Knowledge

Convex hull

Source đź“ť

1915: 2547: 453: 3252: 2561: 2913: 2088: 29: 1159: 201: 1620: 3051: 2575:
Several other shapes can be defined from a set of points in a similar way to the convex hull, as the minimal superset with some property, the intersection of all shapes containing the points from a given family of shapes, or the union of all combinations of points for a certain type of combination.
904:
In two dimensions, the convex hull is sometimes partitioned into two parts, the upper hull and the lower hull, stretching between the leftmost and rightmost points of the hull. More generally, for convex hulls in any dimension, one can partition the boundary of the hull into upward-facing points
1308:
of a convex set is a point in the set that does not lie on any open line segment between any other two points of the same set. For a convex hull, every extreme point must be part of the given set, because otherwise it cannot be formed as a convex combination of given points. According to the
3332:, the term "convex hull" had become standard; Dines adds that he finds the term unfortunate, because the colloquial meaning of the word "hull" would suggest that it refers to the surface of a shape, whereas the convex hull includes the interior and not just the surface. 2819:
of a finite point set give a nested family of (non-convex) geometric objects describing the shape of a point set at different levels of detail. Each of alpha shape is the union of some of the features of the Delaunay triangulation, selected by comparing their
3210:
can make the minimum convex polygon excessively large, which has motivated relaxed approaches that contain only a subset of the observations, for instance by choosing one of the convex layers that is close to a target percentage of the samples, or in the
3287:
of a material, only those measurements on the lower convex hull will be stable. When removing a point from the hull and then calculating its distance to the hull, its distance to the new hull represents the degree of stability of the phase.
1317:) is the convex hull of its extreme points. However, this may not be true for convex sets that are not compact; for instance, the whole Euclidean plane and the open unit ball are both convex, but neither one has any extreme points. 1262: 2520:
structures can keep track of the convex hull for points moving continuously. The construction of convex hulls also serves as a tool, a building block for a number of other computational-geometric algorithms such as the
905:(points for which an upward ray is disjoint from the hull), downward-facing points, and extreme points. For three-dimensional hulls, the upward-facing and downward-facing parts of the boundary form topological disks. 3000:, points that do not belong to the hyperbolic space itself but lie on the boundary of a model of that space. The boundaries of convex hulls of ideal points of three-dimensional hyperbolic space are analogous to 2702:
or rectilinear convex hull is the intersection of all orthogonally convex and connected supersets, where a set is orthogonally convex if it contains all axis-parallel segments between pairs of its points.
2828:
of a point set are a nested family of convex polygons, the outermost of which is the convex hull, with the inner layers constructed recursively from the points that are not vertices of the convex hull.
1590:
commute with each other, in the sense that the Minkowski sum of convex hulls of sets gives the same result as the convex hull of the Minkowski sum of the same sets. This provides a step towards the
2235:, a number of algorithms are known for computing the convex hull for a finite set of points and for other geometric objects. Computing the convex hull means constructing an unambiguous, efficient 1178:
is always itself open, and the convex hull of a compact set is always itself compact. However, there exist closed sets for which the convex hull is not closed. For instance, the closed set
1606:
operation to constructing the convex hull of a set of points is constructing the intersection of a family of closed halfspaces that all contain the origin (or any other designated point).
2504: 1878: 2016: 1666: 7007: 5586:
Kim, Sooran; Kim, Kyoo; Koo, Jahyun; Lee, Hoonkyung; Min, Byung Il; Kim, Duck Young (December 2019), "Pressure-induced phase transitions and superconductivity in magnesium carbides",
1037:), then it equals the closed convex hull. However, an intersection of closed half-spaces is itself closed, so when a convex hull is not closed it cannot be represented in this way. 4677: 3175:
is that it lies within the convex hull of its control points. This so-called "convex hull property" can be used, for instance, in quickly detecting intersections of these curves.
2900:
helps find their crossings, and convex hulls are part of the measurement of boat hulls. And in the study of animal behavior, convex hulls are used in a standard definition of the
2813: 2775: 1729: 2077: 1459: 3105:
of solutions to a combinatorial problem. If the facets of these polytopes can be found, describing the polytopes as intersections of halfspaces, then algorithms based on
2645:
intersects the object. Equivalently it is the intersection of the (non-convex) cones generated by the outline of the object with respect to each viewpoint. It is used in
172:. Convex hulls have wide applications in mathematics, statistics, combinatorial optimization, economics, geometric modeling, and ethology. Related structures include the 2420: 2378: 147: 2678: 1578:, the shelling antimatroid of the point set. Every antimatroid can be represented in this way by convex hulls of points in a Euclidean space of high-enough dimension. 3074:
form a nested family of convex sets, with the convex hull outermost, and the bagplot also displays another polygon from this nested family, the contour of 50% depth.
2036: 1976: 2454: 2209:. The definition can be extended to the convex hull of a set of functions (obtained from the convex hull of the union of their epigraphs, or equivalently from their 5568:
Kernohan, Brian J.; Gitzen, Robert A.; Millspaugh, Joshua J. (2001), "Analysis of animal space use and movements", in Millspaugh, Joshua; Marzluff, John M. (eds.),
5411:
Hautier, Geoffroy (2014), "Data mining approaches to high-throughput crystal structure and compound prediction", in Atahan-Evrenk, Sule; Aspuru-Guzik, Alan (eds.),
846: 1696: 794: 417:
of the points encloses them with arbitrarily small surface area, smaller than the surface area of the convex hull. However, in higher dimensions, variants of the
1148: 1101: 2643: 2623: 2340: 2316: 2296: 2276: 2207: 2183: 2159: 1898: 1828: 1808: 1773: 1753: 1568: 1548: 1528: 1499: 1479: 1433: 1413: 1384: 1364: 1121: 1078: 1058: 1027: 1003: 983: 959: 894: 874: 814: 768: 748: 728: 701: 681: 661: 641: 621: 598: 578: 558: 538: 518: 498: 478: 411: 391: 367: 332: 306: 280: 258: 234: 7000: 6073:
Nilsen, Erlend B.; Pedersen, Simen; Linnell, John D. C. (2008), "Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions?",
2992:
The definitions of a convex set as containing line segments between its points, and of a convex hull as the intersection of all convex supersets, apply to
1735:, and (by the Krein–Milman theorem) every convex polytope is the convex hull of its vertices. It is the unique convex polytope whose vertices belong to 1184: 6993: 6511: 5682: 4582: 3159:
can be used to show that, for large markets, this approximation is accurate, and leads to a "quasi-equilibrium" for the original non-convex market.
413:. This formulation does not immediately generalize to higher dimensions: for a finite set of points in three-dimensional space, a neighborhood of a 6829: 6111: 5122: 4483: 1938:. Reflecting a pocket across its convex hull edge expands the given simple polygon into a polygon with the same perimeter and larger area, and the 6865:
Williams, Jason; Rossignac, Jarek (2005), "Tightening: curvature-limiting morphological simplification", in Kobbelt, Leif; Shapiro, Vadim (eds.),
2934:
of multivariate polynomials are convex hulls of points derived from the exponents of the terms in the polynomial, and can be used to analyze the
5344: 2824:
to the parameter alpha. The point set itself forms one endpoint of this family of shapes, and its convex hull forms the other endpoint. The
4401: 2584:
is the smallest affine subspace of a Euclidean space containing a given set, or the union of all affine combinations of points in the set.
2255:
of the hull. In two dimensions, it may suffice more simply to list the points that are vertices, in their cyclic order around the hull.
2591:
is the smallest linear subspace of a vector space containing a given set, or the union of all linear combinations of points in the set.
2018:, there will be times during the Brownian motion where the moving particle touches the boundary of the convex hull at a point of angle 7197: 2916:
Partition of seven points into three subsets with intersecting convex hulls, guaranteed to exist for any seven points in the plane by
1926:
encloses the given polygon and is partitioned by it into regions, one of which is the polygon itself. The other regions, bounded by a
707: 5519:
Kashiwabara, Kenji; Nakamura, Masataka; Okamoto, Yoshio (2005), "The affine representation theorem for abstract convex geometries",
2691:
is the intersection of all relatively convex supersets, where a set within the same polygon is relatively convex if it contains the
6336: 2516:
data structures can be used to keep track of the convex hull of a set of points undergoing insertions and deletions of points, and
2506:, matching the worst-case output complexity of the problem. The convex hull of a simple polygon in the plane can be constructed in 1321:
extends this theory from finite convex combinations of extreme points to infinite combinations (integrals) in more general spaces.
5375: 7097: 5010: 4742: 2103:
or finite set of space curves in general position in three-dimensional space, the parts of the boundary away from the curves are
1314: 5452:(1992), "Hyperconvex hulls of metric spaces", Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 2239:
of the required convex shape. Output representations that have been considered for convex hulls of point sets include a list of
2119:, the convex hull of two semicircles in perpendicular planes with a common center, and D-forms, the convex shapes obtained from 5716: 2258:
For convex hulls in two or three dimensions, the complexity of the corresponding algorithms is usually estimated in terms of
1934:. Computing the same decomposition recursively for each pocket forms a hierarchical description of a given polygon called its 99:
problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its
60:
that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a
7189: 6346: 6255: 6064: 5428: 4908: 6867:
Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling 2005, Cambridge, Massachusetts, USA, June 13-15, 2005
6264:
Rappoport, Ari (1992), "An efficient adaptive algorithm for constructing the convex differences tree of a simple polygon",
5045:, London Mathematical Society Lecture Note Series, vol. 111, Cambridge: Cambridge University Press, pp. 113–253, 4782: 4707: 72:
subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.
2996:
as well as to Euclidean spaces. However, in hyperbolic space, it is also possible to consider the convex hulls of sets of
6521: 5489: 3117:
of weights by finding and checking each convex hull vertex, often more efficiently than checking all possible solutions.
3113:, a different type of convex hull is also used, the convex hull of the weight vectors of solutions. One can maximize any 7202: 2120: 460:
It is not obvious that the first definition makes sense: why should there exist a unique minimal convex set containing
4895:, Contemporary Mathematics, vol. 453, Providence, Rhode Island: American Mathematical Society, pp. 231–255, 6488: 6218: 5930: 5734: 5577: 5333: 5259:(1873), "A method of geometrical representation of the thermodynamic properties of substances by means of surfaces", 5194: 5111: 3202:, the study of animal behavior, where it is a classic, though perhaps simplistic, approach in estimating an animal's 6240:
Mathematical Programming: The State of the Art (XIth International Symposium on Mathematical Programming, Bonn 1982)
5521: 4446: 3235:
of any quantum system — the set of all ways the system can be prepared — is a convex hull whose extreme points are
2938:
behavior of the polynomial and the valuations of its roots. Convex hulls and polynomials also come together in the
2427: 1391: 424:
For objects in three dimensions, the first definition states that the convex hull is the smallest possible convex
7451: 7222: 7139: 1909: 2459: 1833: 6979: 6604: 6177: 6003: 5634: 5212: 4884: 4620: 4349: 2598:
or positive hull of a subset of a vector space is the set of all positive combinations of points in the subset.
1981: 1636: 1278:
The compactness of convex hulls of compact sets, in finite-dimensional Euclidean spaces, is generalized by the
19:
This article is about the smallest convex shape enclosing a given shape. For boats whose hulls are convex, see
3283:(1873), although the paper was published before the convex hull was so named. In a set of energies of several 3240: 2652:
The circular hull or alpha-hull of a subset of the plane is the intersection of all disks with a given radius
1166:. The points on or above the red curve provide an example of a closed set whose convex hull is open (the open 6945: 6745: 6740: 6294: 5454: 4930: 3216: 3243:
proves that any mixed state can in fact be written as a convex combination of pure states in multiple ways.
149:
for two or three dimensional point sets, and in time matching the worst-case output complexity given by the
7456: 3236: 3110: 580:
is included among the sets being intersected. Thus, it is exactly the unique minimal convex set containing
7242: 3182:
is a measurement of the size of a sailing vessel, defined using the convex hull of a cross-section of the
6940: 6475:, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge: Cambridge University Press, 3156: 3058:. The outer shaded region is the convex hull, and the inner shaded region is the 50% Tukey depth contour. 2780: 2721: 2318:. For higher-dimensional hulls, the number of faces of other dimensions may also come into the analysis. 3296:
The lower convex hull of points in the plane appears, in the form of a Newton polygon, in a letter from
7441: 7207: 6731:(1986), "An optimal algorithm for computing the relative convex hull of a set of points in a polygon", 6446: 3094: 2885: 2848:
Convex hulls have wide applications in many fields. Within mathematics, convex hulls are used to study
2381: 2115:, the convex hull of two circles in perpendicular planes, each passing through the other's center, the 643:, so the set of all convex combinations is contained in the intersection of all convex sets containing 4774: 2751: 1705: 7247: 7237: 6777: 6424: 6035: 5775: 5037:(1987), "Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces", in 3152: 3005: 2725: 2045: 1591: 1279: 856:
and in three-dimensional space it is a tetrahedron. Therefore, every convex combination of points of
393:
and then releasing it, allowing it to contract; when it becomes taut, it encloses the convex hull of
6720: 4840:
Cranston, M.; Hsu, P.; March, P. (1989), "Smoothness of the convex hull of planar Brownian motion",
4796: 4545: 3328:). Other terms, such as "convex envelope", were also used in this time frame. By 1938, according to 1939: 421:
of finding a minimum-energy surface above a given shape can have the convex hull as their solution.
