Knowledge

Isospectral

Source đź“ť

1288: 228:), constructed examples of isospectral, non-isometric closed hyperbolic 2-manifolds and 3-manifolds as quotients of hyperbolic 2-space and 3-space by arithmetic subgroups, constructed using quaternion algebras associated with quadratic extensions of the rationals by 176:
was behind the conservation laws that were responsible for keeping solitons from dissipating. That is, the preservation of spectrum was an interpretation of the conservation mechanism. The identification of so-called
323:
are isospectral but not necessarily isometric. Although this does not recapture the arithmetic examples of Milnor and Vignéras, Sunada's method yields many known examples of isospectral manifolds. It led C. Gordon,
247:
technique, which, either in its original or certain generalized versions, came to be known as the Sunada method or Sunada construction. Like the previous methods it is based on the trace formula, via the
85:. Two such domains are called isospectral if their Laplacians are isospectral. The problem of inferring the geometrical properties of a domain from the spectrum of its Laplacian is often known as 343:
Sunada's idea also stimulated the attempt to find isospectral examples which could not be obtained by his technique. Among many examples, the most striking one is a simply connected example of
201:(Laplacians), counted multiplicities, coincide. One of fundamental problems in spectral geometry is to ask to what extent the eigenvalues determine the geometry of a given manifold. 54:
The theory of isospectral operators is markedly different depending on whether the space is finite or infinite dimensional. In finite-dimensions, one essentially deals with square
212:. After this example, many isospectral pairs in dimension two and higher were constructed (for instance, by M. F. Vignéras, A. Ikeda, H. Urakawa, C. Gordon). In particular 1177: 1013: 693:
Selberg, Atle (1956), "Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series",
840: 449: 236:, the set of lengths of closed geodesics in each free homotopy class, along with the twist along the geodesic in the 3-dimensional case. 1003: 538: 497: 1130: 985: 961: 763: 853: 942: 833: 1212: 857: 204:
There are many examples of isospectral manifolds which are not isometric. The first example was given in 1964 by
589: 61:
In infinite dimensions, the spectrum need not consist solely of isolated eigenvalues. However, the case of a
1008: 198: 1291: 1064: 998: 826: 1028: 360: 333: 86: 1273: 1227: 1151: 1033: 325: 48: 232:. In this case Selberg's trace formula shows that the spectrum of the Laplacian fully determines the 1268: 1084: 348: 73:) is still tractable, since the eigenvalues are at most countable with at most a single limit point 1312: 1120: 1018: 921: 106: 1217: 993: 208:. He constructed a pair of flat tori of 16 dimension, using arithmetic lattices first studied by 144:
in a complicated way. This is an evolution of a matrix that happens inside one similarity class.
36: 647:
Schueth, D. (1999), "Continuous families of isospectral metrics on simply connected manifolds",
533: 1248: 1192: 1156: 253: 955: 249: 217: 102: 951: 77: = 0. The most studied isospectral problem in infinite dimensions is that of the 1231: 734:
Vignéras, Marie-France (1980), "Variétés riemanniennes isospectrales et non isométriques",
608: 109:. This doesn't however reduce completely the interest of the concept, since we can have an 55: 818: 8: 1197: 1135: 849: 560:
McKean, H. P. (1972), "Selberg's trace formula as applied to a compact Riemann surface",
276: 194: 612: 525: 493: 395:
This amounts to knowing the conjugacy class of the corresponding group element in PSL(2,
1222: 1089: 808: 751: 723: 682: 674: 656: 529: 482: 351:
proved that certain isospectral arithmetic hyperbolic manifolds in are commensurable.
