Knowledge

Isosceles set

Source 📝

17: 68:. In three dimensions, Kelly found an eight-point isosceles set, six points of which are the same; the remaining two points lie on a line perpendicular to the pentagon through its center, at the same distance as the pentagon vertices from the center. This three-dimensional example was later proven to be optimal, and to be the unique optimal solution. 265:
Despite this decomposition theorem, it is possible for the largest two-distance set and the largest isosceles set in the same dimension to have different sizes. This happens, for instance, in the plane, where the largest two-distance set has five points (the vertices of a regular pentagon), while the
261:
by adding the point at the intersection of its two subspaces must also be an isosceles set within its subspace. In this way, an isosceles set in high dimensions can sometimes be decomposed into isosceles sets in lower dimensions. On the other hand, when an isosceles set has no decomposition of this
1069:, the whole space (and any of its subsets) is an isosceles set. Therefore, ultrametric spaces are sometimes called isosceles spaces. However, not every isosceles set is ultrametric; for instance, obtuse Euclidean isosceles triangles are not ultrametric. 621: 568: 379: 930: 718: 495: 954: 798: 824: 239: 674: 1043: 647: 431: 405: 1015: 994: 974: 884: 864: 844: 758: 738: 451: 332: 304: 284: 259: 214: 194: 174: 154: 134: 114: 94: 20:
The unique 6-point isosceles set in the plane. The shaded regions show four of the 20 isosceles triangles formed by triples of these points.
508: 1323: 573: 262:
type, then it must have a stronger property than being isosceles: it has only two distances, among all pairs of points.
1246: 526: 337: 64:
showed more strongly that the unique six-point planar isosceles set consists of the vertices and center of a
932:. It has only two distances: two points formed from sums of overlapping pairs of unit vectors have distance 1200:
Kido, Hiroaki (2006), "Classification of isosceles eight-point sets in three-dimensional Euclidean space",
266:
largest isosceles set has six points. In this case, the six-point isosceles set has a decomposition where
1045:, this construction produces a suboptimal isosceles set with seven points, the vertices and center of a 1401: 896: 679: 456: 1318: 37: 1065:, somewhat smaller upper bounds are known than for Euclidean spaces of the same dimension. In an 935: 763: 803: 36:. More precisely, each three points should determine at most two distances; this also allows 1382: 1346: 1301: 1223: 1187: 652: 1262: 8: 1022: 626: 410: 384: 219: 1149: 1129: 1107: 1046: 1000: 979: 959: 869: 849: 829: 743: 723: 436: 317: 289: 269: 244: 199: 179: 159: 139: 119: 99: 79: 61: 33: 1066: 25: 76:
Kelly's eight-point three-dimensional isosceles set can be decomposed into two sets
1368: 1332: 1287: 1258: 1250: 1209: 1175: 1141: 1099: 65: 56:. In his statement of the problem, Erdős observed that the largest such set in the 1378: 1342: 1297: 1219: 1183: 57: 49: 1179: 156:. When such a decomposition is possible, in Euclidean spaces of any dimension, 1214: 286:
is the singleton set of the central point (in a space of zero dimensions) and
1395: 1062: 1373: 1087: 956:, while two points formed from disjoint pairs of unit vectors have distance 433:
but not necessarily for other dimensions. The maximum number of points in a
53: 1292: 1058: 891: 116:(the five vertices of the pentagon), with the property that each point in 887: 1359:
Fiedler, Miroslav (1998), "Ultrametric sets in Euclidean point spaces",
1153: 1111: 1166:
Croft, H. T. (1962), "9-point and 7-point configurations in 3-space",
523:
Lisoněk provides the following construction of two-distance sets with
32:
is a set of points with the property that every three of them form an
40:
isosceles triangles formed by three equally-spaced points on a line.
1254: 1145: 1103: 1086:
Grossman, Howard; Thebault, Victor; Schell, E. D.; Scheffe, Henry;
16: 1125: 1337: 96:(the three points on a line perpendicular to the pentagon) and 720:) denote the vector a unit distance from the origin along the 1085: 503: 216:
must be an isosceles set within its subspace, and the set
1241:
Blokhuis, A. (1983), "Chapter 7: Isosceles point sets",
1278:
Lisoněk, Petr (1997), "New maximal two-distance sets",
515:
but these numbers are not known for higher dimensions.