216:
if it contains the line segments connecting each pair of its points. The convex hull of a given set
7446: 7227: 7212: 7054: 5535: 5415:, Topics in Current Chemistry, vol. 345, Springer International Publishing, pp. 139–179, 3098: 3082: 3016: 3009: 2889: 2877: 1310: 1299: 1954:
in the plane, at any fixed time, has probability 1 of having a convex hull whose boundary forms a
1438: 432:, and the definition using convex combinations may be extended from Euclidean spaces to arbitrary 7297: 7274: 7168: 7092: 6935: 6238:(1983), "Polyhedral combinatorics", in Bachem, Achim; Korte, Bernhard; Grötschel, Martin (eds.), 5276: 3190:, the perimeter of the cross-section itself, except for boats and ships that have a convex hull. 2946:
of the derivative of a polynomial all lie within the convex hull of the roots of the polynomial.
2939: 20: 6109:
Oberman, Adam M. (2007), "The convex envelope is the solution of a nonlinear obstacle problem",
5213:"A local nearest-neighbor convex-hull construction of home ranges and utilization distributions" 2387: 2345: 114: 7415: 7376: 7292: 7217: 7144: 7129: 7082: 6715: 6355: 6235: 5530: 4791: 4540: 3148: 3132: 3126: 2989:
concern the existence of partitions of point sets into subsets with intersecting convex hulls.
2893: 2737: 2710: 2699: 2655: 2552: 2232: 2226: 2162: 429: 181: 173: 169: 108: 7361: 7353: 7349: 7345: 7341: 7337: 5987: 5443: 5058: 7436: 7149: 6379: 6198: 5855: 5484: 5291: 5093: 4842: 4531: 4393: 4373: 4337: 3471:, p. 6. The idea of partitioning the hull into two chains comes from an efficient variant of 2986: 2966: 2917: 2729: 2138: 2132: 2021: 1961: 962: 104: 6362:, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, 2748:, are mathematically related to convex hulls: the Delaunay triangulation of a point set in 2433: 7154: 7020: 6985: 6899: 6858: 6800: 6768: 6700: 6668: 6627: 6576: 6552: 6498: 6408: 6367: 6317: 6228: 6164: 6134: 6082: 6024: 5971: 5940: 5901:
Laurentini, A. (1994), "The visual hull concept for silhouette-based image understanding",
5894: 5853:; Ĺ mulian, V. (1940), "On regularly convex sets in the space conjugate to a Banach space", 5744: 5705: 5653: 5595: 5552: 5512: 5477: 5390: 5367: 5312: 5256: 5229: 5204: 5151: 5050: 5001: 4997: 4990: 4971: 4959: 4918: 4873: 4763: 4730: 4698: 4611: 4562: 4514: 4467: 4422: 4385: 3280: 3114: 2684: 2605:
of a three-dimensional object, with respect to a set of viewpoints, consists of the points
2566: 1955: 819: 5809: 8: 7087: 7077: 7072: 6647: 5038: 5030: 4705:
Chang, J. S.; Yap, C.-K. (1986), "A polynomial solution for the potato-peeling problem",
4150:. See in particular Section 16.9, Non Convexity and Approximate Equilibrium, pp. 209–210. 3136: 3039: 3020: 2935: 2517: 2513: 2423: 2104: 2039: 1787: 1780: 1675: 931: 773: 342: 150: 6086: 5657: 5599: 5383:
Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971)
5271: 5233: 4347:
Andrew, A. M. (1979), "Another efficient algorithm for convex hulls in two dimensions",
3070:, a method for visualizing the spread of two-dimensional sample points. The contours of 1130: 1083: 623:
must (by the assumption that it is convex) contain all convex combinations of points in
7316: 7034: 6916: 6886: 6846: 6816: 6728: 6707: 6672: 6631: 6556: 6530: 6470: 6396: 6321: 6281: 6098: 5975: 5882: 5828: 5792: 5748: 5669: 5643: 5616: 5561:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
5394: 5245: 5155: 5139: 5081: 4947: 4888: 4861: 4809: 4637: 4599: 4566: 4522: 4502: 4426: 3168: 3144: 3106: 3024: 2982: 2943: 2741: 2628: 2608: 2325: 2301: 2281: 2261: 2192: 2168: 2144: 1883: 1813: 1793: 1758: 1738: 1553: 1533: 1513: 1484: 1464: 1418: 1398: 1369: 1349: 1106: 1063: 1043: 1012: 988: 968: 944: 923: 879: 859: 799: 753: 733: 713: 686: 666: 646: 626: 606: 583: 563: 543: 523: 503: 483: 463: 396: 376: 352: 317: 291: 285: 265: 243: 219: 100: 65: 5319: 4833: 4497: 4459: 3085:
is the convex hull of the risk points of its underlying deterministic decision rules.
2705:
The orthogonal convex hull is a special case of a much more general construction, the
1880:. In particular, in two and three dimensions the number of faces is at most linear in 7134: 6975: 6954: 6791: 6759: 6676: 6595: 6505: 6484: 6459: 6342: 6325: 6251: 6214: 6205:, Algorithms and Computation in Mathematics, vol. 11, Springer, pp. 12–13, 6190: 6060: 6016: 5926: 5796: 5730: 5621: 5573: 5503: 5468: 5434: 5424: 5329: 5304: 5241: 5190: 5174: 5159: 5107: 5085: 4904: 4633: 4362: 3212: 3183: 3063: 2978: 2865: 2861: 2646: 2522: 2240: 2210: 1732: 1080:-dimensional, then every point of the hull belongs to an open convex hull of at most 935: 433: 428:
of the objects. The definition using intersections of convex sets may be extended to
6890: 6635: 6560: 6285: 6102: 5979: 5673: 5358: 5249: 4813: 4641: 4430: 3674: 3662: 3638: 3389: 3387: 3385: 750:-dimensional Euclidean space, every convex combination of finitely many points from 341:
in the Euclidean plane, not all on one line, the boundary of the convex hull is the
7287: 7232: 7123: 7118: 6908: 6878: 6870: 6838: 6786: 6754: 6685:"Fixed points for condensing multifunctions in metric spaces with convex structure" 6656: 6613: 6585: 6540: 6476: 6455: 6437: 6433: 6388: 6303: 6273: 6243: 6206: 6186: 6150: 6120: 6090: 6052: 6012: 5959: 5910: 5872: 5864: 5837: 5805: 5784: 5770: 5756: 5752: 5722: 5691: 5661: 5611: 5603: 5540: 5498: 5463: 5416: 5353: 5323: 5300: 5237: 5182: 5170: 5131: 5099: 5073: 5019: 4967: 4939: 4896: 4851: 4829: 4801: 4770: 4751: 4737: 4716: 4686: 4652: 4629: 4591: 4577: 4570: 4550: 4526: 4492: 4474: 4455: 4410: 4358: 3794: 3353: 3321: 3305: 3151:
can be used to prove the existence of an equilibrium. When actual economic data is
3102: 2993: 2881: 2836:
of a polygon is the largest convex polygon contained inside it. It can be found in
2706: 2298:, the number of points on the convex hull, which may be significantly smaller than 2248: 2244: 2214: 2123:
for a surface formed by gluing together two planar convex sets of equal perimeter.
1776: 1335: 1272: 1167: 663:. Conversely, the set of all convex combinations is itself a convex set containing 441: 418: 95:
can be represented by applying this closure operator to finite sets of points. The
88: 6684: 6599: 6544: 6125: 5696: 1914: 7307: 7278: 7252: 7173: 7158: 7067: 7039: 7016: 6854: 6796: 6764: 6696: 6664: 6623: 6572: 6548: 6494: 6415: 6404: 6363: 6332: 6313: 6247: 6224: 6160: 6130: 6056: 6020: 5967: 5936: 5890: 5801: 5740: 5721:, Lecture Notes in Computer Science, vol. 606, Heidelberg: Springer-Verlag, 5701: 5548: 5544: 5508: 5473: 5386: 5363: 5342:
Gustin, William (1947), "On the interior of the convex hull of a Euclidean set",
5308: 5200: 5147: 5046: 4986: 4955: 4914: 4869: 4759: 4726: 4694: 4672: 4607: 4558: 4510: 4463: 4418: 4381: 3382: 3317: 3313: 3301: 3228: 3078: 2970: 2954: 2950: 2931: 2857: 2837: 2745: 2649:
as the largest shape that could have the same outlines from the given viewpoints.
2186: 1951: 1927: 1699: 1628: 1603: 1268: 1163: 500:? However, the second definition, the intersection of all convex sets containing 425: 209: 185: 161: 61: 6971: 6958: 6733:
Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2
3172: 2897: 1257:{\displaystyle \left\{(x,y)\mathop {\bigg |} y\geq {\frac {1}{1+x^{2}}}\right\}} 7394: 7302: 7163: 7062: 6642: 6519:
Seaton, Katherine A. (2017), "Sphericons and D-forms: a crocheted connection",
6466: 5607: 5449: 5166: 5005: 4900: 4660: 4441: 3698: 3276: 3013: 2923: 2688: 2236: 1923: 1669: 1318: 1124: 157: 6277: 6210: 6094: 6001:(1979), "A linear algorithm for finding the convex hull of a simple polygon", 5877: 5680:
Kiselman, Christer O. (2002), "A semigroup of operators in convexity theory",
5665: 5186: 4690: 3004:
in Euclidean space, and their metric properties play an important role in the
1123:. The sets of vertices of a square, regular octahedron, or higher-dimensional 7430: 7178: 6897:
Worton, Bruce J. (1995), "A convex hull-based estimator of home-range size",
6480: 5282: 5034: 5023: 4856: 4755: 4656: 3284: 3001: 2958: 2825: 2108: 1587: 1305: 1287: 414: 177: 84: 6874: 6660: 6618: 5120:
Gardner, L. Terrell (1984), "An elementary proof of the Russo-Dye theorem",
5043:
Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)
4478: 3912: 3910: 3239:
known as pure states and whose interior points are called mixed states. The
3012:. Hyperbolic convex hulls have also been used as part of the calculation of 1282:, according to which the closed convex hull of a weakly compact subset of a 7399: 6031: 5947: 5842: 5819: 5712: 5625: 5438: 4880: 4648: 4554: 3413: 3297: 3251: 2833: 2821: 2714: 2595: 2252: 1574:
When applied to a finite set of points, this is the closure operator of an
1283: 437: 189: 5726: 5413:
Prediction and Calculation of Crystal Structures: Methods and Applications
5103: 4820:
Chen, Qinyu; Wang, Guozhao (March 2003), "A class of BĂ©zier-like curves",
156:
As well as for finite point sets, convex hulls have also been studied for
7389: 7384: 6645:(1914), "Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung)", 6175:(1984), "On the definition and computation of rectilinear convex hulls", 6172: 5648: 5420: 5328:, Graduate Texts in Mathematics, vol. 221 (2nd ed.), Springer, 5286: 4925: 3907: 3472: 3329: 3232: 3179: 3071: 2997: 2869: 2816: 2602: 2588: 2581: 2546: 2507: 2319: 2100: 1575: 1506: 1034: 370: 338: 165: 92: 80: 69: 6820: 6743:(1993), "Convex hulls and isometries of cusped hyperbolic 3-manifolds", 5181:, Mathematics: Theory & Applications, Birkhäuser, pp. 193–213, 3934: 3409: 3034:
for the application of convex hulls to this subject, and the section on
1313:, every compact convex set in a Euclidean space (or more generally in a 7312: 7282: 7044: 6920: 6850: 6589: 6567:
Sedykh, V. D. (1981), "Structure of the convex hull of a space curve",
6419: 6400: 6374: 6308: 6292:
Reay, John R. (1979), "Several generalizations of Tverberg's theorem",
5998: 5963: 5886: 5850: 5815: 5788: 5143: 4951: 4865: 4805: 4721: 4603: 4506: 4437: 4369: 3304:
in 1676. The term "convex hull" itself appears as early as the work of
3203: 3187: 3140: 2974: 2962: 2927: 2901: 2896:
to non-convex markets. In geometric modeling, the convex hull property
2853: 2849: 2560: 1030: 1006: 213: 57: 33: 6155: 5914: 3610: 6963: 6882: 5220: 5077: 4647: 4414: 3816: 3800: 3680: 3668: 3644: 3468: 3393: 3256: 2116: 683:, so it also contains the intersection of all convex sets containing 346: 96: 6912: 6842: 6392: 6377:(1961), "Holomorphically convex sets in several complex variables", 5868: 5135: 4943: 4595: 2912: 7321: 6535: 4879: 3704: 3199: 3198:
The convex hull is commonly known as the minimum convex polygon in
2692: 2530: 1175: 853: 76: 41: 4580:(1935), "Integration of functions with values in a Banach space", 3854: 2087: 452: 440:; convex hulls may also be generalized in a more abstract way, to 7102: 6710:(1983), "Solving geometric problems with the rotating calipers", 5559:
Katoh, Naoki (1992), "Bicriteria network optimization problems",
5272:
The Scientific Papers of J. Willard Gibbs, Vol. I: Thermodynamics
3207: 3067: 3055: 2873: 849: 703:, and therefore the second and third definitions are equivalent. 311: 28: 4678:
International Journal of Computational Geometry and Applications
1334:
The convex-hull operator has the characteristic properties of a
83:
are compact. Every compact convex set is the convex hull of its
5823: 3260: 2876:
visualization of two-dimensional data, and define risk sets of
1918:
Convex hull ( in blue and yellow) of a simple polygon (in blue)
1594:
bounding the distance of a Minkowski sum from its convex hull.
