epsilon } 3402:{\displaystyle \epsilon } 3382:{\displaystyle \epsilon } 239:for such large ordinals. 105:. Ordinal numbers below ω 8047:Feferman–Schütte ordinal 8015:Large countable ordinals 7871:W. Marek, K. Rasmussen, 4791:{\displaystyle \Pi _{n}} 4732:{\displaystyle \Pi _{3}} 4695:{\displaystyle \Pi _{n}} 4644:{\displaystyle \Pi _{3}} 4618:weakly compact cardinals 4609:{\displaystyle \Pi _{3}} 4587:Kripke-Platek set theory 4208:recursively inaccessible 3857:Kripke–Platek set theory 3248:Kripke-Platek set theory 3114:Kripke-Platek set theory 2976:Kripke-Platek set theory 2838:Kripke-Platek set theory 2290:, the "formal theory of 2057:of natural numbers, and 1904:Kripke–Platek set theory 1670:Feferman–Schütte ordinal 301:Kripke–Platek set theory 294:proof-theoretic strength 18:Large countable ordinals 8086:Bachmann–Howard ordinal 7602:Advances in Mathematics 6674:second-order arithmetic 6519:{\displaystyle \alpha } 6496:{\displaystyle \alpha } 6406:is called Mahlo-stable 6399:{\displaystyle \alpha } 6376:{\displaystyle \alpha } 6279:{\displaystyle \alpha } 6256:{\displaystyle \alpha } 6155:{\displaystyle (^{++})} 6122:{\displaystyle \alpha } 6099:{\displaystyle \alpha } 5968:{\displaystyle \alpha } 5854:{\displaystyle \alpha } 5736:{\displaystyle \sigma } 5445:{\displaystyle \sigma } 5341:{\displaystyle \alpha } 5321:{\displaystyle \alpha } 5306:nonprojectible ordinals 5258:{\displaystyle \alpha } 5181:{\displaystyle \alpha } 5101:{\displaystyle \alpha } 4863:{\displaystyle \alpha } 4843:{\displaystyle \alpha } 4819:{\displaystyle \alpha } 4741:higher-type functionals 4622:indescribable cardinals 4550:{\displaystyle \Gamma } 4501:{\displaystyle \Gamma } 4480:{\displaystyle \alpha } 4460:{\displaystyle \Gamma } 4314:{\displaystyle \alpha } 4294:{\displaystyle \alpha } 4274:{\displaystyle \alpha } 4199:{\displaystyle \alpha } 4179:{\displaystyle \alpha } 4082:{\displaystyle \alpha } 4016:{\displaystyle \alpha } 3966:. One sometimes writes 3605:second-order arithmetic 3581:second-order arithmetic 2303:{\displaystyle \omega } 1908:second-order arithmetic 1887:Bachmann–Howard ordinal 1430:if and only if either ( 1362:{\displaystyle \omega } 1182:{\displaystyle \delta } 1103:{\displaystyle \alpha } 1047:{\displaystyle \delta } 383:{\displaystyle \omega } 305:Bachmann–Howard ordinal 242:For example, the usual 8026:First infinite ordinal 7841: 7710:W. Richter, P. Aczel, 7641:Penn State Institution 7309: 6998:(for ordinal diagrams) 6942: 6922: 6888: 6868: 6798: 6719: 6680:A pseudo-well-ordering 6662: 6608: 6582: 6549: 6520: 6497: 6477: 6476:{\displaystyle \beta } 6457: 6400: 6377: 6357: 6356:{\displaystyle \beta } 6337: 6280: 6257: 6233: 6232:{\displaystyle \beta } 6213: 6156: 6123: 6100: 6076: 6075:{\displaystyle \beta } 6056: 5999: 5998:{\displaystyle (^{+})} 5969: 5947: 5884: 5855: 5831: 5811: 5779: 5745:alpha recursion theory 5737: 5717: 5685: 5654: 5633:iff it is a member of 5627: 5595: 5564: 5543:iff it is a member of 5537: 5517: 5486: 5446: 5426: 5403: 5342: 5322: 5286: 5259: 5227: 5182: 5152: 5129: 5102: 5053: 5030: 5003: 4980: 4954: 4933:-separation. However, 4927: 4900: 4864: 4844: 4820: 4806:An admissible ordinal 4792: 4765: 4733: 4696: 4669: 4651:-reflecting is called 4645: 4610: 4585:, a theory augmenting 4571: 4551: 4531: 4502: 4481: 4461: 4447:For a set of formulae 4421: 4401: 4355: 4315: 4295: 4275: 4243: 4200: 4180: 4157: 4125: 4083: 4062: 4017: 3997: 3941: 3900: 3835: 3808: 3771: 3744: 3713: 3676: 3566: 3546: 3526: 3499: 3472: 3452: 3403: 3383: 3363: 3336: 3309: 3289: 3240: 3208: 3188: 3152: 3106: 3070: 3050: 3014: 2964: 2944: 2908: 2866: 2830: 2794: 2774: 2738: 2718: 2691: 2648: 2615: 2575: 2522: 2482: 2429: 2360: 2304: 2284: 2254: 2222: 2165: 2129: 2093:Since the hydras from 2084: 2047: 1999: 1969:, abbreviated as just 1963: 1784:Impredicative ordinals 1746: 1693: 1672:and generally written 1662: 1612: 1570: 1544: 1502: 1476: 1450: 1424: 1363: 1338: 1308: 1281: 1255: 1219: 1183: 1157: 1131: 1104: 1084: 1048: 1028: 979: 943:-th ordinal such that 937: 936:{\displaystyle \beta } 917: 890: 889:{\displaystyle \beta } 870: 828: 779: 743: 710: 683: 656: 629:-th ordinal such that 623: 622:{\displaystyle \iota } 600: 445: 411: 384: 364: 7842: 7563:miami.uni-muenster.de 7310: 7092:Truth and provability 6960:On recursive ordinals 6943: 6941:{\displaystyle \rho } 6923: 6894:is the order type of 6889: 6887:{\displaystyle \eta } 6869: 6799: 6720: 6663: 6609: 6583: 6550: 6521: 6498: 6478: 6458: 6401: 6378: 6358: 6338: 6281: 6258: 6234: 6214: 6157: 6124: 6101: 6077: 6057: 6000: 5970: 5948: 5885: 5856: 5832: 5812: 5780: 5738: 5718: 5686: 5655: 5628: 5596: 5565: 5538: 5518: 5487: 5447: 5427: 5404: 5343: 5323: 5287: 5260: 5228: 5183: 5153: 5130: 5103: 5070:"Unprovable" ordinals 5054: 5031: 5004: 4981: 4955: 4928: 4901: 4865: 4845: 4830:if there is no total 4821: 4793: 4766: 4745:2-admissible ordinals 4734: 4697: 4670: 4646: 4611: 4572: 4570:{\displaystyle \phi } 4552: 4532: 4503: 4482: 4462: 4422: 4420:{\displaystyle \rho } 4402: 4356: 4316: 4296: 4276: 4244: 4201: 4181: 4158: 4126: 4084: 4063: 4018: 3998: 3942: 3901: 3836: 3809: 3772: 3745: 3714: 3677: 3643:Church–Kleene ordinal 3567: 3547: 3527: 3525:{\displaystyle P_{0}} 3500: 3473: 3453: 3404: 3384: 3364: 3362:{\displaystyle P_{0}} 3337: 3310: 3290: 3241: 3209: 3189: 3153: 3107: 3071: 3051: 3015: 2965: 2945: 2909: 2867: 2831: 2795: 2775: 2739: 2719: 2692: 2649: 2616: 2576: 2523: 2483: 2430: 2361: 2305: 2285: 2255: 2223: 2166: 2130: 2095:Buchholz's hydra game 2085: 2048: 2000: 1964: 1747: 1694: 1663: 1613: 1571: 1545: 1503: 1477: 1451: 1425: 1364: 1339: 1309: 1282: 1256: 1220: 1184: 1158: 1132: 1105: 1085: 1049: 1029: 980: 938: 918: 891: 871: 829: 780: 744: 711: 684: 657: 624: 601: 446: 412: 385: 365: 256:: while the ordinal ε 237:transfinite induction 198:Church–Kleene ordinal 8165:Nonrecursive