Knowledge

James–Stein estimator

Source 📝

1003: 25: 1562: 2141: 2484: 2564:
The work of James and Stein has been extended to the case of a general measurement covariance matrix, i.e., where measurements may be statistically dependent and may have differing variances. A similar dominating estimator can be constructed, with a suitably generalized dominance condition. This can
1763:
A consequence of the above discussion is the following counterintuitive result: When three or more unrelated parameters are measured, their total MSE can be reduced by using a combined estimator such as the James–Stein estimator; whereas when each parameter is estimated separately, the least squares
1772:
MSE, i.e., the sum of the expected squared errors of each component. Therefore, the total MSE in measuring light speed, tea consumption, and hog weight would improve by using the James–Stein estimator. However, any particular component (such as the speed of light) would improve for some parameter
2572:
Stein's result has been extended to a wide class of distributions and loss functions. However, this theory provides only an existence result, in that explicit dominating estimators were not actually exhibited. It is quite difficult to obtain explicit estimators improving upon the usual estimator
1406: 1976: 1159: 1810:
estimator in a hypothetical regression of the population means on the sample means gives an estimator of the form of either the James–Stein estimator (when we force the OLS intercept to equal 0) or of the Efron-Morris estimator (when we allow the intercept to vary).
272: 2161:
The James–Stein estimator may seem at first sight to be a result of some peculiarity of the problem setting. In fact, the estimator exemplifies a very wide-ranging effect; namely, the fact that the "ordinary" or least squares estimator is often
1627:. But we may have some guess as to what the mean vector is. This can be considered a disadvantage of the estimator: the choice is not objective as it may depend on the beliefs of the researcher. Nonetheless, James and Stein's result is that 2351: 1773:
values, and deteriorate for others. Thus, although the James–Stein estimator dominates the LS estimator when three or more parameters are estimated, any single component does not dominate the respective component of the LS estimator.
2287: 542: 1557:{\displaystyle {\widehat {\boldsymbol {\theta }}}_{JS}=\left(1-{\frac {(m-2)\sigma ^{2}}{\|{\mathbf {y} }-{\boldsymbol {\nu }}\|^{2}}}\right)({\mathbf {y} }-{\boldsymbol {\nu }})+{\boldsymbol {\nu }},\qquad m\geq 3.} 2136:{\displaystyle {\widehat {\boldsymbol {\theta }}}_{JS+}=\left(1-{\frac {(m-3)\sigma ^{2}}{\|{\mathbf {y} }-{\boldsymbol {\nu }}\|^{2}}}\right)^{+}({\mathbf {y} }-{\boldsymbol {\nu }})+{\boldsymbol {\nu }},m\geq 4.} 810: 1615: 1043: 1336: 1932: 1204: 966: 923: 1964: 680: 378: 195: 2517: 1006:
MSE (R) of least squares estimator (ML) vs. James–Stein estimator (JS). The James–Stein estimator gives its best estimate when the norm of the actual parameter vector θ is near zero.
988: 884: 702: 564: 109: 1768:. A quirky example would be estimating the speed of light, tea consumption in Taiwan, and hog weight in Montana, all together. The James–Stein estimator always improves upon the 1891: 1865: 400: 200: 2479:{\displaystyle {\widehat {\boldsymbol {\theta }}}_{JS}=\left(1-{\frac {(m-2){\frac {\sigma ^{2}}{n}}}{\|{\overline {\mathbf {y} }}\|^{2}}}\right){\overline {\mathbf {y} }},} 1841: 750: 726: 592: 1358: 648: 2199: 1700: 1035: 466: 1758: 1268: 1230: 343: 313: 2313: 2153:
It turns out, however, that the positive-part estimator is also inadmissible. This follows from a general result which requires admissible estimators to be smooth.
2557: 2537: 2340: 1732: 1392: 613: 2204: 1776:
The conclusion from this hypothetical example is that measurements should be combined if one is interested in minimizing their total MSE. For example, in a
1791:
The James–Stein estimator has also found use in fundamental quantum theory, where the estimator has been used to improve the theoretical bounds of the
479: 43: 406:
or commonly as the "average of averages" of the sample means, given all samples share the same size). This observation is commonly referred to as
1966:
is then negative. This can be easily remedied by replacing this multiplier by zero when it is negative. The resulting estimator is called the
759:. Since this noise has mean of zero, it may be reasonable to use the samples themselves as an estimate of the parameters. This approach is the 766: 755:
In real-world application, this is a common situation in which a set of parameters is sampled, and the samples are corrupted by independent
1582: 1154:{\displaystyle {\widehat {\boldsymbol {\theta }}}_{JS}=\left(1-{\frac {(m-2)\sigma ^{2}}{\|{\mathbf {y} }\|^{2}}}\right){\mathbf {y} }.} 2146:
This estimator has a smaller risk than the basic James–Stein estimator. It follows that the basic James–Stein estimator is itself
1276: 1896: 1170: 932: 889: 1760:. The James–Stein estimator is a member of a class of Bayesian estimators that dominate the maximum-likelihood estimator. 1937: 656: 2950: 277:
It arose sequentially in two main published papers. The earlier version of the estimator was developed in 1956, when
61: 595: 352: 2755:
Using Stein's estimator to correct the bound on the entropic uncertainty principle for more than two measurements
1573:. A natural question to ask is whether the improvement over the usual estimator is independent of the choice of 123: 2493: 1792: 2170:, and has been demonstrated for several different problem settings, some of which are briefly outlined below. 971: 821: 685: 547: 92: 2974: 2662: 2621: 278: 267:{\displaystyle \{{\boldsymbol {\theta }}_{1},{\boldsymbol {\theta }}_{2},...,{\boldsymbol {\theta }}_{m}\}} 1874: 1848: 1637:
improves the expected MSE over the maximum-likelihood estimator, which is tantamount to using an infinite
383: 2718:
Efron, B.; Morris, C. (1973). "Stein's Estimation Rule and Its Competitors—An Empirical Bayes Approach".
