Knowledge

Electronic filter topology

Source đź“ť

373: 445: 655: 473: 520: 36: 411: 339: 2308: 2288: 429: 357: 602: 464: 420: 348: 1575: 696: 2577: 283:). Campbell published in 1922 but had clearly been using the topology for some time before this. Cauer first picked up on ladders (published 1926) inspired by the work of Foster (1924). There are two forms of basic ladder topologies: unbalanced and balanced. Cauer topology is usually thought of as an unbalanced ladder topology. 543:
rejection or passband-to-stopband transition steepness. Usually the design applies some transform to a simple ladder topology: the resulting topology is ladder-like but no longer obeys the rule that shunt admittances are the dual network of series impedances: it invariably becomes more complex with
588:
The mm'-type topology can be thought of as a double m-type design. Like the m-type it has the same bandform but offers further improved transfer characteristics. It is, however, a rarely used design due to increased component count and complexity as well as its normally requiring basic ladder and
93: 612:
Zobel constant resistance filters use a topology that is somewhat different from other filter types, distinguished by having a constant input resistance at all frequencies and in that they use resistive components in the design of their sections. The higher component and section count of these
236:
Some passive filters, consisting of only one or two filter sections, are given special names including the L-section, T-section and Π-section, which are unbalanced filters, and the C-section, H-section and box-section, which are balanced. All are built upon a very simple "ladder" topology (see
909: 568:
The m-type (m-derived) filter is by far the most commonly used modified image ladder topology. There are two m-type topologies for each of the basic ladder topologies; the series-derived and shunt-derived topologies. These have identical transfer functions to each other but different image
569:
impedances. Where a filter is being designed with more than one passband, the m-type topology will result in a filter where each passband has an analogous frequency-domain response. It is possible to generalise the m-type topology for filters with more than one passband using parameters m
662:
Both the T-section (from ladder topology) and the bridge-T (from Zobel topology) can be transformed into a lattice topology filter section but in both cases this results in high component count and complexity. The most common application of lattice filters (X-sections) is in
2279:, after the order of the second integrator and the inverter has been switched. If a noninverting bandpass filter is required, the order of the second integrator and the inverter can be switched, and the output taken at the output of the inverter's operational amplifier. 1931: 1726: 1553:
The two-integrator-loop topology is derived from rearranging a biquadratic transfer function. The rearrangement will equate one signal with the sum of another signal, its integral, and the integral's integral. In other words, the rearrangement reveals a
1291: 727: 1455: 674:
Although T and bridged-T sections can always be transformed into X-sections the reverse is not always possible because of the possibility of negative values of inductance and capacitance arising in the transform.
2188: 1102: 2090: 1803: 2001: 1795: 2441:
This means Sallen-Key filters, state-variable variable filters, multiple feedback filters and other types are all biquads. There also is a "biquad" topology to help further confuse things.
1599: 986: 613:
designs usually limits their use to equalisation applications. Topologies usually associated with constant resistance filters are the bridged-T and its variants, all described in the
2479:
plethora of single-amplifier second-order active filter circuits … whose numerator and denominator are of second order, i.e., biquadratic; they are therefore referred to as "biquads"
221:
called "sections". There is no formal definition of a section except that it must have at least one series component and one shunt component. Sections are invariably connected in a
493:
Textbooks and design drawings usually show the unbalanced implementations, but in telecoms it is often required to convert the design to the balanced implementation when used with
1349: 2233: 1152: 2375:
General Wave-filters having any Pre-assigned Transmitting and Attenuating Bands and Propagation Constants Adjustable Without Changing one Mid-point Characteristic Impedance
2296: 2273: 2429: 252:, on the other hand, keep the same basic component values from section to section though the topology may vary and tend to make use of more complex sections. 1160: 2456:
Analog circuit theory and filter design in the digital world : with an introduction to the morphological method for creative solutions and design
904:{\displaystyle H(s)={\frac {V_{o}}{V_{i}}}=-{\frac {1}{As^{2}+Bs+C}}={\frac {K{\omega _{0}}^{2}}{s^{2}+{\frac {\omega _{0}}{Q}}s+{\omega _{0}}^{2}}}} 640:
The bridged-T topology is also used in sections intended to produce a signal delay but in this case no resistive components are used in the design.
2491: 255:
L-sections are never symmetrical but two L-sections back-to-back form a symmetrical topology and many other sections are symmetrical in form.
1512:, such as the MFB or Sallen-Key. However, there is also a specific "biquad" topology. It is also sometimes called the 'ring of 3' circuit. 1359: 2101: 2581: 682:, the difference being merely the drawn representation on the page rather than any real difference in topology, circuitry or function. 992: 298:
of the series impedances if they were duals in the starting network - which is the case with series inductors and shunt capacitors.