ordinal 8076:large Veblen ordinal 8066:small Veblen ordinal 7824: 7326:Buchholz, Wilfried; 7255: 6932: 6898: 6878: 6819: 6810:Kleene–Brouwer order 6743: 6692: 6618: 6592: 6581:{\displaystyle (+1)} 6563: 6548:{\displaystyle (+1)} 6530: 6510: 6506:A countable ordinal 6487: 6467: 6413: 6390: 6386:A countable ordinal 6367: 6347: 6293: 6270: 6266:A countable ordinal 6247: 6223: 6169: 6133: 6113: 6109:A countable ordinal 6090: 6066: 6012: 5979: 5959: 5955:A countable ordinal 5897: 5865: 5845: 5841:A countable ordinal 5821: 5789: 5778:{\displaystyle (+1)} 5760: 5727: 5695: 5667: 5637: 5605: 5577: 5547: 5527: 5500: 5456: 5436: 5416: 5352: 5332: 5312: 5298:-elementary submodel 5269: 5249: 5192: 5172: 5142: 5112: 5092: 5040: 5013: 4990: 4964: 4937: 4910: 4883: 4854: 4834: 4810: 4775: 4755: 4716: 4679: 4659: 4628: 4593: 4561: 4541: 4514: 4492: 4471: 4451: 4411: 4365: 4329: 4305: 4285: 4265: 4214: 4190: 4170: 4135: 4093: 4073: 4035: 4007: 3970: 3914: 3883: 3818: 3781: 3754: 3727: 3686: 3649: 3556: 3536: 3509: 3482: 3462: 3417: 3393: 3373: 3346: 3319: 3299: 3254: 3218: 3207:{\displaystyle \Xi } 3198: 3165: 3120: 3084: 3060: 3027: 2982: 2954: 2921: 2876: 2844: 2808: 2784: 2751: 2728: 2701: 2658: 2625: 2585: 2535: 2492: 2442: 2377: 2314: 2294: 2264: 2232: 2182: 2139: 2101: 2061: 2009: 1973: 1930: 1723: 1676: 1630: 1580: 1554: 1512: 1486: 1460: 1434: 1376: 1353: 1318: 1291: 1265: 1229: 1225:be the limit of the 1193: 1173: 1141: 1114: 1094: 1058: 1038: 989: 947: 927: 900: 880: 838: 789: 753: 720: 693: 666: 633: 613: 609:More generally, the 462: 421: 394: 374: 341: 8151:Computable ordinals 7818:"Fred G. Abramson, 7534:University of Leeds 7506:University of Leeds 7411:"A Zoo of Ordinals" 7275: 7088:Herman Ruge Jervell 7036:McGraw-Hill (1967) 6990:, 2nd edition 1987 6839: 6714: 5806: 5712: 5622: 5452:be least such that 4979:{\displaystyle V=L} 4238: 4152: 4057: 3992: 3936: 3845:Admissible ordinals 3803: 3708: 3671: 3447: 3284: 3235: 3101: 2861: 2825: 2249: 2199: 2026: 1780:" Veblen ordinals. 896:-th fixed point of 689:. We could define 296:of Peano's axioms. 278:Goodstein sequences 274:Kirby–Paris theorem 163:computable function 159:Computable ordinals 43:Cantor normal forms 8103:Buchholz's ordinal 7837: 7469:10.1007/BF01275469 7340:10.1007/bfb0091894 7305: 7261: 7030:Hartley Rogers Jr. 6938: 6918: 6884: 6864: 6822: 6794: 6715: 6695: 6658: 6604: 6578: 6545: 6516: 6493: 6473: 6453: 6396: 6373: 6353: 6333: 6276: 6253: 6241:admissible ordinal 6229: 6209: 6152: 6119: 6096: 6084:admissible ordinal 6072: 6052: 5995: 5965: 5943: 5880: 5851: 5827: 5807: 5792: 5785:-stable iff it is 5775: 5733: 5713: 5698: 5681: 5650: 5623: 5608: 5591: 5560: 5533: 5513: 5482: 5442: 5422: 5399: 5338: 5318: 5282: 5255: 5223: 5178: 5148: 5125: 5098: 5049: 5026: 5002:{\displaystyle KP} 4999: 4976: 4950: 4923: 4896: 4860: 4840: 4816: 4788: 4761: 4729: 4692: 4665: 4641: 4606: 4567: 4547: 4527: 4498: 4477: 4467:, a limit ordinal 4457: 4417: 4397: 4351: 4311: 4291: 4271: 4239: 4217: 4196: 4176: 4153: 4138: 4121: 4079: 4058: 4038: 4013: 3993: 3973: 3937: 3917: 3896: 3851:Admissible ordinal 3831: 3804: 3784: 3767: 3740: 3709: 3689: 3672: 3652: 3635:recursive ordinals 3609:Zermelo set theory 3562: 3542: 3522: 3495: 3468: 3448: 3420: 3399: 3379: 3359: 3332: 3305: 3285: 3257: 3236: 3221: 3204: 3184: 3148: 3102: 3087: 3066: 3046: 3010: 2960: 2940: 2904: 2862: 2847: 2826: 2811: 2790: 2770: 2734: 2714: 2687: 2644: 2611: 2571: 2518: 2478: 2425: 2356: 2300: 2280: 2250: 2235: 2218: 2185: 2161: 2125: 2080: 2043: 2012: 1995: 1959: 1924:Buchholz's ordinal 1853:: in particular ψ( 1742: 1689: 1658: 1608: 1566: 1540: 1498: 1472: 1446: 1420: 1359: 1334: 1304: 1277: 1251: 1215: 1179: 1153: 1127: 1100: 1080: 1044: 1024: 985:; so for example, 975: 933: 913: 886: 866: 824: 775: 739: 706: 679: 652: 619: 596: 441: 407: 380: 360: 328:Cantor normal form 143:Computable ordinal 127:ordinal arithmetic 8191: 8190: 8056:Ackermann ordinal 7328:Feferman, Solomon 7236:978-0-521-88439-6 7170:Inline references 6526:is called doubly 5830:{\displaystyle n} 5536:{\displaystyle L} 5425:{\displaystyle L} 5348:is equivalent to 5168:, then the least 5151:{\displaystyle T} 4802:Nonprojectibility 4764:{\displaystyle n} 4668:{\displaystyle n} 3879:, yields a model 3471:{\displaystyle X} 3308:{\displaystyle X} 3069:{\displaystyle K} 2963:{\displaystyle M} 2793:{\displaystyle I} 2737:{\displaystyle 1} 1710:More generally, Γ 1189:a limit ordinal, 594: 178:ordinal notations 148:Ordinal notations 54:ordinal notations 16:(Redirected from 8216: 8175: 8174: 8161: 8160: 8008: 8001: 7994: 7985: 7984: 7979: 7972: 7966: 7965: 7963: 7951: 7945: 7944: 7902: 7893: 7890: 7884: 7869: 7863: 7856: 7850: 7846: 7844: 7843: 7838: 7836: 7835: 7816: 7810: 7803: 7797: 7790: 7784: 7783: 7739: 7730: 7717: 7708: 7702: 7701: 7699: 7687: 7681: 7674: 7665: 7658: 7652: 7651: 7649: 7648: 7638: 7630: 7621: 7620: 7618: 7592: 7586: 7579: 7573: 7572: 7570: 7569: 7554: 7545: 7544: 7542: 7541: 7531: 7523: 7517: 7516: 7514: 7513: 7503: 7495: 7489: 7488: 7448: 7442: 7435: 7429: 7428: 7426: 7425: 7415: 7407: 7362: 7361: 7323: 7317: 7314: 7312: 7311: 7306: 7304: 7303: 7288: 7287: 7274: 7269: 7247: 7241: 7240: 7220: 7214: 7213: 7203: 7179: 7136: 7127: 7115: 7008:, Springer 1977 6972:, Springer 1989 6947: 6945: 6944: 6939: 6927: 6925: 6924: 6919: 6908: 6893: 6891: 6890: 6885: 6873: 6871: 6870: 6865: 6838: 6830: 6803: 6801: 6800: 6795: 6793: 6792: 6768: 6767: 6755: 6754: 6737:Skolem functions 6724: 6722: 6721: 6716: 6713: 6712: 6703: 6667: 6665: 6664: 6659: 6657: 6656: 6647: 6646: 6645: 6644: 6630: 6629: 6613: 6611: 6610: 6605: 6588:-stable ordinal 6587: 6585: 6584: 6579: 6554: 6552: 6551: 6546: 6525: 6523: 6522: 6517: 6502: 6500: 6499: 6494: 6482: 6480: 6479: 6474: 6462: 6460: 6459: 6454: 6452: 6451: 6442: 6441: 6440: 6439: 6425: 6424: 6405: 6403: 6402: 6397: 6382: 6380: 6379: 6374: 6362: 