1623:
is necessary. Of course this is the quantity we are trying to estimate so we don't have this knowledge
112: 39: 1624: 403: 2174:
James and Stein demonstrated that the estimator presented above can still be used when the variance
1822: 731: 707: 573: 2583: 2163: 2147: 1765: 1241: 1165: 420: 316: 286: 16:
Biased estimator for Gaussian random vectors, better than ordinary least-squared-error minimization
1341: 623: 2177: 1803: 1667: 1013: 1807: 1652: 1365: 445: 346: 2624:(1956), "Inadmissibility of the usual estimator for the mean of a multivariate distribution", 2167: 1819:
Despite the intuition that the James–Stein estimator shrinks the maximum-likelihood estimate
1781: 1737: 1247: 1209: 322: 292: 281:
reached a relatively shocking conclusion that while the then-usual estimate of the mean, the
2844:
Bock, M. E. (1975), "Minimax estimators of the mean of a multivariate normal distribution",
2292: 968:. The paradoxical result, that there is a (possibly) better and never any worse estimate of 2916: 2893:(1966), "On the admissibility of invariant estimators of one or more location parameters", 2869: 2846: 2768: 2676: 2635: 2588: 435: 79: 2924: 2877: 2643: 8: 2593: 1802:
perspective. Under this interpretation, we aim to predict the population means using the
115: 2772: 2969: 2758: 2735: 2542: 2522: 2325: 2282:{\displaystyle {\widehat {\sigma }}^{2}={\frac {1}{m}}\sum (y_{i}-{\overline {y}})^{2}} 1785: 1717: 1711: 1377: 1237: 1233: 991: 816: 598: 428: 408: 2946: 2890: 2808: 2598: 2566: 1777: 1662: 618: 439: 2920: 2902: 2873: 2855: 2798: 2787:"The 1988 Neyman Memorial Lecture: A Galtonian Perspective on Shrinkage Estimators" 2727: 2666: 2639: 2625: 2318:
The results in this article are for the case when only a single observation vector
413: 2943:
The Statistical Implications of Pre-Test and Stein-Rule Estimators in Econometrics
1617:
is large. Thus to get a very great improvement some knowledge of the location of
2912: 2865: 2672: 2631: 537:{\displaystyle {\mathbf {Y} }\sim N_{m}({\boldsymbol {\theta }},\sigma ^{2}I),\,} 118: 2688:
Beran, R. (1995). THE ROLE OF HAJEK’S CONVOLUTION THEOREM IN STATISTICAL THEORY
2166:
for simultaneous estimation of several parameters. This effect has been called
1799: 756: 567: 2907: 1394:. Then there exists an estimator of the James–Stein type that shrinks toward 2963: 2860: 2812: 760: 424: 2803: 2786: 2569:
technique which outperforms the standard application of the LS estimator.
2201:
is unknown, by replacing it with the standard estimator of the variance,
1788:
scenario, as the goal is to minimize the total channel estimation error.
282: 2739: 990:
in mean squared error as compared to the sample mean, became known as
805:{\displaystyle {\widehat {\boldsymbol {\theta }}}_{LS}={\mathbf {y} }} 2289:. The dominance result still holds under the same condition, namely, 82: 2731: 2763: 1610:{\displaystyle \|{{\boldsymbol {\theta }}-{\boldsymbol {\nu }}}\|} 1002: 1240:
estimator. By definition, this makes the least squares estimator
427:
approach, meaning the James–Stein estimator has a lower or equal
1567:
The James–Stein estimator dominates the usual estimator for any
1232:, meaning that the James–Stein estimator always achieves lower 2573:
without specific restrictions on the underlying distributions.