229: 631: 1202: 636: 585: 365: 40: 791:
Wolpert, Scott (1979), "The length spectra as moduli for compact Riemann surfaces",
783: 686: 1207: 1125: 1094: 1074: 1059: 1054: 1049: 800: 778: 743: 715: 666: 626: 616: 569: 547: 512: 474: 462: 426: 240: 78: 62: 886: 430: 1069: 1023: 971: 966: 937: 599:
Milnor, John (1964), "Eigenvalues of the Laplace operator on certain manifolds",
415:"Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds" 24: 896: 414: 1258: 1110: 911: 244: 98: 552: 1306: 1263: 1187: 916: 901: 891: 256:
could be adapted to compact manifolds. His method relies on the fact that if
252:. Sunada noticed that the method of constructing number fields with the same 152: 66: 1253: 906: 876: 640: 573: 272: 70: 621: 1182: 1172: 1079: 881: 205: 20: 336:" An elementary treatment, based on Sunada's method, was later given in 1115: 947: 812: 755: 727: 486: 209: 44: 678: 661: 185:, showed how linear machinery could explain the non-linear behaviour. 706:
Sunada, T. (1985), "Riemannian coverings and isospectral manifolds",
517: 182: 138: 804: 747: 719: 478: 670: 329: 178: 97:
In the case of operators on finite-dimensional vector spaces, for
451:
Variétés riemanniennes isospectrales non isométriques, exposé 705
148: 764:"The eigenvalue spectrum as moduli for compact Riemann surfaces" 328:
and S. Wolpert to the discovery in 1991 of a counter example to
848: 101:
square matrices, the relation of being isospectral for two
524: 337: 197:
are said to be isospectral if the eigenvalues of their
39:. Roughly speaking, they are supposed to have the same 260:
is a finite covering of a compact Riemannian manifold
473:(9), Mathematical Association of America: 823–839, 301:in the same number of elements, then the manifolds 1178:Spectral theory of ordinary differential equations 243:found a general method of construction based on a 1304: 579: 532:; Doyle, Peter; Semmler, Klaus-Dieter (1994), 465:(1988), "Constructing Isospectral Manifolds", 384: 834: 181:(P,L) giving rise to analogous equations, by 92: 447: 841: 827: 539:International Mathematics Research Notices 782: 660: 630: 620: 551: 516: 1131:Group algebra of a locally compact group 733: 582:The Arithmetic of Hyperbolic 3-manifolds 213: 188: 790: 761: 692: 646: 344: 16:Linear operators with a common spectrum 1305: 705: 598: 580:Maclachlan, C.; Reid, Alan W. (2003), 559: 461: 822: 492: 412: 13: 457:, SĂ©minaire Bourbaki, vol. 31 155:analogue of that equation, namely 14: 1324: 534:"Some planar isospectral domains" 334:Can one hear the shape of a drum? 1287: 1286: 1213:Topological quantum field theory 297:meeting each conjugacy class of 784:10.1090/S0002-9904-1977-14425-X 584:, Springer, pp. 383–394, 498:"Isospectral Riemann surfaces" 406: 389: 378: 47:, when those are counted with 1: 1009:Uniform boundedness principle 505:Annales de l'Institut Fourier 467:American Mathematical Monthly 441: 431:10.1215/S0012-7094-92-06508-2 448:BĂ©rard, Pierre (1988–1989), 7: 361:Hearing the shape of a drum 354: 87:hearing the shape of a drum 10: 1329: 1152:Invariant subspace problem 601:Proc. Natl. Acad. Sci. USA 385:Maclachlan & Reid 2003 1282: 1241: 1165: 1144: 1103: 1042: 984: 930: 872: 865: 553:10.1155/S1073792894000437 419:Duke Mathematical Journal 199:Laplace–Beltrami operator 147:A fundamental insight in 93:Finite dimensional spaces 1121:Spectrum of a C*-algebra 371: 1218:Noncommutative geometry 762:Wolpert, Scott (1977), 103:diagonalizable matrices 1274:Tomita–Takesaki theory 1249:Approximation property 1193:Calculus of variations 771:Bull. Amer. Math. Soc. 574:10.1002/cpa.3160250302 562:Comm. Pure Appl. Math. 413:Reid, Alan W. (1992). 