5903:
IEEE Transactions on Pattern Analysis and Machine Intelligence
5165: 4093: 4016: 1619: 1586:
The operations of constructing the convex hull and taking the
1158: 6047:
Nicola, Piercarlo (2000), "General Competitive Equilibrium",
4996: 3916: 3782: 3356:. However, this term is also frequently used to refer to the 2892:. In economics, convex hulls can be used to apply methods of 2526: 2112: 2092: 200: 7015: 6170: 5261:
Transactions of the Connecticut Academy of Arts and Sciences
5179:
Discriminants, Resultants, and Multidimensional Determinants
3940: 3710: 2042:
of this set of exceptional times is (with high probability)
520:, is well-defined. It is a subset of every other convex set 4618:
Brown, K. Q. (1979), "Voronoi diagrams from convex hulls",
3734: 3372: 3370: 3271:
is expected to be unstable as it lies above the lower hull.
2380:. For points in two and three dimensions, more complicated 5952:
International Journal of Computer and Information Sciences
5950:(1983), "On finding the convex hull of a simple polygon", 5632:
Kirkpatrick, K. A. (2006), "The Schrödinger–HJW theorem",
5518: 3770: 3616: 3066:, the convex hull provides one of the key components of a 3050: 1942:
states that this expansion process eventually terminates.
5059:"Convex polytopes, algebraic geometry, and combinatorics" 4775:"An optimal convex hull algorithm in any fixed dimension" 4339:
Convex Sets and Their Applications. Summer Lectures 1959.
4069: 3885: 3883: 3881: 3758: 3635:, Theorem 1.1.2 (pages 2–3) and Chapter 3. 3494: 1930:
of the polygon and a single convex hull edge, are called
1153: 5567: 5008:(1983), "On the shape of a set of points in the plane", 4240: 4216: 4183: 3367: 204:
Convex hull of a bounded planar set: rubber band analogy
5289:(1983), "Finding the convex hull of a simple polygon", 4228: 4204: 896:, and the third and fourth definitions are equivalent. 600:. Therefore, the first two definitions are equivalent. 4520: 3895: 3878: 3860: 3650: 2884:
of solutions to combinatorial problems are central to
6827:
Whitley, Robert (1986), "The KreÄ­n-Ĺ mulian theorem",
6775:
Westermann, L. R. J. (1976), "On the hull operator",
6072: 6049:
Mainstream Mathematical Economics in the 20th Century
5376:"Mathematical models for statistical decision theory" 4675:(2012), "Three problems about dynamic convex hulls", 4187: 3922: 3866: 3686: 2783: 2754: 2658: 2631: 2611: 2462: 2436: 2390: 2348: 2328: 2304: 2284: 2264: 2195: 2171: 2147: 2048: 2024: 1984: 1964: 1886: 1836: 1816: 1796: 1761: 1741: 1708: 1678: 1639: 1556: 1536: 1516: 1487: 1467: 1441: 1421: 1401: 1372: 1352: 1324: 1187: 1133: 1109: 1086: 1066: 1046: 1015: 991: 971: 947: 882: 862: 822: 802: 776: 756: 736: 716: 689: 669: 649: 629: 609: 586: 566: 546: 526: 506: 486: 466: 399: 379: 355: 320: 294: 268: 246: 222: 117: 6952: 6444:
Sakuma, Itsuo (1977), "Closedness of convex hulls",
6141:
Okon, T. (2000), "Choquet theory in metric spaces",
4473: 4153: 4021: 3994: 3982: 3946: 3598: 3520: 3206:
based on points where the animal has been observed.
3155:, it can be made convex by taking convex hulls. The 2777:
can be viewed as the projection of a convex hull in
6807:White, F. Puryer (April 1923), "Pure mathematics", 4665:
Computational Geometry: Algorithms and Applications
4045: 4033: 3558: 3101:, central objects of study are the convex hulls of 32:The convex hull of the red set is the blue and red 6414: 5177:(1994), "6. Newton Polytopes and Chow Polytopes", 4192: 4105: 4099: 3746: 3722: 3419: 3352:refers to the fact that the convex hull defines a 2807: 2769: 2728:, obtained as an intersection of sublevel sets of 2672: 2637: 2617: 2498: 2448: 2414: 2372: 2334: 2310: 2290: 2270: 2201: 2177: 2153: 2071: 2030: 2010: 1970: 1892: 1872: 1822: 1802: 1767: 1747: 1723: 1690: 1660: 1562: 1542: 1522: 1493: 1473: 1453: 1427: 1407: 1378: 1358: 1256: 1142: 1115: 1095: 1072: 1052: 1021: 997: 977: 953: 888: 868: 840: 808: 788: 762: 742: 722: 695: 675: 655: 635: 615: 592: 572: 552: 532: 512: 492: 472: 405: 385: 361: 326: 300: 274: 252: 228: 141: 6864: 5683:Transactions of the American Mathematical Society 5057:Escobar, Laura; Kaveh, Kiumars (September 2020), 4891:(2008), "All polygons flip finitely ... right?", 4583:Transactions of the American Mathematical Society 4436: 4312: 4252: 4165: 4129: 4081: 3970: 3958: 3788: 3482: 3405: 3360:, with which it should not be confused — see e.g 1210: 7428: 6830:Proceedings of the American Mathematical Society 6112:Proceedings of the American Mathematical Society 5211:Getz, Wayne M.; Wilmers, Christopher C. (2004), 5123:Proceedings of the American Mathematical Society 4839: 4740:(1985), "On the convex layers of a planar set", 4484:Proceedings of the American Mathematical Society 4444:(1997), "How good are convex hull algorithms?", 4057: 3842: 3716: 3586: 3431: 6648:Journal fĂĽr die Reine und Angewandte Mathematik 4965: 4126:; see especially remarks following Theorem 2.9. 3740: 2384:are known that compute the convex hull in time 262:The intersection of all convex sets containing 4893:Surveys on Discrete and Computational Geometry 3023:, and applied to determine the equivalence of 876:belongs to a simplex whose vertices belong to 87:. The convex hull operator is an example of a 7001: 6510:: CS1 maint: DOI inactive as of March 2024 ( 6143:Zeitschrift fĂĽr Analysis und ihre Anwendungen 5487:(1976), "Normality and the numerical range", 5345:Bulletin of the American Mathematical Society 5029: 4075: 3917:Edelsbrunner, Kirkpatrick & Seidel (1983) 3448: 3446: 3410:answer to "the perimeter of a non-convex set" 3088: 2840:, but the exponent of the algorithm is high. 2625:such that every ray from a viewpoint through 2251:of facets and their adjacencies, or the full 2161:on a real vector space is the function whose 1731:. Each extreme point of the hull is called a 447: 6422:(1999), "The bagplot: A bivariate boxplot", 6331: 5996: 5849: 5585: 5066:Notices of the American Mathematical Society 5056: 4481:(1982), "Quantitative Helly-type theorems", 4402:Notices of the American Mathematical Society 4293: 4246: 4222: 3941:Ottmann, Soisalon-Soininen & Wood (1984) 3828: 3628: 2488: 2474: 2456:, the time for computing the convex hull is 2165:is the lower convex hull of the epigraph of 2095:, the convex hull of two circles in 3d space 1862: 1848: 1790:, the number of faces of the convex hull of 1346:, meaning that the convex hull of every set 1267:(the set of points that lie on or above the 6354: 6234: 5814: 5631: 5210: 4529:(1999), "Data structures for mobile data", 4234: 4210: 4123: 3776: 3764: 3576: 3500: 3452: 3376: 2724:is a generalization of similar concepts to 240:The (unique) minimal convex set containing 7008: 6994: 6774: 5900: 5824:"On extreme points of regular convex sets" 5098:, Cambridge University Press, p. 55, 4017:Gel'fand, Kapranov & Zelevinsky (1994) 3901: 3889: 3617:Kashiwabara, Nakamura & Okamoto (2005) 3443: 3109:can be used to find optimal solutions. In 2709:, which can be thought of as the smallest 2499:{\displaystyle O(n^{\lfloor d/2\rfloor })} 1873:{\displaystyle O(n^{\lfloor d/2\rfloor })} 16:Smallest convex set containing a given set 6809:Science Progress in the Twentieth Century 6790: 6758: 6727: 6719: 6706: 6617: 6534: 6472:Convex Bodies: The Brunn–Minkowski Theory 6465: 6307: 6263: 6154: 6124: 5876: 5841: 5695: 5647: 5615: 5534: 5502: 5467: 5357: 5281: 4855: 4795: 4720: 4544: 4496: 4378:Algebraic Numbers and Algebraic Functions 3928: 3872: 3832: 3692: 3632: 3178:In the geometry of boat and ship design, 2786: 2757: 2011:{\displaystyle \pi /2<\theta <\pi } 1711: 1661:{\displaystyle S\subset \mathbb {R} ^{d}} 1648: 908: 6641: 6338:Quantum Computing: A Gentle Introduction 6196: 5773:(December 1922), "Ăśber konvexe Körper", 5679: 5448: 5318: 4819: 4769: 4736: 4704: 4576: 4394:"The mathematics of Grace Murray Hopper" 4184:Kernohan, Gitzen & Millspaugh (2001) 4159: 4027: 4000: 3988: 3952: 3812: 3656: 3604: 3531: 3512: 3309: 3250: 3049: 2911: 2086: 1913: 1618: 1530:, the convex hull of the convex hull of 1157: 913: 899: 770:is also a convex combination of at most 451: 199: 27: 7098:Locally convex topological vector space 6826: 6712:Proceedings of IEEE MELECON '83, Athens 6108: 5483: 5410: 5119: 5011:IEEE Transactions on Information Theory 4743:IEEE Transactions on Information Theory 4270: 4051: 4039: 3564: 3425: 3038:for their application to the theory of 2864:involve convex hulls. They are used in 1315:locally convex topological vector space 7429: 6896: 6682: 6594: 6569:Trudy Seminara imeni I. G. Petrovskogo 6566: 6518: 6443: 6046: 6030: 5373: 5341: 4346: 4285: 4198: 4147: 4111: 3861:Basch, Guibas & Hershberger (1999) 3752: 3728: 3631:, Theorem 3, pages 562–563; 3552: 3539: 3516: 3488: 3476: 1633:The convex hull of a finite point set 1154:Preservation of topological properties 816:. The set of convex combinations of a 6989: 6953: 6806: 6739: 6600:"Remarks on piecewise-linear algebra" 6373: 5985: 5769: 5711: 5570:Radio Tracking and Animal Populations 5558: 5255: 5091: 4924: 4783:Discrete & Computational Geometry 4708:Discrete & Computational Geometry 4617: 4380:, Gordon and Breach, pp. 37–43, 4368: 4318: 4306: 4274: 4258: 4188:Nilsen, Pedersen & Linnell (2008) 4171: 4135: 4087: 4012: 3976: 3964: 3437: 3325: 3162: 2536: 1597: 1174:Topologically, the convex hull of an 1009:itself (as happens, for instance, if 6291: 6171:Ottmann, T.; Soisalon-Soininen, E.; 6140: 5275:, Longmans, Green, & Co., 1906, 4671: 4391: 4289: 4063: 3848: 3592: 3521:Bárány, Katchalski & Pach (1982) 3215:method by combining convex hulls of 3139:, agents are assumed to have convex 3031: 2213:) and, in this form, is dual to the 1614: 1286:(a subset that is compact under the 373:so that it surrounds the entire set 64:, or equivalently as the set of all 21:Hull (watercraft) § Hull shapes 6522:Journal of Mathematics and the Arts 5989:Encyclopaedia of Ships and Shipping 5946: 5920: 5490:Linear Algebra and Its Applications 4335: 3836: 3580: 3535: 3456: 3361: 3186:of the vessel. It differs from the 2808:{\displaystyle \mathbb {R} ^{n+1}.