6360: 6359: 6354: 6342: 6340: 6339: 6334: 6332: 6331: 6322: 6321: 6320: 6319: 6305: 6304: 6285: 6283: 6282: 6277: 6262: 6260: 6259: 6254: 6238: 6236: 6235: 6230: 6218: 6216: 6215: 6210: 6208: 6207: 6198: 6197: 6196: 6195: 6181: 6180: 6161: 6159: 6158: 6153: 6148: 6147: 6128: 6126: 6125: 6120: 6105: 6103: 6102: 6097: 6081: 6079: 6078: 6073: 6061: 6059: 6058: 6053: 6051: 6050: 6041: 6040: 6039: 6038: 6024: 6023: 6004: 6002: 6001: 5996: 5991: 5990: 5974: 5972: 5971: 5966: 5952: 5950: 5949: 5944: 5942: 5941: 5926: 5925: 5924: 5923: 5909: 5908: 5889: 5887: 5886: 5881: 5860: 5858: 5857: 5852: 5836: 5834: 5833: 5828: 5816: 5814: 5813: 5808: 5805: 5800: 5784: 5782: 5781: 5776: 5742: 5740: 5739: 5734: 5722: 5720: 5719: 5714: 5711: 5706: 5690: 5688: 5687: 5682: 5680: 5659: 5657: 5656: 5651: 5649: 5648: 5632: 5630: 5629: 5624: 5621: 5616: 5600: 5598: 5597: 5592: 5590: 5569: 5567: 5566: 5561: 5559: 5558: 5542: 5540: 5539: 5534: 5522: 5520: 5519: 5514: 5512: 5511: 5491: 5489: 5488: 5483: 5478: 5477: 5468: 5467: 5451: 5449: 5448: 5443: 5431: 5429: 5428: 5423: 5408: 5406: 5405: 5400: 5398: 5397: 5396: 5395: 5381: 5380: 5379: 5378: 5364: 5363: 5347: 5345: 5344: 5339: 5327: 5325: 5324: 5319: 5291: 5289: 5288: 5283: 5281: 5280: 5264: 5262: 5261: 5256: 5232: 5230: 5229: 5224: 5207: 5206: 5187: 5185: 5184: 5179: 5157: 5155: 5154: 5149: 5134: 5132: 5131: 5126: 5124: 5123: 5107: 5105: 5104: 5099: 5086:transitive model 5058: 5056: 5055: 5050: 5035: 5033: 5032: 5027: 5025: 5024: 5008: 5006: 5005: 5000: 4985: 4983: 4982: 4977: 4959: 4957: 4956: 4951: 4949: 4948: 4932: 4930: 4929: 4924: 4922: 4921: 4905: 4903: 4902: 4897: 4895: 4894: 4869: 4867: 4866: 4861: 4849: 4847: 4846: 4841: 4825: 4823: 4822: 4817: 4797: 4795: 4794: 4789: 4787: 4786: 4770: 4768: 4767: 4762: 4749:Solomon Feferman 4738: 4736: 4735: 4730: 4728: 4727: 4701: 4699: 4698: 4693: 4691: 4690: 4674: 4672: 4671: 4666: 4650: 4648: 4647: 4642: 4640: 4639: 4615: 4613: 4612: 4607: 4605: 4604: 4576: 4574: 4573: 4568: 4556: 4554: 4553: 4548: 4536: 4534: 4533: 4528: 4526: 4525: 4507: 4505: 4504: 4499: 4486: 4484: 4483: 4478: 4466: 4464: 4463: 4458: 4436:regular cardinal 4426: 4424: 4423: 4418: 4406: 4404: 4403: 4398: 4387: 4386: 4377: 4376: 4360: 4358: 4357: 4352: 4350: 4349: 4340: 4339: 4334: 4320: 4318: 4317: 4312: 4300: 4298: 4297: 4292: 4281:such that every 4280: 4278: 4277: 4272: 4261:: these are the 4248: 4246: 4245: 4240: 4237: 4236: 4235: 4225: 4205: 4203: 4202: 4197: 4185: 4183: 4182: 4177: 4163:-comprehension. 4162: 4160: 4159: 4154: 4151: 4146: 4130: 4128: 4127: 4122: 4105: 4104: 4088: 4086: 4085: 4080: 4067: 4065: 4064: 4059: 4056: 4055: 4046: 4022: 4020: 4019: 4014: 4002: 4000: 3999: 3994: 3991: 3990: 3981: 3950:By a theorem of 3946: 3944: 3943: 3938: 3935: 3934: 3925: 3905: 3903: 3902: 3897: 3895: 3894: 3840: 3838: 3837: 3832: 3830: 3829: 3813: 3811: 3810: 3805: 3802: 3801: 3792: 3776: 3774: 3773: 3768: 3766: 3765: 3749: 3747: 3746: 3741: 3739: 3738: 3718: 3716: 3715: 3710: 3707: 3706: 3697: 3681: 3679: 3678: 3673: 3670: 3669: 3660: 3571: 3569: 3568: 3563: 3551: 3549: 3548: 3543: 3531: 3529: 3528: 3523: 3521: 3520: 3504: 3502: 3501: 3496: 3494: 3493: 3477: 3475: 3474: 3469: 3457: 3455: 3454: 3449: 3446: 3445: 3444: 3428: 3408: 3406: 3405: 3400: 3388: 3386: 3385: 3380: 3368: 3366: 3365: 3360: 3358: 3357: 3341: 3339: 3338: 3333: 3331: 3330: 3314: 3312: 3311: 3306: 3294: 3292: 3291: 3286: 3283: 3282: 3281: 3265: 3245: 3243: 3242: 3237: 3234: 3229: 3213: 3211: 3210: 3205: 3193: 3191: 3190: 3185: 3183: 3182: 3157: 3155: 3154: 3149: 3144: 3143: 3111: 3109: 3108: 3103: 3100: 3095: 3075: 3073: 3072: 3067: 3055: 3053: 3052: 3047: 3045: 3044: 3019: 3017: 3016: 3011: 3006: 3005: 2969: 2967: 2966: 2961: 2949: 2947: 2946: 2941: 2939: 2938: 2913: 2911: 2910: 2905: 2900: 2899: 2871: 2869: 2868: 2863: 2860: 2855: 2835: 2833: 2832: 2827: 2824: 2819: 2799: 2797: 2796: 2791: 2779: 2777: 2776: 2771: 2769: 2768: 2743: 2741: 2740: 2735: 2723: 2721: 2720: 2715: 2713: 2712: 2696: 2694: 2693: 2688: 2683: 2682: 2670: 2669: 2653: 2651: 2650: 2645: 2643: 2642: 2620: 2618: 2617: 2612: 2610: 2609: 2608: 2607: 2580: 2578: 2577: 2572: 2567: 2566: 2565: 2564: 2547: 2546: 2527: 2525: 2524: 2519: 2517: 2516: 2515: 2514: 2487: 2485: 2484: 2479: 2474: 2473: 2472: 2471: 2454: 2453: 2434: 2432: 2431: 2426: 2421: 2420: 2408: 2407: 2389: 2388: 2365: 2363: 2362: 2357: 2352: 2351: 2344: 2343: 2326: 2325: 2309: 2307: 2306: 2301: 2289: 2287: 2286: 2281: 2279: 2278: 2259: 2257: 2256: 2251: 2248: 2243: 2227: 2225: 2224: 2219: 2198: 2193: 2170: 2168: 2167: 2162: 2157: 2156: 2134: 2132: 2131: 2126: 2089: 2087: 2086: 2081: 2079: 2078: 2052: 2050: 2049: 2044: 2042: 2041: 2025: 2020: 2004: 2002: 2001: 1996: 1991: 1990: 1968: 1966: 1965: 1960: 1955: 1954: 1942: 1941: 1751: 1749: 1748: 1743: 1741: 1740: 1698: 1696: 1695: 1690: 1688: 1687: 1668:is known as the 1667: 1665: 1664: 1659: 1642: 1641: 1617: 1615: 1614: 1609: 1592: 1591: 1575: 1573: 1572: 1567: 1549: 1547: 1546: 1541: 1530: 1529: 1507: 1505: 1504: 1499: 1481: 1479: 1478: 1473: 1455: 1453: 1452: 1447: 1429: 1427: 1426: 1421: 1410: 1409: 1388: 1387: 1368: 1366: 1365: 1360: 1343: 1341: 1340: 1335: 1333: 1332: 1313: 1311: 1310: 1305: 1303: 1302: 1286: 1284: 1283: 1278: 1260: 1258: 1257: 1252: 1241: 1240: 1224: 1222: 1221: 1216: 1205: 1204: 1188: 1186: 1185: 1180: 1166:Veblen hierarchy 1162: 1160: 1159: 1154: 1136: 1134: 1133: 1128: 1126: 1125: 1109: 1107: 1106: 1101: 1089: 1087: 1086: 1081: 1070: 1069: 1053: 1051: 1050: 1045: 1033: 1031: 1030: 1025: 1023: 1022: 1001: 1000: 984: 982: 981: 976: 959: 958: 942: 940: 939: 934: 922: 920: 919: 914: 912: 911: 895: 893: 892: 887: 875: 873: 872: 867: 856: 855: 833: 831: 830: 825: 823: 822: 801: 800: 784: 782: 781: 776: 765: 764: 748: 746: 745: 740: 732: 731: 715: 713: 712: 707: 705: 704: 688: 686: 685: 680: 678: 677: 661: 659: 658: 653: 645: 644: 628: 626: 625: 