254:Dedekind zeta function 35:if they have the same 1269:Banach–Mazur distance 1232:Generalized functions 793:Annals of Mathematics 736:Annals of Mathematics 708:Annals of Mathematics 649:Annals of Mathematics 622:10.1073/pnas.51.4.542 347:. On the other hand, 250:Selberg zeta function 218:Selberg trace formula 189:Isospectral manifolds 113:of matrices of shape 1014:Kakutani fixed-point 999:Riesz representation 695:J. Indian Math. Soc. 277:deck transformations 195:Riemannian manifolds 151:theory was that the 1198:Functional calculus 1157:Mahler's conjecture 1136:Von Neumann algebra 850:Functional analysis 613:1964PNAS...51..542M 338:Buser et al. (1994) 1223:Riemann hypothesis 922:Topological vector 230:class field theory 111:isospectral family 1300: 1299: 1203:Integral operator 980: 979: 366:Spectral geometry 293:are subgroups of 137:) depending on a 1320: 1290: 1289: 1208:Jones polynomial 1126:Operator algebra 870: 869: 843: 836: 829: 820: 819: 815: 787: 786: 777:(6): 1306–1308, 768: 758: 730: 702: 689: 664: 643: 634: 624: 594: 576: 556: 555: 521: 520: 518:10.5802/aif.1054 502: 489: 458: 456: 435: 434: 410: 404: 393: 387: 382: 241:Toshikazu Sunada 164: 79:Laplace operator 63:compact operator 25:linear operators 1328: 1327: 1323: 1322: 1321: 1319: 1318: 1317: 1313:Spectral theory 1303: 1302: 1301: 1296: 1278: 1242:Advanced topics 1237: 1161: 1140: 1099: 1065:Hilbert–Schmidt 1038: 1029:Gelfand–Naimark 976: 926: 861: 847: 805:10.2307/1971114 766: 748:10.2307/1971319 720:10.2307/1971195 592: 500: 479:10.2307/2322897 454: 444: 439: 438: 411: 407: 394: 390: 383: 379: 374: 357: 318: 307: 292: 285: 266: 234:length spectrum 216:, based on the 214:VignĂ©ras (1980) 191: 162: 95: 81:on a domain in 17: 12: 11: 5: 1326: 1316: 1315: 1298: 1297: 1295: 1294: 1283: 1280: 1279: 1277: 1276: 1271: 1266: 1261: 1259:Choquet theory 1256: 1251: 1245: 1243: 1239: 1238: 1236: 1235: 1225: 1220: 1215: 1210: 1205: 1200: 1195: 1190: 1185: 1180: 1175: 1169: 1167: 1163: 1162: 1160: 1159: 1154: 1148: 1146: 1142: 1141: 1139: 1138: 1133: 1128: 1123: 1118: 1113: 1111:Banach algebra 1107: 1105: 1101: 1100: 1098: 1097: 1092: 1087: 1082: 1077: 1072: 1067: 1062: 1057: 1052: 1046: 1044: 1040: 1039: 1037: 1036: 1034:Banach–Alaoglu 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 990: 988: 982: 981: 978: 977: 975: 974: 969: 964: 962:Locally convex 959: 945: 940: 934: 932: 928: 927: 925: 924: 919: 914: 909: 904: 899: 894: 889: 884: 879: 873: 867: 863: 862: 846: 845: 838: 831: 823: 817: 816: 799:(2): 323–351, 788: 759: 731: 714:(1): 169–186, 703: 690: 671:10.2307/121026 655:(1): 287–308, 644: 596: 590: 577: 568:(3): 225–246, 557: 546:(9): 391–400, 522: 511:(2): 167–192, 490: 463:Brooks, Robert 459: 443: 440: 437: 436: 405: 388: 376: 375: 373: 370: 369: 368: 363: 356: 353: 345:Schueth (1999) 316: 305: 290: 283: 264: 245:covering space 190: 187: 174: 173: 94: 91: 15: 9: 6: 4: 3: 2: 1325: 1314: 1311: 1310: 1308: 1293: 1285: 1284: 1281: 1275: 1272: 1270: 1267: 1265: 1264:Weak topology 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1246: 1244: 1240: 1233: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1188:Index theorem 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1170: 1168: 1164: 1158: 1155: 1153: 1150: 1149: 1147: 1145:Open problems 1143: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1112: 1109: 1108: 1106: 1102: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1047: 1045: 1041: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 991: 989: 987: 983: 973: 970: 968: 965: 963: 960: 957: 953: 949: 946: 944: 941: 939: 936: 935: 933: 929: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 874: 871: 868: 864: 859: 855: 851: 844: 839: 837: 832: 830: 825: 824: 821: 814: 810: 806: 802: 798: 794: 789: 785: 780: 776: 772: 765: 760: 757: 753: 749: 745: 741: 737: 732: 729: 725: 721: 717: 713: 709: 704: 700: 696: 691: 688: 684: 680: 676: 672: 668: 663: 662:dg-ga/9711010 658: 654: 650: 645: 642: 638: 633: 628: 623: 618: 614: 610: 606: 602: 597: 593: 587: 583: 578: 575: 571: 567: 563: 558: 554: 