} 1395:, meaning that, for every two sets 1329: 13: 6689:KĹŤdai Mathematical Seminar Reports 5923:Convex Sets and their Applications 4100:Rousseeuw, Ruts & Tukey (1999) 3222: 2278:, the number of input points, and 1945: 1903: 1623:Convex hull of points in the plane 1550:is the same as the convex hull of 1481:is a subset of the convex hull of 1325:Geometric and algebraic properties 961:is the intersection of all closed 14: 7468: 6928: 6735:, North-Holland, pp. 853–856 4979:Journal for Geometry and Graphics 4498:10.1090/S0002-9939-1982-0663877-X 3789:Avis, Bremner & Seidel (1997) 3316:appears earlier, for instance in 3312:), and the corresponding term in 3246: 3171:, one of the key properties of a 3035: 2713:containing the points of a given 2687:of a subset of a two-dimensional 1956:continuously differentiable curve 1293: 1040:If the open convex hull of a set 456:3D convex hull of 120 point cloud 5242:10.1111/j.0906-7590.2004.03835.x 3717:Cranston, Hsu & March (1989) 2770:{\displaystyle \mathbb {R} ^{n}} 2559: 2545: 1830:-dimensional Euclidean space is 1724:{\displaystyle \mathbb {R} ^{d}} 1609: 1581: 7203:Ekeland's variational principle 6341:, MIT Press, pp. 215–216, 6199:"1.2.1 The Gauss–Lucas theorem" 5359:10.1090/S0002-9904-1947-08787-5 4822:Computer Aided Geometric Design 4299: 4279: 4264: 4177: 4141: 4117: 4006: 3822: 3806: 3622: 3570: 3545: 3525: 3506: 3406:Williams & Rossignac (2005) 3237:positive-semidefinite operators 2843: 2322:can compute the convex hull of 2121:Alexandrov's uniqueness theorem 2082: 2072:{\displaystyle 1-\pi /2\theta } 1910:Convex hull of a simple polygon 1127:provide examples where exactly 369:. One may imagine stretching a 68:of points in the subset. For a 6980:Wolfram Demonstrations Project 6605:Pacific Journal of Mathematics 6438:10.1080/00031305.1999.10474494 6242:, Springer, pp. 312–345, 6051:, Springer, pp. 197–215, 6004:Information Processing Letters 5635:Foundations of Physics Letters 5095:Phase Transitions in Materials 4972:"The development of the oloid" 4621:Information Processing Letters 4350:Information Processing Letters 3462: 3399: 3342: 2969:describes the convex hulls of 2907: 2695:between any two of its points. 2493: 2466: 2409: 2394: 2367: 2352: 2220: 1867: 1840: 1205: 1193: 835: 823: 195: 136: 121: 107:, are fundamental problems of 79:are open, and convex hulls of 1: 6746:Topology and Its Applications 6582:Journal of Soviet Mathematics 6545:10.1080/17513472.2017.1318512 6335:; Polak, Wolfgang H. (2011), 6295:Israel Journal of Mathematics 6126:10.1090/S0002-9939-07-08887-9 5697:10.1090/S0002-9947-02-02915-X 5455:Topology and Its Applications 4931:American Mathematical Monthly 4834:10.1016/s0167-8396(03)00003-7 4460:10.1016/S0925-7721(96)00023-5 4328: 3741:Dirnböck & Stachel (1997) 3045: 111:. They can be solved in time 6792:10.1016/1385-7258(76)90065-2 6760:10.1016/0166-8641(93)90032-9 6460:10.1016/0022-0531(77)90095-3 6248:10.1007/978-3-642-68874-4_13 6197:Prasolov, Victor V. (2004), 6191:10.1016/0020-0255(84)90025-2 6057:10.1007/978-3-662-04238-0_16 6017:10.1016/0020-0190(79)90069-3 5545:10.1016/j.comgeo.2004.05.001 5504:10.1016/0024-3795(76)90080-x 5469:10.1016/0166-8641(92)90092-E 5305:10.1016/0196-6774(83)90013-5 4634:10.1016/0020-0190(79)90074-7 4363:10.1016/0020-0190(79)90072-3 3137:general economic equilibrium 3120: 3111:multi-objective optimization 2868:as the outermost contour of 2428:Kirkpatrick–Seidel algorithm 2342:points in the plane in time 2126: 1454:{\displaystyle X\subseteq Y} 926:of the convex hull, and the 7: 7223:Hermite–Hadamard inequality 6941:Encyclopedia of Mathematics 6036:"Letter to Henry Oldenburg" 5092:Fultz, Brent (April 2020), 4342:, Argon national laboratory 4076:Epstein & Marden (1987) 3193: 2722:holomorphically convex hull 2382:output-sensitive algorithms 2185:. It is the unique maximal 603:Each convex set containing 56:of a shape is the smallest 10: 7473: 6447:Journal of Economic Theory 5986:Mason, Herbert B. (1908), 5608:10.1038/s41598-019-56497-6 4294:Escobar & Kaveh (2020) 4223:Rieffel & Polak (2011) 3829:McCallum & Avis (1979) 3629:Krein & Ĺ mulian (1940) 3291: 3124: 3095:combinatorial optimization 3089:Combinatorial optimization 2961:is the convex hull of its 2886:combinatorial optimization 2860:, and several theorems in 2726:complex analytic manifolds 2415:{\displaystyle O(n\log h)} 2373:{\displaystyle O(n\log n)} 2224: 2130: 1907: 1626: 1297: 941:The closed convex hull of 448:Equivalence of definitions 142:{\displaystyle O(n\log n)} 18: 7408: 7375: 7330: 7261: 7187: 7111: 7053: 7027: 6869:, ACM, pp. 107–112, 6778:Indagationes Mathematicae 6683:Talman, Louis A. (1977), 6584:33 (4): 1140–1153, 1986, 6425:The American Statistician 6278:10.1111/1467-8659.1140235 6211:10.1007/978-3-642-03980-5 6095:10.1007/s11284-007-0421-9 5925:, John Wiley & Sons, 5776:Mathematische Zeitschrift 5666:10.1007/s10702-006-1852-1 5187:10.1007/978-0-8176-4771-1 4691:10.1142/S0218195912600096 4211:Getz & Wilmers (2004) 3577:Krein & Milman (1940) 3551:This example is given by 3408:. See also Douglas Zare, 3006:geometrization conjecture 2942:, according to which the 2878:randomized decision rules 2673:{\displaystyle 1/\alpha } 2525:method for computing the 2099:For the convex hull of a 1958:. However, for any angle 1755:and that encloses all of 1510:, meaning that for every 7409:Applications and related 7213:Fenchel-Young inequality 6481:10.1017/CBO9780511526282 5374:Harris, Bernard (1971), 5024:10.1109/TIT.1983.1056714 4928:(1938), "On convexity", 4756:10.1109/TIT.1985.1057060 4667:(3rd ed.), Springer 3335: 3099:polyhedral combinatorics 3083:randomized decision rule 3030:See also the section on 3010:low-dimensional topology 2890:polyhedral combinatorics 2680:that contain the subset. 1775:. For sets of points in 985:. If the convex hull of 934:(or in some sources the 103:problem of intersecting 7169:Legendre transformation 7093:Legendre transformation 6875:10.1145/1060244.1060257 6661:10.1515/crll.1914.144.1 6619:10.2140/pjm.1982.98.183 6483:(inactive 2024-03-18), 6356:Rockafellar, R. Tyrrell 6266:Computer Graphics Forum 5921:Lay, Steven R. (1982), 4374:"2.5. Newton's Polygon" 3833:Graham & Yao (1983) 3241:Schrödinger–HJW theorem 3157:Shapley–Folkman theorem 3147:. These assumptions of 3115:quasiconvex combination 2740:of a point set and its 2732:containing a given set. 2111:. Examples include the 2031:{\displaystyle \theta } 1971:{\displaystyle \theta } 1950:The curve generated by 1936:convex differences tree 1779:, the convex hull is a 1592:Shapley–Folkman theorem 852:; in the plane it is a 7452:Computational geometry 7416:Convexity in economics 7350:(lower) ideally convex 7208:Fenchel–Moreau theorem 7198:CarathĂ©odory's theorem 6042:, University of Oxford 5843:10.4064/sm-9-1-133-138 5522:Computational Geometry 4901:10.1090/conm/453/08801 4889:Toussaint, Godfried T. 4857:10.1214/aop/1176991500 4555:10.1006/jagm.1998.0988 4447:Computational Geometry 4160:Chen & Wang (2003) 4001:Chang & Yap (1986) 3272: 3149:convexity in economics 3127:Convexity in economics 3059: 2920: 2894:convexity in economics 2809: 2771: 2738:Delaunay triangulation 2711:injective metric space 2700:orthogonal convex hull 2674: 2639: 2619: 2553:Orthogonal convex hull 2500: 2450: 2449:{\displaystyle d>3} 2416: 2374: 2336: 2312: 2292: 2272: 2233:computational geometry 2227:Convex hull algorithms 2203: 2179: 2155: 2096: 2073: 2032: 2012: 1972: 1919: 1894: 1874: 1824: 1804: 1769: 1749: 1725: 1698:, or more generally a 1692: 1662: 1624: 1564: 1544: 1524: 1495: 1475: 1455: 1429: 1409: 1380: 1360: 1258: 1171: 1144: 1117: 1097: 1074: 1054: 1023: 999: 979: 955: 938:) of the convex hull. 909:Topological properties 890: 870: 848:-tuple of points is a 842: 810: 790: 764: 744: 724: 708:CarathĂ©odory's theorem 706:In fact, according to 697: 677: 657: 637: 617: 594: 574: 554: 534: 514: 494: 474: 457: 430:non-Euclidean geometry 407: 387: 363: 328: 302: 276: 254: 230: 205: 182:Delaunay triangulation 174:orthogonal convex hull 170:epigraphs of functions 153:in higher dimensions. 143: 109:computational geometry 37: 7338:Convex series related 7238:Shapley–Folkman lemma 6380:Annals of Mathematics 6302:(3): 238–244 (1980), 5856:Annals of Mathematics 5800:; see also review by 5727:10.1007/3-540-55611-7 5292:Journal of Algorithms 5228:(4), Wiley: 489–505, 5104:10.1017/9781108641449 5002:Kirkpatrick, David G. 4998:Edelsbrunner, Herbert 4843:Annals of Probability 4532:Journal of Algorithms 3817:de Berg et al. (2008) 3801:de Berg et al. (2008) 3705:Demaine et al. (2008) 3681:de Berg et al. (2008) 3669:de Berg et al. (2008) 3645:de Berg et al. (2008) 3469:de Berg et al. (2008) 3394:de Berg et al. (2008) 3254: 3053: 2915: 2810: 2772: 2730:holomorphic functions 2675: 2640: 2620: 2501: 2451: 2417: 2375: 2337: 2313: 2293: 2273: 2204: 2180: 2156: 2139:lower convex envelope 2133:Lower convex envelope 2090: 2074: 2033: 2013: 1973: 1922:The convex hull of a 1917: 1895: 1875: 1825: 1805: 1770: 1750: 1726: 1693: 1663: 1622: 1565: 1545: 1525: 1496: 1476: 1461:, the convex hull of 1456: 1430: 1410: 1381: 1361: 1290:) is weakly compact. 