229:
topology, consisting of additional copies of the same section or of completely different sections. The rules of series and parallel
185:(such as transistors, op amps, and other integrated circuits) that require power. Further, topologies may be implemented either in 2013: 290:
form the topology would consist of series inductors and shunt capacitors. Other bandforms would have an equally simple topology
112:
circuits without taking note of the values of the components used but only the manner in which those components are connected.
2464: 1926:{\displaystyle H(s)={\frac {G_{\mathrm {bpf} }{\frac {\omega _{0}}{Q}}s}{s^{2}+{\frac {\omega _{0}}{Q}}s+{\omega _{0}}^{2}}}} 1461:
For finding suitable component values to achieve the desired filter properties, a similar approach can be followed as in the
226: 2597: 214: 2421: 1940: 1734: 1721:{\displaystyle H(s)={\frac {G_{\mathrm {lpf} }{\omega _{0}}^{2}}{s^{2}+{\frac {\omega _{0}}{Q}}s+{\omega _{0}}^{2}}}} 79: 57: 50: 535:
as the ladder on which they are based but their transfer functions are modified to improve some parameter such as
1462: 921: 170: 1562:
The SAB topology is sensitive to component choice and can be more difficult to adjust. Hence, usually the term
178: 558: 182: 17: 714:. A diagram of the circuit topology for a second order low pass filter is shown in the figure on the right. 527:
Image filter design commonly uses modifications of the basic ladder topology. These topologies, invented by
248:
usually repeat the simplest form of L-section topology though component values may change in each section.
291: 233:
would combine two sections consisting only of series components or shunt components into a single section.
2321:
The Sallen-Key design is a non-inverting second-order filter with the option of high Q and passband gain.
2549:
Zobel, O J, "Distortion correction in electrical networks with constant resistance recurrent networks",
501: 286:
A ladder network consists of cascaded asymmetrical L-sections (unbalanced) or C-sections (balanced). In
1302: 2275:. If a noninverting low-pass filter is required, the output can be taken at the output of the second 2197: 1108: 245: 1558:
structure. By using different states as outputs, any kind of second-order filter can be implemented.
2373:
There is no universally-recognised name for this kind of filter: Zobel (1923, p.11) used the title
44: 2538:
Cauer, W, "Die Verwirklichung der Wechselstromwiderstande vorgeschriebener Frequenzabhängigkeit",
589:
m-type sections in the same filter for impedance matching reasons. It is normally only found in a
2241: 1539: 1535: 668: 585:-type filters which have bandforms that can differ in different parts of the frequency spectrum. 249: 163: 154:. Once the transfer function for a filter is chosen, the particular topology to implement such a 2335: 590: 276: 237:
below). The chart at the bottom of the page shows these various topologies in terms of general
105: 61: 2345: 2276: 1555: 1475: 654: 372: 230: 2299:, that uses an actively compensated Miller integrator, which improves filter performance. 8: 2316: 444: 294:
from the lowpass topology. The transformed network will have shunt admittances that are
2485: 1495: 1352: 717:
The transfer function of the multiple feedback topology circuit, like all second-order
553: 536: 519: 222: 159: 472: 2470: 2460: 2007: 1491: 1286:{\displaystyle Q={\frac {\sqrt {R_{3}R_{4}C_{2}C_{5}}}{(R_{4}+R_{3}+|K|R_{3})C_{5}}}} 711: 707: 280: 238: 119: 109: 2330: 2236: 1587: 548: 218: 198: 194: 155: 147: 143: 135: 131: 96:
An elementary filter topology introduces a capacitor into the feedback path of an
1583: 664: 649: 305: 287: 272: 186: 151: 139: 2516:
Zobel, O J, "Theory and Design of Uniform and Composite Electric Wave Filters",
2095: 1532: 295: 2474: 410: 338: 100:
to achieve an unbalanced active implementation of a low-pass transfer function
2591: 2340: 2307: 1516: 1487: 718: 614: 268: 190: 174: 127: 115: 2454: 2287: 428: 202: 356: 1582:
For example, the basic configuration in Figure 1 can be used as either a
1543: 1504: 601: 463: 419: 347: 181:: resistors, capacitors, and inductors. Active topologies also include 1547: 1450:{\displaystyle \omega _{0}=2\pi f_{0}=1/{\sqrt {R_{3}R_{4}C_{2}C_{5}}}} 528: 2183:{\displaystyle Q={\sqrt {\frac {{R_{3}}^{2}C_{1}}{R_{2}R_{4}C_{2}}}}} 1294: 606: 605:
Typical bridged-T Zobel network equaliser used to correct high end
540: 532: 494: 158:
can be selected so that, for example, one might choose to design a
123: 92: 1566:
refers to the two-integrator-loop state variable filter topology.