620: 605: 603: 602: 597: 595: 592: 586: 585: 576: 575: 560: 559: 558: 557: 550: 549: 520: 519: 507: 506: 499: 498: 474: 473: 450: 448: 447: 442: 440: 439: 438: 437: 416: 414: 413: 408: 406: 405: 389: 387: 386: 381: 369: 367: 366: 361: 353: 352: 222:Peano arithmetic 154:Ordinal notation 113: 112: 96: 95: 58:ordinal analysis 21: 8224: 8223: 8219: 8218: 8217: 8215: 8214: 8213: 8204:Ordinal numbers 8194: 8193: 8192: 8187: 8173: 8170: 8169: 8168: 8159: 8156: 8155: 8154: 8140: 8138: 8117: 8111: 8098: 8052: 8043: 8035:Epsilon numbers 8017: 8012: 7982: 7973: 7969: 7952: 7948: 7933: 7903: 7896: 7891: 7887: 7870: 7866: 7857: 7853: 7831: 7827: 7825: 7822: 7821: 7817: 7813: 7804: 7800: 7791: 7787: 7772: 7737: 7731: 7720: 7709: 7705: 7688: 7684: 7675: 7668: 7659: 7655: 7646: 7644: 7636: 7632: 7631: 7624: 7593: 7589: 7580: 7576: 7567: 7565: 7555: 7548: 7539: 7537: 7529: 7525: 7524: 7520: 7511: 7509: 7501: 7497: 7496: 7492: 7449: 7445: 7436: 7432: 7423: 7421: 7413: 7409: 7408: 7365: 7350: 7324: 7320: 7293: 7292: 7277: 7276: 7270: 7265: 7256: 7253: 7252: 7248: 7244: 7237: 7221: 7217: 7180: 7176: 7172: 7163:Postscript file 7159:Sets and Proofs 7147:Michael Rathjen 7143: 7124: 7101: 7048:Larry W. Miller 7020:Craig Smorynski 6966:Wolfram Pohlers 6962: 6954: 6933: 6930: 6929: 6904: 6899: 6896: 6895: 6879: 6876: 6875: 6831: 6826: 6820: 6817: 6816: 6807: 6788: 6784: 6763: 6759: 6750: 6746: 6744: 6741: 6740: 6733: 6705: 6704: 6699: 6693: 6690: 6689: 6682: 6652: 6648: 6640: 6636: 6635: 6631: 6625: 6621: 6619: 6616: 6615: 6593: 6590: 6589: 6564: 6561: 6560: 6531: 6528: 6527: 6511: 6508: 6507: 6488: 6485: 6484: 6468: 6465: 6464: 6447: 6443: 6435: 6431: 6430: 6426: 6420: 6416: 6414: 6411: 6410: 6391: 6388: 6387: 6368: 6365: 6364: 6348: 6345: 6344: 6327: 6323: 6315: 6311: 6310: 6306: 6300: 6296: 6294: 6291: 6290: 6271: 6268: 6267: 6248: 6245: 6244: 6224: 6221: 6220: 6203: 6199: 6191: 6187: 6186: 6182: 6176: 6172: 6170: 6167: 6166: 6140: 6136: 6134: 6131: 6130: 6114: 6111: 6110: 6091: 6088: 6087: 6067: 6064: 6063: 6046: 6042: 6034: 6030: 6029: 6025: 6019: 6015: 6013: 6010: 6009: 5986: 5982: 5980: 5977: 5976: 5960: 5957: 5956: 5931: 5927: 5919: 5915: 5914: 5910: 5904: 5900: 5898: 5895: 5894: 5866: 5863: 5862: 5846: 5843: 5842: 5822: 5819: 5818: 5801: 5796: 5790: 5787: 5786: 5761: 5758: 5757: 5754: 5728: 5725: 5724: 5707: 5702: 5696: 5693: 5692: 5676: 5668: 5665: 5664: 5644: 5640: 5638: 5635: 5634: 5617: 5612: 5606: 5603: 5602: 5586: 5578: 5575: 5574: 5554: 5550: 5548: 5545: 5544: 5528: 5525: 5524: 5507: 5503: 5501: 5498: 5497: 5473: 5469: 5463: 5459: 5457: 5454: 5453: 5437: 5434: 5433: 5417: 5414: 5413: 5391: 5387: 5386: 5382: 5374: 5370: 5369: 5365: 5359: 5355: 5353: 5350: 5349: 5333: 5330: 5329: 5328:, stability of 5313: 5310: 5309: 5297: 5276: 5272: 5270: 5267: 5266: 5250: 5247: 5246: 5243:stable ordinals 5239: 5237:Stable ordinals 5202: 5198: 5193: 5190: 5189: 5173: 5170: 5169: 5143: 5140: 5139: 5119: 5115: 5113: 5110: 5109: 5093: 5090: 5089: 5078: 5072: 5041: 5038: 5037: 5020: 5016: 5014: 5011: 5010: 4991: 4988: 4987: 4965: 4962: 4961: 4944: 4940: 4938: 4935: 4934: 4917: 4913: 4911: 4908: 4907: 4890: 4886: 4884: 4881: 4880: 4855: 4852: 4851: 4835: 4832: 4831: 4811: 4808: 4807: 4804: 4782: 4778: 4776: 4773: 4772: 4756: 4753: 4752: 4723: 4719: 4717: 4714: 4713: 4712:In particular, 4707: 4686: 4682: 4680: 4677: 4676: 4660: 4657: 4656: 4635: 4631: 4629: 4626: 4625: 4600: 4596: 4594: 4591: 4590: 4582: 4562: 4559: 4558: 4542: 4539: 4538: 4521: 4517: 4515: 4512: 4511: 4493: 4490: 4489: 4472: 4469: 4468: 4452: 4449: 4448: 4445: 4412: 4409: 4408: 4382: 4381: 4372: 4368: 4366: 4363: 4362: 4345: 4341: 4335: 4333: 4332: 4330: 4327: 4326: 4306: 4303: 4302: 4286: 4283: 4282: 4266: 4263: 4262: 4255:large cardinals 4231: 4227: 4226: 4221: 4215: 4212: 4211: 4191: 4188: 4187: 4171: 4168: 4167: 4147: 4142: 4136: 4133: 4132: 4100: 4096: 4094: 4091: 4090: 4074: 4071: 4070: 4048: 4047: 4042: 4036: 4033: 4032: 4029: 4008: 4005: 4004: 3983: 3982: 3977: 3971: 3968: 3967: 3927: 3926: 3921: 3915: 3912: 3911: 3890: 3886: 3884: 3881: 3880: 3853: 3847: 3825: 3821: 3819: 3816: 3815: 3794: 3793: 3788: 3782: 3779: 3778: 3761: 3757: 3755: 3752: 3751: 3734: 3730: 3728: 3725: 3724: 3699: 3698: 3693: 3687: 3684: 3683: 3662: 3661: 3656: 3650: 3647: 3646: 3631: 3626: 3600: 3557: 3554: 3553: 3537: 3534: 3533: 3516: 3512: 3510: 3507: 3506: 3489: 3485: 3483: 3480: 3479: 3463: 3460: 3459: 3434: 3430: 3429: 3424: 3418: 3415: 3414: 3394: 3391: 3390: 3374: 3371: 3370: 3353: 3349: 3347: 3344: 3343: 3326: 3322: 3320: 3317: 3316: 3300: 3297: 3296: 3271: 3267: 3266: 3261: 3255: 3252: 3251: 3230: 3225: 3219: 3216: 3215: 3199: 3196: 3195: 3172: 3168: 3166: 3163: 3162: 3133: 3129: 3121: 3118: 3117: 3096: 3091: 3085: 3082: 3081: 3061: 3058: 3057: 3034: 3030: 3028: 3025: 3024: 2995: 2991: 2983: 2980: 2979: 2955: 2952: 2951: 2928: 2924: 2922: 2919: 2918: 2889: 2885: 2877: 2874: 2873: 2856: 2851: 2845: 2842: 2841: 2820: 2815: 2809: 2806: 2805: 2785: 2782: 2781: 2758: 2754: 2752: 2749: 2748: 2729: 2726: 2725: 2708: 2704: 2702: 2699: 2698: 2678: 2674: 2665: 2661: 2659: 2656: 2655: 2635: 2631: 2626: 2623: 2622: 2603: 2599: 2595: 2591: 2586: 2583: 2582: 2560: 2556: 2555: 2551: 2542: 2538: 2536: 2533: 2532: 2510: 2506: 2502: 2498: 2493: 2490: 2489: 2467: 2463: 2462: 2458: 2449: 2445: 2443: 2440: 2439: 2416: 2412: 2397: 2393: 2384: 2380: 2378: 2375: 2374: 2339: 2335: 2334: 2330: 2321: 2317: 2315: 2312: 2311: 2295: 2292: 2291: 2274: 2270: 2265: 2262: 2261: 2244: 2239: 2233: 2230: 2229: 2194: 2189: 2183: 2180: 2179: 2152: 2148: 2140: 2137: 2136: 2135:corresponds to 2102: 2099: 2098: 2071: 2067: 2062: 2059: 2058: 2037: 2033: 2021: 2016: 2010: 2007: 2006: 1986: 1982: 1974: 1971: 1970: 1950: 1946: 1937: 1933: 1931: 1928: 1927: 1920: 1901: 1897: 1848: 1838: 1799:in 1950 (in an 1792: 1786: 1764:is obtained in 1736: 1732: 1724: 1721: 1720: 