334:-dimensional space, an isosceles set can have at most 48:
The problem of finding the largest isosceles set in a
1025: 1003: 982: 962: 938: 899: 872: 852: 832: 806: 766: 746: 726: 682: 655: 629: 576: 529: 459: 439: 413: 387: 340: 320: 292: 272: 247: 222: 202: 182: 162: 142: 122: 102: 82: 71: 866:-dimensional subspace of points with coordinate sum 1090:(August 1946), "Problems for Solution: E731–E735", 1057:The same problem can also be considered for other 1037: 1009: 988: 968: 948: 924: 878: 858: 838: 818: 792: 752: 732: 712: 668: 641: 615: 562: 489: 445: 425: 399: 373: 326: 298: 278: 253: 233: 208: 188: 168: 148: 128: 108: 88: 601: 580: 554: 533: 365: 344: 1393: 570:points, which also produces isosceles sets with 1168:Proceedings of the London Mathematical Society 1049:, rather than the optimal eight-point set. 1236: 1234: 1232: 1124: 740:th coordinate axis, and construct the set 52:of a given dimension was posed in 1946 by 1372: 1336: 1291: 1273: 1271: 1213: 1240: 15: 1358: 1312: 1310: 1277: 1229: 1394: 1352: 1268: 501:3, 6, 8, 11, 17, 28, 30, 45 (sequence 60:has six points. In his 1947 solution, 1316: 1165: 196:must lie in perpendicular subspaces, 1361:Electronic Journal of Linear Algebra 1307: 1199: 1159: 1118: 1324:Electronic Journal of Combinatorics 1202:Electronic Journal of Combinatorics 1193: 1079: 616:{\displaystyle {\binom {d+1}{2}}+1} 13: 1247:Eindhoven University of Technology 901: 649:-dimensional Euclidean space, let 584: 537: 348: 306:consists of all remaining points. 136:is equidistant from all points of 72:Decomposition into 2-distance sets 14: 1413: 1134:The American Mathematical Monthly 1115:. See in particular problem E735. 1092:The American Mathematical Monthly 1052: 1019:isosceles set. For instance, for 563:{\displaystyle {\binom {d+1}{2}}} 374:{\displaystyle {\binom {d+2}{2}}} 453:-dimensional isosceles set, for 1280:Journal of Combinatorial Theory 925:{\displaystyle \Delta _{d+1,2}} 518: 309: 713:{\displaystyle i=1,\dots ,d+1} 490:{\displaystyle d=1,2,\dots ,8} 1: 1331:(1): Research Paper 141, 24, 1072: 7: 976:. Adding one more point to 949:{\displaystyle {\sqrt {2}}} 793:{\displaystyle e_{i}+e_{j}} 10: 1418: 381:points. This is tight for 43: 1215:10.1016/j.ejc.2005.01.003 760:consisting of all points 1180:10.1112/plms/s3-12.1.400 996:at its centroid forms a 1374:10.13001/1081-3810.1012 1317:Ionin, Yury J. (2009), 819:{\displaystyle i\neq j} 1293:10.1006/jcta.1997.2749 1132:(April 1947), "E735", 1039: 1011: 990: 970: 950: 926: 880: 860: 840: 820: 794: 754: 734: 714: 670: 643: 617: 564: 491: 447: 427: 401: 375: 328: 300: 280: 255: 235: 210: 190: 170: 150: 130: 110: 90: 21: 1040: 1012: 991: 971: 951: 927: 881: 861: 841: 821: 795: 755: 735: 715: 671: 669:{\displaystyle e_{i}} 644: 618: 565: 492: 448: 428: 402: 376: 329: 301: 281: 256: 236: 211: 191: 171: 151: 131: 111: 91: 19: 1061:. For instance, for 1023: 1001: 980: 960: 936: 897: 870: 850: 830: 804: 764: 744: 724: 680: 653: 627: 574: 527: 457: 437: 411: 385: 338: 318: 290: 270: 245: 220: 200: 180: 160: 140: 120: 100: 80: 1038:{\displaystyle d=3} 642:{\displaystyle d+1} 426:{\displaystyle d=8} 400:{\displaystyle d=6} 1249:, pp. 46–49, 1047:regular octahedron 1035: 1007: 986: 966: 946: 922: 876: 856: 836: 816: 790: 750: 730: 710: 666: 639: 613: 560: 487: 443: 423: 397: 371: 324: 296: 