1574: 2576: 2564:, US patent 1 792 523, filed 12 March 1927, issued 17 Feb 1931. 1097:{\displaystyle B=R_{3}C_{5}+R_{1}C_{5}+R_{1}R_{3}C_{5}/R_{4}\,} 706:
is an electronic filter topology which is used to implement an
695: 97: 2509:
Campbell, G A, "Physical Theory of the Electric Wave-Filter",
2295:
Figure 2 shows a variant of the Tow-Thomas topology, known as
581:
etc., which are not equal to each other resulting in general m
2085:{\displaystyle \omega _{0}=1/{\sqrt {R_{2}R_{4}C_{1}C_{2}}}} 1590:
filter depending on where the output signal is taken from.
1508:. Any second-order filter topology can be referred to as a 1797:. The second-order bandpass transfer function is given by 27:
Electronic filter circuits defined by component connection
1593:
The second-order low-pass transfer function is given by
2291:
Figure 2. The Akerberg-Mossberg biquad filter topology.
1578:
Figure 1. The common Tow-Thomas biquad filter topology.
1550:
in order to generate the proper filter characteristics.
1474:
For the digital implementation of a biquad filter, see
134:. Common types of linear filter transfer function are; 177:
types. Passive topologies are composed exclusively of
2311:
Figure 1: The generic Sallen–Key filter topology
2244: 2200: 2104: 2016: 1943: 1806: 1737: 1602: 1362: 1305: 1163: 1111: 995: 924: 730: 678:Lattice topology is identical to the more familiar 2267: 2227: 2182: 2084: 1995: 1925: 1789: 1720: 1449: 1343: 1285: 1146: 1096: 980: 903: 658:Lattice topology X-section phase correction filter 544:higher component count. Such topologies include; 118:characterises filter circuits primarily by their 2589: 1465:section of the alternative Sallen–Key topology. 1996:{\displaystyle G_{\mathrm {bpf} }=-R_{3}/R_{1}} 1790:{\displaystyle G_{\mathrm {lpf} }=-R_{2}/R_{1}} 2513:, November 1922, vol. 1, no. 2, pp. 1–32. 690: 514: 300: 2377:. Since Zobel refers to the parameters as m 2282: 1531:The SAB topology uses feedback to generate 2490:: CS1 maint: location missing publisher ( 981:{\displaystyle A=(R_{1}R_{3}C_{2}C_{5})\,} 205:may require arrays of identical circuits. 2422:"A Beginner's Guide to Filter Topologies" 2393:seems reasonable terminology to use here. 1468: 1340: 1143: 1093: 977: 636:Balanced short-circuit C-section topology 80:Learn how and when to remove this message 2452: 2306: 2286: 1573: 1542:. In particular, the feedback moves the 694: 653: 633:Balanced open-circuit C-section topology 600: 518: 303: 91: 43:This article includes a list of general 596: 14: 2590: 2302: 492: 169:Filter topologies may be divided into 331: 328: 325: 208: 2527:Foster, R M, "A reactance theorem", 2235:, and Q is sometimes expressed as a 1569: 685: 383: 313: 258: 29: 699:Multiple feedback topology circuit. 643: 24: 1956: 1953: 1950: 1837: 1834: 1831: 1750: 1747: 1744: 1633: 1630: 1627: 471: 462: 443: 427: 418: 409: 371: 355: 346: 337: 49:it lacks sufficient corresponding 25: 2609: 2569: 2194:The bandwidth is approximated by 2575: 1344:{\displaystyle K=-R_{4}/R_{1}\,} 630:Short-circuit L-section topology 34: 2432:from the original on 2019-10-28 2228:{\displaystyle B=\omega _{0}/Q} 1147:{\displaystyle C=R_{1}/R_{4}\,} 627:Open-circuit L-section topology 2446: 2414: 2405: 2396: 2367: 2358: 1816: 1810: 1612: 1606: 1267: 1253: 1245: 1215: 974: 931: 740: 734: 263:Ladder topology, often called 13: 1: 2551:Bell System Technical Journal 2529:Bell System Technical Journal 2518:Bell System Technical Journal 2511:Bell System Technical Journal 2502: 1521:single-amplifier biquad (SAB) 1515:Biquad filters are typically 389: 317: 275:), was in fact first used by 217:. Most are built from simple 2453:Moschytz, George S. (2019). 