Knowledge

Digital waveguide synthesis

Source đź“ť

439:
rather, a VL solo note backed up by the up-to-64 notes of polyphony of the XG wavetable portion). The 724 only supported stereo out, while the others supported various four and more speaker setups. Yamaha’s own card using these was the WaveForce-128, but a number of licensees made very inexpensive YMF-724 sound cards that retailed for as low as $ 12 at the peak of the technology’s popularity. The MIDI synth portion (both XG and VL) of the YMF chips was actually just hardware assist to a mostly software synth that resided in the device driver (the XG wavetable samples, for instance, were in system RAM with the driver , not in ROM on the sound card). As such, the MIDI synth, especially with VL in active use, took considerably more CPU power than a truly hardware synth would use, but not as much as a pure software synth. Towards the end of their market period, YMF-724 cards could be had for as little as $ 12 USD brand new, making them by far the least expensive means of obtaining Sondius-XG CL digital waveguide technology. The DS-XG series also included the YMF-740, but it lacked the Sondius-XG VL waveguide synthesis module, yet was otherwise identical to the YMF-744.
450:), capable of up to eight VL notes at once (all other Yamaha VL implementations except the original VL1 and VL1m were limited to one, and the VL1/1m could do two), in addition to up to 64 notes of XG wavetable from the MU50-emulating portion of the soft synth. Never sold in the US, but was sold in Japan. Presumably a much more powerful system could be done with today’s multi-GHz dual-core CPUs, but the technology appears to have been abandoned. Hypothetically could also be used with a YMF chipset system to combine their capabilities on sufficiently powerful CPUs. 443:
but had no physical modeling, and was just the MU50 XG wavetable emulator. This was basically the synth portion of the YMF chips implemented entirely in software without the hardware assist provided by the YMF chips. Required a somewhat more powerful CPU than the YMF chips did. Could also be used in conjunction with a YMF-equipped sound card or motherboard to provide up to 128 notes of XG wavetable polyphony and up to two VL instruments simultaneously on sufficiently powerful CPUs.
442:
S-YXG100plus-VL Soft Synthesizer for PCs with any sound card (again, the VL part only worked on Windows 95, 98, 98SE, and ME: it emulated a .VxD MIDI device driver). Likewise equivalent to an MU50 (minus certain digital effects) plus VL70m. The non-VL version, S-YXG50, would work on any Windows OS,
438:
portion of such sound chips, when the VL was enabled, was functionally equivalent to an MU50 Level 1 XG tone module (minus certain digital effects) with greater polyphony (up to 64 simultaneous notes, compared to 32 for Level 1 XG) plus a VL70m (the VL adds an additional note of polyphony, or,
291:
Waveguides such as acoustic tubes are three-dimensional, but because their lengths are often much greater than their cross-sectional area, it is reasonable and computationally efficient to model them as one-dimensional waveguides. Membranes, as used in
272:
merely involves summing two delayed copies of its traveling waves. These traveling waves will reflect at boundaries such as the suspension points of vibrating strings or the open or closed ends of tubes. Hence the waves travel along closed loops.
397:
PLG-100VL, PLG-150VL (1999) — plug-in cards for various Yamaha keyboards, tone modules, and the SWG-1000 high-end PC sound card. The MU100R rack-mount tone module included two PLG slots, pre-filled with a PLG-100VL and a PLG-100VH (Vocal
42:. Digital waveguides are efficient computational models for physical media through which acoustic waves propagate. For this reason, digital waveguides constitute a major part of most modern 354:
and makes it unnecessary to model the instrument body's resonances after synthesizing the string output, greatly reducing the number of computations required for a convincing resynthesis.
153: 288:
elements. Losses incurred throughout the medium are generally consolidated so that they can be calculated once at the termination of a delay line, rather than many times throughout.
401:
YMF-724, 744, 754, and 764 sound chips for inexpensive DS-XG PC sound cards and motherboards (the VL part only worked on Windows 95, 98, 98SE, and ME, and then only when using
621: 350:, wherein the excitation to the digital waveguide contains both string excitation and the body response of the instrument. This is possible because the digital waveguide is 210: 183: 270: 250: 230: 347: 587: 706:
Julius O. Smith (2008). "Digital Waveguide Architectures for Virtual Musical Instruments". In David Havelock; Sonoko Kuwano; Michael Vorländer (eds.).
296:, may be modeled using two-dimensional waveguide meshes, and reverberation in three-dimensional spaces may be modeled using three-dimensional meshes. 868: 749:
Model behaviour. The technology your PC uses to make sound is usually based on replaying an audio sample. Brian Heywood looks at alternatives.