276: 251: 234:{\displaystyle Y'} 231: 206: 186: 166: 146: 126: 106: 86: 62:Leroy Milton Kelly 34:isosceles triangle 22: 1402:Discrete geometry 1243:Few-Distance Sets 1067:ultrametric space 1010:{\displaystyle d} 989:{\displaystyle S} 969:{\displaystyle 2} 944: 879:{\displaystyle 2} 859:{\displaystyle d} 839:{\displaystyle S} 753:{\displaystyle S} 733:{\displaystyle i} 599: 552: 497:, is known to be 446:{\displaystyle d} 363: 327:{\displaystyle d} 299:{\displaystyle Y} 279:{\displaystyle X} 254:{\displaystyle Y} 209:{\displaystyle X} 189:{\displaystyle Y} 169:{\displaystyle X} 149:{\displaystyle Y} 129:{\displaystyle X} 109:{\displaystyle Y} 89:{\displaystyle X} 26:discrete geometry 1409: 1386: 1385: 1376: 1356: 1350: 1349: 1340: 1319:"Isosceles sets" 1314: 1305: 1304: 1295: 1275: 1266: 1265: 1245:(Ph.D. thesis), 1238: 1227: 1226: 1217: 1197: 1191: 1190: 1170:, Third Series, 1163: 1157: 1156: 1122: 1116: 1114: 1083: 1044: 1042: 1041: 1036: 1018: 1016: 1014: 1013: 1008: 995: 993: 992: 987: 975: 973: 972: 967: 955: 953: 952: 947: 945: 940: 931: 929: 928: 923: 921: 920: 885: 883: 882: 877: 865: 863: 862: 857: 845: 843: 842: 837: 825: 823: 822: 817: 799: 797: 796: 791: 789: 788: 776: 775: 759: 757: 756: 751: 739: 737: 736: 731: 719: 717: 716: 711: 675: 673: 672: 667: 665: 664: 648: 646: 645: 640: 622: 620: 619: 614: 606: 605: 604: 595: 583: 569: 567: 566: 561: 559: 558: 557: 548: 536: 506: 496: 494: 493: 488: 452: 450: 449: 444: 432: 430: 429: 424: 406: 404: 403: 398: 380: 378: 377: 372: 370: 369: 368: 359: 347: 333: 331: 330: 325: 305: 303: 302: 297: 285: 283: 282: 277: 260: 258: 257: 252: 240: 238: 237: 232: 230: 215: 213: 212: 207: 195: 193: 192: 187: 175: 173: 172: 167: 155: 153: 152: 147: 135: 133: 132: 127: 115: 113: 112: 107: 95: 93: 92: 87: 66:regular pentagon 1417: 1416: 1412: 1411: 1410: 1408: 1407: 1406: 1392: 1391: 1390: 1389: 1357: 1353: 1315: 1308: 1276: 1269: 1255:10.6100/IR53747 1239: 1230: 1198: 1194: 1164: 1160: 1146:10.2307/2304710 1123: 1119: 1104:10.2307/2305860 1084: 1080: 1075: 1055: 1024: 1021: 1020: 1002: 999: 998: 997: 981: 978: 977: 961: 958: 957: 939: 937: 934: 933: 904: 900: 898: 895: 894: 871: 868: 867: 851: 848: 847: 831: 828: 827: 805: 802: 801: 784: 780: 771: 767: 765: 762: 761: 745: 742: 741: 725: 722: 721: 681: 678: 677: 660: 656: 654: 651: 650: 628: 625: 624: 600: 585: 579: 578: 577: 575: 572: 571: 553: 538: 532: 531: 530: 528: 525: 524: 521: 502: 458: 455: 454: 438: 435: 434: 412: 409: 408: 386: 383: 382: 364: 349: 343: 342: 341: 339: 336: 335: 319: 316: 315: 312: 291: 288: 287: 271: 268: 267: 246: 243: 242: 223: 221: 218: 217: 201: 198: 197: 181: 178: 177: 161: 158: 157: 141: 138: 137: 121: 118: 117: 101: 98: 97: 81: 78: 77: 74: 58:Euclidean plane 50:Euclidean space 46: 12: 11: 5: 1415: 1405: 1404: 1388: 1387: 1351: 1306: 1286:(2): 318–338, 1267: 1228: 1208:(3): 329–341, 1192: 1158: 1117: 1077: 1076: 1074: 1071: 1063:Hamming spaces 1054: 1053:Generalization 1051: 1034: 1031: 1028: 1006: 985: 965: 943: 919: 916: 913: 910: 907: 903: 875: 855: 835: 815: 812: 809: 787: 783: 779: 774: 770: 749: 729: 709: 706: 703: 700: 697: 694: 691: 688: 685: 663: 659: 638: 635: 632: 612: 609: 603: 598: 594: 591: 588: 582: 556: 551: 547: 544: 541: 535: 520: 517: 513: 512: 486: 483: 480: 477: 474: 471: 468: 465: 462: 442: 422: 419: 416: 396: 393: 