126:. Transfer functions may be 7: 2324: 2268:{\displaystyle \zeta =1/2Q} 710:by adding two poles to the 624:Balanced bridged-T topology 499: 215:long in development and use 10: 2614: 2598:Electronic filter topology 2582:Electronic filter topology 2314: 2297:Akerberg-Mossberg topology 704:Multiple feedback topology 691:Multiple feedback topology 647: 515:Modified ladder topologies 457:X Section (mid-Π-Derived) 454:X Section (mid-T-Derived) 213:Passive filters have been 197:. Implementations such as 2546:, pp. 355–388, 1926. 2540:Archiv fĂĽr Elektrotechnik 2535:, pp. 259–267, 1924. 1494:that is the ratio of two 523:series m-derived topology 489: 485: 470: 461: 456: 453: 442: 437: 426: 417: 408: 403: 400: 397: 392: 370: 365: 354: 345: 336: 320: 164:Sallen–Key topology 2351: 2283:Akerberg-Mossberg filter 1519:and implemented with a 1457:is the corner frequency 244:Filters designed using 64:more precise citations. 2562:Phase-shifting network 2336:Topology (electronics) 2312: 2292: 2269: 2229: 2184: 2086: 1997: 1927: 1791: 1722: 1579: 1469:Biquad filter topology 1451: 1345: 1287: 1148: 1098: 982: 905: 700: 659: 609: 524: 476: 467: 448: 432: 423: 414: 376: 360: 351: 342: 250:Image designed filters 193:form when employed in 101: 2459:. Cham, Switzerland. 2346:State variable filter 2310: 2290: 2277:operational amplifier 2270: 2230: 2185: 2087: 2003:. In both cases, the 1998: 1928: 1792: 1723: 1577: 1556:state variable filter 1538:and possibly complex 1476:Digital biquad filter 1452: 1346: 1288: 1149: 1099: 983: 906: 698: 657: 604: 522: 475: 466: 447: 431: 422: 413: 375: 359: 350: 341: 95: 2584:at Wikimedia Commons 2557:(1928), p. 438. 2385:etc., the shorthand 2242: 2198: 2102: 2014: 1941: 1804: 1735: 1731:where low-pass gain 1600: 1360: 1303: 1161: 1109: 993: 922: 728: 597:Bridged-T topologies 148:band-reject or notch 2317:Sallen-Key topology 2303:Sallen–Key topology 1937:with bandpass gain 1525:two-integrator-loop 1496:quadratic functions 2313: 2293: 2265: 2225: 2180: 2082: 1993: 1923: 1787: 1718: 1580: 1490:that implements a 1447: 1351:is the DC voltage 1341: 1283: 1144: 1094: 978: 901: 701: 669:phase equalisation 660: 621:Bridged-T topology 610: 537:impedance matching 525: 477: 468: 449: 433: 424: 415: 377: 361: 352: 343: 239:constant k filters 209:Passive topologies 179:passive components 160:Butterworth filter 122:rather than their 104:Electronic filter 102: 2580:Media related to 2466:978-3-030-00096-7 2178: 2177: 2080: 2008:Natural frequency 1921: 1893: 1858: 1716: 1688: 1570:Tow-Thomas filter 1492:transfer function 1445: 1281: 1213: 915:In an MF filter, 899: 871: 811: 768: 712:transfer function 708:electronic filter 686:Active topologies 512: 511: 508: 507: 504: 481: 480: 381: 380: 281:constant k filter 279:(inventor of the 271:(inventor of the 259:Ladder topologies 246:network synthesis 219:two-port networks 199:electronic mixers 