Knowledge

Laplace–Beltrami operator

Source 📝

5391: 6402: 5156: 4364:, whereas the Laplace–Beltrami operator is typically negative. The sign is merely a convention, and both are common in the literature. The Laplace–de Rham operator differs more significantly from the tensor Laplacian restricted to act on skew-symmetric tensors. Apart from the incidental sign, the two operators differ by a 6165: 1658: 4355:
Up to an overall sign, the Laplace–de Rham operator is equivalent to the previous definition of the Laplace–Beltrami operator when acting on a scalar function; see the proof for details. On functions, the Laplace–de Rham operator is actually the negative of the Laplace–Beltrami operator, as the
5202: 4900: 3622: 6207: 4958: 1422: 5916: 4550: 3355: 1132: 4118: 1310: 5967: 3719: 697: 4237: 3424: 976: 3824: 311: 5735: 1533: 575: 5386:{\displaystyle \Delta _{S^{2}}f(\theta ,\phi )=(\sin \phi )^{-1}{\frac {\partial }{\partial \phi }}\left(\sin \phi {\frac {\partial f}{\partial \phi }}\right)+(\sin \phi )^{-2}{\frac {\partial ^{2}}{\partial \theta ^{2}}}f} 3152: 841: 2437: 2287: 2187: 4757: 2061: 3191:. Proofs of all these statements may be found in the book by Isaac Chavel. Analogous sharp bounds also hold for other Geometries and for certain degenerate Laplacians associated with these geometries like the 408: 3912: 5510: 6397:{\displaystyle \Delta _{H^{2}}f(r,\theta )=\sinh(r)^{-1}{\frac {\partial }{\partial r}}\left(\sinh(r){\frac {\partial f}{\partial r}}\right)+\sinh(r)^{-2}{\frac {\partial ^{2}}{\partial \theta ^{2}}}f} 5151:{\displaystyle \Delta _{S^{n-1}}f(\xi ,\phi )=(\sin \phi )^{2-n}{\frac {\partial }{\partial \phi }}\left((\sin \phi )^{n-2}{\frac {\partial f}{\partial \phi }}\right)+(\sin \phi )^{-2}\Delta _{\xi }f} 2599: 3462: 1149:
rather than a form). Neither the gradient nor the divergence actually depends on the choice of orientation, and so the Laplace–Beltrami operator itself does not depend on this additional structure.
2988: 4706: 3082: 5603: 109:
taking functions into functions. The operator can be extended to operate on tensors as the divergence of the covariant derivative. Alternatively, the operator can be generalized to operate on
4350: 3971: 1331: 192: 3189: 5818: 750: 4441: 1972: 3280: 2917: 4292: 1710: 1023: 3997: 6160:{\displaystyle \Delta _{H^{n-1}}f(t,\xi )=\sinh(t)^{2-n}{\frac {\partial }{\partial t}}\left(\sinh(t)^{n-2}{\frac {\partial f}{\partial t}}\right)+\sinh(t)^{-2}\Delta _{\xi }f} 3233: 2740: 2859: 2798: 2769: 2660: 2631: 2475: 5799: 2830: 1225: 6195: 5186: 3651: 2316: 1896: 507: 3025: 2687: 2542: 1847: 604: 1870: 1817: 1777: 1757: 1198: 4749: 2353: 454: 4751:
is the Laplacian of the ambient Euclidean space. Concretely, this is implied by the well-known formula for the Euclidean Laplacian in spherical polar coordinates:
4433: 4169: 3360: 1653:{\displaystyle \int _{M}f\,\Delta h\operatorname {vol} _{n}=-\int _{M}\langle df,dh\rangle \operatorname {vol} _{n}=\int _{M}h\,\Delta f\operatorname {vol} _{n}.} 893: 434: 3731: 3272: 2515: 2495: 2088: 1936: 1916: 1797: 1733: 1525: 1505: 1478: 1458: 1218: 1175: 1017:
Combining the definitions of the gradient and divergence, the formula for the Laplace–Beltrami operator applied to a scalar function ƒ is, in local coordinates
481: 233: 5614: 515: 3094: 3192: 6560: 758: 4605:-sphere with its canonical metric of constant sectional curvature 1. It is convenient to regard the sphere as isometrically embedded into 1663:
Because the Laplace–Beltrami operator, as defined in this manner, is negative rather than positive, often it is defined with the opposite sign.
2365: 4895:{\displaystyle \Delta f=r^{1-n}{\frac {\partial }{\partial r}}\left(r^{n-1}{\frac {\partial f}{\partial r}}\right)+r^{-2}\Delta _{S^{n-1}}f.} 2198: 1799:
allows one to show that the eigenvalues are discrete and furthermore, the vector space of eigenfunctions associated with a given eigenvalue
1141:
is not oriented, then the above calculation carries through exactly as presented, except that the volume form must instead be replaced by a
6574:
McIntosh, Alan; Monniaux, Sylvie (2018). "Hodge–Dirac, Hodge–Laplacian and Hodge–Stokes operators in $ L^p$ spaces on Lipschitz domains".
6418: 2096: 1980: 361: 1487:
As a consequence, the Laplace–Beltrami operator is negative and formally self-adjoint, meaning that for compactly supported functions
3836: 6515:
Chanillo, Sagun, Chiu, Hung-Lin and Yang, Paul C. (2012). "Embeddability for 3-dimensional CR manifolds and CR Yamabe Invariants".
5423: 3617:{\displaystyle ({\mbox{Hess}}f)_{ij}={\mbox{Hess}}f(X_{i},X_{j})=\nabla _{X_{i}}\nabla _{X_{j}}f-\nabla _{\nabla _{X_{i}}X_{j}}f} 4909:
to define the Laplace–Beltrami operator of any Riemannian manifold isometrically embedded as a hypersurface of Euclidean space.
2550: 6632: 6500: 6201: − 2)-sphere. In particular, for the hyperbolic plane using standard notation for polar coordinates we get: 2928: 4623: 3033: 5525: 1484:) characterizes the Laplace–Beltrami operator completely, in the sense that it is the only operator with this property. 1417:{\displaystyle \int _{M}f\,\Delta h\,\operatorname {vol} _{n}=-\int _{M}\langle df,dh\rangle \,\operatorname {vol} _{n}} 3251: 5911:{\displaystyle \Box ={\frac {\partial ^{2}}{\partial x_{1}^{2}}}-\cdots -{\frac {\partial ^{2}}{\partial x_{n}^{2}}}.} 4314: 3927: 6653: 4545:{\displaystyle \Delta f={\frac {1}{\sqrt {|g|}}}\partial _{i}{\sqrt {|g|}}\partial ^{i}f=\partial _{i}\partial ^{i}f} 143: 3157: 723: 6690: 1941: 3350:{\displaystyle \displaystyle {\mbox{Hess}}f\in \mathbf {\Gamma } ({\mathsf {T}}^{*}M\otimes {\mathsf {T}}^{*}M)} 6664: 6674: 3452:
be a basis of tangent vector fields (not necessarily induced by a coordinate system). Then the components of
2867: 1127:{\displaystyle \Delta f={\frac {1}{\sqrt {|g|}}}\partial _{i}\left({\sqrt {|g|}}g^{ij}\partial _{j}f\right).} 6695: 4113:{\displaystyle \Delta T=g^{ij}\left(\nabla _{X_{i}}\nabla _{X_{j}}T-\nabla _{\nabla _{X_{i}}X_{j}}T\right)} 3000:-dimensional compact Riemannian manifold without boundary were such that for the first positive eigenvalue 105:. Like the Laplacian, the Laplace–Beltrami operator is defined as the divergence of the gradient, and is a 4269: 1677: 1671:
Let M denote a compact Riemannian manifold without boundary. We want to consider the eigenvalue equation,
6669: 5196:-sphere. In particular, for the ordinary 2-sphere using standard notation for polar coordinates we get: 1305:{\displaystyle \int _{M}df(X)\operatorname {vol} _{n}=-\int _{M}f\nabla \cdot X\operatorname {vol} _{n}} 4140: 3714:{\displaystyle \displaystyle \Delta f:=\mathrm {tr} \nabla \mathrm {d} f\in {\mathsf {C}}^{\infty }(M)} 3206: 2692: 51: 2835: 2774: 2745: 2636: 2607: 2445: 5743: 2803: 6173: 5164: 3435: 2295: 1875: 486: 692:{\displaystyle \nabla \cdot X={\frac {1}{\sqrt {|g|}}}\partial _{i}\left({\sqrt {|g|}}X^{i}\right)} 3003: 2665: 2520: 4564: 4556: 66: 4365: 1826: 4912:
One can also give an intrinsic description of the Laplace–Beltrami operator on the sphere in a
4369: 1823:
are all finite-dimensional. Notice by taking the constant function as an eigenfunction, we get
1852: 1802: 1762: 1742: 1180: 6554: 4734: 4560: 4389: 4232:{\displaystyle \Delta =\mathrm {d} \delta +\delta \mathrm {d} =(\mathrm {d} +\delta )^{2},\;} 4132: 3419:{\displaystyle {\mbox{Hess}}f:=\nabla ^{2}f\equiv \nabla \nabla f\equiv \nabla \mathrm {d} f} 2332: 1146: 439: 27: 4568: 2322: 1666: 6413: 4402: 3247: 971:{\displaystyle \left(\operatorname {grad} f\right)^{i}=\partial ^{i}f=g^{ij}\partial _{j}f} 55: 3819:{\displaystyle \displaystyle \Delta f(x)=\sum _{i=1}^{n}\nabla \mathrm {d} f(X_{i},X_{i})} 3627:
This is easily seen to transform tensorially, since it is linear in each of the arguments
306:{\displaystyle \operatorname {vol} _{n}:={\sqrt {|g|}}\;dx^{1}\wedge \cdots \wedge dx^{n}} 8: 5730:{\displaystyle \Delta _{H^{n-1}}f=\left.\Box f\left(x/q(x)^{1/2}\right)\right|_{H^{n-1}}} 4243: 4156: 4152: 4144: 3976:
provided it is understood implicitly that this trace is in fact the trace of the Hessian
877: 212: 114: 47: 416: 6601: 6583: 6542: 6524: 4913: 3642: 3257: 3243: 2993:
Thus the lower bound in Lichnerowicz's theorem is achieved at least in two dimensions.