1715: 1683: 1679: 1677: 1674: 1673: 1637: 1633: 1631: 1628: 1627: 1624: 1587: 1583: 1581: 1578: 1577: 1555: 1552: 1551: 1525: 1521: 1513: 1510: 1509: 1487: 1484: 1483: 1461: 1458: 1457: 1435: 1432: 1431: 1405: 1401: 1383: 1379: 1377: 1374: 1373: 1354: 1351: 1350: 1346:Veblen function 1325: 1321: 1319: 1316: 1315: 1298: 1294: 1292: 1289: 1288: 1266: 1263: 1262: 1236: 1232: 1230: 1227: 1226: 1200: 1196: 1194: 1191: 1190: 1174: 1171: 1170: 1142: 1139: 1138: 1121: 1117: 1115: 1112: 1111: 1095: 1092: 1091: 1065: 1061: 1059: 1056: 1055: 1039: 1036: 1035: 1018: 1014: 996: 992: 990: 987: 986: 954: 950: 948: 945: 944: 928: 925: 924: 907: 903: 901: 898: 897: 881: 878: 877: 845: 841: 839: 836: 835: 818: 814: 796: 792: 790: 787: 786: 760: 756: 754: 751: 750: 727: 723: 721: 718: 717: 700: 696: 694: 691: 690: 673: 669: 667: 664: 663: 640: 636: 634: 631: 630: 614: 611: 610: 591: 581: 577: 571: 567: 545: 541: 540: 536: 535: 531: 515: 511: 494: 490: 489: 485: 469: 465: 463: 460: 459: 454: 433: 429: 428: 424: 422: 419: 418: 401: 397: 395: 392: 391: 375: 372: 371: 348: 344: 342: 339: 338: 335: 324: 322:Veblen function 318: 313: 291: 287: 263: 259: 254: 210: 156: 150: 145: 139: 131:large cardinals 111: 108: 107: 106: 100: 94: 91: 90: 89: 86: 72: 62:halting problem 28: 23: 22: 15: 12: 11: 5: 8222: 8212: 8211: 8206: 8189: 8188: 8186: 8185: 8176: 8171: 8162: 8157: 8148: 8142: 8134: 8132: 8119: 8113: 8109: 8100: 8096: 8083: 8073: 8063: 8053: 8050: 8044: 8041: 8032: 8022: 8019: 8018: 8011: 8010: 8003: 7996: 7988: 7981: 7980: 7967: 7946: 7931: 7894: 7885: 7875:in libraries ( 7864: 7858:K. J. Devlin, 7851: 7834: 7830: 7811: 7805:K. J. Devlin, 7798: 7792:S. Feferman, " 7785: 7770: 7718: 7703: 7682: 7666: 7653: 7622: 7609:(2): 213–262. 7587: 7574: 7546: 7518: 7490: 7443: 7430: 7363: 7348: 7318: 7302: 7299: 7296: 7291: 7286: 7283: 7280: 7273: 7268: 7264: 7260: 7249:W. Buchholz, " 7242: 7235: 7215: 7173: 7171: 7168: 7167: 7166: 7142: 7139: 7138: 7137: 7128: 7122: 7100: 7097: 7096: 7095: 7085: 7072:Hilbert Levitz 7069: 7045: 7027: 7017: 6999: 6981: 6961: 6958: 6953: 6950: 6937: 6917: 6914: 6911: 6907: 6903: 6883: 6863: 6860: 6857: 6854: 6851: 6848: 6845: 6842: 6837: 6834: 6829: 6825: 6805: 6791: 6787: 6783: 6780: 6777: 6774: 6771: 6766: 6762: 6758: 6753: 6749: 6731: 6711: 6708: 6702: 6698: 6681: 6678: 6670: 6669: 6655: 6651: 6643: 6639: 6634: 6628: 6624: 6603: 6600: 6597: 6577: 6574: 6571: 6568: 6544: 6541: 6538: 6535: 6515: 6504: 6492: 6472: 6450: 6446: 6438: 6434: 6429: 6423: 6419: 6395: 6384: 6372: 6352: 6330: 6326: 6318: 6314: 6309: 6303: 6299: 6275: 6264: 6252: 6228: 6206: 6202: 6194: 6190: 6185: 6179: 6175: 6151: 6146: 6143: 6139: 6118: 6107: 6095: 6071: 6049: 6045: 6037: 6033: 6028: 6022: 6018: 5994: 5989: 5985: 5964: 5953: 5940: 5937: 5934: 5930: 5922: 5918: 5913: 5907: 5903: 5879: 5876: 5873: 5870: 5850: 5826: 5804: 5799: 5795: 5774: 5771: 5768: 5765: 5753: 5750: 5749: 5748: 5732: 5710: 5705: 5701: 5679: 5675: 5672: 5661: 5647: 5643: 5620: 5615: 5611: 5589: 5585: 5582: 5571: 5557: 5553: 5532: 5523:definition in 5510: 5506: 5481: 5476: 5472: 5466: 5462: 5441: 5421: 5394: 5390: 5385: 5377: 5373: 5368: 5362: 5358: 5337: 5317: 5295: 5279: 5275: 5254: 5238: 5235: 5222: 5219: 5216: 5213: 5210: 5205: 5201: 5197: 5177: 5147: 5122: 5118: 5097: 5071: 5068: 5048: 5045: 5023: 5019: 4998: 4995: 4975: 4972: 4969: 4947: 4943: 4920: 4916: 4893: 4889: 4873:Gödel universe 4859: 4839: 4828:nonprojectible 4815: 4803: 4800: 4785: 4781: 4760: 4726: 4722: 4705: 4689: 4685: 4664: 4638: 4634: 4603: 4599: 4580: 4566: 4546: 4524: 4520: 4497: 4476: 4456: 4444: 4441: 4416: 4396: 4393: 4390: 4385: 4380: 4375: 4371: 4348: 4344: 4338: 4323:Mahlo cardinal 4310: 4290: 4270: 4234: 4230: 4224: 4220: 4195: 4175: 4150: 4145: 4141: 4131:is a model of 4120: 4117: 4114: 4111: 4108: 4103: 4099: 4078: 4054: 4051: 4045: 4041: 4028: 4025: 4012: 3989: 3986: 3980: 3976: 3933: 3930: 3924: 3920: 3893: 3889: 3875:, up to stage 3869:Gödel universe 3849:Main article: 3846: 3843: 3828: 3824: 3800: 3797: 3791: 3787: 3764: 3760: 3737: 3733: 3705: 3702: 3696: 3692: 3668: 3665: 3659: 3655: 3630: 3627: 3625: 3622: 3617:large cardinal 3599: 3596: 3595: 3594: 3587: 3584: 3561: 3541: 3519: 3515: 3492: 3488: 3467: 3443: 3440: 3437: 3433: 3427: 3423: 3398: 3378: 3356: 3352: 3329: 3325: 3304: 3280: 3277: 3274: 3270: 3264: 3260: 3233: 3228: 3224: 3203: 3181: 3178: 3175: 3171: 3147: 3142: 3139: 3136: 3132: 3128: 3125: 3099: 3094: 3090: 3078:weakly compact 3065: 3043: 3040: 3037: 3033: 3009: 3004: 3001: 2998: 2994: 2990: 2987: 2972:Mahlo cardinal 2959: 2937: 2934: 2931: 2927: 2903: 2898: 2895: 2892: 2888: 2884: 2881: 2859: 2854: 2850: 2823: 2818: 2814: 2789: 2767: 2764: 2761: 2757: 2733: 2711: 2707: 2686: 2681: 2677: 2673: 2668: 2664: 2641: 2638: 2634: 2630: 2606: 2602: 2598: 2594: 2590: 2570: 2563: 2559: 2554: 2550: 2545: 2541: 2513: 2509: 2505: 2501: 2497: 2477: 2470: 2466: 2461: 2457: 2452: 2448: 2424: 2419: 2415: 2411: 2406: 2403: 2400: 2396: 2392: 2387: 2383: 2355: 2350: 2347: 2342: 2338: 2333: 2329: 2324: 2320: 2299: 2277: 2273: 2269: 2247: 2242: 2238: 2217: 2214: 2211: 2208: 2205: 2202: 2197: 2192: 2188: 2160: 2155: 2151: 2147: 2144: 2124: 2121: 2118: 2115: 2112: 2109: 2106: 2077: 2074: 2070: 2066: 2040: 2036: 2032: 2029: 2024: 2019: 2015: 1994: 1989: 1985: 1981: 1978: 1958: 1953: 1949: 1945: 1940: 1936: 1919: 1916: 1899: 1895: 1892:Howard ordinal 1844: 1836: 1833: 1832: 1788:Main article: 1785: 1782: 1739: 1735: 1731: 1728: 1711: 1686: 1682: 1657: 1654: 1651: 1648: 1645: 1640: 1636: 1623: 1620: 1607: 1604: 1601: 1598: 1595: 1590: 1586: 1565: 1562: 1559: 1539: 1536: 1533: 1528: 1524: 1520: 1517: 1497: 1494: 1491: 1471: 1468: 1465: 1445: 1442: 1439: 1419: 1416: 1413: 1408: 1404: 1400: 1397: 1394: 1391: 1386: 1382: 1358: 1331: 1328: 1324: 1314:is called the 1301: 1297: 1276: 1273: 1270: 1250: 1247: 1244: 1239: 1235: 1214: 1211: 