195:balanced circuits 183:active components 120:transfer function 110:electronic filter 90: 89: 82: 16:(Redirected from 2605: 2579: 2496: 2495: 2489: 2481: 2450: 2444: 2443: 2438: 2437: 2426:Maxim Integrated 2418: 2412: 2409: 2403: 2400: 2394: 2371: 2365: 2362: 2331:Prototype filter 2274: 2272: 2271: 2266: 2258: 2237:damping constant 2234: 2232: 2231: 2226: 2221: 2216: 2215: 2189: 2187: 2186: 2181: 2179: 2176: 2175: 2174: 2165: 2164: 2155: 2154: 2144: 2143: 2142: 2133: 2132: 2127: 2126: 2125: 2113: 2112: 2091: 2089: 2088: 2083: 2081: 2079: 2078: 2069: 2068: 2059: 2058: 2049: 2048: 2039: 2037: 2026: 2025: 2002: 2000: 1999: 1994: 1992: 1991: 1982: 1977: 1976: 1961: 1960: 1959: 1932: 1930: 1929: 1924: 1922: 1920: 1919: 1918: 1913: 1912: 1911: 1894: 1889: 1888: 1879: 1874: 1873: 1863: 1859: 1854: 1853: 1844: 1842: 1841: 1840: 1823: 1796: 1794: 1793: 1788: 1786: 1785: 1776: 1771: 1770: 1755: 1754: 1753: 1727: 1725: 1724: 1719: 1717: 1715: 1714: 1713: 1708: 1707: 1706: 1689: 1684: 1683: 1674: 1669: 1668: 1658: 1657: 1656: 1651: 1650: 1649: 1638: 1637: 1636: 1619: 1456: 1454: 1453: 1448: 1446: 1444: 1443: 1434: 1433: 1424: 1423: 1414: 1413: 1404: 1402: 1391: 1390: 1372: 1371: 1350: 1348: 1347: 1342: 1339: 1338: 1329: 1324: 1323: 1292: 1290: 1289: 1284: 1282: 1280: 1279: 1278: 1266: 1265: 1256: 1248: 1240: 1239: 1227: 1226: 1212: 1211: 1202: 1201: 1192: 1191: 1182: 1181: 1172: 1171: 1153: 1151: 1150: 1145: 1142: 1141: 1132: 1127: 1126: 1103: 1101: 1100: 1095: 1092: 1091: 1082: 1077: 1076: 1067: 1066: 1057: 1056: 1044: 1043: 1034: 1033: 1021: 1020: 1011: 1010: 987: 985: 984: 979: 973: 972: 963: 962: 953: 952: 943: 942: 910: 908: 907: 902: 900: 898: 897: 896: 891: 890: 889: 872: 867: 866: 857: 852: 851: 841: 840: 839: 834: 833: 832: 817: 812: 810: 794: 793: 777: 769: 767: 766: 757: 756: 747: 665:all-pass filters 644:Lattice topology 591:composite filter 549:m-derived filter 531:, have the same 500: 487: 486: 390: 318: 301: 189:form or else in 156:prototype filter 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 2613: 2612: 2608: 2607: 2606: 2604: 2603: 2602: 2588: 2587: 2572: 2567: 2505: 2500: 2499: 2483: 2482: 2467: 2451: 2447: 2435: 2433: 2420: 2419: 2415: 2410: 2406: 2401: 2397: 2390: 2384: 2380: 2372: 2368: 2363: 2359: 2354: 2327: 2319: 2305: 2285: 2254: 2243: 2240: 2239: 2217: 2211: 2207: 2199: 2196: 2195: 2170: 2166: 2160: 2156: 2150: 2146: 2145: 2138: 2134: 2128: 2121: 2117: 2116: 2115: 2114: 2111: 2103: 2100: 2099: 2074: 2070: 2064: 2060: 2054: 2050: 2044: 2040: 2038: 2033: 2021: 2017: 2015: 2012: 2011: 1987: 1983: 1978: 1972: 1968: 1949: 1948: 1944: 1942: 1939: 1938: 1914: 1907: 1903: 1902: 1901: 1884: 1880: 1878: 1869: 1865: 1864: 1849: 1845: 1843: 1830: 1829: 1825: 1824: 1822: 1805: 1802: 1801: 1781: 1777: 1772: 1766: 1762: 1743: 1742: 1738: 1736: 1733: 1732: 1709: 1702: 1698: 1697: 1696: 1679: 1675: 1673: 1664: 1660: 1659: 1652: 1645: 1641: 1640: 1639: 1626: 1625: 1621: 1620: 1618: 1601: 1598: 1597: 1572: 1471: 1439: 1435: 1429: 1425: 1419: 1415: 1409: 1405: 1403: 1398: 1386: 1382: 1367: 1363: 1361: 1358: 1357: 1334: 1330: 1325: 1319: 1315: 1304: 1301: 1300: 1274: 1270: 1261: 1257: 1252: 1244: 1235: 1231: 1222: 1218: 1214: 1207: 1203: 1197: 1193: 1187: 1183: 1177: 1173: 1170: 1162: 1159: 1158: 1137: 