345:. Stein proposed a possible improvement to the estimator that 925:, is sub-optimal to shrinkage based estimators, such as the 1798:
An intuitive derivation and interpretation is given by the
86: 1331:{\displaystyle (m-2)\sigma ^{2}<\|{\mathbf {y} }\|^{2}} 1927:{\displaystyle \|{\mathbf {y} }-{\boldsymbol {\nu }}\|,} 1338:
then this estimator simply takes the natural estimator
1199:{\displaystyle {\widehat {\boldsymbol {\theta }}}_{LS}} 961:{\displaystyle {\widehat {\boldsymbol {\theta }}}_{JS}} 918:{\displaystyle {\widehat {\boldsymbol {\theta }}}_{LS}} 1655:
gives some intuition to this result: One assumes that
2545: 2525: 2496: 2354: 2328: 2295: 2207: 2180: 1979: 1940: 1899: 1877: 1851: 1825: 1740: 1720: 1670: 1585: 1409: 1380: 1344: 1279: 1250: 1212: 1173: 1046: 1016: 974: 935: 892: 824: 769: 734: 710: 688: 659: 626: 601: 576: 550: 482: 448: 386: 355: 325: 295: 203: 126: 95: 2828:
An Introduction to Multivariate Statistical Analysis
2698: 2696: 2694: 1959:{\displaystyle {\mathbf {y} }-{\boldsymbol {\nu }}} 416:and Charles Stein simplified the original process. 34:
may be too technical for most readers to understand
2726:(341). American Statistical Association: 117–130. 2551: 2531: 2511: 2478: 2334: 2307: 2281: 2193: 2135: 1958: 1926: 1885: 1859: 1835: 1752: 1726: 1694: 1609: 1556: 1386: 1352: 1330: 1262: 1224: 1198: 1153: 1029: 982: 960: 917: 878: 804: 744: 720: 696: 675:{\displaystyle {\widehat {\boldsymbol {\theta }}}} 674: 642: 607: 586: 558: 536: 460: 438:, the James-Stein estimator is superefficient and 394: 372: 337: 307: 266: 189: 103: 2691: 1579:. The answer is no. The improvement is small if 2961: 2668:Proc. Fourth Berkeley Symp. Math. Statist. Prob. 2656: 2654: 2652: 1164:James and Stein showed that the above estimator 1037:is known, the James–Stein estimator is given by 2830:(2nd ed.), New York: John Wiley & Sons 2720:Journal of the American Statistical Association 2627:Proc. Third Berkeley Symp. Math. Statist. Prob. 2342:vectors are available, the results are similar: 419:It can be shown that the James–Stein estimator 2702: 2322:is available. For the more general case when 1706:is estimated from the data itself. Estimating 2945:. New York: North Holland. pp. 229–257. 2649: 1364:. In fact this is not the only direction of 373:{\displaystyle {{\boldsymbol {\theta }}_{i}}} 2444: 2428: 2069: 2050: 1918: 1900: 1734:is large enough; hence it does not work for 1604: 1586: 1495: 1476: 1319: 1308: 1124: 1113: 997: 653:We are interested in obtaining an estimate, 431:than the "ordinary" least square estimator. 261: 204: 184: 133: 2717: 190:{\displaystyle Y=\{Y_{1},Y_{2},...,Y_{m}\}} 2819: 2665:(1961), "Estimation with quadratic loss", 2660: 2616: 2614: 2512:{\displaystyle {\overline {\mathbf {y} }}} 1374:be an arbitrary fixed vector of dimension 2940: 2906: 2859: 2802: 2762: 2746: 533: 62:Learn how and when to remove this message 46:, without removing the technical details. 2839: 2837: 2825: 1710:only gives an advantage compared to the 1001: 2883: 2784: 2752: 2611: 2359: 2117: 2106: 2064: 1984: 1952: 1914: 1879: 1853: 1651:Seeing the James–Stein estimator as an 1599: 1591: 1537: 1526: 1490: 1414: 1178: 1051: 983:{\displaystyle {\boldsymbol {\theta }}} 976: 940: 897: 879:{\displaystyle \operatorname {E} \left} 852: 842: 774: 697:{\displaystyle {\boldsymbol {\theta }}} 690: 663: 559:{\displaystyle {\boldsymbol {\theta }}} 552: 507: 388: 359: 251: 224: 209: 104:{\displaystyle {\boldsymbol {\theta }}} 97: 2962: 2941:Judge, George G.; Bock, M. E. (1978). 