Knowledge

Jacobsen epoxidation

Source đź“ť

279: 264: 258:. There are three major pathways. The concerted pathway, the metalla oxetane pathway and the radical pathway. The most accepted mechanism is the concerted pathway mechanism. After the formation of the Mn(V) complex, the catalyst is activated and therefore can form epoxides with alkenes. The alkene comes in from the "top-on" approach (above the plane of the catalyst) and the oxygen atom now is bonded to the two carbon atoms (previously C=C bond) and is still bonded to the manganese metal. Then, the Mn–O bond breaks and the epoxide is formed. The Mn(III)-salen complex is regenerated, which can then be oxidized again to form the Mn(V) complex. 203: 82: 104: 214:
In the early 1990s, Jacobsen and Katsuki independently released their initial findings about their catalysts for the enantioselective epoxidation of isolated alkenes. In 1991, Jacobsen published work where he attempted to perfect the catalyst. He was able to obtain ee values above 90% for a variety
235:-1,2-disubstituted alkenes are poor substrates for Jacobsen's catalysts but yet give higher enantioselectivities when Katsuki's catalysts are used. Furthermore, the enantioselective epoxidation of conjugated dienes is much higher than that of the nonconjugated dienes. 278: 263: 302: 400:
Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. (1991). "Catalytic asymmetric epoxidation of unfunctionalized olefins using chiral (salen)manganese(III) complexes".
288:
Dimethyldioxirane]] can be used as a source of O atomes.DMD of a chiral metal catalyst followed by epoxidation, or (2) epoxidation by chiral dioxiranes, which are generated
187:
sometimes being included. Chiral-directing catalysts are useful to organic chemists trying to control the stereochemistry of biologically active compounds and develop
402: 366:; Zhang, Wei; Muci, Alexander R.; Ecker, James R.; Deng, Li (1991). "Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane". 223:
The degree of enantioselectivity depends on numerous factors, namely the structure of the alkene, the nature of the axial donor ligand on the active
68: 368: 331: 246:
The mechanism of the Jacobsen–Katsuki epoxidation is not fully understood, but most likely a manganese(V)-species (similar to the
238:
The enantioselectivity is explained by either a "top-on" approach (Jacobsen) or by a "side-on" approach (Katsuki) of the alkene.
637: 529: 273:
The radical intermediate accounts for the formation of mixed epoxides when conjugated dienes are used as substrates.
53: 501:
Brandes, B. D.; Jacobsen, E. N. (1994). "Highly Enantioselective, Catalytic Epoxidation of Trisubstituted Olefins".
627: 329:(March 1990). "Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes". 215:
of ligands. Also, the amount of catalyst used was no more than 15% of the amount of alkene used in the reaction.
432:; Deng, L.; Furukawa, Y.; MartĂ­nez, L. E. (1994). "Enantioselective Catalytic Epoxidation of Cinnamate Esters". 632: 224: 555: 61: 154: 642: 462: 429: 363: 326: 180: 134:
epoxidation of unfunctionalized alkyl- and aryl- substituted alkenes. It is complementary to the