1133: 1128: 1122: 1118: 1110: 1107: 1106: 1087: 1083: 1078: 1072: 1068: 1062: 1058: 1052: 1048: 1039: 1035: 1029: 1025: 1016: 1012: 1006: 1002: 994: 991: 990: 968: 964: 958: 954: 948: 944: 938: 934: 923: 920: 919: 892: 885: 881: 880: 879: 862: 858: 856: 847: 843: 842: 835: 828: 824: 823: 822: 818: 816: 789: 785: 781: 776: 762: 758: 752: 748: 746: 729: 726: 725: 693: 688: 680:bridge topology 652: 650:Lattice network 646: 599: 584: 580: 576: 572: 562: 554:mm'-type filter 517: 438:Ladder network 398:C Half-section 366:Ladder network 332:Π Section 326:L Half section 309: 308:filter sections 277:George Campbell 273:elliptic filter 261: 211: 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 2611: 2601: 2600: 2586: 2585: 2571: 2570:External links 2568: 2566: 2565: 2558: 2547: 2536: 2525: 2514: 2506: 2504: 2501: 2498: 2497: 2465: 2445: 2413: 2404: 2395: 2388: 2382: 2378: 2366: 2356: 2355: 2353: 2350: 2349: 2348: 2343: 2338: 2333: 2326: 2323: 2315:Main article: 2304: 2301: 2284: 2281: 2264: 2261: 2257: 2253: 2250: 2247: 2224: 2220: 2214: 2210: 2206: 2203: 2192: 2191: 2173: 2169: 2163: 2159: 2153: 2149: 2141: 2137: 2131: 2124: 2120: 2110: 2107: 2096:Quality factor 2093: 2077: 2073: 2067: 2063: 2057: 2053: 2047: 2043: 2036: 2032: 2029: 2024: 2020: 1990: 1986: 1981: 1975: 1971: 1967: 1964: 1958: 1955: 1952: 1947: 1935: 1934: 1917: 1910: 1906: 1900: 1897: 1892: 1887: 1883: 1877: 1872: 1868: 1862: 1857: 1852: 1848: 1839: 1836: 1833: 1828: 1821: 1818: 1815: 1812: 1809: 1784: 1780: 1775: 1769: 1765: 1761: 1758: 1752: 1749: 1746: 1741: 1729: 1728: 1712: 1705: 1701: 1695: 1692: 1687: 1682: 1678: 1672: 1667: 1663: 1655: 1648: 1644: 1635: 1632: 1629: 1624: 1617: 1614: 1611: 1608: 1605: 1571: 1568: 1560: 1559: 1551: 1470: 1467: 1463:Design choices 1459: 1458: 1442: 1438: 1432: 1428: 1422: 1418: 1412: 1408: 1401: 1397: 1394: 1389: 1385: 1381: 1378: 1375: 1370: 1366: 1355: 1337: 1333: 1328: 1322: 1318: 1314: 1311: 1308: 1298: 1277: 1273: 1269: 1264: 1260: 1255: 1251: 1247: 1243: 1238: 1234: 1230: 1225: 1221: 1217: 1210: 1206: 1200: 1196: 1190: 1186: 1180: 1176: 1169: 1166: 1155: 1154: 1140: 1136: 1131: 1125: 1121: 1117: 1114: 1104: 1090: 1086: 1081: 1075: 1071: 1065: 1061: 1055: 1051: 1047: 1042: 1038: 1032: 1028: 1024: 1019: 1015: 1009: 1005: 1001: 998: 988: 976: 971: 967: 961: 957: 951: 947: 941: 937: 933: 930: 927: 913: 912: 895: 888: 884: 878: 875: 870: 865: 861: 855: 850: 846: 838: 831: 827: 821: 815: 809: 806: 803: 800: 797: 792: 788: 784: 780: 775: 772: 765: 761: 755: 751: 745: 742: 739: 736: 733: 719:linear filters 692: 689: 687: 684: 648:Main article: 645: 642: 638: 637: 634: 631: 628: 625: 622: 598: 595: 582: 578: 574: 570: 566: 565: 560: 556: 551: 516: 513: 510: 509: 506: 505: 498: 491: 483: 482: 479: 478: 469: 459: 458: 455: 451: 450: 440: 439: 435: 434: 425: 416: 406: 405: 402: 399: 395: 394: 386: 385: 382: 379: 378: 368: 367: 363: 362: 353: 344: 334: 333: 330: 327: 323: 322: 315: 311: 310: 304: 265:Cauer topology 260: 257: 210: 207: 88: 87: 42: 40: 33: 26: 9: 6: 4: 3: 2: 2610: 2599: 2596: 2595: 2593: 2583: 2578: 2574: 2573: 2563: 2559: 2556: 2552: 2548: 2545: 2541: 2537: 2534: 2530: 2526: 2523: 2519: 2515: 2512: 2508: 2507: 2493: 2487: 2480: 2476: 2472: 2468: 2462: 2458: 2457: 2449: 2442: 2431: 2427: 2423: 2417: 