2889: 2834: 2620: 1780:setting, it is reasonable to combine 44:make it understandable to non-experts 2843: 2703:Lehmann, E. L.; Casella, G. (1998), 1886:{\displaystyle {\boldsymbol {\nu }}} 1860:{\displaystyle {\boldsymbol {\nu }}} 815:Stein demonstrated that in terms of 395:{\displaystyle {\boldsymbol {\nu }}} 18: 1968:positive-part James–Stein estimator 380:towards a more central mean vector 13: 2934: 2785:Stigler, Stephen M. (1990-02-01). 2707:(2nd ed.), New York: Springer 1795:for more than three measurements. 1360:and shrinks it towards the origin 825: 14: 2986: 2895:Annals of Mathematical Statistics 2671:, vol. 1, pp. 361–379, 2630:, vol. 1, pp. 197–206, 1804:imperfectly measured sample means 1661:itself is a random variable with 1646: 704:, based on a single observation, 2500: 2464: 2434: 2097: 2055: 1943: 1905: 1828: 1517: 1481: 1346: 1313: 1143: 1118: 797: 737: 713: 579: 485: 23: 1814: 1544: 886:, the least squares estimator, 2778: 2711: 2682: 2406: 2394: 2270: 2243: 2110: 2092: 2035: 2023: 1867:, the estimate actually moves 1836:{\displaystyle {\mathbf {y} }} 1793:entropic uncertainty principle 1689: 1677: 1530: 1512: 1461: 1449: 1292: 1280: 1098: 1086: 862: 837: 745:{\displaystyle {\mathbf {Y} }} 721:{\displaystyle {\mathbf {y} }} 587:{\displaystyle {\mathbf {Y} }} 527: 503: 1: 2604: 2156: 615:-variate normally distributed 2504: 2468: 2438: 2264: 1712:maximum-likelihood estimator 1353:{\displaystyle \mathbf {y} } 643:{\displaystyle \sigma ^{2}I} 7: 2577: 2194:{\displaystyle \sigma ^{2}} 1695:{\displaystyle \sim N(0,A)} 1030:{\displaystyle \sigma ^{2}} 10: 2991: 2705:Theory of Point Estimation 471: 409:Stein's example or paradox 998:The James–Stein estimator 461:{\displaystyle \theta =0} 2826:Anderson, T. W. (1984), 2584:Admissible decision rule 2908:10.1214/aoms/1177699259 2565:be used to construct a 2539:-length average of the 1753:{\displaystyle m\leq 2} 1643:, surely a poor guess. 1263:{\displaystyle m\geq 3} 1225:{\displaystyle m\geq 3} 338:{\displaystyle m\geq 3} 308:{\displaystyle m\leq 2} 2861:10.1214/aos/1176343009 2553: 2533: 2513: 2480: 2336: 2309: 2308:{\displaystyle m>2} 2283: 2195: 2137: 1960: 1928: 1887: 1861: 1837: 1806:. The equation of the 1784:tap measurements in a 1754: 1728: 1696: 1653:empirical Bayes method 1611: 1558: 1388: 1354: 1332: 1264: 1226: 1200: 1155: 1031: 1007: 984: 962: 919: 880: 806: 746: 722: 698: 676: 644: 609: 588: 560: 538: 462: 396: 374: 339: 309: 268: 191: 105: 2804:10.1214/ss/1177012274 2554: 2534: 2514: 2481: 2337: 2310: 2284: 2196: 2138: 1961: 1934:as the multiplier on 1929: 1888: 1862: 1838: 1755: 1729: 1697: 1612: 1559: 1389: 1355: 1333: 1265: 1227: 1201: 1156: 1032: 1005: 985: 963: 927:James–Stein estimator 920: 881: 807: 747: 723: 699: 677: 645: 610: 589: 561: 539: 463: 402:(which can be chosen 397: 375: 340: 310: 269: 192: 106: 76:James–Stein estimator 2847:Annals of Statistics 2753:Stander, M. (2017), 2543: 2523: 2494: 2352: 2326: 2293: 2205: 2178: 1977: 1938: 1897: 1893:for small values of 1875: 1849: 1823: 1738: 1718: 1668: 1583: 1407: 1378: 1342: 1277: 1248: 1210: 1171: 1044: 1014: 972: 933: 890: 822: 767: 763:estimator, which is 732: 708: 686: 657: 624: 599: 574: 548: 480: 446: 384: 353: 323: 293: 201: 124: 116:Gaussian distributed 93: 2975:Normal distribution 2791:Statistical Science 2773:2017arXiv170202440S 2594:Shrinkage estimator 1714:when the dimension 197:with unknown means 2549: 2529: 2509: 2476: 2332: 2305: 2279: 2191: 2168:Stein's phenomenon 2133: 1956: 1924: 1883: 1857: 1833: 1786:channel estimation 1764:(LS) estimator is 1750: 1724: 1692: 1663:prior distribution 1607: 1554: 1384: 1350: 1328: 1260: 1238:maximum likelihood 1234:mean