2500: 2480: 2073: 2067: 1921: 1901: 1782: 1718: 1510: 1490: 1463: 1443: 1320: 1203: 1160: 570:{\displaystyle (\nabla \cdot X)\operatorname {vol} _{n}:=L_{X}\operatorname {vol} _{n}} 466: 6649: 6628: 6605: 6496: 4932:
of the sphere (the "north pole"), that is geodesic polar coordinates with respect to
4361: 4148: 4136: 1898:. More precisely if we multiply the eigenvalue equation through by the eigenfunction 703: 209: 198: 110: 20: 6593: 6534: 6471: 6423: 5402: 4586: 4579: 4575: 3918: 59: 35: 6546: 5942: 6514: 5414: 4396: 2356: 1011: 118: 106: 43: 3147:{\displaystyle \mathbb {S} ^{n}{\bigg (}{\sqrt {\frac {n-1}{\kappa }}}{\bigg )}} 2922:
we see easily from the formula for the spherical Laplacian displayed below that
2689:
is three dimensional and spanned by the restriction of the coordinate functions
4357: 4251: 3196: 1759:. It can be shown using the self-adjointness proved above that the eigenvalues 1142: 588: 332: 6641: 6495:, Pure and Applied Mathematics, vol. 115 (2nd ed.), Academic Press, 6684: 6538: 5810: 4906: 4380:
Many examples of the Laplace–Beltrami operator can be worked out explicitly.
1736: 986: 858: 718: 457: 340: 117:. The resulting operator is called the Laplace–de Rham operator (named after 6476: 6460:"Certain conditions for a Riemannian manifold to be isometric with a sphere" 6459: 836:{\displaystyle \langle \operatorname {grad} f(x),v_{x}\rangle =df(x)(v_{x})} 592: 5933:
be spherical coordinates on the sphere with respect to a particular point
4928:
be spherical coordinates on the sphere with respect to a particular point
2066:
Performing an integration by parts or what is the same thing as using the
1200:
are formal adjoints, in the sense that for a compactly supported function
3203:. Applications there are to the global embedding of such CR manifolds in 3200: 2432:{\displaystyle \operatorname {Ric} (X,X)\geq \kappa g(X,X),\kappa >0,} 1667:
Eigenvalues of the Laplace–Beltrami operator (Lichnerowicz–Obata theorem)
336: 216: 39: 6597: 4263: 1820: 130: 129:
The Laplace–Beltrami operator, like the Laplacian, is the (Riemannian)
86: 4399:, the metric is reduced to the Kronecker delta, and one therefore has 2282:{\displaystyle \int _{M}|\nabla u|^{2}\ dV=\lambda \int _{M}u^{2}\ dV} 4940:
represents the latitude measurement along a unit speed geodesic from
2182:{\displaystyle -\int _{M}\Delta u\ u\ dV=\int _{M}|\nabla u|^{2}\ dV} 5957:
a parameter representing the choice of direction of the geodesic in
4948:
a parameter representing the choice of direction of the geodesic in
2056:{\displaystyle -\int _{M}\Delta u\ u\ dV=\lambda \int _{M}u^{2}\ dV} 6588: 134: 90: 6529: 5519:
is the subset of the future null cone in Minkowski space given by
3983:
Because the covariant derivative extends canonically to arbitrary
403:{\displaystyle \partial _{i}:={\frac {\partial }{\partial x^{i}}}} 4297:
When computing the Laplace–de Rham operator on a scalar function
352: 4597:
The spherical Laplacian is the Laplace–Beltrami operator on the
4609:
as the unit sphere centred at the origin. Then for a function
3984: 3907:{\displaystyle \Delta f=\sum _{ij}g^{ij}({\mbox{Hess}}f)_{ij}.} 348: 4574:
Similarly, the Laplace–Beltrami operator corresponding to the
6625:
Differential forms with applications to the physical sciences
6197:
is the Laplace–Beltrami operator on the ordinary unit (
713:
The gradient of a scalar function ƒ is the vector field grad
5921:
The operator can also be written in polar coordinates. Let
5188:
is the Laplace–Beltrami operator on the ordinary unit
4905:
More generally, one can formulate a similar trick using the
4723:|) is the degree zero homogeneous extension of the function 16:
Operator generalizing the Laplacian in differential geometry
5649: 5505:{\displaystyle q(x)=x_{1}^{2}-x_{2}^{2}-\cdots -x_{n}^{2}.} 2594:{\displaystyle \lambda _{1}\geq {\frac {n}{n-1}}\kappa .} 4360:
assures that the Laplace–de Rham operator is (formally)
101:
with respect to each vector of an orthonormal basis for
5417:, a real vector space equipped with the quadratic form 3641:. The Laplace–Beltrami operator is then the trace (or 3242:
The Laplace–Beltrami operator can be written using the
2983:{\displaystyle -\Delta _{\mathbb {S} ^{2}}u_{1}=2u_{1}} 2329:-dimensional Riemannian manifold with no boundary with 483:
on the manifold is then defined as the scalar function
3879: 3496: 3470: 3365: 3286: 2544:
of the eigenvalue equation satisfies the lower bound:
6210: 6176: 5970: 5821: 5746: 5617: 5528: 5426: 5205: 5167: 4961: 4760: 4737: 4701:{\displaystyle \Delta _{S^{n-1}}f(x)=\Delta f(x/|x|)} 4626: 4444: 4405: 4317: 4272: 4172: 4000: 3930: 3839: 3735: 3734: 3655: 3654: 3465: 3363: 3284: 3283: 3260: 3209: 3160: 3097: 3077:{\displaystyle \lambda _{1}={\frac {n}{n-1}}\kappa ,} 3036: 3006: 2996:
Conversely it was proved by Morio Obata, that if the
2931: 2870: 2838: 2806: 2777: 2748: 2695: 2668: 2639: 2610: 2604:
This lower bound is sharp and achieved on the sphere
2553: 2523: 2503: 2483: 2448: 2368: 2335: 2298: 2201: 2192:
Putting the last two equations together we arrive at
2099: 2076: 1983: 1944: 1924: 1904: 1878: 1855: 1829: 1805: 1785: 1765: 1745: 1721: 1680: 1536: 1513: 1493: 1466: 1446: 1334: 1228: 1206: 1183: 1163: 1026: 896: 761: 726: 607: 518: 489: 469: 442: 419: 364: 236: 146: 5598:{\displaystyle H^{n}=\{x\mid q(x)=1,x_{1}>1\}.\,} 3987:, the Laplace–Beltrami operator defined on a tensor 6442: 215:. The orientation allows one to specify a definite 6396: 6189: 6159: 5910: 5793: 5729: 5597: 5504: 5385: 5180: 5150: 4894: 4743: 4700: 4544: 4427: 4344: 4286: 4231: 4112: 3965: 3906: 3818: 3713: 3616: 3418: 3349: 3266: 3227: 3183: 3146: 3076: 3019: 2982: 2911: 2853: 2824: 2792: 2763: 2734: 2681: 2654: 2625: 2593: 2536: 2509: 2489: 2469: 2431: 2347: 2310: 2281: 2181: 2082: 2055: 1966: 1930: 1910: 1890: 1864: 1841: 1811: 1791: 1771: 1751: 1727: 1704: 1652: 1519: 1499: 1472: 1452: 1416: 1304: 1212: 1192: 1169: 1126: 970: 880:of the function ƒ; it is a 1-form taking argument 835: 744: 691: 569: 501: 475: 448: 428: 402: 305: 186: 6662: 3139: 3112: 6682: 6573: 4345:{\displaystyle \Delta f=\delta \,\mathrm {d} f.} 3966:{\displaystyle \Delta f=\nabla ^{a}\nabla _{a}f} 3250:associated with the Levi-Civita connection. The 1849:is an eigenvalue. Also since we have considered 187:{\displaystyle \Delta f={\rm {div}}(\nabla f).