2408: 2399: 2392: 2376: 2370: 2361: 2357: 2347: 2344: 2342: 2341:Linear filter 2339: 2337: 2334: 2332: 2329: 2328: 2322: 2318: 2309: 2300: 2298: 2289: 2280: 2278: 2262: 2259: 2255: 2251: 2248: 2245: 2238: 2222: 2218: 2212: 2208: 2204: 2201: 2171: 2167: 2161: 2157: 2151: 2147: 2139: 2135: 2129: 2122: 2118: 2108: 2105: 2097: 2094: 2075: 2071: 2065: 2061: 2055: 2051: 2045: 2041: 2034: 2030: 2027: 2022: 2018: 2009: 2006: 2005: 2004: 1988: 1984: 1979: 1973: 1969: 1965: 1962: 1945: 1915: 1908: 1904: 1898: 1895: 1890: 1885: 1881: 1875: 1870: 1866: 1860: 1855: 1850: 1846: 1826: 1819: 1813: 1807: 1800: 1799: 1798: 1782: 1778: 1773: 1767: 1763: 1759: 1756: 1739: 1710: 1703: 1699: 1693: 1690: 1685: 1680: 1676: 1670: 1665: 1661: 1653: 1646: 1642: 1622: 1615: 1609: 1603: 1596: 1595: 1594: 1591: 1589: 1585: 1576: 1567: 1565: 1557: 1552: 1549: 1545: 1541: 1537: 1534: 1530: 1529: 1528: 1526: 1522: 1518: 1513: 1511: 1507: 1506: 1502:is short for 1501: 1497: 1493: 1489: 1488:linear filter 1486:is a type of 1485: 1484:biquad filter 1480: 1479: 1477: 1466: 1464: 1440: 1436: 1430: 1426: 1420: 1416: 1410: 1406: 1399: 1395: 1392: 1387: 1383: 1379: 1376: 1373: 1368: 1364: 1356: 1354: 1335: 1331: 1326: 1320: 1316: 1312: 1309: 1306: 1299: 1296: 1275: 1271: 1262: 1258: 1249: 1241: 1236: 1232: 1228: 1223: 1219: 1208: 1204: 1198: 1194: 1188: 1184: 1178: 1174: 1167: 1164: 1157: 1156: 1138: 1134: 1129: 1123: 1119: 1115: 1112: 1105: 1088: 1084: 1079: 1073: 1069: 1063: 1059: 1053: 1049: 1045: 1040: 1036: 1030: 1026: 1022: 1017: 1013: 1007: 1003: 999: 996: 989: 969: 965: 959: 955: 949: 945: 939: 935: 928: 925: 918: 917: 916: 893: 886: 882: 876: 873: 868: 863: 859: 853: 848: 844: 836: 829: 825: 819: 813: 807: 804: 801: 798: 795: 790: 786: 782: 778: 773: 770: 763: 759: 753: 749: 743: 737: 731: 724: 723: 722: 720: 715: 713: 709: 705: 697: 683: 681: 676: 672: 670: 666: 656: 651: 641: 635: 632: 629: 626: 623: 620: 619: 618: 616: 615:Zobel network 608: 603: 594: 592: 586: 564: 557: 555: 552: 550: 547: 546: 545: 542: 538: 534: 530: 521: 503: 496: 488: 484: 474: 465: 460: 452: 446: 441: 436: 430: 421: 412: 407: 396: 391: 388: 387: 374: 369: 364: 358: 349: 340: 335: 324: 319: 316: 312: 307: 302: 299: 297: 296:dual networks 293: 289: 284: 282: 278: 274: 270: 269:Wilhelm Cauer 266: 256: 253: 251: 247: 242: 240: 234: 232: 228: 227:"daisy-chain" 224: 220: 216: 206: 204: 200: 196: 192: 188: 184: 180: 176: 172: 167: 165: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 117: 116:Filter design 113: 111: 107: 99: 94: 84: 81: 73: 70:November 2014 63: 59: 53: 52: 46: 41: 32: 31: 19: 18:Ladder filter 2561: 2560:Zobel, O J, 2554: 2550: 2543: 2539: 2532: 2528: 2521: 2517: 2510: 2478: 2455: 2448: 2440: 2434:. Retrieved 2425: 2416: 2407: 2398: 2386: 2374: 2369: 2360: 2320: 2294: 2193: 1936: 1730: 1592: 1581: 1563: 1561: 1546:poles of an 1524: 1520: 1514: 1509: 1503: 1499: 1483: 1481: 1473: 1472: 1460: 914: 716: 703: 702: 679: 677: 673: 661: 639: 611: 587: 567: 563:-type filter 526: 404:Box Section 285: 264: 262: 254: 243: 235: 212: 203:stereo sound 168: 114: 103: 76: 67: 48: 2411:Zobel, 1931 2402:Zobel, 1928 2364:Zobel, 1923 1527:topology. 