squared error 1222: 1196: 1151: 1027: 1008: 980: 958: 915: 876: 817:mean squared error 802: 742: 718: 694: 672: 640: 605: 584: 556: 534: 458: 429:mean squared error 392: 370: 335: 305: 264: 187: 101: 2599:Regular estimator 2589:Hodges' estimator 2567:linear regression 2552:{\displaystyle n} 2532:{\displaystyle m} 2507: 2471: 2454: 2441: 2424: 2365: 2335:{\displaystyle n} 2267: 2238: 2218: 2079: 1990: 1778:telecommunication 1727:{\displaystyle m} 1505: 1420: 1387:{\displaystyle m} 1368:that works. Let 1184: 1134: 1057: 946: 903: 858: 780: 669: 619:covariance matrix 608:{\displaystyle m} 544:where the vector 436:Hodges' estimator 349:the sample means 72: 71: 64: 2982: 2956: 2928: 2927: 2910: 2901:(5): 1087–1136, 2887: 2881: 2880: 2863: 2841: 2832: 2831: 2823: 2817: 2816: 2806: 2782: 2776: 2775: 2766: 2750: 2744: 2743: 2715: 2709: 2708: 2700: 2689: 2686: 2680: 2679: 2658: 2647: 2646: 2618: 2558: 2556: 2555: 2550: 2538: 2536: 2535: 2530: 2518: 2516: 2515: 2510: 2508: 2503: 2498: 2485: 2483: 2482: 2477: 2472: 2467: 2462: 2460: 2456: 2455: 2453: 2452: 2451: 2442: 2437: 2432: 2426: 2425: 2420: 2419: 2410: 2392: 2376: 2375: 2367: 2366: 2358: 2341: 2339: 2338: 2333: 2314: 2312: 2311: 2306: 2288: 2286: 2285: 2280: 2278: 2277: 2268: 2260: 2255: 2254: 2239: 2231: 2226: 2225: 2220: 2219: 2211: 2200: 2198: 2197: 2192: 2190: 2189: 2142: 2140: 2139: 2134: 2120: 2109: 2101: 2100: 2091: 2090: 2085: 2081: 2080: 2078: 2077: 2076: 2067: 2059: 2058: 2048: 2047: 2046: 2021: 2004: 2003: 1992: 1991: 1983: 1970:and is given by 1965: 1963: 1962: 1957: 1955: 1947: 1946: 1933: 1931: 1930: 1925: 1917: 1909: 1908: 1892: 1890: 1889: 1884: 1882: 1866: 1864: 1863: 1858: 1856: 1842: 1840: 1839: 1834: 1832: 1831: 1759: 1757: 1756: 1751: 1733: 1731: 1730: 1725: 1701: 1699: 1698: 1693: 1616: 1614: 1613: 1608: 1603: 1602: 1594: 1563: 1561: 1560: 1555: 1540: 1529: 1521: 1520: 1511: 1507: 1506: 1504: 1503: 1502: 1493: 1485: 1484: 1474: 1473: 1472: 1447: 1431: 1430: 1422: 1421: 1413: 1393: 1391: 1390: 1385: 1359: 1357: 1356: 1351: 1349: 1337: 1335: 1334: 1329: 1327: 1326: 1317: 1316: 1304: 1303: 1269: 1267: 1266: 1261: 1231: 1229: 1228: 1223: 1205: 1203: 1202: 1197: 1195: 1194: 1186: 1185: 1177: 1160: 1158: 1157: 1152: 1147: 1146: 1140: 1136: 1135: 1133: 1132: 1131: 1122: 1121: 1111: 1110: 1109: 1084: 1068: 1067: 1059: 1058: 1050: 1036: 1034: 1033: 1028: 1026: 1025: 989: 987: 986: 981: 979: 967: 965: 964: 959: 957: 956: 948: 947: 939: 924: 922: 921: 916: 914: 913: 905: 904: 896: 885: 883: 882: 877: 875: 871: 870: 865: 861: 860: 859: 851: 845: 811: 809: 808: 803: 801: 800: 791: 790: 782: 781: 773: 751: 749: 748: 743: 741: 740: 727: 725: 724: 719: 717: 716: 703: 701: 700: 695: 693: 681: 679: 678: 673: 671: 670: 662: 649: 647: 646: 641: 636: 635: 614: 612: 611: 606: 593: 591: 590: 585: 583: 582: 565: 563: 562: 557: 555: 543: 541: 540: 535: 523: 522: 510: 502: 501: 489: 488: 467: 465: 464: 459: 401: 399: 398: 393: 391: 379: 377: 376: 371: 369: 368: 367: 362: 344: 342: 341: 336: 314: 312: 311: 306: 273: 271: 270: 265: 260: 259: 254: 233: 232: 227: 218: 217: 212: 196: 194: 193: 188: 183: 182: 158: 157: 145: 144: 119:random variables 111:, of (possibly) 110: 108: 107: 102: 100: 67: 60: 56: 53: 47: 27: 26: 19: 2990: 2989: 2985: 2984: 2983: 2981: 2980: 2979: 2960: 2959: 2953: 2937: 2935:Further reading 2932: 2931: 2888: 2884: 2842: 2835: 2824: 2820: 2783: 2779: 2751: 2747: 2732:10.2307/2284155 2716: 2712: 2701: 2692: 2687: 2683: 2659: 2650: 2619: 2612: 2607: 2580: 2544: 2541: 2540: 2524: 2521: 2520: 2499: 2497: 2495: 2492: 2491: 2463: 2461: 2447: 2443: 2433: 2431: 2427: 2415: 2411: 