1280:Krein–Smulian theorem 1259: 1161: 1145: 1118: 1098: 1075: 1055: 1024: 1000: 980: 956: 914:Closed and open hulls 900:Upper and lower hulls 891: 871: 843: 841:{\displaystyle (d+1)} 811: 791: 765: 745: 725: 698: 678: 658: 638: 618: 595: 575: 555: 535: 515: 495: 475: 455: 408: 388: 364: 329: 303: 277: 255: 231: 208:A set of points in a 203: 144: 31: 7228:Krein–Milman theorem 7021:variational analysis 6178:Information Sciences 6034:(October 24, 1676), 5421:10.1007/128_2013_486 5385:, pp. 369–389, 4477:; Katchalski, Meir; 4392:Auel, Asher (2019), 3306:Garrett Birkhoff 3281:Josiah Willard Gibbs 3081:, the risk set of a 3040:developable surfaces 3021:hyperbolic manifolds 2781: 2752: 2685:relative convex hull 2656: 2629: 2609: 2567:Relative convex hull 2460: 2434: 2388: 2346: 2326: 2302: 2282: 2262: 2193: 2169: 2145: 2046: 2022: 1982: 1962: 1884: 1834: 1814: 1794: 1759: 1739: 1706: 1676: 1637: 1554: 1534: 1514: 1485: 1465: 1439: 1419: 1399: 1370: 1350: 1311:Krein–Milman theorem 1300:Krein–Milman theorem 1275:as its convex hull. 1185: 1131: 1107: 1084: 1064: 1044: 1033:or more generally a 1013: 989: 969: 945: 880: 860: 820: 800: 774: 754: 734: 714: 687: 667: 647: 627: 607: 584: 564: 544: 524: 504: 484: 464: 397: 377: 353: 318: 292: 266: 244: 220: 115: 7457:Geometry processing 7218:Jensen's inequality 7088:Lagrange multiplier 7078:Convex optimization 7073:Convex metric space 6729:Toussaint, Godfried 6708:Toussaint, Godfried 6416:Rousseeuw, Peter J. 6333:Rieffel, Eleanor G. 6087:2008EcoR...23..635N 6075:Ecological Research 5658:2006FoPhL..19...95K 5600:2019NatSR...920253K 5485:Johnson, Charles R. 5234:2004Ecogr..27..489G 4883:; Gassend, Blaise; 4523:Guibas, Leonidas J. 2940:Gauss–Lucas theorem 2518:kinetic convex hull 2514:Dynamic convex hull 2241:linear inequalities 2137:The convex hull or 2040:Hausdorff dimension 1788:upper bound theorem 1781:simplicial polytope 1691:{\displaystyle d=2} 1150:points are needed. 789:{\displaystyle d+1} 343:simple closed curve 286:convex combinations 151:upper bound theorem 66:convex combinations 7346:(cs, bcs)-complete 7317:Algebraic interior 7035:Convex combination 6955:Weisstein, Eric W. 6596:Sontag, Eduardo D. 6590:10.1007/BF01086114 6309:10.1007/BF02760885 6236:Pulleyblank, W. R. 6040:The Newton Project 5997:McCallum, Duncan; 5964:10.1007/BF00993195 5878:10338.dmlcz/100106 5829:Studia Mathematica 5789:10.1007/bf01215899 5588:Scientific Reports 5572:, Academic Press, 4806:10.1007/BF02573985 4722:10.1007/BF02187692 4440:; Bremner, David; 4235:Kirkpatrick (2006) 4124:Pulleyblank (1983) 3777:Rockafellar (1970) 3765:Rockafellar (1970) 3501:Rockafellar (1970) 3453:Rockafellar (1970) 3377:Rockafellar (1970) 3358:closed convex hull 3279:was identified by 3273: 3169:geometric modeling 3163:Geometric modeling 3145:convex preferences 3133:Arrow–Debreu model 3107:linear programming 3060: 2987:Tverberg's theorem 2921: 2918:Tverberg's theorem 2880:. Convex hulls of 2872:, are part of the 2805: 2767: 2670: 2635: 2615: 2537:Related structures 2496: 2446: 2412: 2370: 2332: 2308: 2288: 2268: 2199: 2175: 2151: 2097: 2069: 2028: 2008: 1968: 1940:ErdĹ‘s–Nagy theorem 1920: 1890: 1870: 1820: 1800: 1765: 1745: 1721: 1688: 1658: 1625: 1598:Projective duality 1560: 1540: 1520: 1491: 1471: 1451: 1425: 1405: 1376: 1356: 1254: 1172: 1143:{\displaystyle 2d} 1140: 1113: 1096:{\displaystyle 2d} 1093: 1070: 1050: 1019: 995: 975: 951: 920:closed convex hull 886: 866: 838: 806: 786: 760: 740: 720: 693: 673: 653: 633: 613: 590: 570: 550: 530: 510: 490: 470: 458: 434:real vector spaces 403: 383: 359: 324: 298: 272: 250: 236:may be defined as 226: 206: 139: 38: 7442:Closure operators 7424: 7423: 6976:Eric W. Weisstein 6741:Weeks, Jeffrey R. 6383:, Second Series, 6348:978-0-262-01506-6 6257:978-3-642-68876-8 6066:978-3-642-08638-0 5915:10.1109/34.273735 5859:, Second Series, 5430:978-3-319-05773-6 5283:Graham, Ronald L. 5257:Gibbs, Willard J. 5175:Zelevinsky, A. V. 5039:Epstein, D. B. A. 5031:Epstein, D. B. A. 4968:Stachel, Hellmuth 4910:978-0-8218-4239-3 4771:Chazelle, Bernard 4738:Chazelle, Bernard 4578:Birkhoff, Garrett 4527:Hershberger, John 4247:Kim et al. (2019) 3902:Laurentini (1994) 3890:Westermann (1976) 3275:A convex hull in 3213:local convex hull 3103:indicator vectors 3064:robust statistics 2994:hyperbolic spaces 2979:discrete geometry 2967:Russo–Dye theorem 2951:spectral analysis 2882:indicator vectors 2866:robust statistics 2862:discrete geometry 2647:3D reconstruction 2638:{\displaystyle p} 2618:{\displaystyle p} 2523:rotating calipers 2430:. For dimensions 2335:{\displaystyle n} 2311:{\displaystyle n} 2291:{\displaystyle h} 2271:{\displaystyle n} 2211:pointwise minimum 2202:{\displaystyle f} 2178:{\displaystyle f} 2154:{\displaystyle f} 1893:{\displaystyle n} 1823:{\displaystyle d} 1803:{\displaystyle n} 1786:According to the 1768:{\displaystyle S} 1748:{\displaystyle S} 1615:Finite point sets 1563:{\displaystyle X} 1543:{\displaystyle X} 1523:{\displaystyle X} 1494:{\displaystyle Y} 1474:{\displaystyle X} 1428:{\displaystyle Y} 1408:{\displaystyle X} 1379:{\displaystyle X} 1366:is a superset of 1359:{\displaystyle X} 1247: 1116:{\displaystyle X} 1073:{\displaystyle d} 1053:{\displaystyle X} 1022:{\displaystyle X} 998:{\displaystyle X} 978:{\displaystyle X} 954:{\displaystyle X} 936:relative interior 889:{\displaystyle X} 869:{\displaystyle X} 809:{\displaystyle X} 763:{\displaystyle X} 743:{\displaystyle d} 730:is a subset of a 723:{\displaystyle X} 696:{\displaystyle X} 676:{\displaystyle X} 656:{\displaystyle X} 636:{\displaystyle X} 616:{\displaystyle X} 593:{\displaystyle X} 573:{\displaystyle Y} 553:{\displaystyle X} 533:{\displaystyle Y} 513:{\displaystyle X} 493:{\displaystyle X} 473:{\displaystyle X} 442:oriented matroids 406:{\displaystyle S} 386:{\displaystyle S} 362:{\displaystyle X} 327:{\displaystyle X} 314:with vertices in 310:The union of all 301:{\displaystyle X} 275:{\displaystyle X} 253:{\displaystyle X} 229:{\displaystyle X} 212:is defined to be 7464: 7342:(cs, lcs)-closed 7288:Effective domain 7243:Robinson–Ursescu 7119:Convex conjugate 7010: 7003: 6996: 6987: 6986: 6968: 6967: 6949: 6923: 6907:(4): 1206–1215, 6893: 6861: 6823: 6803: 6794: 6771: 6762: 6736: 6724: 6723: 6703: 6679: 6638: 6621: 6580:, translated in 6579: 6563: 6538: 6515: 6509: 6501: 6462: 6440: 6411: 6370: 6351: 6328: 6311: 6288: 6260: 6231: 6193: 6167: 6158: 6137: 6128: 6119:(6): 1689–1694, 6105: 6069: 6043: 6027: 5993: 5982: 5943: 5917: 5897: 5880: 5846: 5845: 5799: 5766: 5765: 5764: 5755:, archived from 5718:Axioms and Hulls 5713:Knuth, Donald E. 5708: 5699: 5690:(5): 2035–2053, 5676: 5651: 5649:quant-ph/0305068 5628: 5619: 5582: 5564: 5563:, E75-A: 321–329 5555: 5538: 5515: 5506: 5480: 5471: 5462:(1–3): 181–187, 5441: 5407: 5406: 5405: 5399: 5393:, archived from 5380: 5370: 5361: 5338: 5325:Convex Polytopes 5320:GrĂĽnbaum, Branko 5315: 5268: 5252: 5217: 5207: 5162: 5116: 5088: 5078:10.1090/noti2137 5072:(8): 1116–1123, 5063: 5053: 5026: 4993: 4976: 4966:Dirnböck, Hans; 4962: 4921: 4885:O'Rourke, Joseph 4881:Demaine, Erik D. 4876: 4859: 4836: 4816: 4799: 4779: 4766: 4733: 4724: 4701: 4673:Chan, Timothy M. 4668: 4644: 4614: 4573: 4548: 4517: 4500: 4470: 4454:(5–6): 265–301, 4433: 4415:10.1090/noti1810 4398: 4388: 4365: 4343: 4336:Fan, Ky (1959), 4322: 4316: 4310: 4303: 4297: 4292:, page 336, and 4283: 4277: 4268: 4262: 4256: 4250: 4244: 4238: 4232: 4226: 4220: 4214: 4208: 4202: 4196: 4190: 4181: 4175: 4169: 4163: 4157: 4151: 4145: 4139: 4133: 4127: 4121: 4115: 4109: 4103: 4097: 4091: 4085: 4079: 4073: 4067: 4061: 4055: 4049: 4043: 4037: 4031: 4025: 4019: 4010: 4004: 3998: 3992: 3986: 3980: 3974: 3968: 3962: 3956: 3950: 3944: 3938: 3932: 3929:Toussaint (1986) 3926: 3920: 3914: 3905: 3899: 3893: 3887: 3876: 3873:Toussaint (1983) 3870: 3864: 3858: 3852: 3846: 3840: 3826: 3820: 3810: 3804: 3798: 3792: 3786: 3780: 3774: 3768: 3762: 3756: 3750: 3744: 3738: 3732: 3726: 3720: 3714: 3708: 3702: 3696: 3693:Rappoport (1992) 3690: 3684: 3678: 3672: 3666: 3660: 3654: 3648: 3642: 3636: 3633:Schneider (1993) 3626: 3620: 3614: 3608: 3602: 3596: 3590: 3584: 3574: 3568: 3562: 3556: 3549: 3543: 3529: 3523: 3510: 3504: 3498: 3492: 3486: 3480: 3466: 3460: 3450: 3441: 3435: 3429: 3423: 3417: 3403: 3397: 3391: 3380: 3374: 3365: 3354:closure operator 3348:The terminology 3346: 2971:unitary elements 2932:Newton polytopes 2858:unitary elements 2814: 2812: 2811: 2806: 2801: 2800: 2789: 2776: 2774: 2773: 2768: 2766: 2765: 2760: 2707:hyperconvex hull 2679: 2677: 2676: 2671: 2666: 2644: 2642: 2641: 2636: 2624: 2622: 2621: 2616: 2563: 2549: 2533:of a point set. 2505: 2503: 2502: 2497: 2492: 2491: 2484: 2455: 2453: 2452: 2447: 2424:Chan's algorithm 2422:. These include 2421: 2419: 2418: 2413: 2379: 2377: 2376: 2371: 2341: 2339: 2338: 2333: 2317: 2315: 2314: 2309: 2297: 2295: 2294: 2289: 2277: 2275: 2274: 2269: 2249:undirected graph 2247:of the hull, an 2215:convex conjugate 2208: 2206: 2205: 2200: 2184: 2182: 2181: 2176: 2160: 2158: 2157: 2152: 2078: 2076: 2075: 2070: 2062: 2037: 2035: 2034: 2029: 2017: 2015: 2014: 2009: 1992: 1977: 1975: 1974: 1969: 1899: 1897: 1896: 1891: 1879: 1877: 1876: 1871: 1866: 1865: 1858: 1829: 1827: 1826: 1821: 1809: 1807: 1806: 1801: 1777:general position 1774: 1772: 1771: 1766: 1754: 1752: 1751: 1746: 1730: 1728: 1727: 1722: 1720: 1719: 1714: 1697: 1695: 1694: 1689: 1667: 1665: 1664: 1659: 1657: 1656: 1651: 1569: 1567: 1566: 1561: 1549: 1547: 1546: 1541: 1529: 1527: 1526: 1521: 1500: 1498: 1497: 1492: 1480: 1478: 1477: 1472: 1460: 1458: 1457: 1452: 1434: 1432: 1431: 1426: 1414: 1412: 1411: 1406: 1385: 1383: 1382: 1377: 1365: 1363: 1362: 1357: 1336:closure operator 