549: 545: 541: 540: 535: 531: 527: 523: 519: 514: 510: 506: 499: 495: 491: 488: 484: 480: 476: 472: 468: 464: 460: 453: 452: 446: 445: 432: 428: 424: 420: 416: 409: 402: 398: 392: 386: 381: 377: 367: 364: 362: 359: 358: 352: 350: 346: 341: 339: 335: 331: 327: 322: 315: 311: 304: 300: 296: 289: 282: 278: 274: 270: 263: 259: 255: 251: 246: 242: 237: 235: 231: 227: 223: 219: 215: 211: 207: 202: 200: 196: 186: 184: 180: 172: 168: 161: 158: 157: 156: 154: 153:infinitesimal 150: 145: 143: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 90: 88: 84: 80: 76: 72: 68: 67:Hilbert space 64: 59: 57: 52: 50: 46: 42: 38: 34: 30: 26: 22: 1254:Balanced set 1228:Distribution 1166:Applications 1019:Krein–Milman 1004:Closed graph 796: 792: 774: 770: 742:(1): 21–32, 739: 735: 711: 707: 698: 694: 652: 648: 604: 600: 581: 565: 561: 543: 537: 530:Conway, John 526:Buser, Peter 508: 504: 494:Buser, Peter 470: 466: 450: 422: 418: 408: 400: 396: 391: 380: 342: 332:'s problem " 320: 313: 309: 302: 298: 294: 287: 280: 273:finite group 268: 261: 257: 238: 233: 225: 224:) and PSL(2, 221: 203: 192: 175: 170: 166: 159: 146: 141: 134: 130: 126: 122: 118: 114: 110: 96: 82: 74: 71:Banach space 60: 53: 49:multiplicity 32: 28: 18: 1183:Heat kernel 1173:Hardy space 1080:Trace class 994:Hahn–Banach 956:Topological 399:) or PSL(2, 206:John Milnor 193:Two closed 45:eigenvalues 29:isospectral 27:are called 21:mathematics 1116:C*-algebra 931:Properties 607:(4): 542, 591:0387983864 442:References 220:for PSL(2, 210:Ernst Witt 107:similarity 33:cospectral 1090:Unbounded 1085:Transpose 1043:Operators 972:Separable 967:Reflexive 952:Algebraic 938:Barrelled 349:Alan Reid 183:Peter Lax 179:Lax pairs 139:parameter 1307:Category 1292:Category 1104:Algebras 986:Theorems 943:Complete 912:Schwartz 858:glossary 687:10898684 641:16591156 496:(1986), 355:See also 330:Mark Kac 239:In 1985 169:− 105:is just 56:matrices 37:spectrum 1095:Unitary 1075:Nuclear 1060:Compact 1055:Bounded 1050:Adjoint 1024:Min–max 917:Sobolev 902:Nuclear 892:Hilbert 887:FrĂ©chet 852: ( 813:1971114 756:1971319 728:1971195 701:: 47–87 609:Bibcode 487:2322897 326:D. Webb 149:soliton 99:complex 1070:Normal 907:Orlicz 897:Hölder 877:Banach 866:Spaces 854:topics 811:  754:  726:  685:  679:121026 677:  639:  632:300113 629:  588:  485:  23:, two 882:Besov 809:JSTOR 767:(PDF) 752:JSTOR 724:JSTOR 683:S2CID 675:JSTOR 657:arXiv 501:(PDF) 483:JSTOR 455:(PDF) 425:(2). 372:Notes 267:with 165:= = 65:on a 1230:(or 948:Dual 637:PMID 586:ISBN 544:1994 312:and 279:and 271:the 121:) = 69:(or 41:sets 801:doi 797:109 779:doi 744:doi 740:112 716:doi 712:121 667:doi 653:149 627:PMC 617:doi 570:doi 548:doi 513:doi 475:doi 427:doi 275:of 43:of 31:or 19:In 1309:: 856:– 807:, 795:, 775:83 773:, 769:, 750:, 738:, 722:, 710:, 699:20 697:, 681:, 673:, 665:, 651:, 635:, 625:, 615:, 605:51 603:, 566:25 564:, 542:, 536:, 528:; 509:36 507:, 503:, 481:, 471:95 469:, 423:65 421:. 417:. 403:). 340:. 319:\ 308:\ 286:, 171:MA 167:AM 131:AM 89:. 58:. 51:. 1234:) 958:) 954:/ 950:( 860:) 842:e 835:t 828:v 803:: 781:: 746:: 718:: 669:: 659:: 619:: 611:: 595:, 572:: 550:: 515:: 477:: 433:. 429:: 401:C 397:R 321:M 317:2 314:H 310:M 306:1 303:H 299:G 295:G 291:2 288:H 284:1 281:H 269:G 265:0 262:M 258:M 226:C 222:R 163:′ 160:A 142:t 135:t 133:( 129:) 127:t 125:( 123:M 119:t 117:( 115:A 83:R 75:λ

Index

mathematics
linear operators
spectrum
sets
eigenvalues
multiplicity
matrices
compact operator
Hilbert space
Banach space
Laplace operator
hearing the shape of a drum
complex
diagonalizable matrices
similarity
parameter
soliton
infinitesimal
Lax pairs
Peter Lax
Riemannian manifolds
Laplace–Beltrami operator
John Milnor
Ernst Witt
Vignéras (1980)
Selberg trace formula
class field theory
Toshikazu Sunada
covering space
Selberg zeta function

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