2409: 2393: 2391: 2384: 2380: 2368: 2357: 2356: 2355: 2353: 2350: 2349: 2327: 2324: 2323: 2294: 2291: 2290: 2273: 2269: 2259: 2250: 2246: 2230: 2221: 2210: 2209: 2208: 2206: 2203: 2202: 2185: 2181: 2179: 2176: 2175: 2159: 2116: 2105: 2096: 2095: 2086: 2072: 2068: 2063: 2054: 2053: 2049: 2042: 2038: 2022: 2020: 2013: 2009: 2008: 1993: 1982: 1981: 1980: 1978: 1975: 1974: 1951: 1942: 1941: 1939: 1936: 1935: 1913: 1904: 1903: 1898: 1895: 1894: 1878: 1876: 1873: 1872: 1852: 1850: 1847: 1846: 1827: 1826: 1824: 1821: 1820: 1817: 1739: 1736: 1735: 1719: 1716: 1715: 1669: 1666: 1665: 1649: 1598: 1590: 1589: 1584: 1581: 1580: 1536: 1525: 1516: 1515: 1498: 1494: 1489: 1480: 1479: 1475: 1468: 1464: 1448: 1446: 1439: 1435: 1423: 1412: 1411: 1410: 1408: 1405: 1404: 1379: 1376: 1375: 1345: 1343: 1340: 1339: 1322: 1318: 1312: 1311: 1299: 1295: 1278: 1275: 1274: 1273:Notice that if 1249: 1246: 1245: 1236:(MSE) than the 1211: 1208: 1207: 1187: 1176: 1175: 1174: 1172: 1169: 1168: 1142: 1141: 1127: 1123: 1117: 1116: 1112: 1105: 1101: 1085: 1083: 1076: 1072: 1060: 1049: 1048: 1047: 1045: 1042: 1041: 1021: 1017: 1015: 1012: 1011: 1000: 992:Stein's example 975: 973: 970: 969: 949: 938: 937: 936: 934: 931: 930: 906: 895: 894: 893: 891: 888: 887: 866: 850: 849: 841: 840: 836: 835: 831: 823: 820: 819: 796: 795: 783: 772: 771: 770: 768: 765: 764: 736: 735: 733: 730: 729: 712: 711: 709: 706: 705: 689: 687: 684: 683: 661: 660: 658: 655: 654: 631: 627: 625: 622: 621: 617:and with known 600: 597: 596: 578: 577: 575: 572: 571: 566:is the unknown 551: 549: 546: 545: 518: 514: 506: 497: 493: 484: 483: 481: 478: 477: 474: 447: 444: 443: 434:Similar to the 423:the "ordinary" 387: 385: 382: 381: 363: 358: 357: 356: 354: 351: 350: 324: 321: 320: 294: 291: 290: 255: 250: 249: 228: 223: 222: 213: 208: 207: 202: 199: 198: 178: 174: 153: 149: 140: 136: 125: 122: 121: 96: 94: 91: 90: 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 12: 11: 5: 2988: 2978: 2977: 2972: 2958: 2957: 2951: 2936: 2933: 2930: 2929: 2882: 2854:(1): 209–218, 2833: 2818: 2777: 2745: 2710: 2690: 2681: 2648: 2609: 2608: 2606: 2603: 2602: 2601: 2596: 2591: 2586: 2579: 2576: 2575: 2574: 2570: 2561: 2560: 2548: 2528: 2506: 2502: 2488: 2487: 2486: 2475: 2470: 2466: 2459: 2450: 2446: 2440: 2436: 2430: 2423: 2418: 2414: 2408: 2405: 2402: 2399: 2396: 2390: 2387: 2383: 2379: 2374: 2371: 2364: 2361: 2344: 2343: 2331: 2316: 2304: 2301: 2298: 2276: 2272: 2266: 2263: 2258: 2253: 2249: 2245: 2242: 2237: 2234: 2229: 2224: 2217: 2214: 2188: 2184: 2158: 2155: 2144: 2143: 2132: 2129: 2126: 2123: 2119: 2115: 2112: 2108: 2104: 2099: 2094: 2089: 2084: 2075: 2071: 2066: 2062: 2057: 2052: 2045: 2041: 2037: 2034: 2031: 2028: 2025: 2019: 2016: 2012: 2007: 2002: 1999: 1996: 1989: 1986: 1954: 1950: 1945: 1923: 1920: 1916: 1912: 1907: 1902: 1881: 1855: 1830: 1816: 1813: 1749: 1746: 1743: 1723: 1691: 1688: 1685: 1682: 1679: 1676: 1673: 1648: 1647:Interpretation 1645: 1606: 1601: 1597: 1593: 1588: 1565: 1564: 1553: 1550: 1547: 1543: 1539: 1535: 1532: 1528: 1524: 1519: 1514: 1510: 1501: 1497: 1492: 1488: 1483: 1478: 1471: 1467: 1463: 1460: 1457: 1454: 1451: 1445: 1442: 1438: 1434: 1429: 1426: 1419: 1416: 1383: 1348: 1325: 1321: 1315: 1310: 1307: 1302: 1298: 1294: 1291: 1288: 1285: 1282: 1259: 1256: 1253: 1221: 1218: 1215: 1193: 1190: 1183: 1180: 1162: 1161: 1150: 1145: 1139: 1130: 1126: 1120: 1115: 1108: 1104: 1100: 1097: 1094: 1091: 1088: 1082: 1079: 1075: 1071: 1066: 1063: 1056: 1053: 1024: 1020: 999: 996: 978: 955: 952: 945: 942: 912: 909: 902: 899: 874: 869: 864: 857: 854: 848: 844: 839: 834: 830: 827: 799: 794: 789: 786: 