85: 434: 135: 37: 282:
Mechanisms of the free-radical and metallo-oxetane pathways of the Jacobsen-Katsuki reaction
465:(1994). "Effect of Chiral Quaternary Ammonium Salts on (salen)Mn-Catalyzed Epoxidation of 8: 292:
from a catalytic amount of ketone and a stoichiometric amount of a terminal oxidant). Mn-
162: 447: 415: 231:-1,2-disubstituted alkenes are epoxidized with almost 100% enantioselectivity whereas 475: 127: 563: 553:
Linker, T. (1997). "Jacobsen-Katsuki epoxidation and its controversial mechanism".
511: 483: 443: 411: 377: 340: 247: 188: 131: 27: 293: 254:) is the reactive intermediate which is formed upon the oxidation of the Mn(III)- 251: 184: 176: 150: 600:
LĂ©vai, A.; Adam, W.; Fell, R. T.; Gessner, R.; Patonay, T.; Simon, A.; TĂłth, G.
621: 503: 255: 202: 567: 168: 118: 81: 515: 487: 381: 344: 172: 165: 103: 460: 399: 179:
or similar oxidant. The reaction takes its name from its inventor,
146: 139: 428: 301: 267:
Mechanism of the Jacobsen catalytic enantioselective epoxidation
296:
have been used with success to accomplish the first strategy.
500: 143: 324: 175:
amounts. The manganese atom transfers an oxygen atom from
227:
species and the reaction temperature. Cyclic and acyclic
469:-Olefins. A Highly Enantioselective, Catalytic Route to 580:
Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y.
362: 194:Several improved procedures have been developed. 619: 358: 356: 354: 395: 393: 391: 548: 546: 351: 320: 318: 552: 388: 325:Zhang, W.; Loebach, J. L.; Wilson, S. R.; 543: 369:Journal of the American Chemical Society 332:Journal of the American Chemical Society 315: 102: 80: 620: 149:). The Jacobsen epoxidation gains its 218: 197:A general reaction scheme follows: 13: 574: 277: 262: 14: 654: 300: 201: 122:, sometimes also referred to as 594: 522: 494: 454: 422: 99:Best Jacobsen catalyst: R = Bu 1: 448:10.1016/S0040-4020(01)89369-8 416:10.1016/S0957-4166(00)86102-9 308: 241: 124:Jacobsen-Katsuki epoxidation 54:jacobsen-katsuki-epoxidation 7: 638:Organic oxidation reactions 556:Angew. Chem. Int. Ed. Engl. 10: 659: 532:. Organic Chemistry Portal 461:Chang, S.; Galvin, J. M.; 209: 109:R = Aryl, substituted aryl 75: 49:Organic Chemistry Portal 43: 18: 142:from the double bond in 628:Ring forming reactions 568:10.1002/anie.199720601 530:"Jacobsen Epoxidation" 403:Tetrahedron: Asymmetry 283: 268: 112: 100: 633:Epoxidation reactions 281: 266: 136:Sharpless epoxidation 106: 84: 38:Ring forming reaction 19:Jacobsen epoxidation 86:Jacobsen's catalysts 516:10.1021/jo00095a009 488:10.1021/ja00094a059 382:10.1021/ja00018a068 345:10.1021/ja00163a052 171:, which is used in 107:Katsuki's catalysts 284: 269: 113: 101: 582:J. Am. Chem. Soc. 562:(19): 2060–2062. 510:(16): 4378–4380. 482:(15): 6937–6938. 476:J. Am. Chem. Soc. 442:(15): 4323–4334. 364:Jacobsen, Eric N. 189:enantiopure drugs 169:salen-like ligand 151:stereoselectivity 128:chemical reaction 79: 78: 650: 612: 598: 592: 578: 572: 571: 550: 541: 540: 538: 537: 526: 520: 519: 498: 492: 491: 458: 452: 451: 426: 420: 419: 397: 386: 385: 360: 349: 348: 339:(7): 2801–2803. 