390: 367: 362: 358: 355: 352: 346: 323: 311: 308: 295: 275: 250: 229: 226: 205: 185: 165: 145: 125: 105: 85: 73: 70: 45: 42: 9: 6: 4: 3: 2: 1414: 1403: 1400: 1399: 1397: 1384: 1380: 1375: 1370: 1366: 1362: 1355: 1348: 1344: 1339: 1334: 1330: 1326: 1325: 1320: 1313: 1311: 1303: 1299: 1294: 1289: 1285: 1281: 1274: 1272: 1264: 1260: 1256: 1252: 1248: 1244: 1237: 1235: 1233: 1225: 1221: 1216: 1211: 1207: 1203: 1196: 1189: 1185: 1181: 1177: 1173: 1169: 1162: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1121: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1082: 1078: 1070: 1068: 1064: 1060: 1059:metric spaces 1050: 1048: 1032: 1029: 1026: 1004: 983: 963: 941: 917: 914: 911: 908: 905: 893: 889: 873: 853: 833: 813: 810: 807: 785: 781: 777: 772: 768: 747: 727: 707: 704: 701: 698: 695: 692: 689: 686: 683: 661: 657: 636: 633: 630: 610: 607: 596: 592: 589: 586: 549: 545: 542: 539: 516: 510: 505: 500: 499: 498: 484: 481: 478: 475: 472: 469: 466: 463: 460: 440: 420: 417: 414: 394: 391: 388: 360: 356: 353: 350: 321: 307: 293: 273: 263: 248: 227: 224: 203: 183: 163: 143: 123: 103: 83: 69: 67: 63: 59: 55: 51: 41: 39: 35: 31: 30:isosceles set 27: 18: 1364: 1360: 1354: 1338:10.37236/230 1328: 1322: 1283: 1282:, Series A, 1279: 1242: 1205: 1201: 1195: 1171: 1167: 1161: 1137: 1133: 1130:Kelly, L. M. 1120: 1095: 1091: 1081: 1056: 1017:-dimensional 892:hypersimplex 846:lies in the 522: 519:Construction 514: 313: 310:Upper bounds 264: 241:formed from 75: 47: 29: 23: 1174:: 400–424, 1126:Erdős, Paul 1088:Erdős, Paul 888:convex hull 623:points. In 1263:0516.05017 1140:(4): 227, 1098:(7): 394, 1073:References 54:Paul Erdős 38:degenerate 1367:: 23–30, 902:Δ 811:≠ 696:… 479:… 1396:Category 407:and for 228:′ 1383:1615350 1347:2577309 1302:1429084 1224:2206471 1188:0155230 1154:2304710 1112:2305860 890:is the 826:. Then 507:in the 504:A175769 44:History 1381:  1345:  1300:  1261:  1222:  1186:  1152:  1110:  886:; its 1150:JSTOR 1108:JSTOR 676:(for 28:, an 800:for 509:OEIS 176:and 1369:doi 1333:doi 1288:doi 1259:Zbl 1251:doi 1210:doi 1176:doi 1142:doi 1100:doi 314:In 24:In 1398:: 1379:MR 1377:, 1363:, 1343:MR 1341:, 1329:16 1327:, 1321:, 1309:^ 1298:MR 1296:, 1284:77 1270:^ 1257:, 1231:^ 1220:MR 1218:, 1206:27 1204:, 1184:MR 1182:, 1172:12 1148:, 1138:54 1136:, 1128:; 1106:, 1096:53 1094:, 1371:: 1365:3 1335:: 1290:: 1253:: 1212:: 1178:: 1144:: 1102:: 1033:3 1030:= 1027:d 1005:d 984:S 964:2 942:2 918:2 915:, 912:1 909:+ 906:d 874:2 854:d 834:S 814:j 808:i 786:j 782:e 778:+ 773:i 769:e 748:S 728:i 708:1 705:+ 702:d 699:, 693:, 690:1 687:= 684:i 662:i 658:e 637:1 634:+ 631:d 611:1 608:+ 602:) 597:2 593:1 590:+ 587:d 581:( 555:) 550:2 546:1 543:+ 540:d 534:( 511:) 485:8 482:, 476:, 473:2 470:, 467:1 464:= 461:d 441:d 421:8 418:= 415:d 395:6 392:= 389:d 366:) 361:2 357:2 354:+ 351:d 345:( 322:d 294:Y 274:X 249:Y 225:Y 204:X 184:Y 164:X 144:Y 124:X 104:Y 84:X

Index


discrete geometry
isosceles triangle
degenerate
Euclidean space
Paul Erdős
Euclidean plane
Leroy Milton Kelly
regular pentagon
A175769
OEIS
convex hull
hypersimplex
regular octahedron
metric spaces
Hamming spaces
ultrametric space
Erdős, Paul
doi
10.2307/2305860
JSTOR
2305860
Erdős, Paul
Kelly, L. M.
doi
10.2307/2304710
JSTOR
2304710
doi
10.1112/plms/s3-12.1.400

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.