779: 776: 757:Gaussian noise 739: 715: 692: 668: 665: 639: 634: 630: 604: 581: 554: 532: 529: 526: 521: 517: 513: 509: 505: 500: 496: 492: 487: 473: 470: 457: 454: 451: 390: 366: 361: 334: 331: 328: 304: 301: 298: 263: 258: 253: 248: 245: 242: 239: 236: 231: 226: 221: 216: 211: 206: 186: 181: 177: 173: 170: 167: 164: 161: 156: 152: 148: 143: 139: 135: 132: 129: 99: 70: 69: 31: 29: 22: 15: 9: 6: 4: 3: 2: 2987: 2976: 2973: 2971: 2968: 2967: 2965: 2954: 2952:0-7204-0729-X 2948: 2944: 2939: 2938: 2926: 2922: 2918: 2914: 2909: 2904: 2900: 2896: 2892: 2886: 2879: 2875: 2871: 2867: 2862: 2857: 2853: 2849: 2848: 2840: 2838: 2829: 2822: 2814: 2810: 2805: 2800: 2796: 2792: 2788: 2781: 2774: 2770: 2765: 2760: 2756: 2749: 2741: 2737: 2733: 2729: 2725: 2721: 2714: 2706: 2699: 2697: 2695: 2685: 2678: 2674: 2670: 2669: 2664: 2657: 2655: 2653: 2645: 2641: 2637: 2633: 2629: 2628: 2623: 2617: 2615: 2610: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2581: 2571: 2568: 2563: 2562: 2559:observations. 2546: 2526: 2489: 2473: 2457: 2448: 2421: 2416: 2412: 2403: 2400: 2397: 2388: 2385: 2381: 2377: 2372: 2369: 2362: 2348: 2347: 2346: 2345: 2329: 2321: 2317: 2302: 2299: 2296: 2274: 2261: 2256: 2251: 2247: 2240: 2235: 2232: 2227: 2222: 2215: 2212: 2186: 2182: 2173: 2172: 2171: 2169: 2165: 2154: 2151: 2149: 2130: 2127: 2124: 2121: 2113: 2102: 2087: 2082: 2073: 2060: 2043: 2039: 2032: 2029: 2026: 2017: 2014: 2010: 2005: 2000: 1997: 1994: 1987: 1973: 1972: 1971: 1969: 1948: 1921: 1910: 1870: 1845: 1812: 1809: 1805: 1801: 1796: 1794: 1789: 1787: 1783: 1779: 1774: 1771: 1767: 1761: 1747: 1744: 1741: 1721: 1713: 1709: 1705: 1686: 1683: 1680: 1674: 1671: 1664: 1660: 1659: 1654: 1644: 1642: 1641: 1636: 1635: 1631:finite guess 1630: 1626: 1622: 1621: 1595: 1578: 1577: 1572: 1571: 1551: 1548: 1545: 1541: 1533: 1522: 1508: 1499: 1486: 1469: 1465: 1458: 1455: 1452: 1443: 1440: 1436: 1432: 1427: 1424: 1417: 1403: 1402: 1401: 1399: 1398: 1381: 1373: 1372: 1367: 1363: 1323: 1305: 1300: 1296: 1289: 1286: 1283: 1271: 1257: 1254: 1251: 1243: 1239: 1235: 1219: 1216: 1213: 1191: 1188: 1181: 1167: 1148: 1137: 1128: 1106: 1102: 1095: 1092: 1089: 1080: 1077: 1073: 1069: 1064: 1061: 1054: 1040: 1039: 1038: 1022: 1018: 1004: 995: 993: 953: 950: 943: 928: 910: 907: 900: 872: 867: 855: 846: 832: 828: 818: 813: 792: 787: 784: 777: 762: 761:least squares 758: 753: 666: 651: 637: 632: 628: 620: 616: 602: 569: 530: 524: 519: 515: 511: 498: 494: 490: 469: 455: 452: 449: 441: 437: 432: 430: 426: 425:least squares 422: 417: 415: 414:Willard James 411: 410: 405: 364: 348: 332: 329: 326: 318: 302: 299: 296: 288: 284: 280: 279:Charles Stein 275: 256: 246: 243: 240: 237: 234: 229: 219: 214: 179: 175: 171: 168: 165: 162: 159: 154: 150: 146: 141: 137: 130: 127: 120: 117: 114: 88: 84: 81: 77: 66: 63: 55: 52:November 2017 45: 41: 35: 32:This article 30: 21: 20: 2942: 2898: 2894: 2891:Brown, L. D. 2885: 2851: 2845: 2827: 2821: 2794: 2790: 2780: 2754: 2748: 2723: 2719: 2713: 2704: 2684: 2667: 2626: 2319: 2164:inadmissible 2160: 2152: 2148:inadmissible 2145: 1967: 1868: 1843: 1818: 1815:Improvements 1797: 1790: 1775: 1769: 1762: 1707: 1703: 1657: 1656: 1650: 1639: 1638: 1633: 1632: 1628: 1619: 1618: 1575: 1574: 1569: 1568: 1566: 1396: 1395: 1370: 1369: 1361: 1272: 1242:inadmissible 1163: 1009: 926: 814: 754: 652: 475: 433: 418: 407: 317:inadmissible 276: 75: 73: 58: 49: 33: 2661:James, W.; 594:, which is 440:non-regular 412:. In 1961, 283:sample mean 2964:Categories 2925:0156.39401 2878:0314.62005 2764:1702.02440 2644:0073.35602 2605:References 2157:Extensions 1766:admissible 287:admissible 