} 5961:. Then the hyperbolic Laplacian has the form: 3184:{\displaystyle {\sqrt {\frac {n-1}{\kappa }}}} 4952:. Then the spherical Laplacian has the form: 3645:) of the Hessian with respect to the metric: 1319:where the last equality is an application of 745:{\displaystyle \langle \cdot ,\cdot \rangle } 6559:: CS1 maint: multiple names: authors list ( 6457: 6419:Laplacian operators in differential geometry 5805:to the interior of the future null cone and 5801:is the degree zero homogeneous extension of 5588: 5542: 1601: 1583: 1400: 1382: 796: 762: 739: 727: 4131:More generally, one can define a Laplacian 4126: 1967:{\displaystyle dV=\operatorname {vol} _{n}} 6646:Riemannian Geometry and Geometric Analysis 4228: 1779:are real. The compactness of the manifold 1152: 267: 77:, the Laplace operator (also known as the 6663:Solomentsev, E.D.; Shikin, E.V. (2001) , 6587: 6528: 6475: 5594: 4330: 3212: 3100: 2942: 2841: 2780: 2751: 2642: 2613: 1630: 1550: 1403: 1355: 1348: 985:are the components of the inverse of the 223:, given in an oriented coordinate system 6622: 6445:Geometrie des groupes de transformations 5949:represents the hyperbolic distance from 4617:, the spherical Laplacian is defined by 2292:We conclude from the last equation that 1918:and integrate the resulting equation on 2912:{\displaystyle x_{3}=\cos \phi =u_{1},} 706:is implied, so that the repeated index 6683: 6490: 4592: 3690: 3329: 3309: 3087:then the manifold is isometric to the 2497:is any tangent vector on the manifold 1440:for all compactly supported functions 93:vector field, which is the sum of the 2517:. Then the first positive eigenvalue 6640: 4555:which is the ordinary Laplacian. In 4287:{\displaystyle \mathrm {d} +\delta } 1705:{\displaystyle -\Delta u=\lambda u,} 1325: 598:. In local coordinates, one obtains 5396: 3237: 2070:on the term on the left, and since 1872:an integration by parts shows that 13: 6493:Eigenvalues in Riemannian Geometry 6375: 6365: 6320: 6312: 6280: 6276: 6212: 6178: 6145: 6102: 6094: 6049: 6045: 5972: 5884: 5874: 5841: 5831: 5619: 5364: 5354: 5309: 5301: 5275: 5271: 5207: 5169: 5136: 5093: 5085: 5040: 5036: 4963: 4864: 4833: 4825: 4792: 4788: 4761: 4738: 4665: 4628: 4530: 4520: 4504: 4477: 4445: 4383: 4356:conventional normalization of the 4332: 4318: 4274: 4205: 4194: 4180: 4173: 4074: 4069: 4046: 4029: 4001: 3951: 3941: 3931: 3840: 3779: 3775: 3736: 3696: 3677: 3673: 3669: 3666: 3656: 3583: 3578: 3555: 3538: 3409: 3405: 3396: 3393: 3378: 2936: 2217: 2152: 2113: 1997: 1859: 1684: 1631: 1551: 1349: 1283: 1187: 1104: 1059: 1027: 956: 927: 643: 608: 522: 490: 384: 380: 366: 172: 164: 161: 158: 147: 14: 6707: 6576:Revista Matemática Iberoamericana 3228:{\displaystyle \mathbb {C} ^{n}.} 2735:{\displaystyle x_{1},x_{2},x_{3}} 463:The divergence of a vector field 3921:, the operator is often written 3299: 2861:the two dimensional sphere, set 2854:{\displaystyle \mathbb {S} ^{2}} 2793:{\displaystyle \mathbb {S} ^{2}} 2764:{\displaystyle \mathbb {R} ^{3}} 2655:{\displaystyle \mathbb {S} ^{2}} 2626:{\displaystyle \mathbb {S} ^{n}} 2470:{\displaystyle g(\cdot ,\cdot )} 887:. In local coordinates, one has 717:that may be defined through the 5794:{\displaystyle f(x/q(x)^{1/2})} 2825:{\displaystyle (\theta ,\phi )} 1739:associated with the eigenvalue 6567: 6508: 6484: 6451: 6436: 6350: 6343: 6306: 6300: 6262: 6255: 6243: 6231: 6190:{\displaystyle \Delta _{\xi }} 6132: 6125: 6076: 6069: 6028: 6021: 6009: 5997: 5788: 5771: 5764: 5750: 5681: 5674: 5560: 5554: 5436: 5430: 5339: 5326: 5257: 5244: 5238: 5226: 5181:{\displaystyle \Delta _{\xi }} 5123: 5110: 5067: 5054: 5019: 5006: 5000: 4988: 4695: 4691: 4683: 4671: 4659: 4653: 4497: 4489: 4469: 4461: 4435:. Consequently, in this case 4415: 4407: 4216: 4201: 3889: 3875: 3812: 3786: 3748: 3742: 3707: 3701: 3531: 3505: 3480: 3466: 3343: 3303: 2819: 2807: 2800:. Using spherical coordinates 2464: 2452: 2411: 2399: 2387: 2375: 2311:{\displaystyle \lambda \geq 0} 2225: 2213: 2160: 2148: 1891:{\displaystyle \lambda \geq 0} 1251: 1245: 1084: 1076: 1051: 1043: 830: 817: 814: 808: 780: 774: 668: 660: 635: 627: 531: 519: 502:{\displaystyle \nabla \cdot X} 261: 253: 178: 169: 1: 6616: 5405:. Here the hyperbolic space 5401:A similar technique works in 4368:that explicitly involves the 4294:is the Hodge–Dirac operator. 4135:on sections of the bundle of 2325:states that: Given a compact 46:and, even more generally, on 6443:Lichnerowicz, Andre (1958). 4731: − {0}, and 3020:{\displaystyle \lambda _{1}} 2682:{\displaystyle \lambda _{1}} 2537:{\displaystyle \lambda _{1}} 7: 6670:Encyclopedia of Mathematics 6665:"Laplace–Beltrami equation" 6648:, Berlin: Springer-Verlag, 6407: 4388:In the usual (orthonormal) 4375: 4266:. The first order operator 3725:More precisely, this means 2359:satisfies the lower bound: 1938:we get (using the notation 1481: 1430: 97:pure second derivatives of 73:defined on Euclidean space 52:pseudo-Riemannian manifolds 34:is a generalization of the 10: 6712: 4141:pseudo-Riemannian manifold 3830:or in terms of the metric 3274:is the symmetric 2-tensor 1842:{\displaystyle \lambda =0} 124: 18: 6623:Flanders, Harley (1989), 6517:Duke Mathematical Journal 5409:can be embedded into the 4256:(−1)∗d∗ 2477:is the metric tensor and 868:of the manifold at point 702:where here and below the 113:using the divergence and 32:Laplace–Beltrami operator 6539:10.1215/00127094-1902154 6429: 5941:(say, the center of the 4914:normal coordinate system 4161:Laplace–de Rham operator 4127:Laplace–de Rham operator 2321:A fundamental result of 1865:{\displaystyle -\Delta } 1812:{\displaystyle \lambda } 1772:{\displaystyle \lambda } 1752:{\displaystyle \lambda } 1312:     1193:{\displaystyle -\nabla } 1157:The exterior derivative 38:to functions defined on 19:Not to be confused with 4744:{\displaystyle \Delta } 4569:alternative expressions 4565:cylindrical coordinates 4557:curvilinear coordinates 4262:-forms, where ∗ is the 3154:, the sphere of radius 2348:{\displaystyle n\geq 2} 2090:has no boundary we get 1153:Formal self-adjointness 449:{\displaystyle \wedge } 197:An explicit formula in 6691:Differential operators 6491:Chavel, Isaac (1984), 6398: 6191: 6161: 5912: 5795: 5731: 5599: 5506: 5387: 5182: 5152: 4896: 4745: 4702: 4546: 4429: 4370:Ricci curvature tensor 4346: 4288: 4233: 4114: 3967: 3908: 3820: 3774: 3715: 3618: 3420: 3351: 3268: 3244:trace (or contraction) 3229: 3185: 3148: 3078: 3021: 2984: 2913: 2855: 2826: 2794: 2765: 2736: 2683: 2656: 2627: 2595: 2538: 2511: 2491: 2471: 2433: 2349: 2312: 2283: 2183: 2084: 2057: 1968: 1932: 1912: 1892: 1866: 1843: 1813: 1793: 1773: 1753: 1729: 1706: 1654: 1521: 1501: 1474: 1454: 1418: 1306: 1214: 1194: 1171: 1128: 972: 837: 746: 693: 571: 503: 477: 450: 430: 413:of the tangent bundle 404: 307: 188: 6477:10.2969/jmsj/01430333 6458:Obata, Morio (1962). 6399: 6192: 6162: 5913: 5796: 5732: 5600: 5507: 5388: 5183: 5153: 4897: 4746: 4703: 4547: 4430: 4428:{\displaystyle |g|=1} 4390:Cartesian coordinates 4347: 4289: 4234: 4133:differential operator 4115: 3968: 3909: 3821: 3754: 3716: 3619: 3436:(exterior) derivative 3421: 3352: 3269: 3230: 3186: 3149: 3079: 3022: 2985: 2914: 2856: 2827: 2795: 2766: 2737: 2684: 2657: 2628: 2596: 2539: 2512: 2492: 2472: 2434: 2350: 2313: 2284: 2184: 2085: 2058: 1969: 1933: 1913: 1893: 1867: 1844: 1814: 1794: 1774: 1754: 1730: 1707: 1655: 1522: 1502: 1475: 1455: 1419: 1307: 1215: 1195: 1172: 1129: 973: 838: 747: 694: 572: 504: 478: 451: 431: 405: 308: 189: 69:real-valued function 28:differential geometry 6414:Covariant derivative 6208: 6174: 5968: 5819: 5744: 5615: 5526: 5424: 5203: 5165: 4959: 4758: 4735: 4624: 4442: 4403: 4366:Weitzenböck identity 4315: 4270: 4246:or differential and 4170: 3998: 3928: 3837: 3732: 3652: 3463: 3361: 3281: 3258: 3248:covariant derivative 3207: 3158: 3095: 3091:-dimensional sphere 3034: 3004: 2929: 2868: 2836: 2804: 2775: 2746: 2693: 2666: 2637: 2608: 2551: 2521: 2501: 2481: 2446: 2366: 2333: 2296: 2199: 2097: 2074: 1981: 1942: 1922: 1902: 1876: 1853: 1827: 1803: 1783: 1763: 1743: 