1330:Closure operator 1273:upper half-plane 1263: 1261: 1260: 1255: 1253: 1249: 1248: 1246: 1245: 1244: 1225: 1214: 1213: 1168:upper half-plane 1149: 1147: 1146: 1141: 1122: 1120: 1119: 1114: 1102: 1100: 1099: 1094: 1079: 1077: 1076: 1071: 1059: 1057: 1056: 1051: 1028: 1026: 1025: 1020: 1004: 1002: 1001: 996: 984: 982: 981: 976: 960: 958: 957: 952: 928:open convex hull 922:of a set is the 895: 893: 892: 887: 875: 873: 872: 867: 847: 845: 844: 839: 815: 813: 812: 807: 795: 793: 792: 787: 769: 767: 766: 761: 749: 747: 746: 741: 729: 727: 726: 721: 702: 700: 699: 694: 682: 680: 679: 674: 662: 660: 659: 654: 642: 640: 639: 634: 622: 620: 619: 614: 599: 597: 596: 591: 579: 577: 576: 571: 559: 557: 556: 551: 539: 537: 536: 531: 519: 517: 516: 511: 499: 497: 496: 491: 479: 477: 476: 471: 419:obstacle problem 412: 410: 409: 404: 392: 390: 389: 384: 368: 366: 365: 360: 333: 331: 330: 325: 307: 305: 304: 299: 281: 279: 278: 273: 259: 257: 256: 251: 235: 233: 232: 227: 148: 146: 145: 140: 89:closure operator 75:Convex hulls of 7472: 7471: 7467: 7466: 7465: 7463: 7462: 7461: 7447:Convex analysis 7427: 7426: 7425: 7420: 7404: 7371: 7326: 7257: 7183: 7174:Semi-continuity 7159:Convex function 7140:Logarithmically 7107: 7068:Convex geometry 7049: 7040:Convex function 7023: 7017:Convex analysis 7014: 6934: 6931: 6926: 6913:10.2307/2533254 6843:10.2307/2046536 6815:(68): 517–526, 6721:10.1.1.155.5671 6503: 6502: 6491: 6467:Schneider, Rolf 6393:10.2307/1970292 6360:Convex Analysis 6349: 6258: 6221: 6156:10.4171/ZAA/952 6067: 5933: 5869:10.2307/1968735 5802:Hans Rademacher 5762: 5760: 5737: 5580: 5450:Herrlich, Horst 5431: 5403: 5401: 5397: 5378: 5336: 5287:Yao, F. Frances 5269:; reprinted in 5215: 5197: 5171:Kapranov, M. M. 5167:Gel'fand, I. M. 5136:10.2307/2044692 5114: 5061: 5006:Seidel, Raimund 4974: 4944:10.2307/2302604 4911: 4797:10.1.1.113.8709 4777: 4661:Schwarzkopf, O. 4653:van Kreveld, M. 4596:10.2307/1989687 4546:10.1.1.134.6921 4521:Basch, Julien; 4442:Seidel, Raimund 4396: 4331: 4326: 4325: 4317: 4313: 4304: 4300: 4284: 4280: 4269: 4265: 4257: 4253: 4245: 4241: 4233: 4229: 4221: 4217: 4209: 4205: 4197: 4193: 4182: 4178: 4170: 4166: 4158: 4154: 4146: 4142: 4134: 4130: 4122: 4118: 4110: 4106: 4098: 4094: 4086: 4082: 4074: 4070: 4062: 4058: 4050: 4046: 4038: 4034: 4028:Prasolov (2004) 4026: 4022: 4011: 4007: 3999: 3995: 3989:Chazelle (1985) 3987: 3983: 3975: 3971: 3963: 3959: 3953:Herrlich (1992) 3951: 3947: 3939: 3935: 3927: 3923: 3915: 3908: 3900: 3896: 3888: 3879: 3871: 3867: 3859: 3855: 3847: 3843: 3827: 3823: 3813:Chazelle (1993) 3811: 3807: 3799: 3795: 3787: 3783: 3775: 3771: 3763: 3759: 3751: 3747: 3739: 3735: 3727: 3723: 3715: 3711: 3703: 3699: 3691: 3687: 3679: 3675: 3667: 3663: 3657:GrĂĽnbaum (2003) 3655: 3651: 3643: 3639: 3627: 3623: 3615: 3611: 3605:Kiselman (2002) 3603: 3599: 3591: 3587: 3575: 3571: 3563: 3559: 3550: 3546: 3532:GrĂĽnbaum (2003) 3530: 3526: 3513:Steinitz (1914) 3511: 3507: 3499: 3495: 3487: 3483: 3467: 3463: 3451: 3444: 3436: 3432: 3424: 3420: 3416:, May 16, 2014. 3404: 3400: 3392: 3383: 3375: 3368: 3347: 3343: 3338: 3318:Hans Rademacher 3302:Henry Oldenburg 3294: 3285:stoichiometries 3270: 3266: 3255:Convex hull of 3249: 3229:quantum physics 3225: 3223:Quantum physics 3196: 3165: 3129: 3123: 3091: 3079:decision theory 3077:In statistical 3048: 3032:Brownian motion 2983:Radon's theorem 2955:numerical range 2924:Newton polygons 2910: 2846: 2838:polynomial time 2790: 2785: 2784: 2782: 2779: 2778: 2761: 2756: 2755: 2753: 2750: 2749: 2746:Voronoi diagram 2662: 2657: 2654: 2653: 2630: 2627: 2626: 2610: 2607: 2606: 2573: 2572: 2571: 2570: 2569: 2564: 2556: 2555: 2550: 2539: 2480: 2473: 2469: 2461: 2458: 2457: 2435: 2432: 2431: 2389: 2386: 2385: 2347: 2344: 2343: 2327: 2324: 2323: 2303: 2300: 2299: 2283: 2280: 2279: 2263: 2260: 2259: 2243:describing the 2229: 2223: 2194: 2191: 2190: 2187:convex function 2170: 2167: 2166: 2146: 2143: 2142: 2135: 2129: 2085: 2058: 2047: 2044: 2043: 2023: 2020: 2019: 1988: 1983: 1980: 1979: 1963: 1960: 1959: 1952:Brownian motion 1948: 1946:Brownian motion 1928:polygonal chain 1912: 1906: 1904:Simple polygons 1885: 1882: 1881: 1854: 1847: 1843: 1835: 1832: 1831: 1815: 1812: 1811: 1795: 1792: 1791: 1760: 1757: 1756: 1740: 1737: 1736: 1715: 1710: 1709: 1707: 1704: 1703: 1700:convex polytope 1677: 1674: 1673: 1652: 1647: 1646: 1638: 1635: 1634: 1631: 1629:Convex polytope 1617: 1612: 1604:projective dual 1600: 1584: 1555: 1552: 1551: 1535: 1532: 1531: 1515: 1512: 1511: 1486: 1483: 1482: 1466: 1463: 1462: 1440: 1437: 1436: 1420: 1417: 1416: 1400: 1397: 1396: 1371: 1368: 1367: 1351: 1348: 1347: 1332: 1327: 1302: 1296: 1271:) has the open 1269:witch of Agnesi 1240: 1236: 1229: 1224: 1209: 1208: 1192: 1188: 1186: 1183: 1182: 1164:witch of Agnesi 1156: 1132: 1129: 1128: 1108: 1105: 1104: 1085: 1082: 1081: 1065: 1062: 1061: 1045: 1042: 1041: 1014: 1011: 1010: 990: 987: 986: 970: 967: 966: 946: 943: 942: 916: 911: 902: 881: 878: 877: 861: 858: 857: 821: 818: 817: 801: 798: 797: 775: 772: 771: 755: 752: 751: 735: 732: 731: 715: 712: 711: 688: 685: 684: 668: 665: 664: 648: 645: 644: 628: 625: 624: 608: 605: 604: 585: 582: 581: 565: 562: 561: 545: 542: 541: 525: 522: 521: 505: 502: 501: 485: 482: 481: 465: 462: 461: 450: 426:bounding volume 398: 395: 394: 378: 375: 374: 354: 351: 350: 319: 316: 315: 293: 290: 289: 284:The set of all 267: 264: 263: 245: 242: 241: 221: 218: 217: 210:Euclidean space 198: 186:Voronoi diagram 162:Brownian motion 158:simple polygons 116: 113: 112: 62:Euclidean space 50:convex envelope 24: 17: 12: 11: 5: 7470: 7460: 7459: 7454: 7449: 7444: 7439: 7422: 7421: 7419: 7418: 7412: 7410: 7406: 7405: 7403: 7402: 7397: 7395:Strong duality 7392: 7387: 7381: 7379: 7373: 7372: 7370: 7369: 7334: 7332: 7328: 7327: 7325: 7324: 7319: 7310: 7305: 7303:John ellipsoid 7300: 7295: 7290: 7285: 7271: 7265: 7263: 7259: 7258: 7256: 7255: 7250: 7245: 7240: 7235: 7230: 7225: 7220: 7215: 7210: 7205: 7200: 7194: 7192: 7190:results (list) 7185: 7184: 7182: 7181: 7176: 7171: 7166: 7164:Invex function 7161: 7152: 7147: 7142: 7137: 7132: 7126: 7121: 7115: 7113: 7109: 7108: 7106: 7105: 7100: 7095: 7090: 7085: 7080: 7075: 7070: 7065: 7063:Choquet theory 7059: 7057: 7051: 7050: 7048: 7047: 7042: 7037: 7031: 7029: 7028:Basic concepts 7025: 7024: 7013: 7012: 7005: 6998: 6990: 6984: 6983: 6969: 6950: 6930: 6929:External links 6927: 6925: 6924: 6894: 6862: 6837:(2): 376–377, 6824: 6804: 6785:(2): 179–184, 6772: 6753:(2): 127–149, 6737: 6725: 6704: 6695:(1–2): 62–70, 6680: 6639: 6612:(1): 183–201, 6592: 6571:(6): 239–256, 6564: 6529:(4): 187–202, 6516: 6489: 6463: 6454:(1): 223–227, 6441: 6432:(4): 382–387, 6420:Tukey, John W. 6412: 6387:(3): 470–493, 6371: 6352: 6347: 6329: 6289: 6272:(4): 235–240, 6261: 6256: 6232: 6219: 6194: 6185:(3): 157–171, 6168: 6149:(2): 303–314, 6138: 6106: 6081:(3): 635–639, 6070: 6065: 6044: 6028: 6011:(5): 201–206, 5994: 5983: 5944: 5931: 5918: 5909:(2): 150–162, 5898: 5863:(3): 556–583, 5847: 5812: 5783:(1): 208–210, 5767: 5735: 5709: 5677: 5629: 5583: 5578: 5565: 5556: 5536:10.1.1.14.4965 5529:(2): 129–144, 5516: 5481: 5446: 5429: 5408: 5371: 5352:(4): 299–301, 5339: 5334: 5316: 5299:(4): 324–331, 5279: 5253: 5208: 5195: 5163: 5117: 5112: 5089: 5054: 5027: 5018:(4): 551–559, 4994: 4985:(2): 105–118, 4963: 4938:(4): 199–209, 4922: 4909: 4877: 4850:(1): 144–150, 4837: 4817: 4790:(1): 377–409, 4767: 4750:(4): 509–517, 4734: 4715:(2): 155–182, 4702: 4685:(4): 341–364, 4669: 4657:Overmars, Mark 4645: 4628:(5): 223–228, 4615: 4590:(2): 357–378, 4574: 4518: 4491:(1): 109–114, 4471: 4434: 4409:(3): 330–340, 4389: 4366: 4357:(5): 216–219, 4344: 4332: 4330: 4327: 4324: 4323: 4311: 4298: 4278: 4271:Hautier (2014) 4263: 4251: 4239: 4227: 4215: 4203: 4191: 4186:, p. 137–140; 4176: 4164: 4152: 4140: 4128: 4116: 4104: 4092: 4080: 4068: 4056: 4052:Gardner (1984) 4044: 4040:Johnson (1976) 4032: 4020: 4005: 3993: 3981: 3969: 3957: 3945: 3933: 3921: 3906: 3894: 3877: 3865: 3853: 3841: 3821: 3805: 3793: 3781: 3779:, p. 149. 3769: 3757: 3745: 3733: 3721: 3709: 3697: 3685: 3683:, p. 245. 3673: 3671:, p. 256. 3661: 3649: 3647:, p. 254. 3637: 3621: 3609: 3597: 3585: 3569: 3565:Whitley (1986) 3557: 3544: 3524: 3505: 3493: 3481: 3461: 3442: 3430: 3426:Oberman (2007) 3418: 3398: 3381: 3366: 3350:convex closure 3340: 3339: 3337: 3334: 3293: 3290: 3277:thermodynamics 3268: 3264: 3248: 3247:Thermodynamics 3245: 3224: 3221: 3195: 3192: 3164: 3161: 3125:Main article: 3122: 3119: 3090: 3087: 3047: 3044: 3017:triangulations 3002:ruled surfaces 2926:of univariate 2909: 2906: 2845: 2842: 2804: 2799: 2796: 2793: 2788: 2764: 2759: 2734: 2733: 2718: 2703: 2696: 2689:simple polygon 2681: 2669: 2665: 2661: 2650: 2634: 2614: 2599: 2592: 2585: 2576:For instance: 2565: 2558: 2557: 2551: 2544: 2543: 2542: 2541: 2540: 2538: 2535: 2495: 2490: 2487: 2483: 2479: 2476: 2472: 2468: 2465: 2445: 2442: 2439: 2411: 2408: 2405: 2402: 2399: 2396: 2393: 2369: 2366: 2363: 2360: 2357: 2354: 2351: 2331: 2307: 2287: 2267: 2237:representation 2225:Main article: 2222: 2219: 2198: 2174: 2150: 2141:of a function 2131:Main article: 2128: 2125: 2109:ruled surfaces 2084: 2081: 2068: 2065: 2061: 2057: 2054: 2051: 2027: 2007: 2004: 2001: 1998: 1995: 1991: 1987: 1967: 1947: 1944: 1924:simple polygon 1908:Main article: 1905: 1902: 1889: 1869: 1864: 1861: 1857: 1853: 1850: 1846: 1842: 1839: 1819: 1799: 1764: 1744: 1718: 1713: 1687: 1684: 1681: 1670:convex polygon 1655: 1650: 1645: 1642: 1627:Main article: 1616: 1613: 1611: 1608: 1599: 1596: 1583: 1580: 1572: 1571: 1559: 1539: 1519: 1502: 1490: 1470: 1450: 1447: 1444: 1424: 1404: 