1505:biquadratic 1498:. The name 321:Unbalanced 292:transformed 62:introducing 2503:References 2475:1100066185 2436:2021-07-30 1548:RC circuit 529:Otto Zobel 401:H Section 329:T Section 187:unbalanced 162:using the 45:references 2486:cite book 2387:general m 2246:ζ 2209:ω 2019:ω 1966:− 1905:ω 1882:ω 1847:ω 1760:− 1700:ω 1677:ω 1643:ω 1380:π 1365:ω 1313:− 883:ω 860:ω 826:ω 774:− 667:used for 617:article; 559:General m 533:passbands 393:Balanced 231:impedance 223:"cascade" 136:high-pass 132:nonlinear 2592:Category 2430:Archived 2325:See also 1588:bandpass 1584:low-pass 1295:Q factor 607:roll-off 541:stopband 495:balanced 288:low pass 191:balanced 152:all-pass 144:bandpass 140:low-pass 124:topology 108:defines 106:topology 2524:(1923). 1533:complex 1293:is the 497:lines. 384:  314:  171:passive 58:improve 2555:Vol. 7 2533:Vol. 3 2522:Vol. 2 2473:  2463:  1564:biquad 1517:active 1510:biquad 1500:biquad 721:, is: 267:after 175:active 128:linear 98:op-amp 47:, but 2391:-type 2352:Notes 1540:zeros 1536:poles 490:N.B. 306:Image 2492:link 2471:OCLC 2461:ISBN 2098:is 2010:is 1544:real 1353:gain 502:edit 201:and 173:and 150:and 2381:, m 1586:or 1523:or 577:, m 573:, m 225:or 130:or 2594:: 2553:, 2544:17 2542:, 2531:, 2520:, 2488:}} 2484:{{ 2477:. 2469:. 2439:. 2428:. 2424:. 1482:A 671:. 593:. 539:, 241:. 166:. 146:, 142:, 138:, 2494:) 2389:n 2383:2 2379:1 2263:Q 2260:2 2256:/ 2252:1 2249:= 2223:Q 2219:/ 2213:0 2205:= 2202:B 2190:. 2172:2 2168:C 2162:4 2158:R 2152:2 2148:R 2140:1 2136:C 2130:2 2123:3 2119:R 2109:= 2106:Q 2092:. 2076:2 2072:C 2066:1 2062:C 2056:4 2052:R 2046:2 2042:R 2035:/ 2031:1 2028:= 2023:0 1989:1 1985:R 1980:/ 1974:3 1970:R 1963:= 1957:f 1954:p 1951:b 1946:G 1933:. 1916:2 1909:0 1899:+ 1896:s 1891:Q 1886:0 1876:+ 1871:2 1867:s 1861:s 1856:Q 1851:0 1838:f 1835:p 1832:b 1827:G 1820:= 1817:) 1814:s 1811:( 1808:H 1783:1 1779:R 1774:/ 1768:2 1764:R 1757:= 1751:f 1748:p 1745:l 1740:G 1711:2 1704:0 1694:+ 1691:s 1686:Q 1681:0 1671:+ 1666:2 1662:s 1654:2 1647:0 1634:f 1631:p 1628:l 1623:G 1616:= 1613:) 1610:s 1607:( 1604:H 1478:. 1441:5 1437:C 1431:2 1427:C 1421:4 1417:R 1411:3 1407:R 1400:/ 1396:1 1393:= 1388:0 1384:f 1377:2 1374:= 1369:0 1336:1 1332:R 1327:/ 1321:4 1317:R 1310:= 1307:K 1297:. 1276:5 1272:C 1268:) 1263:3 1259:R 1254:| 1250:K 1246:| 1242:+ 1237:3 1233:R 1229:+ 1224:4 1220:R 1216:( 1209:5 1205:C 1199:2 1195:C 1189:4 1185:R 1179:3 1175:R 1168:= 1165:Q 1139:4 1135:R 1130:/ 1124:1 1120:R 1116:= 1113:C 1089:4 1085:R 1080:/ 1074:5 1070:C 1064:3 1060:R 1054:1 1050:R 1046:+ 1041:5 1037:C 1031:1 1027:R 1023:+ 1018:5 1014:C 1008:3 1004:R 1000:= 997:B 975:) 970:5 966:C 960:2 956:C 950:3 946:R 940:1 936:R 932:( 929:= 926:A 911:. 894:2 887:0 877:+ 874:s 869:Q 864:0 854:+ 849:2 845:s 837:2 830:0 820:K 814:= 808:C 805:+ 802:s 799:B 796:+ 791:2 787:s 783:A 779:1 771:= 764:i 760:V 754:o 750:V 744:= 741:) 738:s 735:( 732:H 583:n 579:3 575:2 571:1 561:n 83:) 77:( 72:) 68:( 54:. 20:)

Index

Ladder filter
references
inline citations
improve
introducing
Learn how and when to remove this message

op-amp
topology
electronic filter
Filter design
transfer function
topology
linear
nonlinear
high-pass
low-pass
bandpass
band-reject or notch
all-pass
prototype filter
Butterworth filter
Sallen–Key topology
passive
active
passive components
active components
unbalanced
balanced
balanced circuits

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