1719: 1678: 1534: 1511: 1491: 1464: 1444: 1332: 1226: 1204: 1181: 1161: 1024: 894: 759: 752:on the manifold, as 724: 605: 516: 487: 467: 440: 417: 362: 234: 144: 133:of the (Riemannian) 56:Pierre-Simon Laplace 54:. It is named after 6696:Riemannian geometry 5901: 5858: 5498: 5474: 5456: 4593:Spherical Laplacian 4244:exterior derivative 4153:Lorentzian manifold 4145:Riemannian manifold 2662:the eigenspace for 1323:. Dualizing gives 878:exterior derivative 213:Riemannian manifold 204:Suppose first that 115:exterior derivative 6394: 6187: 6157: 5908: 5887: 5844: 5791: 5727: 5595: 5502: 5484: 5460: 5442: 5383: 5178: 5148: 4892: 4741: 4698: 4542: 4425: 4342: 4284: 4229: 4137:differential forms 4110: 3963: 3904: 3883: 3861: 3816: 3815: 3711: 3710: 3614: 3500: 3474: 3416: 3369: 3347: 3346: 3290: 3264: 3225: 3181: 3144: 3074: 3017: 2980: 2909: 2851: 2822: 2790: 2761: 2732: 2679: 2652: 2623: 2591: 2534: 2507: 2487: 2467: 2429: 2345: 2323:André Lichnerowicz 2308: 2279: 2179: 2080: 2068:divergence theorem 2053: 1964: 1928: 1908: 1888: 1862: 1839: 1809: 1789: 1769: 1749: 1725: 1702: 1650: 1517: 1497: 1470: 1450: 1414: 1302: 1210: 1190: 1167: 1124: 968: 853:anchored at point 833: 742: 689: 567: 509:with the property 499: 473: 446: 429:{\displaystyle TM} 426: 400: 303: 184: 111:differential forms 6634:978-0-486-66169-8 6523:(15): 2909–2921. 6502:978-0-12-170640-1 6464:J. Math. Soc. Jpn 6389: 6327: 6287: 6109: 6056: 5903: 5860: 5378: 5316: 5282: 5100: 5047: 4840: 4799: 4501: 4474: 4473: 4362:positive definite 4149:elliptic operator 4123:is well-defined. 3882: 3849: 3499: 3473: 3368: 3289: 3267:{\displaystyle f} 3179: 3178: 3135: 3134: 3066: 2583: 2510:{\displaystyle M} 2490:{\displaystyle X} 2272: 2237: 2172: 2127: 2121: 2083:{\displaystyle M} 2046: 2011: 2005: 1931:{\displaystyle M} 1911:{\displaystyle u} 1792:{\displaystyle M} 1728:{\displaystyle u} 1520:{\displaystyle h} 1500:{\displaystyle f} 1473:{\displaystyle h} 1453:{\displaystyle f} 1438: 1437: 1315: 1213:{\displaystyle f} 1170:{\displaystyle d} 1088: 1056: 1055: 704:Einstein notation 672: 640: 639: 476:{\displaystyle X} 398: 265: 199:local coordinates 21:Beltrami operator 6703: 6677: 6658: 6637: 6610: 6609: 6598:10.4171/RMI/1041 6591: 6582:(4): 1711–1753. 6571: 6565: 6564: 6558: 6550: 6532: 6512: 6506: 6505: 6488: 6482: 6481: 6479: 6455: 6449: 6448: 6440: 6424:Laplace operator 6403: 6401: 6400: 6395: 6390: 6388: 6387: 6386: 6373: 6372: 6363: 6361: 6360: 6333: 6329: 6328: 6326: 6318: 6310: 6288: 6286: 6275: 6273: 6272: 6227: 6226: 6225: 6224: 6196: 6194: 6193: 6188: 6186: 6185: 6166: 6164: 6163: 6158: 6153: 6152: 6143: 6142: 6115: 6111: 6110: 6108: 6100: 6092: 6090: 6089: 6057: 6055: 6044: 6042: 6041: 5993: 5992: 5991: 5990: 5932: 5917: 5915: 5914: 5909: 5904: 5902: 5900: 5895: 5882: 5881: 5872: 5861: 5859: 5857: 5852: 5839: 5838: 5829: 5808: 5800: 5798: 5797: 5792: 5787: 5786: 5782: 5760: 5736: 5734: 5733: 5728: 5726: 5725: 5724: 5723: 5707: 5703: 5702: 5698: 5697: 5696: 5692: 5670: 5640: 5639: 5638: 5637: 5604: 5602: 5601: 5596: 5581: 5580: 5538: 5537: 5511: 5509: 5508: 5503: 5497: 5492: 5473: 5468: 5455: 5450: 5403:hyperbolic space 5397:Hyperbolic space 5392: 5390: 5389: 5384: 5379: 5377: 5376: 5375: 5362: 5361: 5352: 5350: 5349: 5322: 5318: 5317: 5315: 5307: 5299: 5283: 5281: 5270: 5268: 5267: 5222: 5221: 5220: 5219: 5195: 5187: 5185: 5184: 5179: 5177: 5176: 5157: 5155: 5154: 5149: 5144: 5143: 5134: 5133: 5106: 5102: 5101: 5099: 5091: 5083: 5081: 5080: 5048: 5046: 5035: 5033: 5032: 4984: 4983: 4982: 4981: 4927: 4901: 4899: 4898: 4893: 4885: 4884: 4883: 4882: 4862: 4861: 4846: 4842: 4841: 4839: 4831: 4823: 4821: 4820: 4800: 4798: 4787: 4785: 4784: 4750: 4748: 4747: 4742: 4707: 4705: 4704: 4699: 4694: 4686: 4681: 4649: 4648: 4647: 4646: 4604: 4584: 4576:Minkowski metric 4551: 4549: 4548: 4543: 4538: 4537: 4528: 4527: 4512: 4511: 4502: 4500: 4492: 4487: 4485: 4484: 4475: 4472: 4464: 4459: 4455: 4434: 4432: 4431: 4426: 4418: 4410: 4351: 4349: 4348: 4343: 4335: 4307: 4293: 4291: 4290: 4285: 4277: 4257: 4238: 4236: 4235: 4230: 4224: 4223: 4208: 4197: 4183: 4119: 4117: 4116: 4111: 4109: 4105: 4101: 4100: 4099: 4098: 4089: 4088: 4087: 4086: 4061: 4060: 4059: 4058: 4044: 4043: 4042: 4041: 4022: 4021: 3972: 3970: 3969: 3964: 3959: 3958: 3949: 3948: 3919:abstract indices 3913: 3911: 3910: 3905: 3900: 3899: 3884: 3880: 3874: 3873: 3860: 3825: 3823: 3822: 3817: 3811: 3810: 3798: 3797: 3782: 3773: 3768: 3720: 3718: 3717: 3712: 3700: 3699: 3694: 3693: 3680: 3672: 3623: 3621: 3620: 3615: 3610: 3609: 3608: 3607: 3598: 3597: 3596: 3595: 3570: 3569: 3568: 3567: 3553: 3552: 3551: 3550: 3530: 3529: 3517: 3516: 3501: 3497: 3491: 3490: 3475: 3471: 3425: 3423: 3422: 3417: 3412: 3386: 3385: 3370: 3366: 3356: 3354: 3353: 3348: 3339: 3338: 3333: 3332: 3319: 3318: 3313: 3312: 3302: 3291: 3287: 3273: 3271: 3270: 3265: 3252:Hessian (tensor) 3246:of the iterated 3238:Tensor Laplacian 3234: 3232: 3231: 3226: 3221: 3220: 3215: 3190: 3188: 3187: 3182: 3180: 3174: 3163: 3162: 3153: 3151: 3150: 3145: 3143: 3142: 3136: 3130: 3119: 3118: 3116: 3115: 3109: 3108: 3103: 3083: 3081: 3080: 3075: 3067: 3065: 3051: 3046: 3045: 3026: 3024: 3023: 3018: 3016: 3015: 2989: 2987: 2986: 2981: 2979: 2978: 2963: 2962: 2953: 2952: 2951: 2950: 2945: 2918: 2916: 2915: 2910: 2905: 2904: 2880: 2879: 2860: 2858: 2857: 2852: 2850: 2849: 2844: 2831: 2829: 2828: 2823: 2799: 2797: 2796: 2791: 2789: 2788: 2783: 2770: 2768: 2767: 2762: 2760: 2759: 2754: 2741: 2739: 2738: 2733: 2731: 2730: 2718: 2717: 2705: 2704: 2688: 2686: 2685: 2680: 2678: 2677: 2661: 2659: 2658: 2653: 2651: 2650: 2645: 2632: 2630: 2629: 2624: 2622: 2621: 2616: 2600: 2598: 2597: 2592: 2584: 2582: 2568: 2563: 2562: 2543: 2541: 2540: 2535: 2533: 2532: 2516: 2514: 2513: 2508: 2496: 2494: 2493: 2488: 2476: 2474: 2473: 2468: 2438: 2436: 2435: 2430: 2354: 2352: 2351: 2346: 2317: 2315: 2314: 2309: 2288: 2286: 2285: 2280: 2270: 2269: 2268: 2259: 2258: 2235: 2234: 2233: 2228: 2216: 2211: 2210: 2188: 2186: 2185: 2180: 2170: 2169: 2168: 2163: 2151: 2146: 2145: 2125: 2119: 2112: 2111: 2089: 2087: 2086: 2081: 2062: 2060: 2059: 2054: 2044: 2043: 2042: 2033: 2032: 2009: 2003: 1996: 1995: 1973: 1971: 1970: 1965: 1963: 1962: 1937: 1935: 1934: 1929: 1917: 1915: 1914: 1909: 1897: 1895: 1894: 1889: 1871: 1869: 1868: 1863: 1848: 1846: 1845: 1840: 1818: 1816: 1815: 1810: 1798: 1796: 1795: 1790: 1778: 1776: 1775: 1770: 1758: 1756: 1755: 1750: 1734: 1732: 1731: 1726: 1711: 1709: 1708: 1703: 1659: 1657: 1656: 1651: 1646: 1645: 1626: 1625: 1613: 1612: 1582: 1581: 1566: 1565: 1546: 1545: 1526: 1524: 1523: 1518: 1506: 1504: 1503: 1498: 1483: 1480:. Conversely, ( 1479: 1477: 1476: 1471: 1459: 1457: 1456: 1451: 1432: 1423: 1421: 1420: 1415: 1413: 1412: 1381: 1380: 1365: 1364: 1344: 1343: 1326: 1313: 1311: 1309: 1308: 1303: 1301: 1300: 1279: 1278: 1263: 1262: 1238: 1237: 1219: 1217: 1216: 1211: 1199: 1197: 1196: 1191: 1176: 1174: 1173: 1168: 1133: 1131: 1130: 1125: 1120: 1116: 1112: 1111: 1102: 1101: 1089: 1087: 1079: 1074: 1067: 1066: 1057: 1054: 1046: 1041: 1037: 1003: 977: 975: 974: 969: 964: 963: 954: 953: 935: 934: 922: 921: 916: 912: 846:for all vectors 842: 840: 839: 834: 829: 828: 795: 794: 751: 749: 748: 743: 710:is summed over. 698: 696: 695: 690: 688: 684: 683: 682: 673: 671: 663: 658: 651: 650: 641: 638: 630: 625: 621: 576: 574: 573: 568: 566: 565: 556: 555: 543: 542: 508: 506: 505: 500: 482: 480: 479: 474: 455: 453: 452: 447: 435: 433: 432: 427: 409: 407: 406: 401: 399: 397: 396: 395: 379: 374: 373: 330: 312: 310: 309: 304: 302: 301: 280: 279: 266: 264: 256: 251: 246: 245: 193: 191: 190: 185: 168: 167: 60:Eugenio Beltrami 36:Laplace operator 6711: 6710: 6706: 6705: 6704: 6702: 6701: 6700: 6681: 6680: 6656: 6635: 6619: 6614: 6613: 6572: 6568: 6552: 6551: 6513: 6509: 6503: 6489: 6485: 6456: 6452: 6447:. Paris: Dunod. 