1392:non-decreasing 1387: 1375: 1355: 1331: 1328: 1326: 1323: 1319:Choquet theory 1298:Main article: 1295: 1294:Extreme points 1292: 1265: 1264: 1252: 1243: 1239: 1235: 1232: 1228: 1223: 1220: 1217: 1212: 1207: 1204: 1201: 1198: 1195: 1191: 1155: 1152: 1139: 1136: 1125:cross-polytope 1112: 1092: 1089: 1069: 1049: 1018: 994: 974: 950: 915: 912: 910: 907: 901: 898: 885: 865: 837: 834: 831: 828: 825: 805: 785: 782: 779: 759: 739: 719: 692: 672: 652: 632: 612: 589: 569: 549: 540:that contains 529: 509: 489: 469: 449: 446: 402: 382: 358: 335: 334: 323: 308: 297: 282: 271: 260: 249: 225: 197: 194: 138: 135: 132: 129: 126: 123: 120: 85:extreme points 54:convex closure 15: 9: 6: 4: 3: 2: 7469: 7458: 7455: 7453: 7450: 7448: 7445: 7443: 7440: 7438: 7435: 7434: 7432: 7417: 7414: 7413: 7411: 7407: 7401: 7398: 7396: 7393: 7391: 7388: 7386: 7383: 7382: 7380: 7378: 7374: 7367: 7365: 7359: 7357: 7351: 7347: 7343: 7339: 7336: 7335: 7333: 7329: 7323: 7320: 7318: 7314: 7311: 7309: 7306: 7304: 7301: 7299: 7296: 7294: 7291: 7289: 7286: 7284: 7280: 7276: 7272: 7270: 7267: 7266: 7264: 7260: 7254: 7251: 7249: 7246: 7244: 7241: 7239: 7236: 7234: 7233:Mazur's lemma 7231: 7229: 7226: 7224: 7221: 7219: 7216: 7214: 7211: 7209: 7206: 7204: 7201: 7199: 7196: 7195: 7193: 7191: 7186: 7180: 7179:Subderivative 7177: 7175: 7172: 7170: 7167: 7165: 7162: 7160: 7156: 7153: 7151: 7148: 7146: 7143: 7141: 7138: 7136: 7133: 7131: 7127: 7125: 7122: 7120: 7117: 7116: 7114: 7110: 7104: 7101: 7099: 7096: 7094: 7091: 7089: 7086: 7084: 7081: 7079: 7076: 7074: 7071: 7069: 7066: 7064: 7061: 7060: 7058: 7056: 7055:Topics (list) 7052: 7046: 7043: 7041: 7038: 7036: 7033: 7032: 7030: 7026: 7022: 7018: 7011: 7006: 7004: 6999: 6997: 6992: 6991: 6988: 6981: 6977: 6973: 6972:"Convex Hull" 6970: 6966: 6965: 6960: 6959:"Convex Hull" 6956: 6951: 6947: 6943: 6942: 6937: 6936:"Convex hull" 6933: 6932: 6922: 6918: 6914: 6910: 6906: 6902: 6901: 6895: 6892: 6888: 6884: 6880: 6876: 6872: 6868: 6863: 6860: 6856: 6852: 6848: 6844: 6840: 6836: 6832: 6831: 6825: 6822: 6818: 6814: 6810: 6805: 6802: 6798: 6793: 6788: 6784: 6780: 6779: 6773: 6770: 6766: 6761: 6756: 6752: 6748: 6747: 6742: 6738: 6734: 6730: 6726: 6722: 6717: 6713: 6709: 6705: 6702: 6698: 6694: 6690: 6686: 6681: 6678: 6674: 6670: 6666: 6662: 6658: 6655:(144): 1–40, 6654: 6650: 6649: 6644: 6640: 6637: 6633: 6629: 6625: 6620: 6615: 6611: 6607: 6606: 6601: 6597: 6593: 6591: 6587: 6583: 6578: 6574: 6570: 6565: 6562: 6558: 6554: 6550: 6546: 6542: 6537: 6532: 6528: 6524: 6523: 6517: 6513: 6507: 6500: 6496: 6492: 6490:0-521-35220-7 6486: 6482: 6478: 6474: 6473: 6468: 6464: 6461: 6457: 6453: 6449: 6448: 6442: 6439: 6435: 6431: 6427: 6426: 6421: 6418:; Ruts, Ida; 6417: 6413: 6410: 6406: 6402: 6398: 6394: 6390: 6386: 6382: 6381: 6376: 6372: 6369: 6365: 6361: 6357: 6353: 6350: 6344: 6340: 6339: 6334: 6330: 6327: 6323: 6319: 6315: 6310: 6305: 6301: 6297: 6296: 6290: 6287: 6283: 6279: 6275: 6271: 6267: 6262: 6259: 6253: 6249: 6245: 6241: 6237: 6233: 6230: 6226: 6222: 6220:3-540-40714-6 6216: 6212: 6208: 6204: 6200: 6195: 6192: 6188: 6184: 6180: 6179: 6174: 6169: 6166: 6162: 6157: 6152: 6148: 6144: 6139: 6136: 6132: 6127: 6122: 6118: 6114: 6113: 6107: 6104: 6100: 6096: 6092: 6088: 6084: 6080: 6076: 6071: 6068: 6062: 6058: 6054: 6050: 6045: 6041: 6037: 6033: 6032:Newton, Isaac 6029: 6026: 6022: 6018: 6014: 6010: 6006: 6005: 6000: 5995: 5992:, p. 698 5991: 5990: 5984: 5981: 5977: 5973: 5969: 5965: 5961: 5957: 5953: 5949: 5945: 5942: 5938: 5934: 5932:0-471-09584-2 5928: 5924: 5919: 5916: 5912: 5908: 5904: 5899: 5896: 5892: 5888: 5884: 5879: 5874: 5870: 5866: 5862: 5858: 5857: 5852: 5848: 5844: 5839: 5835: 5831: 5830: 5825: 5821: 5820:Milman, David 5817: 5813: 5811: 5807: 5803: 5798: 5794: 5790: 5786: 5782: 5778: 5777: 5772: 5768: 5759:on 2017-06-20 5758: 5754: 5750: 5746: 5742: 5738: 5736:3-540-55611-7 5732: 5728: 5724: 5720: 5719: 5714: 5710: 5707: 5703: 5698: 5693: 5689: 5685: 5684: 5678: 5675: 5671: 5667: 5663: 5659: 5655: 5650: 5645: 5642:(1): 95–102, 5641: 5637: 5636: 5630: 5627: 5623: 5618: 5613: 5609: 5605: 5601: 5597: 5593: 5589: 5584: 5581: 5579:9780080540221 5575: 5571: 5566: 5562: 5557: 5554: 5550: 5546: 5542: 5537: 5532: 5528: 5524: 5523: 5517: 5514: 5510: 5505: 5500: 5496: 5492: 5491: 5486: 5482: 5479: 5475: 5470: 5465: 5461: 5457: 5456: 5451: 5447: 5445: 5440: 5436: 5432: 5426: 5422: 5418: 5414: 5409: 5400:on 2021-02-28 5396: 5392: 5388: 5384: 5377: 5372: 5369: 5365: 5360: 5355: 5351: 5347: 5346: 5340: 5337: 5335:9780387004242 5331: 5327: 5326: 5321: 5317: 5314: 5310: 5306: 5302: 5298: 5294: 5293: 5288: 5284: 5280: 5278: 5274: 5273: 5266: 5262: 5258: 5254: 5251: 5247: 5243: 5239: 5235: 5231: 5227: 5223: 5222: 5214: 5209: 5206: 5202: 5198: 5196:0-8176-3660-9 5192: 5188: 5184: 5180: 5176: 5172: 5168: 5164: 5161: 5157: 5153: 5149: 5145: 5141: 5137: 5133: 5129: 5125: 5124: 5118: 5115: 5113:9781108641449 5109: 5105: 5101: 5097: 5096: 5090: 5087: 5083: 5079: 5075: 5071: 5067: 5060: 5055: 5052: 5048: 5044: 5040: 5036: 5032: 5028: 5025: 5021: 5017: 5013: 5012: 5007: 5003: 4999: 4995: 4992: 4988: 4984: 4980: 4973: 4969: 4964: 4961: 4957: 4953: 4949: 4945: 4941: 4937: 4933: 4932: 4927: 4923: 4920: 4916: 4912: 4906: 4902: 4898: 4894: 4890: 4886: 4882: 4878: 4875: 4871: 4867: 4863: 4858: 4853: 4849: 4845: 4844: 4838: 4835: 4831: 4827: 4823: 4818: 4815: 4811: 4807: 4803: 4798: 4793: 4789: 4785: 4784: 4776: 4772: 4768: 4765: 4761: 4757: 4753: 4749: 4745: 4744: 4739: 4735: 4732: 4728: 4723: 4718: 4714: 4710: 4709: 4703: 4700: 4696: 4692: 4688: 4684: 4680: 4679: 4674: 4670: 4666: 4662: 4658: 4654: 4650: 4646: 4643: 4639: 4635: 4631: 4627: 4623: 4622: 4616: 4613: 4609: 4605: 4601: 4597: 4593: 4589: 4585: 4584: 4579: 4575: 4572: 4568: 4564: 4560: 4556: 4552: 4547: 4542: 4538: 4534: 4533: 4528: 4524: 4519: 4516: 4512: 4508: 4504: 4499: 4494: 4490: 4486: 4485: 4480: 4476: 4472: 4469: 4465: 4461: 4457: 4453: 4449: 4448: 4443: 4439: 4435: 4432: 4428: 4424: 4420: 4416: 4412: 4408: 4404: 4403: 4395: 4390: 4387: 4383: 4379: 4375: 4371: 4367: 4364: 4360: 4356: 4352: 4351: 4345: 4341: 4340: 4334: 4333: 4320: 4315: 4308: 4302: 4295: 4291: 4287: 4286:Newton (1676) 4282: 4276: 4272: 4267: 4260: 4255: 4248: 4243: 4236: 4231: 4224: 4219: 4212: 4207: 4200: 4199:Worton (1995) 4195: 4189: 4185: 4180: 4173: 4168: 4161: 4156: 4149: 4148:Nicola (2000) 4144: 4137: 4132: 4125: 4120: 4113: 4112:Harris (1971) 4108: 4101: 4096: 4089: 4084: 4077: 4072: 4065: 4060: 4053: 4048: 4041: 4036: 4029: 4024: 4018: 4014: 4009: 4002: 3997: 3990: 3985: 3978: 3973: 3966: 3961: 3954: 3949: 3942: 3937: 3930: 3925: 3918: 3913: 3911: 3903: 3898: 3891: 3886: 3884: 3882: 3874: 3869: 3862: 3857: 3850: 3845: 3838: 3834: 3830: 3825: 3818: 3814: 3809: 3803:, p. 13. 3802: 3797: 3790: 3785: 3778: 3773: 3767:, p. 36. 3766: 3761: 3754: 3753:Seaton (2017) 3749: 3742: 3737: 3730: 3729:Sedykh (1981) 3725: 3718: 3713: 3706: 3701: 3694: 3689: 3682: 3677: 3670: 3665: 3659:, p. 57. 3658: 3653: 3646: 3641: 3634: 3630: 3625: 3618: 3613: 3606: 3601: 3594: 3589: 3582: 3578: 3573: 3566: 3561: 3555:, Remark 2.6. 3554: 3553:Talman (1977) 3548: 3541: 3540:Sakuma (1977) 3537: 3533: 3528: 3522: 3518: 3517:Gustin (1947) 3514: 3509: 3503:, p. 99. 3502: 3497: 3490: 3489:Sontag (1982) 3485: 3478: 3477:Andrew (1979) 3474: 3470: 3465: 3458: 3454: 3449: 3447: 3439: 3434: 3427: 3422: 3415: 3411: 3407: 3402: 3395: 3390: 3388: 3386: 3379:, p. 12. 3378: 3373: 3371: 3363: 3359: 3355: 3351: 3345: 3341: 3333: 3331: 3327: 3323: 3320:'s review of 3319: 3315: 3311: 3307: 3303: 3299: 3289: 3286: 3282: 3278: 3263:compounds. Mg 3262: 3258: 3253: 3244: 3242: 3238: 3234: 3230: 3220: 3218: 3217:neighborhoods 3214: 3209: 3205: 3201: 3191: 3189: 3185: 3181: 3176: 3174: 3170: 3160: 3158: 3154: 3150: 3146: 3142: 3138: 3134: 3128: 3118: 3116: 3112: 3108: 3104: 3100: 3096: 3086: 3084: 3080: 3075: 3073: 3069: 3065: 3057: 3052: 3043: 3041: 3037: 3033: 3028: 3026: 3022: 3018: 3015: 3011: 3007: 3003: 2999: 2995: 2990: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2960: 2959:normal matrix 2956: 2952: 2947: 2945: 2941: 2937: 2933: 2929: 2925: 2919: 2914: 2905: 2903: 2899: 2898:BĂ©zier curves 2895: 2891: 2887: 2883: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2851: 2841: 2839: 2835: 2830: 2827: 2826:convex layers 2823: 2818: 2802: 2797: 2794: 2791: 2762: 2747: 2743: 2739: 2731: 2727: 2723: 2719: 2716: 2712: 2708: 2704: 2701: 2697: 2694: 2690: 2686: 2682: 2667: 2663: 2659: 2651: 2648: 2632: 2612: 2604: 2600: 2597: 2593: 2590: 2586: 2583: 2579: 2578: 2577: 2568: 2562: 2554: 2548: 2534: 2532: 2528: 2524: 2519: 2515: 2511: 2509: 2485: 2481: 2477: 2470: 2463: 2443: 2440: 2437: 2429: 2425: 2406: 2403: 2400: 2397: 2391: 2383: 2364: 2361: 2358: 2355: 2349: 2329: 2321: 2305: 2285: 2265: 2256: 2254: 2250: 2246: 2242: 2238: 2234: 2228: 2218: 2216: 2212: 2196: 2189:majorized by 2188: 2172: 2164: 2148: 2140: 2134: 2124: 2122: 2118: 2114: 2110: 2106: 2102: 2094: 2089: 2080: 2066: 2063: 2059: 2055: 2052: 2049: 2041: 2025: 2005: 2002: 1999: 1996: 1993: 1989: 1985: 1978:in the range 1965: 1957: 1953: 1943: 1941: 1937: 1933: 1929: 1925: 1916: 1911: 1901: 1887: 1859: 1855: 1851: 1844: 1837: 1817: 1797: 1789: 1784: 1782: 1778: 1762: 1742: 1734: 1716: 1701: 1685: 1682: 1679: 1671: 1653: 1643: 1640: 1630: 1621: 1610:Special cases 1607: 1605: 1595: 1593: 1589: 1588:Minkowski sum 1582:Minkowski sum 1579: 1577: 1557: 1537: 1517: 1509: 1508: 1503: 1488: 1468: 1448: 1445: 1442: 1422: 1402: 1394: 1393: 1388: 1373: 1353: 1345: 1341: 1340: 1339: 1337: 1322: 1320: 1316: 1312: 1307: 1306:extreme point 1301: 1291: 1289: 1288:weak topology 1285: 1281: 1276: 1274: 1270: 