611: 17: 790: 769: 738: 717: 994: 861: 364:
The first musical use of digital waveguide synthesis was in the composition May All Your Children Be Acrobats (1981) by
339:
owned the patent rights for digital waveguide synthesis and signed an agreement in 1989 to develop the technology with
67: 1066: 889: 854: 966: 933: 332: 1035: 894: 43: 414:). No longer made, presumably due to conflict with AC-97 and AC-99 sound card standards (which specify ' 984: 974: 899: 313: 50: 682: 838:. Note the use of the joystick to control the vibrato effect of the plucked strings physical model. 821: 956: 58: 929: 748: 419: 415: 728: 707: 671: 642: 909: 780: 759: 694: 522: 212:
is the left-going wave. It can be seen from this representation that sampling the function
1045: 919: 518: 409: 188: 161: 8: 1027: 1017: 941: 511: 336: 331:
who helped develop it and eventually filed the patent. It represents an extension of the
328: 321: 284:
to represent the frequency-dependent losses and mild dispersion in the medium, and often
761:
Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics
1004: 946: 914: 782:
Digital sound synthesis by physical modeling using the functional transformation method
530: 423: 377: 340: 277: 255: 235: 215: 1040: 989: 904: 786: 765: 734: 713: 616: 358: 301: 951: 495: 357:
Prototype waveguide software implementations were done by students of Smith in the
842:
Yamaha VL1 with breath controller vs. traditional synthesizer for wind instruments
1012: 35: 806: 825: 686: 484:(2005) with some modules, for instance the STR-1 plucked strings physical model 475: 365: 281: 841: 835: 1060: 831: 460: 54: 807:
Julius O. Smith III's ``A Basic Introduction to Digital Waveguide Synthesis"
505: 317: 305: 563: 280:
to represent the geometry of the waveguide which are closed by recursion,
877: 811: 695:"Yamaha, Stanford join forces. Licensing program offers new technologies" 487: 447: 31: 846: 564:"Digital Waveguide Synthesis Papers, Software, Sound Samples, and Links" 385:
VL1m, VL7 (1994) — tone module and less expensive keyboard, respectively
816: 540: 481: 297: 285: 431: 427: 309: 39: 446:
S-YXG100plus-PolyVL SoftSynth for then-powerful PCs (e. g. 333+MHz
466: 778: 351: 612:"Inside a Luxury Synth: Creating the Linux-Powered Korg OASYS" 434:
sound system, which Sondius-XG cannot integrate with). The
536: 455: 435: 394:
EX5 (1999) — workstation keyboard that included a VL module
293: 49:
A lossless digital waveguide realizes the discrete form of
346:
An extension to DWG synthesis of strings made by Smith is
320:
digital waveguide elements are used to model the strongly
404: 817:
Virtual Acoustic Musical Instruments: Review and Update
343:, however, many of the early patents have now expired. 327:
The term "digital waveguide synthesis" was coined by
258: 238: 218: 191: 164: 70: 382:
VL1 (1994) — expensive keyboard (about $ 10,000 USD)
672:"Yamaha VL-1 revolutionizes synthesizer technology" 368:, followed by his Silicon Valley Breakdown (1982). 517:Reality (1997) - one of the earliest professional 264: 244: 224: 204: 177: 147: 1058: 535:Dimension Pro (2005) - software synthesizer for 705: 669: 862: 757: 61:of a right-going wave and a left-going wave, 510:Creative WaveSynth (1996) for Creative Labs 312:) can be modeled by a related method called 276:Digital waveguide models therefore comprise 148:{\displaystyle y(m,n)=y^{+}(m-n)+y^{-}(m+n)} 822:Modeling string sounds and wind instruments 726: 869: 855: 779:Lutz Trautmann; Rudolf Rabenstein (2003). 709:Handbook of Signal Processing in Acoustics 692: 876: 391:VL70m (1996) — less expensive tone module 683:Yamaha VL1. Virtual Acoustic Synthesizer 764:. John Wiley and Sons. pp. 11–14. 