6441: 6437: 6432: 6410: 6382: 6378: 6374: 6368: 6364: 6362: 6353: 6349: 6319: 6311: 6309: 6293: 6289: 6279: 6274: 6265: 6261: 6220: 6216: 6215: 6211: 6209: 6206: 6205: 6181: 6177: 6175: 6172: 6171: 6148: 6144: 6135: 6131: 6101: 6093: 6091: 6079: 6075: 6062: 6058: 6048: 6043: 6031: 6027: 5980: 5976: 5975: 5971: 5969: 5966: 5965: 5922: 5896: 5891: 5883: 5877: 5873: 5871: 5853: 5848: 5840: 5834: 5830: 5828: 5820: 5817: 5816: 5806: 5778: 5774: 5770: 5756: 5745: 5742: 5741: 5713: 5709: 5708: 5688: 5684: 5680: 5666: 5662: 5658: 5651: 5648: 5647: 5627: 5623: 5622: 5618: 5616: 5613: 5612: 5576: 5572: 5533: 5529: 5527: 5524: 5523: 5493: 5488: 5469: 5464: 5451: 5446: 5425: 5422: 5421: 5415:Minkowski space 5399: 5371: 5367: 5363: 5357: 5353: 5351: 5342: 5338: 5308: 5300: 5298: 5288: 5284: 5274: 5269: 5260: 5256: 5215: 5211: 5210: 5206: 5204: 5201: 5200: 5189: 5172: 5168: 5166: 5163: 5162: 5139: 5135: 5126: 5122: 5092: 5084: 5082: 5070: 5066: 5053: 5049: 5039: 5034: 5022: 5018: 4971: 4967: 4966: 4962: 4960: 4957: 4956: 4917: 4872: 4868: 4867: 4863: 4854: 4850: 4832: 4824: 4822: 4810: 4806: 4805: 4801: 4791: 4786: 4774: 4770: 4759: 4756: 4755: 4736: 4733: 4732: 4690: 4682: 4677: 4636: 4632: 4631: 4627: 4625: 4622: 4621: 4598: 4595: 4583:(− + + +) 4582: 4533: 4529: 4523: 4519: 4507: 4503: 4496: 4488: 4486: 4480: 4476: 4468: 4460: 4454: 4443: 4440: 4439: 4414: 4406: 4404: 4401: 4400: 4397:Euclidean space 4386: 4384:Euclidean space 4378: 4331: 4316: 4313: 4312: 4302: 4273: 4271: 4268: 4267: 4255: 4242:where d is the 4219: 4215: 4204: 4193: 4179: 4171: 4168: 4167: 4129: 4094: 4090: 4082: 4078: 4077: 4073: 4072: 4068: 4054: 4050: 4049: 4045: 4037: 4033: 4032: 4028: 4027: 4023: 4014: 4010: 3999: 3996: 3995: 3954: 3950: 3944: 3940: 3929: 3926: 3925: 3892: 3888: 3878: 3866: 3862: 3853: 3838: 3835: 3834: 3806: 3802: 3793: 3789: 3778: 3769: 3758: 3733: 3730: 3729: 3695: 3689: 3688: 3687: 3676: 3665: 3653: 3650: 3649: 3640: 3633: 3603: 3599: 3591: 3587: 3586: 3582: 3581: 3577: 3563: 3559: 3558: 3554: 3546: 3542: 3541: 3537: 3525: 3521: 3512: 3508: 3495: 3483: 3479: 3469: 3464: 3461: 3460: 3451: 3408: 3381: 3377: 3364: 3362: 3359: 3358: 3334: 3328: 3327: 3326: 3314: 3308: 3307: 3306: 3298: 3285: 3282: 3279: 3278: 3259: 3256: 3255: 3240: 3216: 3211: 3210: 3208: 3205: 3204: 3199:) on a compact 3164: 3161: 3159: 3156: 3155: 3138: 3137: 3120: 3117: 3111: 3110: 3104: 3099: 3098: 3096: 3093: 3092: 3055: 3050: 3041: 3037: 3035: 3032: 3031: 3011: 3007: 3005: 3002: 3001: 2974: 2970: 2958: 2954: 2946: 2941: 2940: 2939: 2935: 2930: 2927: 2926: 2900: 2896: 2875: 2871: 2869: 2866: 2865: 2845: 2840: 2839: 2837: 2834: 2833: 2805: 2802: 2801: 2784: 2779: 2778: 2776: 2773: 2772: 2755: 2750: 2749: 2747: 2744: 2743: 2726: 2722: 2713: 2709: 2700: 2696: 2694: 2691: 2690: 2673: 2669: 2667: 2664: 2663: 2646: 2641: 2640: 2638: 2635: 2634: 2617: 2612: 2611: 2609: 2606: 2605: 2572: 2567: 2558: 2554: 2552: 2549: 2548: 2528: 2524: 2522: 2519: 2518: 2502: 2499: 2498: 2482: 2479: 2478: 2447: 2444: 2443: 2367: 2364: 2363: 2357:Ricci curvature 2334: 2331: 2330: 2297: 2294: 2293: 2264: 2260: 2254: 2250: 2229: 2224: 2223: 2212: 2206: 2202: 2200: 2197: 2196: 2164: 2159: 2158: 2147: 2141: 2137: 2107: 2103: 2098: 2095: 2094: 2075: 2072: 2071: 2038: 2034: 2028: 2024: 1991: 1987: 1982: 1979: 1978: 1958: 1954: 1943: 1940: 1939: 1923: 1920: 1919: 1903: 1900: 1899: 1877: 1874: 1873: 1854: 1851: 1850: 1828: 1825: 1824: 1804: 1801: 1800: 1784: 1781: 1780: 1764: 1761: 1760: 1744: 1741: 1740: 1720: 1717: 1716: 1679: 1676: 1675: 1669: 1641: 1637: 1621: 1617: 1608: 1604: 1577: 1573: 1561: 1557: 1541: 1537: 1535: 1532: 1531: 1512: 1509: 1508: 1492: 1489: 1488: 1465: 1462: 1461: 1445: 1442: 1441: 1408: 1404: 1376: 1372: 1360: 1356: 1339: 1335: 1333: 1330: 1329: 1321:Stokes' theorem 1296: 1292: 1274: 1270: 1258: 1254: 1233: 1229: 1227: 1224: 1223: 1205: 1202: 1201: 1182: 1179: 1178: 1162: 1159: 1158: 1155: 1107: 1103: 1094: 1090: 1083: 1075: 1073: 1072: 1068: 1062: 1058: 1050: 1042: 1036: 1025: 1022: 1021: 1012:Kronecker delta 1009: 1002: 995: 990: 959: 955: 946: 942: 930: 926: 917: 902: 898: 897: 895: 892: 891: 885: 865: 851: 824: 820: 790: 786: 760: 757: 756: 725: 722: 721: 678: 674: 667: 659: 657: 656: 652: 646: 642: 634: 626: 620: 606: 603: 602: 585: 561: 557: 551: 547: 538: 534: 517: 514: 513: 488: 485: 484: 468: 465: 464: 441: 438: 437: 418: 415: 414: 391: 387: 383: 378: 369: 365: 363: 360: 359: 327: 322:| := |det( 317: 297: 293: 275: 271: 260: 252: 250: 241: 237: 235: 232: 231: 157: 156: 145: 142: 141: 127: 119:Georges de Rham 107:linear operator 44:Euclidean space 24: 17: 12: 11: 5: 6709: 6699: 6698: 6693: 6679: 6678: 6660: 6654: 6638: 6633: 6618: 6615: 6612: 6611: 6566: 6507: 6501: 6483: 6470:(3): 333–340. 6450: 6434: 6433: 6431: 6428: 6427: 6426: 6421: 6416: 6409: 6406: 6405: 6404: 6393: 6385: 6381: 6377: 6371: 6367: 6359: 6356: 6352: 6348: 6345: 6342: 6339: 6336: 6332: 6325: 6322: 6317: 6314: 6308: 6305: 6302: 6299: 6296: 6292: 6285: 6282: 6278: 6271: 6268: 6264: 6260: 6257: 6254: 6251: 6248: 6245: 6242: 6239: 6236: 6233: 6230: 6223: 6219: 6214: 6184: 6180: 6168: 6167: 6156: 6151: 6147: 6141: 6138: 6134: 6130: 6127: 6124: 6121: 6118: 6114: 6107: 6104: 6099: 6096: 6088: 6085: 6082: 6078: 6074: 6071: 6068: 6065: 6061: 6054: 6051: 6047: 6040: 6037: 6034: 6030: 6026: 6023: 6020: 6017: 6014: 6011: 6008: 6005: 6002: 5999: 5996: 5989: 5986: 5983: 5979: 5974: 5919: 5918: 5907: 5899: 5894: 5890: 5886: 5880: 5876: 5870: 5867: 5864: 5856: 5851: 5847: 5843: 5837: 5833: 5827: 5824: 5790: 5785: 5781: 5777: 5773: 5769: 5766: 5763: 5759: 5755: 5752: 5749: 5738: 5737: 5722: 5719: 5716: 5712: 5706: 5701: 5695: 5691: 5687: 5683: 5679: 5676: 5673: 5669: 5665: 5661: 5657: 5654: 5650: 5646: 5643: 5636: 5633: 5630: 5626: 5621: 5606: 5605: 5593: 5590: 5587: 5584: 5579: 5575: 5571: 5568: 5565: 5562: 5559: 5556: 5553: 5550: 5547: 5544: 5541: 5536: 5532: 5513: 5512: 5501: 5496: 5491: 5487: 5483: 5480: 5477: 5472: 5467: 5463: 5459: 5454: 5449: 5445: 5441: 5438: 5435: 5432: 5429: 5398: 5395: 5394: 5393: 5382: 5374: 5370: 5366: 5360: 5356: 5348: 5345: 5341: 5337: 5334: 5331: 5328: 5325: 5321: 5314: 5311: 5306: 5303: 5297: 5294: 5291: 5287: 5280: 5277: 5273: 5266: 5263: 5259: 5255: 5252: 5249: 5246: 5243: 5240: 5237: 5234: 5231: 5228: 5225: 5218: 5214: 5209: 5175: 5171: 5159: 5158: 5147: 5142: 5138: 5132: 5129: 5125: 5121: 5118: 5115: 5112: 5109: 5105: 5098: 5095: 5090: 5087: 5079: 5076: 5073: 5069: 5065: 5062: 5059: 5056: 5052: 5045: 5042: 5038: 5031: 5028: 5025: 5021: 5017: 5014: 5011: 5008: 5005: 5002: 4999: 4996: 4993: 