113:correlated 2970:Estimator 2813:0883-4237 2663:Stein, C. 2622:Stein, C. 2505:¯ 2469:¯ 2445:‖ 2439:¯ 2429:‖ 2413:σ 2401:− 2389:− 2363:^ 2360:θ 2265:¯ 2257:− 2241:∑ 2216:^ 2213:σ 2183:σ 2128:≥ 2118:ν 2107:ν 2103:− 2070:‖ 2065:ν 2061:− 2051:‖ 2040:σ 2030:− 2018:− 1988:^ 1985:θ 1953:ν 1949:− 1919:‖ 1915:ν 1911:− 1901:‖ 1880:ν 1854:ν 1800:Galtonian 1745:≤ 1672:∼ 1605:‖ 1600:ν 1596:− 1592:θ 1587:‖ 1549:≥ 1538:ν 1527:ν 1523:− 1496:‖ 1491:ν 1487:− 1477:‖ 1466:σ 1456:− 1444:− 1418:^ 1415:θ 1400:, namely 1366:shrinkage 1320:‖ 1309:‖ 1297:σ 1287:− 1255:≥ 1217:≥ 1182:^ 1179:θ 1166:dominates 1125:‖ 1114:‖ 1103:σ 1093:− 1081:− 1055:^ 1052:θ 1019:σ 977:θ 944:^ 941:θ 901:^ 898:θ 856:^ 853:θ 847:− 843:θ 829:⁡ 778:^ 775:θ 691:θ 667:^ 664:θ 629:σ 553:θ 516:σ 508:θ 491:∼ 450:θ 421:dominates 389:ν 360:θ 330:≥ 300:≤ 252:θ 225:θ 210:θ 98:θ 83:estimator 2578:See also 1702:, where 1625:a priori 1206:for any 863:‖ 838:‖ 404:a priori 315:, it is 2917:0216647 2870:0381064 2769:Bibcode 2740:2284155 2677:0133191 2636:0084922 2519:is the 1782:channel 472:Setting 347:shrinks 85:of the 38:Please 2949:  2923:  2915:  2876:  2868:  2811:  2738:  2675:  2642:  2634:  2490:where 1844:toward 80:biased 2797:(1). 2759:arXiv 2736:JSTOR 1871:from 1770:total 1244:when 728:, of 682:, of 319:when 289:when 285:, is 78:is a 2947:ISBN 2809:ISSN 2300:> 1869:away 1306:< 568:mean 476:Let 87:mean 74:The 2921:Zbl 2903:doi 2874:Zbl 2856:doi 2799:doi 2728:doi 2640:Zbl 1808:OLS 1629:any 1010:If 570:of 442:at 274:. 42:to 2966:: 2919:, 2913:MR 2911:, 2899:37 2897:, 2872:, 2866:MR 2864:, 2850:, 2836:^ 2807:. 2793:. 2789:. 2767:, 2757:, 2734:. 2724:68 2722:. 2693:^ 2673:MR 2651:^ 2638:, 2632:MR 2613:^ 2150:. 2131:4. 1552:3. 1270:. 994:. 929:, 812:. 752:. 650:. 468:. 89:, 2955:. 2905:: 2858:: 2852:3 2815:. 2801:: 2795:5 2771:: 2761:: 2742:. 2730:: 2547:n 2527:m 2501:y 2474:, 2465:y 2458:) 2449:2 2435:y 2422:n 2417:2 2407:) 2404:2 2398:m 2395:( 2386:1 2382:( 2378:= 2373:S 2370:J 2330:n 2320:y 2315:. 2303:2 2297:m 2275:2 2271:) 2262:y 2252:i 2248:y 2244:( 2236:m 2233:1 2228:= 2223:2 2187:2 2125:m 2122:, 2114:+ 2111:) 2098:y 2093:( 2088:+ 2083:) 2074:2 2056:y 2044:2 2036:) 2033:3 2027:m 2024:( 2015:1 2011:( 2006:= 2001:+ 1998:S 1995:J 1944:y 1922:, 1906:y 1829:y 1748:2 1742:m 1722:m 1708:A 1704:A 1690:) 1687:A 1684:, 1681:0 1678:( 1675:N 1658:θ 1640:ν 1634:ν 1620:θ 1576:ν 1570:ν 1546:m 1542:, 1534:+ 1531:) 1518:y 1513:( 1509:) 1500:2 1482:y 1470:2 1462:) 1459:2 1453:m 1450:( 1441:1 1437:( 1433:= 1428:S 1425:J 1397:ν 1382:m 1371:ν 1362:0 1347:y 1324:2 1314:y 1301:2 1293:) 1290:2 1284:m 1281:( 1258:3 1252:m 1220:3 1214:m 1192:S 1189:L 1149:. 1144:y 1138:) 1129:2 1119:y 1107:2 1099:) 1096:2 1090:m 1087:( 1078:1 1074:( 1070:= 1065:S 1062:J 1023:2 954:S 951:J 911:S 908:L 873:] 868:2 833:[ 826:E 798:y 793:= 788:S 785:L 738:Y 714:y 638:I 633:2 603:m 580:Y 531:, 528:) 525:I 520:2 512:, 504:( 499:m 495:N 486:Y 456:0 453:= 365:i 333:3 327:m 303:2 297:m 262:} 257:m 247:, 244:. 241:. 238:. 235:, 230:2 220:, 215:1 205:{ 185:} 180:m 176:Y 172:, 169:. 166:. 163:. 160:, 155:2 151:Y 147:, 142:1 138:Y 134:{ 131:= 128:Y 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message
biased
estimator
mean
correlated
Gaussian distributed
random variables
Charles Stein
sample mean
admissible
inadmissible
shrinks
a priori
Stein's example or paradox
Willard James
dominates
least squares
mean squared error
Hodges' estimator
non-regular
mean
m {\displaystyle m} -variate normally distributed
covariance matrix
Gaussian noise
least squares
mean squared error
Stein's example

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.