308:and other sounding solids (also called 14: 1059: 850: 24: 663: 592:The Synthesis ToolKit in C++ (STK) 25: 1078: 800: 733:. Focal Press. pp. 288–289. 568:Julius Orion Smith III Home Page 53:solution of the one-dimensional 624:from the original on 2011-08-15 712:. Springer. pp. 399–417. 635: 604: 580: 556: 142: 130: 114: 102: 86: 74: 44:physical modeling synthesizers 13: 1: 812:Waveguide Synthesis home page 670:Daniel Levitin (7 May 1994). 549: 324:behavior of waves in solids. 785:. Springer. pp. 77–86. 747:Brian Heywood (22 Nov 2005) 730:Sound Synthesis and Sampling 693:Paul Verna (2 August 1997). 371: 185:is the right-going wave and 7: 500:WSA1 (1995) PCM + resonator 28:Digital waveguide synthesis 10: 1083: 588:"PluckTwo Class Reference" 1026: 1003: 965: 928: 885: 828:magazine, September 1998 643:"Cakewalk Dimension Pro" 333:Karplus–Strong algorithm 834:playing on Korg Oasys 758:Stefan Bilbao (2009). 388:VP1 (prototype) (1994) 266: 246: 226: 206: 179: 149: 18:Julius Orion Smith III 1067:Sound synthesis types 995:Karplus–Strong string 267: 247: 227: 207: 205:{\displaystyle y^{-}} 180: 178:{\displaystyle y^{+}} 150: 1046:Software synthesizer 890:Frequency modulation 727:Martin Russ (2008). 519:software synthesizer 490:(2011) same as OASYS 256: 236: 216: 189: 162: 68: 1028:Digital synthesizer 512:Sound Blaster AWE64 337:Stanford University 329:Julius O. Smith III 278:digital delay lines 1005:Analog synthesizer 967:Physical modelling 348:commuted synthesis 262: 242: 222: 202: 175: 145: 1054: 1053: 1041:Scanned synthesis 980:Digital waveguide 895:Linear arithmetic 836:Youtube recording 792:978-0-306-47875-8 771:978-0-470-51046-9 740:978-0-240-52105-3 719:978-0-387-77698-9 469:, MOSS-TRI (1997) 359:Synthesis Toolkit 314:banded waveguides 265:{\displaystyle n} 245:{\displaystyle m} 232:at a given point 225:{\displaystyle y} 16:(Redirected from 1074: 975:Banded waveguide 900:Phase distortion 871: 864: 857: 848: 847: 796: 775: 744: 723: 702: 679: 657: 656: 654: 653: 639: 633: 632: 630: 629: 608: 602: 601: 599: 598: 584: 578: 577: 575: 574: 560: 412: 407: 271: 269: 268: 263: 251: 249: 248: 243: 231: 229: 228: 223: 211: 209: 208: 203: 201: 200: 184: 182: 181: 176: 174: 173: 154: 152: 151: 146: 129: 128: 101: 100: 38:using a digital 21: 1082: 1081: 1077: 1076: 1075: 1073: 1072: 1071: 1057: 1056: 1055: 1050: 1036:Analog modeling 1022: 1013:Graphical sound 999: 961: 924: 881: 878:Sound synthesis 875: 803: 793: 772: 741: 720: 666: 664:Further reading 661: 660: 651: 649: 641: 640: 636: 627: 625: 610: 609: 605: 596: 594: 586: 585: 581: 572: 570: 562: 561: 557: 552: 472:EXB-MOSS (2001) 410: 402: 374: 316:where multiple 282:digital filters 257: 254: 253: 237: 234: 233: 217: 214: 213: 196: 192: 190: 187: 186: 169: 165: 163: 160: 159: 124: 120: 96: 92: 69: 66: 65: 23: 22: 15: 12: 11: 5: 1080: 1070: 1069: 1052: 1051: 1049: 1048: 1043: 1038: 1032: 1030: 1024: 1023: 1021: 1020: 1015: 1009: 1007: 1001: 1000: 998: 997: 992: 987: 985:Direct digital 982: 977: 971: 969: 963: 962: 960: 959: 954: 949: 944: 938: 936: 926: 925: 923: 922: 917: 912: 907: 902: 897: 892: 886: 883: 882: 874: 873: 866: 859: 851: 845: 844: 839: 829: 826:Sound on Sound 819: 814: 809: 802: 801:External links 799: 798: 797: 791: 776: 770: 755: 745: 739: 724: 718: 703: 690: 687:Sound on Sound 680: 665: 662: 659: 658: 647:Sound On Sound 634: 620:. 2005-11-09. 