1208: 1203: 1199: 1178: 1152: 1149: 1146: 1124: 1120: 1099: 1079: 1076: 1073: 1068: 1064: 1043: 1021: 1017: 1013: 1010: 1007: 1004: 999: 995: 974: 971: 968: 965: 962: 957: 953: 932: 910: 906: 885: 865: 862: 859: 854: 851: 848: 844: 821: 817: 813: 810: 807: 804: 799: 795: 774: 771: 768: 763: 759: 738: 735: 730: 726: 703: 699: 676: 672: 651: 648: 643: 639: 618: 607: 606: 589: 584: 580: 574: 570: 566: 563: 556: 553: 548: 544: 539: 534: 529: 526: 523: 518: 514: 510: 505: 502: 497: 493: 488: 483: 480: 477: 472: 468: 452: 436: 432: 427: 404: 400: 379: 359: 356: 351: 347: 333: 330:) the ordinal 320:Main article: 317: 314: 312: 309: 289: 285: 261: 257: 252: 214:formal systems 209: 206: 167:Turing machine 152:Main article: 149: 146: 141:Main article: 138: 135: 118:ordinals (see 109: 98: 92: 84: 70: 26: 9: 6: 4: 3: 2: 8221: 8210: 8207: 8205: 8202: 8201: 8199: 8184: 8180: 8177: 8166: 8163: 8152: 8149: 8147: 8143: 8137: 8131: 8127: 8123: 8120: 8116: 8108: 8104: 8101: 8095: 8091: 8087: 8084: 8081: 8077: 8074: 8071: 8067: 8064: 8061: 8057: 8054: 8048: 8045: 8040: 8036: 8033: 8031: 8027: 8024: 8023: 8020: 8016: 8009: 8004: 8002: 7997: 7995: 7990: 7989: 7986: 7977: 7971: 7962: 7957: 7950: 7942: 7938: 7934: 7932:9780444851635 7928: 7924: 7920: 7916: 7912: 7908: 7901: 7899: 7889: 7882: 7878: 7874: 7873:Spectrum of L 7868: 7861: 7855: 7848: 7832: 7815: 7808: 7802: 7795: 7789: 7781: 7777: 7773: 7771:9780444105455 7767: 7763: 7759: 7755: 7751: 7747: 7743: 7736: 7729: 7727: 7725: 7723: 7715: 7714: 7707: 7698: 7693: 7686: 7679: 7673: 7671: 7663: 7657: 7642: 7635: 7629: 7627: 7617: 7612: 7608: 7604: 7603: 7598: 7591: 7584: 7578: 7564: 7560: 7553: 7551: 7535: 7528: 7522: 7507: 7500: 7494: 7486: 7482: 7478: 7474: 7470: 7466: 7462: 7458: 7454: 7447: 7440: 7437:W. Buchholz, 7434: 7419: 7412: 7406: 7404: 7402: 7400: 7398: 7396: 7394: 7392: 7390: 7388: 7386: 7384: 7382: 7380: 7378: 7376: 7374: 7372: 7370: 7368: 7359: 7355: 7351: 7349:3-540-11170-0 7345: 7341: 7337: 7333: 7329: 7322: 7315: 7271: 7266: 7246: 7238: 7232: 7228: 7227: 7219: 7211: 7207: 7202: 7197: 7193: 7189: 7185: 7178: 7174: 7164: 7160: 7156: 7152: 7148: 7145: 7144: 7134: 7129: 7125: 7123:3-540-07451-1 7119: 7114: 7113: 7107: 7103: 7102: 7093: 7089: 7086: 7083: 7079: 7078: 7073: 7070: 7067: 7063: 7059: 7058: 7053: 7049: 7046: 7043: 7042:0-262-68052-1 7039: 7035: 7031: 7028: 7025: 7021: 7018: 7015: 7014:0-387-07911-4 7011: 7007: 7003: 7000: 6997: 6996:0-444-10492-5 6993: 6989: 6985: 6984:Gaisi Takeuti 6982: 6979: 6978:0-387-51842-8 6975: 6971: 6967: 6964: 6963: 6957: 6949: 6935: 6912: 6909: 6881: 6861: 6858: 6852: 6849: 6846: 6840: 6835: 6832: 6827: 6823: 6813: 6811: 6789: 6785: 6781: 6778: 6775: 6772: 6769: 6764: 6760: 6756: 6751: 6747: 6738: 6734: 6726: 6700: 6696: 6687: 6677: 6675: 6653: 6649: 6641: 6632: 6626: 6622: 6601: 6598: 6595: 6572: 6569: 6558: 6539: 6536: 6513: 6505: 6490: 6470: 6448: 6444: 6436: 6427: 6421: 6417: 6409: 6393: 6385: 6370: 6350: 6328: 6324: 6316: 6307: 6301: 6297: 6289: 6273: 6265: 6250: 6242: 6239:is the least 6226: 6204: 6200: 6192: 6183: 6177: 6173: 6165: 6144: 6141: 6116: 6108: 6093: 6085: 6082:is the least 6069: 6047: 6043: 6035: 6026: 6020: 6016: 6008: 5987: 5962: 5954: 5938: 5935: 5932: 5928: 5920: 5911: 5905: 5901: 5893: 5874: 5871: 5848: 5840: 5839: 5838: 5824: 5802: 5797: 5769: 5766: 5746: 5730: 5708: 5703: 5673: 5670: 5662: 5645: 5641: 5618: 5613: 5583: 5580: 5572: 5555: 5551: 5530: 5508: 5495: 5494: 5493: 5479: 5474: 5470: 5464: 5460: 5439: 5419: 5410: 5392: 5388: 5383: 5375: 5366: 5360: 5356: 5335: 5315: 5307: 5303: 5299: 5277: 5273: 5252: 5244: 5234: 5220: 5217: 5211: 5208: 5203: 5199: 5175: 5167: 5166: 5162: 5145: 5136: 5120: 5116: 5095: 5087: 5083: 5077: 5067: 5065: 5060: 5046: 5043: 5021: 4996: 4993: 4973: 4970: 4967: 4945: 4918: 4891: 4887: 4878: 4874: 4857: 4837: 4829: 4813: 4799: 4798:-reflection. 4783: 4758: 4750: 4746: 4742: 4724: 4710: 4708: 4687: 4662: 4655:. For finite 4654: 4636: 4623: 4619: 4601: 4588: 4584: 4564: 4522: 4518: 4509: 4474: 4440: 4437: 4433: 4428: 4414: 4391: 4378: 4373: 4369: 4342: 4336: 4324: 4308: 4288: 4268: 4260: 4256: 4252: 4232: 4228: 4222: 4218: 4209: 4193: 4173: 4164: 4148: 4143: 4115: 4109: 4106: 4101: 4097: 4076: 4068: 4043: 4039: 4024: 4010: 3978: 3974: 3965: 3961: 3957: 3953: 3948: 3922: 3918: 3909: 3891: 3887: 3878: 3874: 3870: 3866: 3862: 3858: 3852: 3842: 3826: 3822: 3789: 3785: 3762: 3758: 3735: 3731: 3722: 3694: 3690: 3657: 3653: 3644: 3640: 3636: 3621: 3618: 3614: 3610: 3606: 3592: 3588: 3585: 3582: 3578: 3577: 3576: 3573: 3559: 3539: 3517: 3513: 3490: 3486: 3465: 3441: 3438: 3431: 3425: 3410: 3396: 3376: 3354: 3350: 3327: 3323: 3302: 3278: 3275: 3268: 3262: 3249: 3231: 3226: 3214:is the first 3179: 3176: 3169: 3159: 3140: 3137: 3134: 3130: 3115: 3097: 3092: 3079: 3076:is the first 3063: 3041: 3038: 3035: 3031: 3021: 3002: 2999: 2996: 2992: 2985: 2977: 2973: 2970:is the first 2957: 2935: 2932: 2929: 2925: 2915: 2896: 2893: 2890: 2886: 2879: 2857: 2852: 2839: 2821: 2816: 2803: 2800:is the first 2787: 2765: 2762: 2759: 2755: 2745: 2731: 2709: 2679: 2666: 2662: 2639: 2636: 2632: 2628: 2604: 2600: 2596: 2592: 2588: 2561: 2557: 2543: 2539: 2529: 2511: 2507: 2503: 2499: 2495: 2468: 2464: 2450: 2446: 2436: 2417: 2413: 2409: 2404: 2401: 2398: 2385: 2381: 2372: 2367: 2348: 2345: 2340: 2331: 2322: 2318: 2297: 2275: 2271: 2267: 2245: 2240: 2215: 2212: 2209: 2206: 2203: 2200: 2195: 2190: 2177: 2172: 2153: 2142: 2116: 2110: 2104: 2096: 2091: 2075: 2072: 2068: 2064: 2056: 2038: 2034: 2030: 2027: 2022: 2017: 1987: 1976: 1951: 1938: 1934: 1926:, defined as 1925: 1915: 1913: 1909: 1905: 1893: 1889: 1888: 1882: 1880: 1874: 1872: 1868: 1864: 1860: 1856: 1852: 1847: 1842: 1830: 1826: 1822: 1821: 1820: 1818: 1814: 1810: 1806: 1802: 1798: 1791: 1781: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1737: 1726: 1717: 1714: 1708: 1706: 1702: 