4990: 4987: 4980: 4977: 4974: 4970: 4965: 4903: 4902: 4891: 4888: 4881: 4878: 4875: 4871: 4866: 4860: 4857: 4853: 4849: 4845: 4838: 4835: 4830: 4827: 4819: 4816: 4813: 4809: 4804: 4797: 4794: 4790: 4783: 4780: 4777: 4773: 4769: 4766: 4763: 4740: 4709: 4708: 4697: 4693: 4689: 4685: 4680: 4676: 4673: 4670: 4667: 4664: 4661: 4658: 4655: 4652: 4645: 4642: 4639: 4635: 4630: 4594: 4591: 4567:, one obtains 4553: 4552: 4541: 4536: 4532: 4526: 4522: 4518: 4515: 4510: 4506: 4499: 4495: 4491: 4483: 4479: 4471: 4467: 4463: 4458: 4453: 4450: 4447: 4424: 4421: 4417: 4413: 4409: 4385: 4382: 4377: 4374: 4358:codifferential 4353: 4352: 4341: 4338: 4334: 4329: 4326: 4323: 4320: 4283: 4280: 4276: 4252:codifferential 4240: 4239: 4227: 4222: 4218: 4214: 4211: 4207: 4203: 4200: 4196: 4192: 4189: 4186: 4182: 4178: 4175: 4163:is defined by 4128: 4125: 4121: 4120: 4108: 4104: 4097: 4093: 4085: 4081: 4076: 4071: 4067: 4064: 4057: 4053: 4048: 4040: 4036: 4031: 4026: 4020: 4017: 4013: 4009: 4006: 4003: 3974: 3973: 3962: 3957: 3953: 3947: 3943: 3939: 3936: 3933: 3915: 3914: 3903: 3898: 3895: 3891: 3887: 3877: 3872: 3869: 3865: 3859: 3856: 3852: 3848: 3845: 3842: 3828: 3827: 3814: 3809: 3805: 3801: 3796: 3792: 3788: 3785: 3781: 3777: 3772: 3767: 3764: 3761: 3757: 3753: 3750: 3747: 3744: 3741: 3738: 3723: 3722: 3709: 3706: 3703: 3698: 3692: 3686: 3683: 3679: 3675: 3671: 3668: 3664: 3661: 3658: 3638: 3631: 3625: 3624: 3613: 3606: 3602: 3594: 3590: 3585: 3580: 3576: 3573: 3566: 3562: 3557: 3549: 3545: 3540: 3536: 3533: 3528: 3524: 3520: 3515: 3511: 3507: 3504: 3494: 3489: 3486: 3482: 3478: 3468: 3449: 3438:of a function 3428: 3427: 3415: 3411: 3407: 3404: 3401: 3398: 3395: 3392: 3389: 3384: 3380: 3376: 3373: 3345: 3342: 3337: 3331: 3325: 3322: 3317: 3311: 3305: 3301: 3297: 3294: 3263: 3254:of a function 3239: 3236: 3224: 3219: 3214: 3197:Joseph J. Kohn 3193:Kohn Laplacian 3177: 3173: 3170: 3167: 3141: 3133: 3129: 3126: 3123: 3114: 3107: 3102: 3085: 3084: 3073: 3070: 3064: 3061: 3058: 3054: 3049: 3044: 3040: 3014: 3010: 2991: 2990: 2977: 2973: 2969: 2966: 2961: 2957: 2949: 2944: 2938: 2934: 2920: 2919: 2908: 2903: 2899: 2895: 2892: 2889: 2886: 2883: 2878: 2874: 2848: 2843: 2821: 2818: 2815: 2812: 2809: 2787: 2782: 2758: 2753: 2729: 2725: 2721: 2716: 2712: 2708: 2703: 2699: 2676: 2672: 2649: 2644: 2620: 2615: 2602: 2601: 2590: 2587: 2581: 2578: 2575: 2571: 2566: 2561: 2557: 2531: 2527: 2506: 2486: 2466: 2463: 2460: 2457: 2454: 2451: 2440: 2439: 2428: 2425: 2422: 2419: 2416: 2413: 2410: 2407: 2404: 2401: 2398: 2395: 2392: 2389: 2386: 2383: 2380: 2377: 2374: 2371: 2344: 2341: 2338: 2307: 2304: 2301: 2290: 2289: 2278: 2275: 2267: 2263: 2257: 2253: 2249: 2246: 2243: 2240: 2232: 2227: 2222: 2219: 2215: 2209: 2205: 2190: 2189: 2178: 2175: 2167: 2162: 2157: 2154: 2150: 2144: 2140: 2136: 2133: 2130: 2124: 2118: 2115: 2110: 2106: 2102: 2079: 2064: 2063: 2052: 2049: 2041: 2037: 2031: 2027: 2023: 2020: 2017: 2014: 2008: 2002: 1999: 1994: 1990: 1986: 1961: 1957: 1953: 1950: 1947: 1927: 1907: 1887: 1884: 1881: 1861: 1858: 1838: 1835: 1832: 1808: 1788: 1768: 1748: 1724: 1713: 1712: 1701: 1698: 1695: 1692: 1689: 1686: 1683: 1668: 1665: 1661: 1660: 1649: 1644: 1640: 1636: 1633: 1629: 1624: 1620: 1616: 1611: 1607: 1603: 1600: 1597: 1594: 1591: 1588: 1585: 1580: 1576: 1572: 1569: 1564: 1560: 1556: 1553: 1549: 1544: 1540: 1516: 1496: 1469: 1449: 1436: 1435: 1426: 1424: 1411: 1407: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1379: 1375: 1371: 1368: 1363: 1359: 1354: 1351: 1347: 1342: 1338: 1317: 1316: 1299: 1295: 1291: 1288: 1285: 1282: 1277: 1273: 1269: 1266: 1261: 1257: 1253: 1250: 1247: 1244: 1241: 1236: 1232: 1209: 1189: 1186: 1166: 1154: 1151: 1143:volume element 1135: 1134: 1123: 1119: 1115: 1110: 1106: 1100: 1097: 1093: 1086: 1082: 1078: 1071: 1065: 1061: 1053: 1049: 1045: 1040: 1035: 1032: 1029: 1005: 998: 993: 979: 978: 967: 962: 958: 952: 949: 945: 941: 938: 933: 929: 925: 920: 915: 911: 908: 905: 901: 883: 863: 849: 844: 843: 832: 827: 823: 819: 816: 813: 810: 807: 804: 801: 798: 793: 789: 785: 782: 779: 776: 773: 770: 767: 764: 741: 738: 735: 732: 729: 700: 699: 687: 681: 677: 670: 666: 662: 655: 649: 645: 637: 633: 629: 624: 619: 616: 613: 610: 589:Lie derivative 583: 578: 577: 564: 560: 554: 550: 546: 541: 537: 533: 530: 527: 524: 521: 498: 495: 492: 472: 445: 425: 422: 411: 410: 394: 390: 386: 382: 377: 372: 368: 333:absolute value 325: 314: 313: 300: 296: 292: 289: 286: 283: 278: 274: 270: 263: 259: 255: 249: 244: 240: 195: 194: 183: 180: 177: 174: 171: 166: 163: 160: 155: 152: 149: 126: 123: 67:differentiable 65:For any twice- 15: 9: 6: 4: 3: 2: 6708: 6697: 6694: 6692: 6689: 6688: 6686: 6676: 6672: 6671: 6666: 6661: 6657: 6655:3-540-42627-2 6651: 6647: 6643: 6639: 6636: 6630: 6626: 6621: 6620: 6607: 6603: 6599: 6595: 6590: 6585: 6581: 6577: 6570: 6562: 6556: 6548: 6544: 6540: 6536: 6531: 6526: 6522: 6518: 6511: 6504: 6498: 6494: 6487: 6478: 6473: 6469: 6465: 6461: 6454: 6446: 6439: 6435: 6425: 6422: 6420: 6417: 6415: 6412: 6411: 6391: 6383: 6379: 6369: 6357: 6354: 6346: 6340: 6337: 6334: 6330: 6323: 6315: 6303: 6297: 6294: 6290: 6283: 6269: 6266: 6258: 6252: 6249: 6246: 6240: 6237: 6234: 6228: 6221: 6217: 6204: 6203: 6202: 6200: 6182: 6154: 6149: 6139: 6136: 6128: 6122: 6119: 6116: 6112: 6105: 6097: 6086: 6083: 6080: 6072: 6066: 6063: 6059: 6052: 6038: 6035: 6032: 6024: 6018: 6015: 6012: 6006: 6003: 6000: 5994: 5987: 5984: 5981: 5977: 5964: 5963: 5962: 5960: 5956: 5952: 5948: 5944: 5943:Poincaré disc 5940: 5936: 5930: 5926: 5905: 5897: 5892: 5888: 5878: 5868: 5865: 5862: 5854: 5849: 5845: 5835: 5825: 5822: 5815: 5814: 5813: 5812: 5811:wave operator 5804: 5783: 5779: 5775: 5767: 5761: 5757: 5753: 5747: 5720: 5717: 5714: 5710: 5704: 5699: 5693: 5689: 5685: 5677: 5671: 5667: 5663: 5659: 5655: 5652: 5644: 5641: 5634: 5631: 5628: 5624: 5611: 5610: 5609: 5591: 5585: 5582: 5577: 5573: 5569: 5566: 5563: 5557: 5551: 5548: 5545: 5539: 5534: 5530: 5522: 5521: 5520: 5518: 5499: 5494: 5489: 5485: 5481: 5478: 5475: 5470: 5465: 5461: 5457: 5452: 5447: 5443: 5439: 5433: 5427: 5420: 5419: 5418: 5416: 5412: 5408: 5404: 5380: 5372: 5368: 5358: 5346: 5343: 5335: 5332: 5329: 5323: 5319: 5312: 5304: 5295: 5292: 5289: 5285: 5278: 5264: 5261: 5253: 5250: 5247: 5241: 5235: 5232: 5229: 5223: 5216: 5212: 5199: 5198: 5197: 5193: 5173: 5145: 5140: 5130: 5127: 5119: 5116: 5113: 5107: 5103: 5096: 5088: 5077: 5074: 5071: 5063: 5060: 5057: 5050: 5043: 5029: 5026: 5023: 5015: 5012: 5009: 5003: 4997: 4994: 4991: 4985: 4978: 4975: 4972: 4968: 4955: 4954: 4953: 4951: 4947: 4943: 4939: 4935: 4931: 4925: 4921: 4915: 4910: 4908: 4907:normal bundle 4889: 4886: 4879: 4876: 4873: 4869: 4858: 4855: 4851: 4847: 4843: 4836: 4828: 4817: 4814: 4811: 4807: 4802: 4795: 4781: 4778: 4775: 4771: 4767: 4764: 4754: 4753: 4752: 4730: 4726: 4722: 4718: 4714: 4687: 4678: 4674: 4668: 4662: 4656: 4650: 4643: 4640: 4637: 4633: 4620: 4619: 4618: 4616: 4612: 4608: 4602: 4590: 4588: 4587:d'Alembertian 4581: 4577: 4572: 4570: 4566: 4562: 4558: 4539: 4534: 4524: 4516: 4513: 4508: 4493: 4481: 4465: 4456: 4451: 4448: 4438: 4437: 4436: 4422: 4419: 4411: 4398: 4394: 4391: 4381: 4373: 4371: 4367: 4363: 4359: 4339: 4336: 4327: 4324: 4321: 4311: 