617:O'Reilly Media 603: 579: 554: 553: 551: 548: 547: 546: 545: 544: 528: 527: 526: 515: 503: 502: 501: 493: 492: 491: 485: 479: 473: 470: 464: 453: 452: 451: 444: 440: 399: 395: 392: 389: 386: 383: 373: 370: 366:David A. Jaffe 261: 241: 221: 199: 195: 172: 168: 156: 155: 144: 141: 138: 135: 132: 127: 123: 119: 116: 113: 110: 107: 104: 99: 95: 91: 88: 85: 82: 79: 76: 73: 9: 6: 4: 3: 2: 1079: 1068: 1065: 1064: 1062: 1047: 1044: 1042: 1039: 1037: 1034: 1033: 1031: 1029: 1025: 1019: 1016: 1014: 1011: 1010: 1008: 1006: 1002: 996: 993: 991: 988: 986: 983: 981: 978: 976: 973: 972: 970: 968: 964: 958: 957:Concatenative 955: 953: 950: 948: 945: 943: 940: 939: 937: 935: 931: 927: 921: 918: 916: 913: 911: 908: 906: 903: 901: 898: 896: 893: 891: 888: 887: 884: 879: 872: 867: 865: 860: 858: 853: 852: 849: 843: 840: 837: 833: 832:Jordan Rudess 830: 827: 823: 820: 818: 815: 813: 810: 808: 805: 804: 794: 788: 784: 783: 777: 773: 767: 763: 762: 756: 754: 750: 746: 742: 736: 732: 731: 725: 721: 715: 711: 710: 704: 700: 696: 691: 688: 684: 681: 677: 673: 668: 667: 648: 644: 638: 623: 619: 618: 613: 607: 593: 589: 583: 569: 565: 559: 555: 542: 538: 534: 533: 532: 529: 524: 520: 516: 513: 509: 508: 507: 504: 499: 498: 497: 494: 489: 486: 483: 480: 477: 474: 471: 468: 465: 462: 459: 458: 457: 454: 449: 445: 441: 437: 433: 429: 425: 421: 420:sample tables 417: 413: 408:drivers, not 406: 400: 396: 393: 390: 387: 384: 381: 380: 379: 376: 375: 369: 367: 362: 360: 355: 353: 349: 344: 342: 338: 334: 330: 325: 323: 319: 315: 311: 307: 306:singing bowls 303: 299: 295: 289: 287: 283: 279: 274: 259: 239: 219: 197: 193: 170: 166: 139: 136: 133: 125: 121: 117: 111: 108: 105: 97: 93: 89: 83: 80: 77: 71: 64: 63: 62: 60: 59:superposition 56: 55:wave equation 52: 47: 45: 41: 37: 33: 29: 19: 979: 930:Sample-based 781: 760: 752: 729: 708: 698: 675: 650:. Retrieved 646: 637: 626:. Retrieved 615: 606: 595:. Retrieved 591: 582: 571:. Retrieved 567: 558: 521:products by 506:Seer Systems 398:Harmonizer). 363: 356: 345: 326: 318:band-limited 290: 275: 157: 51:d'Alembert's 48: 27: 26: 910:Subtractive 689:, July 1994 448:Pentium III 430:-competing 422:) based on 920:Distortion 678:: 102–103. 652:2019-07-17 628:2019-07-17 597:2019-07-17 573:2019-07-17 550:References 541:Windows XP 523:Dave Smith 416:wavetables 322:dispersive 310:idiophones 298:Vibraphone 286:non-linear 942:Wavetable 699:Billboard 676:Billboard 476:OASYS PCI 372:Licensees 252:and time 198:− 126:− 109:− 40:waveguide 32:synthesis 1061:Category 947:Granular 915:Additive 622:Archived 531:Cakewalk 496:Technics 461:Prophecy 1018:Modular 990:Formant 934:Sampler 905:Scanned 361:(STK). 57:as the 30:is the 952:Vector 789:  768:  753:PC Pro 737:  716:  488:Kronos 478:(1999) 463:(1995) 424:Roland 378:Yamaha 352:linear 341:Yamaha 300:bars, 158:where 880:types 701:: 56. 482:OASYS 302:bells 294:drums 36:audio 787:ISBN 766:ISBN 735:ISBN 714:ISBN 539:and 537:OS X 525:team 456:Korg 436:MIDI 411:.WDM 335:. 932:or 426:’s 418:' ( 405:VxD 34:of 1063:: 824:- 751:, 697:. 685:, 674:. 645:. 614:. 590:. 566:. 467:Z1 432:GS 428:XG 304:, 46:. 870:e 863:t 856:v 795:. 774:. 743:. 722:. 655:. 631:. 600:. 576:. 543:. 514:. 403:. 260:n 240:m 220:y 194:y 171:+ 167:y 143:) 140:n 137:+ 134:m 131:( 122:y 118:+ 115:) 112:n 106:m 103:( 98:+ 94:y 90:= 87:) 84:n 81:, 78:m 75:( 72:y 20:)

Index

Julius Orion Smith III
synthesis
audio
waveguide
physical modeling synthesizers
d'Alembert's
wave equation
superposition
digital delay lines
digital filters
non-linear
drums
Vibraphone
bells
singing bowls
idiophones
banded waveguides
band-limited
dispersive
Julius O. Smith III
Karplus–Strong algorithm
Stanford University
Yamaha
commuted synthesis
linear
Synthesis Toolkit
David A. Jaffe
Yamaha
VxD
.WDM

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