1701:predicatively 1684: 1671: 1655: 1652: 1646: 1638: 1634: 1619: 1605: 1602: 1596: 1588: 1584: 1563: 1560: 1557: 1534: 1526: 1522: 1518: 1515: 1495: 1492: 1489: 1469: 1466: 1463: 1443: 1440: 1437: 1414: 1406: 1402: 1398: 1392: 1384: 1380: 1370: 1356: 1349:(to the base 1348: 1347: 1329: 1326: 1322: 1299: 1295: 1274: 1271: 1268: 1245: 1237: 1233: 1209: 1201: 1197: 1176: 1168: 1167: 1150: 1147: 1144: 1122: 1118: 1097: 1074: 1066: 1062: 1041: 1019: 1015: 1011: 1005: 997: 993: 972: 969: 963: 955: 951: 930: 908: 904: 883: 860: 852: 849: 846: 842: 819: 815: 811: 805: 797: 793: 769: 761: 757: 736: 733: 728: 724: 701: 697: 674: 670: 649: 646: 641: 637: 616: 587: 582: 572: 568: 561: 554: 551: 546: 542: 537: 532: 527: 524: 521: 516: 512: 508: 503: 500: 495: 491: 486: 481: 478: 475: 470: 466: 458: 457: 456: 434: 430: 425: 402: 398: 377: 357: 354: 349: 345: 336: 329: 323: 308: 306: 302: 297: 295: 292:measures the 283: 279: 275: 271: 267: 255: 248: 245: 240: 238: 234: 230: 225: 223: 219: 215: 205: 201: 200:(see below). 199: 194: 191: 187: 184:greater than 183: 179: 176:'s system of 175: 170: 168: 164: 160: 155: 144: 134: 132: 128: 123: 121: 117: 104: 101:), described 87: 82: 81:Church–Kleene 77: 73: 65: 63: 59: 55: 52: 48: 44: 40: 37: 33: 19: 8209:Proof theory 8182: 8135: 8129: 8125: 8114: 8106: 8093: 8089: 8079: 8069: 8059: 8038: 8029: 8014: 7970: 7949: 7914: 7910: 7888: 7867: 7854: 7814: 7801: 7788: 7745: 7741: 7712: 7706: 7697:1907.17611v1 7685: 7677: 7656: 7645:. Retrieved 7643:. 2006-02-07 7640: 7606: 7600: 7590: 7577: 7566:. Retrieved 7562: 7538:. Retrieved 7536:. 1993-02-21 7533: 7521: 7510:. Retrieved 7505: 7493: 7463:(1): 35–55. 7460: 7456: 7446: 7433: 7422:. Retrieved 7420:. 2017-07-29 7417: 7331: 7321: 7245: 7225: 7218: 7191: 7187: 7177: 7158: 7151:S. B. Cooper 7132: 7111: 7106:Barwise, Jon 7075: 7055: 7051: 7033: 7023: 7006:Proof theory 7005: 7002:Kurt Schütte 6988:Proof theory 6987: 6970:Proof theory 6969: 6955: 6814: 6727: 6683: 6671: 6086:larger than 5755: 5496:A set has a 5411: 5301: 5242: 5240: 5164: 5160: 5137: 5079: 5061: 4876: 4827: 4805: 4744: 4711: 4675:, the least 4652: 4578: 4510:if the rank 4488: 4446: 4429: 4361:is equal to 4258: 4250: 4207: 4165: 4031: 4030: 3949: 3907: 3876: 3872: 3864: 3854: 3720: 3638: 3632: 3601: 3574: 3411: 3160: 3022: 2916: 2802:inaccessible 2746: 2654:is equal to 2530: 2437: 2368: 2174:Next is the 2173: 2092: 2054: 1921: 1910:, let alone 1891: 1885: 1883: 1875: 1870: 1866: 1862: 1858: 1854: 1850: 1845: 1840: 1834: 1828: 1824: 1800: 1793: 1769: 1765: 1761: 1757: 1753: 1718: 1712: 1709: 1625: 1371: 1344: 1164: 1034:), and when 608: 325: 298: 281: 247:Peano axioms 241: 232: 228: 226: 216:(containing 211: 202: 195: 189: 185: 181: 171: 157: 124: 115: 80: 79: 66: 47:proof theory 29: 7961:1104.1842v1 7917:: 355–390. 7847:-separation 7762:10852/44063 7748:: 301–381. 7194:: 195–207. 6684:Within the 6559:there is a 4508:-reflecting 3814:instead of 2724:represents 1843:such that ε 923:(i.e., the 244:first-order 49:still have 8198:Categories 7879:catalog) ( 7647:2010-08-10 7568:2021-08-10 7540:2021-08-10 7512:2021-08-10 7424:2021-08-10 7082:PostScript 6952:References 6614:such that 6129:is called 5975:is called 5861:is called 5723:iff it is 5265:such that 5188:such that 5108:such that 5074:See also: 4826:is called 4487:is called 4443:Reflection 4089:such that 3908:admissible 3620:unclear.) 1835:Here Ω = ω 1811:, Bridge, 1760:such that 1372:Ordering: 662:is called 218:arithmetic 78:is called 51:computable 32:set theory 7974:W. Chan, 7941:0049-237X 7829:Σ 7780:0049-237X 7477:1432-0665 7316:. (1987)" 7279:− 7263:Π 7210:0168-0072 6936:ρ 6882:η 6862:ρ 6853:η 6841:× 6824:ω 6697:ω 6654:β 6638:Σ 6633:≺ 6627:α 6602:α 6596:β 6514:α 6491:α 6471:β 6449:β 6433:Σ 6428:≺ 6422:α 6394:α 6371:α 6351:β 6329:β 6313:Σ 6308:≺ 6302:α 6274:α 6251:α 6227:β 6205:β 6189:Σ 6184:≺ 6178:α 6117:α 6094:α 6070:β 6048:β 6032:Σ 6027:≺ 6021:α 5963:α 5939:β 5933:α 5917:Σ 5912:≺ 5906:α 5875:β 5849:α 5794:Π 5731:σ 5700:Σ 5674:⊆ 5646:σ 5610:Δ 5584:⊆ 5556:σ 5505:Σ 5471:≺ 5465:σ 5440:σ 5389:ω 5372:Σ 5367:≺ 5361:α 5336:α 5316:α 5278:α 5253:α 5218:⊨ 5212:∈ 5204:α 5176:α 5121:α 5096:α 5047:ω 5018:Σ 4942:Σ 4915:Σ 4892:α 4858:α 4838:α 4814:α 4780:Π 4721:Π 4684:Π 4633:Π 4598:Π 4579:KP+Π 4565:ϕ 4557:-formula 4545:Γ 4523:α 4496:Γ 4475:α 4455:Γ 4415:ρ 4392:ω 4379:∩ 4374:ρ 4347:# 4309:α 4289:α 4269:α 4219:ω 4194:α 4174:α 4140:Π 4116:ω 4107:∩ 4102:α 4077:α 4044:ω 4040:ω 4011:α 3979:α 3975:ω 3919:ω 3892:α 3823:ω 3786:ω 3759:ω 3732:ω 3691:ω 3654:ω 3560:ϵ 3540:ϵ 3487:ω 3436:Υ 3432:ε 3422:Ψ 3397:ϵ 3377:ϵ 3324:ω 3273:Ξ 3269:ε 3259:Ψ 3223:Π 3202:Ξ 3174:Ξ 3170:ε 3131:ε 3124:Ψ 3089:Π 3032:ε 2993:ε 2986:ψ 2926:ε 2887:ε 2880:ψ 2849:Δ 2813:Π 2756:ε 2706:Ω 2680:ν 2676:Ω 2663:ψ 2640:ν 2601:ε 2558:ε 2553:Ω 2540:ψ 2512:ω 2508:ω 2469:ω 2465:ω 2460:Ω 2447:ψ 2414:ε 2410:⋅ 2399:ω 2395:Ω 2382:ψ 2341:ω 2337:Ω 2332:ε 2319:ψ 2298:ω 2276:ω 2237:Π 2201:− 2187:Π 2154:ω 2150:Ω 2143:ψ 2117:ω 2076:ω 2028:− 2014:Π 1988:ω 1984:Ω 1977:ψ 1952:ω 1948:Ω 1935:ψ 1738:α 1734:Γ 1730:↦ 1727:α 1681:Γ 1656:α 1639:α 1635:φ 1606:δ 1597:β 1589:α 1585:φ 1564:γ 1558:α 1535:δ 1527:γ 1523:φ 1516:β 1496:γ 1490:α 1470:δ 1464:β 1444:γ 1438:α 1415:δ 1407:γ 1403:φ 1393:β 1385:α 1381:φ 1357:ω 1323:γ 1300:γ 1296:φ 1275:δ 1269:γ 1246:α 1238:γ 1234:φ 1210:α 1202:δ 1198:φ 1177:δ 1151:δ 1145:γ 1123:γ 1119:φ 1098:α 1075:α 1067:δ 1063:φ 1042:δ 1020:β 1016:ε 1006:β 994:φ 973:α 964:α 956:γ 952:φ 931:β 909:γ 905:φ 884:β 861:β 847:γ 843:φ 820:β 816:ω 806:β 794:φ 770:β 762:γ 758:φ 737:α 729:α 725:ε 698:ζ 675:ι 671:ε 650:α 642:α 638:ω 617:ι 583:ω 569:ε 543:ε 538:ω 533:ω 525:ω 522:⋅ 513:ε 492:ε 487:ω 467:ε 435:ω 431:ω 426:ω 403:ω 399:ω 378:ω 358:α 350:α 346:ω 268:), so by 116:recursive 36:countable 7877:WorldCat 7485:35012853 7157:(eds.): 7155:J. Truss 7108:(1976). 