4310: 4309: 4305: 4300: 4295: 4281: 4278: 4265: 4261: 4253: 4249: 4245: 4225: 4220: 4212: 4209: 4198: 4190: 4187: 4184: 4176: 4166: 4165: 4164: 4162: 4158: 4154: 4151:, while on a 4150: 4146: 4142: 4138: 4134: 4124: 4106: 4102: 4095: 4091: 4083: 4079: 4065: 4062: 4055: 4051: 4038: 4034: 4024: 4018: 4015: 4011: 4007: 4004: 3994: 3993: 3992: 3990: 3986: 3981: 3979: 3960: 3955: 3945: 3937: 3934: 3924: 3923: 3922: 3920: 3901: 3896: 3893: 3885: 3870: 3867: 3863: 3857: 3854: 3850: 3846: 3843: 3833: 3832: 3831: 3807: 3803: 3799: 3794: 3790: 3783: 3770: 3765: 3762: 3759: 3755: 3751: 3745: 3739: 3728: 3727: 3726: 3704: 3684: 3681: 3662: 3659: 3648: 3647: 3646: 3644: 3637: 3630: 3611: 3604: 3600: 3592: 3588: 3574: 3571: 3564: 3560: 3547: 3543: 3534: 3526: 3522: 3518: 3513: 3509: 3502: 3492: 3487: 3484: 3476: 3459: 3458: 3457: 3456:are given by 3455: 3448: 3443: 3441: 3437: 3433: 3413: 3402: 3399: 3390: 3387: 3382: 3374: 3371: 3340: 3335: 3323: 3320: 3315: 3295: 3292: 3277: 3276: 3275: 3261: 3253: 3249: 3245: 3235: 3222: 3217: 3202: 3198: 3194: 3175: 3171: 3168: 3165: 3131: 3127: 3124: 3121: 3105: 3090: 3071: 3068: 3062: 3059: 3056: 3052: 3047: 3042: 3038: 3030: 3029: 3028: 3012: 3008: 2999: 2994: 2975: 2971: 2967: 2964: 2959: 2955: 2947: 2932: 2925: 2924: 2923: 2906: 2901: 2897: 2893: 2890: 2887: 2884: 2881: 2876: 2872: 2864: 2863: 2862: 2846: 2816: 2813: 2810: 2785: 2756: 2727: 2723: 2719: 2714: 2710: 2706: 2701: 2697: 2674: 2670: 2647: 2633:. In fact on 2618: 2588: 2585: 2579: 2576: 2573: 2569: 2564: 2559: 2555: 2547: 2546: 2545: 2529: 2525: 2504: 2484: 2461: 2458: 2455: 2449: 2426: 2423: 2420: 2417: 2414: 2408: 2405: 2402: 2396: 2393: 2390: 2384: 2381: 2378: 2372: 2369: 2362: 2361: 2360: 2358: 2355:. Assume the 2342: 2339: 2336: 2328: 2324: 2319: 2305: 2302: 2299: 2276: 2273: 2265: 2261: 2255: 2251: 2247: 2244: 2241: 2238: 2230: 2220: 2207: 2203: 2195: 2194: 2193: 2176: 2173: 2165: 2155: 2142: 2138: 2134: 2131: 2128: 2122: 2116: 2108: 2104: 2100: 2093: 2092: 2091: 2077: 2069: 2050: 2047: 2039: 2035: 2029: 2025: 2021: 2018: 2015: 2012: 2006: 2000: 1992: 1988: 1984: 1977: 1976: 1975: 1959: 1955: 1951: 1948: 1945: 1925: 1905: 1885: 1882: 1879: 1856: 1836: 1833: 1830: 1822: 1806: 1786: 1766: 1746: 1738: 1737:eigenfunction 1722: 1699: 1696: 1693: 1690: 1687: 1681: 1674: 1673: 1672: 1664: 1647: 1642: 1638: 1634: 1627: 1622: 1618: 1614: 1609: 1605: 1598: 1595: 1592: 1589: 1586: 1578: 1574: 1570: 1567: 1562: 1558: 1554: 1547: 1542: 1538: 1530: 1529: 1528: 1514: 1494: 1485: 1467: 1447: 1434: 1427: 1425: 1409: 1405: 1397: 1394: 1391: 1388: 1385: 1377: 1373: 1369: 1366: 1361: 1357: 1352: 1345: 1340: 1336: 1328: 1327: 1324: 1322: 1297: 1293: 1289: 1286: 1280: 1275: 1271: 1267: 1264: 1259: 1255: 1248: 1242: 1239: 1234: 1230: 1222: 1221: 1220: 1207: 1184: 1164: 1150: 1148: 1144: 1140: 1121: 1117: 1113: 1108: 1098: 1095: 1091: 1080: 1069: 1063: 1047: 1038: 1033: 1030: 1020: 1019: 1018: 1015: 1013: 1008: 1001: 996: 988: 987:metric tensor 984: 965: 960: 950: 947: 943: 939: 936: 931: 923: 918: 913: 909: 906: 903: 899: 890: 889: 888: 886: 879: 875: 871: 867: 860: 859:tangent space 856: 852: 825: 821: 811: 805: 802: 799: 791: 787: 783: 777: 771: 768: 765: 755: 754: 753: 736: 733: 730: 720: 719:inner product 716: 711: 709: 705: 685: 679: 675: 664: 653: 647: 631: 622: 617: 614: 611: 601: 600: 599: 597: 594: 590: 586: 562: 558: 552: 548: 544: 539: 535: 528: 525: 512: 511: 510: 496: 493: 470: 461: 459: 458:wedge product 443: 423: 420: 392: 388: 375: 370: 358: 357: 356: 355:to the frame 354: 350: 346: 342: 341:metric tensor 338: 334: 328: 321: 298: 294: 290: 287: 284: 281: 276: 272: 268: 257: 247: 242: 238: 230: 229: 228: 226: 222: 218: 214: 211: 207: 202: 201:is possible. 200: 181: 175: 153: 150: 140: 139: 138: 136: 132: 122: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 29: 22: 6668: 6645: 6642:Jost, Jürgen 6624: 6579: 6575: 6569: 6555:cite journal 6520: 6516: 6510: 6492: 6486: 6467: 6463: 6453: 6444: 6438: 6198: 6169: 5958: 5954: 5950: 5946: 5938: 5934: 5928: 5924: 5920: 5802: 5739: 5607: 5516: 5514: 5413:dimensional 5410: 5406: 5400: 5191: 5160: 4949: 4945: 4941: 4937: 4933: 4929: 4923: 4919: 4911: 4904: 4728: 4724: 4720: 4716: 4712: 4710: 4614: 4610: 4606: 4600: 4596: 4573: 4554: 4392: 4387: 4379: 4354: 4303: 4298: 4296: 4259: 4254:, acting as 4247: 4241: 4160: 4130: 4122: 3988: 3982: 3977: 3975: 3916: 3829: 3724: 3635: 3628: 3626: 3453: 3446: 3444: 3439: 3434:denotes the 3431: 3429: 3241: 3088: 3086: 2997: 2995: 2992: 2921: 2603: 2441: 2326: 2320: 2291: 2191: 2065: 1714: 1670: 1662: 1486: 1439: 1428: 1318: 1156: 1138: 1136: 1016: 1006: 999: 991: 982: 980: 881: 873: 869: 861: 854: 847: 845: 714: 712: 707: 701: 595: 593:vector field 581: 579: 462: 412: 351:forming the 344: 323: 319: 315: 224: 220: 205: 203: 196: 128: 102: 98: 94: 82: 78: 74: 70: 64: 40:submanifolds 31: 25: 3643:contraction 3201:CR manifold 1821:eigenspaces 1819:, i.e. the 337:determinant 217:volume form 6685:Categories 6617:References 6589:1608.01797 5194:− 2) 4603:− 1) 4559:, such as 4308:, so that 4301:, we have 4264:Hodge star 4157:hyperbolic 989:, so that 591:along the 353:dual frame 343:, and the 131:divergence 87:divergence 48:Riemannian 6675:EMS Press 6627:, Dover, 6606:119123242 6530:1007.5020 6380:θ 6376:∂ 6366:∂ 6355:− 6341:⁡ 6321:∂ 6313:∂ 6298:⁡ 6281:∂ 6277:∂ 6267:− 6253:⁡ 6241:θ 6213:Δ 6183:ξ 6179:Δ 6150:ξ 6146:Δ 6137:− 6123:⁡ 6103:∂ 6095:∂ 6084:− 6067:⁡ 6050:∂ 6046:∂ 6036:− 6019:⁡ 6007:ξ 5985:− 5973:Δ 5945:). Here 5885:∂ 5875:∂ 5869:− 5866:⋯ 5863:− 5842:∂ 5832:∂ 5823:◻ 5718:− 5653:◻ 5632:− 5620:Δ 5549:∣ 5482:− 5479:⋯ 5476:− 5458:− 5369:θ 5365:∂ 5355:∂ 5344:− 5336:ϕ 5333:⁡ 5313:ϕ 5310:∂ 5302:∂ 5296:ϕ 5293:⁡ 5279:ϕ 5276:∂ 5272:∂ 5262:− 5254:ϕ 5251:⁡ 5236:ϕ 5230:θ 5208:Δ 5174:ξ 5170:Δ 5141:ξ 5137:Δ 5128:− 5120:ϕ 5117:⁡ 5097:ϕ 5094:∂ 5086:∂ 5075:− 5064:ϕ 5061:⁡ 5044:ϕ 5041:∂ 5037:∂ 5027:− 5016:ϕ 5013:⁡ 4998:ϕ 4992:ξ 4976:− 4964:Δ 4877:− 4865:Δ 4856:− 4834:∂ 4826:∂ 4815:− 4793:∂ 4789:∂ 4779:− 4762:Δ 4739:Δ 4666:Δ 4641:− 4629:Δ 4580:signature 4561:spherical 4531:∂ 4521:∂ 4505:∂ 4478:∂ 4446:Δ 4328:δ 4319:Δ 4282:δ 4213:δ 4191:δ 4185:δ 4174:Δ 4147:it is an 4075:∇ 4070:∇ 4066:− 4047:∇ 4030:∇ 4002:Δ 3952:∇ 3942:∇ 3932:Δ 3851:∑ 3841:Δ 3776:∇ 3756:∑ 3737:Δ 3697:∞ 3685:∈ 3674:∇ 3657:Δ 3584:∇ 3579:∇ 3575:− 3556:∇ 3539:∇ 3406:∇ 3403:≡ 3397:∇ 3394:∇ 3391:≡ 3379:∇ 3336:∗ 3324:⊗ 3316:∗ 3300:Γ 3296:∈ 3176:κ 3169:− 3132:κ 3125:− 3069:κ 3060:− 3039:λ 3027:one has, 3009:λ 2937:Δ 2933:− 2891:ϕ 2888:⁡ 2817:ϕ 2811:θ 2671:λ 2586:κ 2577:− 2565:≥ 2556:λ 2526:λ 2462:⋅ 2456:⋅ 2418:κ 2394:κ 2391:≥ 2373:⁡ 2340:≥ 2303:≥ 2300:λ 2252:∫ 2248:λ 2218:∇ 2204:∫ 2153:∇ 2139:∫ 2114:Δ 2105:∫ 2101:− 2026:∫ 2022:λ 1998:Δ 1989:∫ 1985:− 1883:≥ 1880:λ 1860:Δ 1857:− 1831:λ 1807:λ 1767:λ 1747:λ 1694:λ 1685:Δ 1682:− 1632:Δ 1619:∫ 1602:⟩ 1584:⟨ 1575:∫ 1571:− 1552:Δ 1539:∫ 1401:⟩ 1383:⟨ 1374:∫ 1370:− 1350:Δ 1337:∫ 1287:⋅ 1284:∇ 1272:∫ 1268:− 1231:∫ 1188:∇ 1185:− 1105:∂ 1060:∂ 1028:Δ 957:∂ 928:∂ 907:⁡ 876:ƒ is the 872:. Here, 797:⟩ 769:⁡ 763:⟨ 740:⟩ 737:⋅ 731:⋅ 728:⟨ 644:∂ 612:⋅ 609:∇ 526:⋅ 523:∇ 494:⋅ 491:∇ 444:∧ 385:∂ 381:∂ 367:∂ 288:∧ 285:⋯ 282:∧ 173:∇ 148:Δ 79:Laplacian 6644:(2002), 6408:See also 4936:. Here 4376:Examples 997:= δ 