322: 304: 250:intermediate of 219:General features 205: 132:enantioselective 71: 56: 28:Eric N. Jacobsen 16: 15: 658: 657: 653: 652: 651: 649: 648: 647: 618: 617: 616: 615: 599: 595: 579: 575: 551: 544: 535: 533: 528: 527: 523: 499: 495: 459: 455: 427: 423: 398: 389: 361: 352: 327:Jacobsen, E. N. 323: 316: 311: 294:salen complexes 252:Cytochrome P450 244: 221: 212: 185:Tsutomu Katsuki 177:chlorine bleach 159: 111:R = Aryl, Alkyl 110: 108: 98: 88: 67: 52: 12: 11: 5: 656: 646: 645: 643:Name reactions 640: 635: 630: 614: 613: 593: 573: 542: 521: 493: 463:E. N. Jacobsen 453: 430:E. N. Jacobsen 421: 410:(7): 481–494. 387: 350: 313: 312: 310: 307: 306: 305: 286: 285: 271: 270: 243: 240: 220: 217: 211: 208: 207: 206: 166:manganese(III) 157: 138:(used to form 77: 76: 73: 72: 65: 58: 57: 50: 46: 45: 41: 40: 35: 34:Reaction type 31: 30: 25: 21: 20: 9: 6: 4: 3: 2: 655: 644: 641: 639: 636: 634: 631: 629: 626: 625: 623: 610: 606: 603: 597: 590: 586: 583: 577: 569: 565: 561: 558: 557: 549: 547: 531: 525: 517: 513: 509: 506: 505: 504:J. Org. Chem. 497: 489: 485: 481: 478: 477: 472: 468: 464: 457: 449: 445: 441: 437: 436: 431: 425: 417: 413: 409: 405: 404: 396: 394: 392: 383: 379: 375: 371: 370: 365: 359: 357: 355: 346: 342: 338: 334: 333: 328: 321: 319: 314: 303: 299: 298: 297: 295: 291: 280: 276: 275: 274: 265: 261: 260: 259: 257: 256:salen complex 253: 249: 239: 236: 234: 230: 226: 216: 204: 200: 199: 198: 195: 192: 190: 186: 182: 181:Eric Jacobsen 178: 174: 170: 167: 164: 161: 160: 152: 148: 145: 141: 137: 133: 130:which allows 129: 125: 121: 120: 105: 96: 92: 87: 83: 74: 70: 66: 63: 60: 59: 55: 51: 48: 47: 42: 39: 36: 33: 32: 29: 26: 23: 22: 17: 608: 604: 601: 596: 588: 584: 581: 576: 559: 554: 534:. Retrieved 524: 507: 502: 496: 479: 474: 473:-Epoxides". 470: 466: 456: 439: 433: 424: 407: 401: 376:(18): 7063. 373: 367: 336: 330: 289: 287: 272: 245: 237: 232: 228: 225:oxomanganese 222: 213: 196: 193: 155: 123: 116: 114: 94: 90: 69:RXNO:0000686 64:ontology ID 44:Identifiers 24:Named after 602:Tetrahedron 435:Tetrahedron 119:epoxidation 89:R = Alkyl, 622:Categories 536:2009-09-22 309:References 242:Mechanism 173:catalytic 163:symmetric 117:Jacobsen 97:-trialkyl 611:, 13105. 591:, 11224. 147:alcohols 140:epoxides 93:-alkyl, 290:in situ 210:History 183:, with 153:from a 144:allylic 248:ferryl 471:Trans 233:trans 126:is a 605:1998 585:1997 115:The 589:119 564:doi 512:doi 484:doi 480:116 467:Cis 444:doi 412:doi 378:doi 374:113 341:doi 337:112 229:cis 62:RSC 624:: 609:54 607:, 587:, 560:36 545:^ 508:59 440:50 438:. 406:. 390:^ 372:. 353:^ 335:. 317:^ 191:. 570:. 566:: 539:. 518:. 514:: 490:. 486:: 450:. 446:: 418:. 414:: 408:2 384:. 380:: 347:. 343:: 158:2 156:C 95:O 91:O

Index

Eric N. Jacobsen
Ring forming reaction
jacobsen-katsuki-epoxidation
RSC
RXNO:0000686

Jacobsen's catalysts

epoxidation
chemical reaction
enantioselective
Sharpless epoxidation
epoxides
allylic
alcohols
stereoselectivity
C2
symmetric
manganese(III)
salen-like ligand
catalytic
chlorine bleach
Eric Jacobsen
Tsutomu Katsuki
enantiopure drugs

oxomanganese
ferryl
Cytochrome P450
salen complex

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