6874:, where 6555:-stable 6463:, where 6343:, where 6219:, where 6162:-stable 6062:, where 6005:-stable 5890:-stable 5064:Jensen's 4906:of KP + 4407:, where 4003:for the 3952:Friedman 3682:. Thus, 3194:, where 3056:, where 2950:, where 2780:, where 1797:Bachmann 1137:for all 834:and let 114:are the 76:supremum 74:; their 39:ordinals 8049: Γ 7358:0655036 7066:2272243 4186:is the 3964:oracles 3910:, thus 3572:, 0). 3409:, 0). 1813:Schütte 1805:Takeuti 1776:" and " 1090:as the 876:be the 303:is the 266:Gentzen 8181:  8124:  8105:  8088:  8078:  8068:  8058:  8037:  8028:  7939:  7929:  7778:  7768:  7716:(1973) 7508:. 1990 7483:  7475:  7418:Madore 7356:  7346:  7233:  7208:  7120:  7064:  7040:  7012:  6994:  6976:  6928:, and 5663:A set 5573:A set 5084:has a 3958:, and 3956:Jensen 3721:define 3639:cannot 1801:ad hoc 1770:ad hoc 1550:) or ( 1482:) or ( 174:Kleene 7956:arXiv 7881:EuDML 7738:(PDF) 7692:arXiv 7637:(PDF) 7530:(PDF) 7502:(PDF) 7481:S2CID 7414:(PDF) 7062:JSTOR 5292:is a 4589:by a 3960:Sacks 3861:above 1809:Aczel 1778:large 1774:small 120:below 103:below 56:(see 7937:ISSN 7927:ISBN 7776:ISSN 7766:ISBN 7473:ISSN 7344:ISBN 7231:ISBN 7206:ISSN 7153:and 7118:ISBN 7038:ISBN 7010:ISBN 6992:ISBN 6974:ISBN 6913:< 6599:> 5044:> 4620:and 4583:-ref 2637:< 2597:< 2504:< 2073:< 2055:sets 1884:The 1754:that 1603:< 1576:and 1561:> 1519:< 1508:and 1493:< 1467:< 1456:and 1399:< 1272:< 1261:for 1148:< 593:etc. 88:or ω 8097:Ω+1 8082:(Ω) 8072:(Ω) 8062:(Ω) 7919:doi 7758:hdl 7750:doi 7611:doi 7465:doi 7336:doi 7196:doi 6806:⌈φ⌉ 6730:ATR 6676:. 6557:iff 6408:iff 6288:iff 6164:iff 6007:iff 5892:iff 5691:is 5601:is 5300:of 5138:If 5082:ZFC 4709:. 4706:m+1 3591:ZFC 3478:= ( 3315:= ( 2528:. 1900:Ω+1 1894:, ψ 1707:". 1618:). 1369:). 282:can 276:on 224:). 8200:: 8139:+1 8112:(Ω 7935:. 7925:. 7915:94 7913:. 7909:. 7897:^ 7774:. 7764:. 7756:. 7746:79 7744:. 7740:. 7721:^ 7669:^ 7639:. 7625:^ 7607:20 7605:. 7599:. 7561:. 7549:^ 7532:. 7504:. 7479:. 7471:. 7461:33 7459:. 7455:. 7416:. 7366:^ 7354:MR 7352:. 7342:. 7204:. 7192:32 7190:. 7186:. 7090:, 7074:, 7054:, 7050:, 7032:, 7022:, 7004:, 6986:, 6968:, 5837:. 5492:: 5409:. 5059:. 4875:, 3954:, 3871:, 3841:. 3645:, 3611:, 3607:, 3552:, 3532:; 3505:; 3389:, 3369:; 3342:; 3080:(= 2804:(= 2435:. 2171:. 1898:(ε 1881:. 1857:)= 1823:ψ( 1819:: 417:, 390:, 8183:Ω 8172:1 8158:1 8141:) 8136:ω 8133:Ω 8130:ε 8128:( 8126:ψ 8118:) 8115:ω 8110:0 8107:ψ 8099:) 8094:ε 8092:( 8090:ψ 8080:θ 8070:θ 8060:θ 8051:0 8042:0 8039:ε 8030:ω 8007:e 8000:t 7993:v 7964:. 7958:: 7943:. 7921:: 7833:1 7782:. 7760:: 7752:: 7700:. 7694:: 7650:. 7619:. 7613:: 7571:. 7543:. 7515:. 7487:. 7467:: 7427:. 7360:. 7338:: 7301:I 7298:B 7295:+ 7290:) 7285:A 7282:C 7272:1 7267:1 7259:( 7239:. 7212:. 7198:: 7165:. 7126:. 7084:) 7068:, 6916:) 6910:, 6906:Q 6902:( 6859:+ 6856:) 6850:+ 6847:1 6844:( 6836:K 6833:C 6828:1 6790:n 6786:x 6782:, 6779:. 6776:. 6773:. 6770:, 6765:2 6761:x 6757:, 6752:1 6748:x 6732:0 6710:K 6707:C 6701:1 6668:. 6650:L 6642:1 6623:L 6576:) 6573:1 6570:+ 6567:( 6543:) 6540:1 6537:+ 6534:( 6503:. 6445:L 6437:1 6418:L 6383:. 6325:L 6317:1 6298:L 6263:. 6201:L 6193:1 6174:L 6150:) 6145:+ 6142:+ 6138:( 6106:. 6044:L 6036:1 6017:L 5993:) 5988:+ 5984:( 5936:+ 5929:L 5921:1 5902:L 5878:) 5872:+ 5869:( 5825:n 5803:0 5798:n 5773:) 5770:1 5767:+ 5764:( 5747:. 5709:1 5704:2 5678:N 5671:x 5660:. 5642:L 5619:1 5614:2 5588:N 5581:x 5570:. 5552:L 5531:L 5509:1 5480:L 5475:1 5461:L 5420:L 5393:1 5384:L 5376:1 5357:L 5302:L 5296:1 5294:Σ 5274:L 5221:T 5215:) 5209:, 5200:L 5196:( 5165:L 5163:= 5161:V 5146:T 5117:L 5022:1 5009:+ 4997:P 4994:K 4974:L 4971:= 4968:V 4946:1 4919:1 4888:L 4877:L 4784:n 4759:n 4725:3 4704:Π 4688:n 4663:n 4637:3 4602:3 4581:3 4519:L 4395:) 4389:( 4384:P 4370:L 4343:S 4337:2 4233:1 4229:E 4223:1 4149:1 4144:1 4119:) 4113:( 4110:P 4098:L 4053:K 4050:C 3988:K 3985:C 3932:K 3929:C 3923:1 3888:L 3877:α 3873:L 3865:α 3827:1 3799:K 3796:C 3790:1 3763:1 3736:1 3704:K 3701:C 3695:1 3667:K 3664:C 3658:1 3593:. 3583:. 3518:0 3514:P 3491:+ 3466:X 3442:1 3439:+ 3426:X 3355:0 3351:P 3328:+ 3303:X 3279:1 3276:+ 3263:X 3232:2 3227:0 3180:1 3177:+ 3146:) 3141:1 3138:+ 3135:K 3127:( 3098:1 3093:1 3064:K 3042:1 3039:+ 3036:K 3008:) 3003:1 3000:+ 2997:M 2989:( 2958:M 2936:1 2933:+ 2930:M 2902:) 2897:1 2894:+ 2891:I 2883:( 2858:1 2853:2 2822:1 2817:0 2788:I 2766:1 2763:+ 2760:I 2732:1 2710:0 2685:) 2672:( 2667:0 2633:D 2629:I 2605:0 2593:D 2589:I 2569:) 2562:0 2549:( 2544:0 2500:D 2496:I 2476:) 2456:( 2451:0 2423:) 2418:0 2405:1 2402:+ 2391:( 2386:0 2354:) 2349:1 2346:+ 2328:( 2323:0 2272:D 2268:I 2246:1 2241:1 2216:I 2213:B 2210:+ 2207:A 2204:C 2196:1 2191:1 2159:) 2146:( 2123:) 2120:) 2114:( 2111:0 2108:( 2105:+ 2069:D 2065:I 2039:0 2035:A 2031:C 2023:1 2018:1 1993:) 1980:( 1957:) 1944:( 1939:0 1896:0 1871:σ 1867:α 1865:≤ 1863:σ 1859:σ 1855:α 1851:σ 1849:= 1846:σ 1841:σ 1837:1 1829:α 1825:α 1766:α 1762:α 1758:α 1713:α 1685:0 1653:= 1650:) 1647:0 1644:( 1600:) 1594:( 1538:) 1532:( 1441:= 1418:) 1412:( 1396:) 1390:( 1330:h 1327:t 1249:) 1243:( 1213:) 1207:( 1078:) 1072:( 1012:= 1009:) 1003:( 998:1 970:= 967:) 961:( 864:) 858:( 853:1 850:+ 812:= 809:) 803:( 798:0 773:) 767:( 734:= 702:0 647:= 588:, 579:) 573:0 565:( 562:= 555:1 552:+ 547:0 528:, 517:0 509:= 504:1 501:+ 496:0 482:, 479:1 476:+ 471:0 453:1 355:= 334:0 332:ε 290:0 286:0 262:0 258:0 253:0 251:ε 233:o 229:o 190:O 186:o 182:o 110:1 99:1 93:1 85:1 83:ω 71:1 20:)

Index

Large countable ordinals
set theory
countable
ordinals
Cantor normal forms
proof theory
computable
ordinal notations
ordinal analysis
halting problem
first uncountable ordinal ω1
supremum
below
below
ordinal arithmetic
large cardinals
Computable ordinal
Ordinal notation
Computable ordinals
computable function
Turing machine
Kleene
ordinal notations
Church–Kleene ordinal
formal systems
arithmetic
Peano arithmetic
transfinite induction
first-order
Peano axioms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.