347:are the 210:oriented 135:gradient 91:gradient 81:) takes 5809:is the 4916:. Let 4585:is the 4250:is the 4143:. On a 3985:tensors 3195:(after 1735:is the 1314:(proof) 1147:density 857:in the 587:is the 456:is the 349:1-forms 339:of the 335:of the 331:is the 125:Details 89:of its 85:to the 6652:  6631:  6604:  6547:304301 6545:  6499:  6170:where 5161:where 4944:, and 4711:where 4159:. The 4155:it is 3978:tensor 3454:Hess f 3430:where 2442:where 2271:  2236:  2171:  2126:  2120:  2045:  2010:  2004:  1715:where 1004:with δ 981:where 580:where 316:where 208:is an 30:, the 6602:S2CID 6584:arXiv 6543:S2CID 6525:arXiv 6430:Notes 5740:Here 5608:Then 5515:Then 4578:with 4139:on a 2832:, on 2742:from 6650:ISBN 6629:ISBN 6561:link 6497:ISBN 6338:sinh 6295:sinh 6250:sinh 6120:sinh 6064:sinh 6016:sinh 5953:and 5583:> 3881:Hess 3498:Hess 3472:Hess 3445:Let 3367:Hess 3288:Hess 2421:> 1507:and 1460:and 1177:and 1010:the 904:grad 766:grad 436:and 58:and 50:and 6594:doi 6535:doi 6521:161 6472:doi 5937:of 5330:sin 5290:sin 5248:sin 5114:sin 5058:sin 5010:sin 4727:to 4613:on 4563:or 4395:on 4306:= 0 4258:on 3991:by 3917:In 2885:cos 2771:to 2370:Ric 1974:): 1956:vol 1639:vol 1606:vol 1559:vol 1406:vol 1358:vol 1294:vol 1256:vol 1145:(a 1137:If 559:vol 536:vol 239:vol 227:by 219:on 121:). 42:in 26:In 6687:: 6673:, 6667:, 6600:. 6592:. 6580:34 6578:. 6557:}} 6553:{{ 6541:. 6533:. 6519:. 6468:14 6466:. 6462:. 5927:, 4922:, 4719:/| 4589:. 4571:. 4372:. 4304:δf 3980:. 3663::= 3634:, 3442:. 3432:df 3375::= 3357:, 2318:. 1527:, 1014:. 994:jk 992:gg 545::= 460:. 376::= 345:dx 329:)| 326:ij 248::= 137:: 62:. 6659:. 6608:. 6596:: 6586:: 6563:) 6549:. 6537:: 6527:: 6480:. 6474:: 6392:f 6384:2 6370:2 6358:2 6351:) 6347:r 6344:( 6335:+ 6331:) 6324:r 6316:f 6307:) 6304:r 6301:( 6291:( 6284:r 6270:1 6263:) 6259:r 6256:( 6247:= 6244:) 6238:, 6235:r 6232:( 6229:f 6222:2 6218:H 6199:n 6155:f 6140:2 6133:) 6129:t 6126:( 6117:+ 6113:) 6106:t 6098:f 6087:2 6081:n 6077:) 6073:t 6070:( 6060:( 6053:t 6039:n 6033:2 6029:) 6025:t 6022:( 6013:= 6010:) 6004:, 6001:t 5998:( 5995:f 5988:1 5982:n 5978:H 5959:S 5955:ξ 5951:p 5947:t 5939:H 5935:p 5931:) 5929:ξ 5925:t 5923:( 5906:. 5898:2 5893:n 5889:x 5879:2 5855:2 5850:1 5846:x 5836:2 5826:= 5807:□ 5803:f 5789:) 5784:2 5780:/ 5776:1 5772:) 5768:x 5765:( 5762:q 5758:/ 5754:x 5751:( 5748:f 5721:1 5715:n 5711:H 5705:| 5700:) 5694:2 5690:/ 5686:1 5682:) 5678:x 5675:( 5672:q 5668:/ 5664:x 5660:( 5656:f 5645:= 5642:f 5635:1 5629:n 5625:H 5592:. 5589:} 5586:1 5578:1 5574:x 5570:, 5567:1 5564:= 5561:) 5558:x 5555:( 5552:q 5546:x 5543:{ 5540:= 5535:n 5531:H 5517:H 5500:. 5495:2 5490:n 5486:x 5471:2 5466:2 5462:x 5453:2 5448:1 5444:x 5440:= 5437:) 5434:x 5431:( 5428:q 5411:n 5407:H 5381:f 5373:2 5359:2 5347:2 5340:) 5327:( 5324:+ 5320:) 5305:f 5286:( 5265:1 5258:) 5245:( 5242:= 5239:) 5233:, 5227:( 5224:f 5217:2 5213:S 5192:n 5190:( 5146:f 5131:2 5124:) 5111:( 5108:+ 5104:) 5089:f 5078:2 5072:n 5068:) 5055:( 5051:( 5030:n 5024:2 5020:) 5007:( 5004:= 5001:) 4995:, 4989:( 4986:f 4979:1 4973:n 4969:S 4950:S 4946:ξ 4942:p 4938:ϕ 4934:p 4930:p 4926:) 4924:ξ 4920:ϕ 4918:( 4890:. 4887:f 4880:1 4874:n 4870:S 4859:2 4852:r 4848:+ 4844:) 4837:r 4829:f 4818:1 4812:n 4808:r 4803:( 4796:r 4782:n 4776:1 4772:r 4768:= 4765:f 4729:R 4725:f 4721:x 4717:x 4715:( 4713:f 4696:) 4692:| 4688:x 4684:| 4679:/ 4675:x 4672:( 4669:f 4663:= 4660:) 4657:x 4654:( 4651:f 4644:1 4638:n 4634:S 4615:S 4611:f 4607:R 4601:n 4599:( 4540:f 4535:i 4525:i 4517:= 4514:f 4509:i 4498:| 4494:g 4490:| 4482:i 4470:| 4466:g 4462:| 4457:1 4452:= 4449:f 4423:1 4420:= 4416:| 4412:g 4408:| 4393:x 4340:. 4337:f 4333:d 4325:= 4322:f 4299:f 4279:+ 4275:d 4260:k 4248:δ 4226:, 4221:2 4217:) 4210:+ 4206:d 4202:( 4199:= 4195:d 4188:+ 4181:d 4177:= 4107:) 4103:T 4096:j 4092:X 4084:i 4080:X 4063:T 4056:j 4052:X 4039:i 4035:X 4025:( 4019:j 4016:i 4012:g 4008:= 4005:T 3989:T 3961:f 3956:a 3946:a 3938:= 3935:f 3902:. 3897:j 3894:i 3890:) 3886:f 3876:( 3871:j 3868:i 3864:g 3858:j 3855:i 3847:= 3844:f 3826:, 3813:) 3808:i 3804:X 3800:, 3795:i 3791:X 3787:( 3784:f 3780:d 3771:n 3766:1 3763:= 3760:i 3752:= 3749:) 3746:x 3743:( 3740:f 3721:. 3708:) 3705:M 3702:( 3691:C 3682:f 3678:d 3670:r 3667:t 3660:f 3639:j 3636:X 3632:i 3629:X 3612:f 3605:j 3601:X 3593:i 3589:X 3572:f 3565:j 3561:X 3548:i 3544:X 3535:= 3532:) 3527:j 3523:X 3519:, 3514:i 3510:X 3506:( 3503:f 3493:= 3488:j 3485:i 3481:) 3477:f 3467:( 3450:i 3447:X 3440:f 3426:, 3414:f 3410:d 3400:f 3388:f 3383:2 3372:f 3344:) 3341:M 3330:T 3321:M 3310:T 3304:( 3293:f 3262:f 3223:. 3218:n 3213:C 3172:1 3166:n 3140:) 3128:1 3122:n 3113:( 3106:n 3101:S 3089:n 3072:, 3063:1 3057:n 3053:n 3048:= 3043:1 3013:1 2998:n 2976:1 2972:u 2968:2 2965:= 2960:1 2956:u 2948:2 2943:S 2907:, 2902:1 2898:u 2894:= 2882:= 2877:3 2873:x 2847:2 2842:S 2820:) 2814:, 2808:( 2786:2 2781:S 2757:3 2752:R 2728:3 2724:x 2720:, 2715:2 2711:x 2707:, 2702:1 2698:x 2675:1 2648:2 2643:S 2619:n 2614:S 2589:. 2580:1 2574:n 2570:n 2560:1 2530:1 2505:M 2485:X 2465:) 2459:, 2453:( 2450:g 2427:, 2424:0 2415:, 2412:) 2409:X 2406:, 2403:X 2400:( 2397:g 2388:) 2385:X 2382:, 2379:X 2376:( 2343:2 2337:n 2327:n 2306:0 2277:V 2274:d 2266:2 2262:u 2256:M 2245:= 2242:V 2239:d 2231:2 2226:| 2221:u 2214:| 2208:M 2177:V 2174:d 2166:2 2161:| 2156:u 2149:| 2143:M 2135:= 2132:V 2129:d 2123:u 2117:u 2109:M 2078:M 2051:V 2048:d 2040:2 2036:u 2030:M 2019:= 2016:V 2013:d 2007:u 2001:u 1993:M 1960:n 1952:= 1949:V 1946:d 1926:M 1906:u 1886:0 1837:0 1834:= 1787:M 1723:u 1700:, 1697:u 1691:= 1688:u 1648:. 1643:n 1635:f 1628:h 1623:M 1615:= 1610:n 1599:h 1596:d 1593:, 1590:f 1587:d 1579:M 1568:= 1563:n 1555:h 1548:f 1543:M 1515:h 1495:f 1482:2 1468:h 1448:f 1433:) 1431:2 1429:( 1410:n 1398:h 1395:d 1392:, 1389:f 1386:d 1378:M 1367:= 1362:n 1353:h 1346:f 1341:M 1298:n 1290:X 1281:f 1276:M 1265:= 1260:n 1252:) 1249:X 1246:( 1243:f 1240:d 1235:M 1208:f 1165:d 1139:M 1122:. 1118:) 1114:f 1109:j 1099:j 1096:i 1092:g 1085:| 1081:g 1077:| 1070:( 1064:i 1052:| 1048:g 1044:| 1039:1 1034:= 1031:f 1007:k 1000:k 983:g 966:f 961:j 951:j 948:i 944:g 940:= 937:f 932:i 924:= 919:i 914:) 910:f 900:( 884:x 882:v 874:d 870:x 866:M 864:x 862:T 855:x 850:x 848:v 831:) 826:x 822:v 818:( 815:) 812:x 809:( 806:f 803:d 800:= 792:x 788:v 784:, 781:) 778:x 775:( 772:f 734:, 715:f 708:i 686:) 680:i 676:X 669:| 665:g 661:| 654:( 648:i 636:| 632:g 628:| 623:1 618:= 615:X 596:X 584:X 582:L 563:n 553:X 549:L 540:n 532:) 529:X 520:( 497:X 471:X 424:M 421:T 393:i 389:x 371:i 324:g 320:g 318:| 299:n 295:x 291:d 277:1 273:x 269:d 262:| 258:g 254:| 243:n 225:x 221:M 206:M 182:. 179:) 176:f 170:( 165:v 162:i 159:d 154:= 151:f 103:R 99:f 95:n 83:f 75:R 71:f 23:.

Index

Beltrami operator
differential geometry
Laplace operator
submanifolds
Euclidean space
Riemannian
pseudo-Riemannian manifolds
Pierre-Simon Laplace
Eugenio Beltrami
differentiable
divergence
gradient
linear operator
differential forms
exterior derivative
Georges de Rham
divergence
gradient
local coordinates
oriented
Riemannian manifold
volume form
absolute value
determinant
metric tensor
1-forms
dual frame
wedge product
Lie derivative
vector field

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.