1250: 1241: 1237: 1233: 1230: 1226: 1221: 1218: 1215: 1202: 1199: 1196: 1189: 1181: 1180: 1179: 1177: 1169: 1165: 1160: 1151: 1137: 1134: 1126: 1110: 1090: 1087: 1067: 1047: 1038: 1036: 1032: 1016: 1008: 1005:is already a 992: 972: 964: 948: 939: 937: 933: 929: 925: 921: 906: 897: 883: 863: 855: 851: 832: 829: 826: 803: 783: 780: 777: 757: 737: 717: 709: 704: 690: 670: 650: 630: 610: 601: 587: 567: 547: 527: 507: 487: 467: 454: 445: 443: 439: 438:affine spaces 435: 431: 427: 422: 420: 416: 415:spanning tree 400: 380: 372: 356: 348: 345:with minimum 344: 340: 321: 313: 309: 295: 288:of points in 287: 283: 269: 261: 247: 239: 238: 237: 223: 215: 211: 202: 193: 191: 187: 183: 179: 178:convex layers 175: 171: 167: 163: 159: 154: 152: 133: 130: 127: 124: 118: 110: 106: 102: 98: 94: 90: 86: 82: 78: 73: 71: 67: 63: 59: 55: 51: 47: 43: 35: 30: 26: 22: 7437:Convex hulls 7400:Weak duality 7363: 7355: 7275:Orthogonally 7268: 6962: 6939: 6904: 6898: 6866: 6834: 6828: 6812: 6808: 6782: 6776: 6750: 6744: 6732: 6711: 6692: 6688: 6652: 6646: 6643:Steinitz, E. 6609: 6603: 6581: 6568: 6526: 6520: 6471: 6451: 6445: 6429: 6423: 6384: 6378: 6359: 6337: 6299: 6293: 6269: 6265: 6239: 6202: 6182: 6176: 6173:Wood, Derick 6146: 6142: 6116: 6110: 6078: 6074: 6048: 6039: 6008: 6002: 5988: 5958:(2): 87–98, 5955: 5951: 5922: 5906: 5902: 5860: 5854: 5833: 5827: 5780: 5774: 5771:KĹ‘nig, DĂ©nes 5761:, retrieved 5757:the original 5717: 5687: 5681: 5639: 5633: 5594:(1): 20253, 5591: 5587: 5569: 5560: 5526: 5520: 5497:(1): 89–94, 5494: 5488: 5459: 5453: 5412: 5402:, retrieved 5395:the original 5382: 5349: 5343: 5324: 5296: 5290: 5270: 5264: 5260: 5225: 5219: 5178: 5127: 5121: 5094: 5069: 5065: 5042: 5015: 5009: 4982: 4978: 4935: 4929: 4926:Dines, L. L. 4892: 4847: 4841: 4828:(1): 29–39, 4825: 4821: 4787: 4781: 4747: 4741: 4712: 4706: 4682: 4676: 4664: 4625: 4619: 4587: 4581: 4536: 4530: 4488: 4482: 4475:Bárány, Imre 4451: 4445: 4406: 4400: 4377: 4354: 4348: 4338: 4319:Dines (1938) 4314: 4307:White (1923) 4301: 4281: 4275:Fultz (2020) 4266: 4259:Gibbs (1873) 4254: 4242: 4230: 4218: 4206: 4194: 4179: 4172:Mason (1908) 4167: 4155: 4143: 4136:Katoh (1992) 4131: 4119: 4107: 4095: 4088:Weeks (1993) 4083: 4071: 4059: 4047: 4035: 4023: 4013:Artin (1967) 4008: 3996: 3984: 3977:Brown (1979) 3972: 3965:Rossi (1961) 3960: 3948: 3936: 3924: 3897: 3868: 3856: 3844: 3824: 3808: 3796: 3784: 3772: 3760: 3748: 3736: 3724: 3712: 3700: 3688: 3676: 3664: 3652: 3640: 3624: 3612: 3600: 3588: 3572: 3560: 3547: 3527: 3508: 3496: 3484: 3464: 3438:Knuth (1992) 3433: 3421: 3414:MathOverflow 3401: 3396:, p. 3. 3357: 3349: 3344: 3298:Isaac Newton 3295: 3274: 3226: 3197: 3177: 3173:BĂ©zier curve 3166: 3130: 3092: 3076: 3061: 3036:space curves 3029: 2998:ideal points 2991: 2948: 2922: 2847: 2844:Applications 2834:convex skull 2831: 2822:circumradius 2817:alpha shapes 2735: 2715:metric space 2596:conical hull 2574: 2512: 2257: 2253:face lattice 2230: 2136: 2098: 2083:Space curves 1949: 1935: 1931: 1921: 1785: 1632: 1601: 1585: 1573: 1505: 1390: 1343: 1333: 1303: 1284:Banach space 1277: 1266: 1173: 1039: 940: 927: 919: 917: 903: 705: 602: 480:, for every 459: 423: 339:bounded sets 336: 207: 190:convex skull 166:space curves 155: 91:, and every 81:compact sets 74: 53: 49: 45: 39: 25: 7390:Duality gap 7385:Dual system 7269:Convex hull 6375:Rossi, Hugo 6203:Polynomials 5999:Avis, David 5836:: 133–138, 5816:Krein, Mark 4649:de Berg, M. 4539:(1): 1–28, 4479:Pach, János 4438:Avis, David 4370:Artin, Emil 4309:, page 520. 4305:See, e.g., 4290:Auel (2019) 4064:Reay (1979) 3849:Chan (2012) 3593:Okon (2000) 3473:Graham scan 3330:Lloyd Dines 3233:state space 3219:of points. 3180:chain girth 3141:budget sets 3072:Tukey depth 2963:eigenvalues 2928:polynomials 2908:Mathematics 2870:Tukey depth 2854:eigenvalues 2850:polynomials 2603:visual hull 2589:linear hull 2582:affine hull 2508:linear time 2320:Graham scan 2221:Computation 2217:operation. 2105:developable 2101:space curve 1576:antimatroid 1035:compact set 965:containing 963:half-spaces 371:rubber band 349:containing 196:Definitions 105:half-spaces 97:algorithmic 93:antimatroid 46:convex hull 7431:Categories 7313:Radial set 7283:Convex set 7045:Convex set 6900:Biometrics 6536:1603.08409 5948:Lee, D. T. 5810:48.0835.01 5763:2011-09-15 5404:2020-01-01 5130:(1): 171, 5035:Marden, A. 4329:References 3837:Lee (1983) 3581:Lay (1982) 3536:Lay (1982) 3457:Lay (1982) 3362:Fan (1959) 3204:home range 3188:skin girth 3153:non-convex 3046:Statistics 2975:C*-algebra 2936:asymptotic 2902:home range 1810:points in 1507:idempotent 1103:points of 1031:finite set 1007:closed set 796:points in 560:, because 58:convex set 34:convex set 7298:Hypograph 6964:MathWorld 6946:EMS Press 6883:1853/3736 6716:CiteSeerX 6677:122998337 6326:121352925 5851:Krein, M. 5797:128041360 5531:CiteSeerX 5277:pp. 33–54 5267:: 382–404 5221:Ecography 5160:119501393 5086:221659506 4792:CiteSeerX 4541:CiteSeerX 3819:, p. 256. 3538:, p. 21; 3534:, p. 16; 3455:, p. 12; 3257:magnesium 3121:Economics 3014:canonical 2852:, matrix 2668:α 2489:⌋ 2475:⌊ 2404:⁡ 2362:⁡ 2127:Functions 2117:sphericon 2067:θ 2056:π 2053:− 2026:θ 2006:π 2000:θ 1986:π 1966:θ 1863:⌋ 1849:⌊ 1644:⊂ 1446:⊆ 1344:extensive 1222:≥ 1216:⁡ 347:perimeter 312:simplices 131:⁡ 77:open sets 7322:Zonotope 7293:Epigraph 6891:15514388 6821:43432008 6636:18446330 6598:(1982), 6561:84179479 6506:citation 6469:(1993), 6358:(1970), 6286:20137707 6103:30843551 5980:28600832 5822:(1940), 5804:(1922), 5715:(1992), 5674:15995449 5626:31882982 5439:24287952 5322:(2003), 5250:14592779 4970:(1997), 4814:26605267 4773:(1993), 4663:(2008), 4642:44537056 4431:76650751 4372:(1967), 3583:, p. 43. 3459:, p. 17. 3208:Outliers 3200:ethology 3194:Ethology 2693:geodesic 2531:diameter 2426:and the 2163:epigraph 1668:forms a 1176:open set 932:interior 854:triangle 42:geometry 7377:Duality 7279:Pseudo- 7253:Ursescu 7150:Pseudo- 7124:Concave 7103:Simplex 7083:Duality 6982:, 2007. 6948:, 2001 6921:2533254 6859:0835903 6851:2046536 6801:0404097 6769:1241189 6701:0463985 6669:1580890 6628:0644949 6577:0630708 6553:3765242 6499:1216521 6409:0133479 6401:1970292 6368:0274683 6318:0570883 6229:2082772 6165:1768994 6135:2286077 6083:Bibcode 6025:0552534 5972:0724699 5941:0655598 5895:0002009 5887:1968735 5753:5452191 5745:1226891 5706:1881029 5654:Bibcode 5617:6934831 5596:Bibcode 5553:2107032 5513:0460358 5478:1173256 5391:0356305 5368:0020800 5313:0729228 5230:Bibcode 5205:1264417 5152:0722439 5144:2044692 5051:0903852 5041:(ed.), 4991:1622664 4960:1524247 4952:2302604 4919:2405683 4874:0972777 4866:2244202 4764:0798557 4731:0834056 4699:2994585 4612:1501815 4604:1989687 4571:8013433 4563:1670903 4515:0663877 4507:2044407 4468:1447243 4423:3889348 4386:0237460 3364:, p.48. 3324: ( 3308: ( 3292:History 3131:In the 3068:bagplot 3056:bagplot 2981:, both 2874:bagplot 1932:pockets 930:is the 924:closure 850:simplex 70:bounded 7360:, and 7331:Series 7248:Simons 7155:Quasi- 7145:Proper 7130:Closed 6919:  6889:  6857:  6849:  6819:  6799:  6767:  6718:  6699:  6675:  6667:  6634:  6626:  6575:  6559:  6551:  6497:  6487:  6407:  6399:  6366:  6345:  6324:  6316:  6284:  6254:  6227:  6217:  6163:  6133:  6101:  6063:  6023:  5978:  5970:  5939:  5929:  5893:  5885:  5808:  5795:  5751:  5743:  5733:  5704:  5672:  5624:  5614:  5576:  5551:  5533:  5511:  5476:  5444:p. 143 5442:; see 5437:  5427:  5389:  5366:  5332:  5311:  5248:  5203:  5193:  5158:  5150:  5142:  5110:  5084:  5049:  4989:  4958:  4950:  4917:  4907:  4872:  4864:  4812:  4794:  4762:  4729:  4697:  4640:  4610:  4602:  4569:  4561:  4543:  4513:  4505:  4466:  4429:  4421:  4384:  4288:; see 3314:German 3261:carbon 3231:, the 2965:. The 2953:, the 2856:, and 2744:, the 2245:facets 2038:. The 1733:vertex 1504:It is 1389:It is 1342:It is 214:convex 188:, and 168:, and 44:, the 7188:Main 6917:JSTOR 6887:S2CID 6847:JSTOR 6817:JSTOR 6673:S2CID 6632:S2CID 6557:S2CID 6531:arXiv 6397:JSTOR 6322:S2CID 6282:S2CID 6099:S2CID 5976:S2CID 5883:JSTOR 5793:S2CID 5749:S2CID 5670:S2CID 5644:arXiv 5398:(PDF) 5379:(PDF) 5246:S2CID 5216:(PDF) 5156:S2CID 5140:JSTOR 5082:S2CID 5062:(PDF) 4975:(PDF) 4948:JSTOR 4862:JSTOR 4810:S2CID 4778:(PDF) 4638:S2CID 4600:JSTOR 4567:S2CID 4503:JSTOR 4427:S2CID 4397:(PDF) 3336:Notes 3322:KĹ‘nig 3025:knots 2977:. In 2973:in a 2957:of a 2944:roots 2527:width 2113:oloid 2093:oloid 1672:when 1435:with 1029:is a 710:, if 7308:Lens 7262:Sets 7112:Maps 7019:and 6653:1914 6512:link 6485:ISBN 6343:ISBN 6252:ISBN 6215:ISBN 6061:ISBN 5927:ISBN 5731:ISBN 5622:PMID 5574:ISBN 5435:PMID 5425:ISBN 5330:ISBN 5191:ISBN 5108:ISBN 4905:ISBN 3326:1922 3310:1935 3184:hull 3143:and 3097:and 2985:and 2930:and 2888:and 2832:The 2815:The 2742:dual 2736:The 2720:The 2698:The 2683:The 2601:The 2594:The 2587:The 2580:The 2529:and 2441:> 2107:and 2003:< 1997:< 1602:The 1415:and 1162:The 918:The 337:For 184:and 101:dual 7362:(Hw 6974:by 6909:doi 6879:hdl 6871:doi 6839:doi 6787:doi 6755:doi 6657:doi 6614:doi 6586:doi 6541:doi 6477:doi 6456:doi 6434:doi 6389:doi 6304:doi 6274:doi 6244:doi 6207:doi 6187:doi 6151:doi 6121:doi 6117:135 6091:doi 6053:doi 6013:doi 5960:doi 5911:doi 5873:hdl 5865:doi 5838:doi 5806:JFM 5785:doi 5723:doi 5692:doi 5688:354 5662:doi 5612:PMC 5604:doi 5541:doi 5499:doi 5464:doi 5417:doi 5354:doi 5301:doi 5238:doi 5183:doi 5132:doi 5100:doi 5074:doi 5020:doi 4940:doi 4897:doi 4852:doi 4830:doi 4802:doi 4752:doi 4717:doi 4687:doi 4630:doi 4592:doi 4551:doi 4493:doi 4456:doi 4411:doi 4359:doi 3475:by 3300:to 3227:In 3167:In 3135:of 3093:In 3062:In 3019:of 3008:in 2949:In 2401:log 2359:log 2231:In 2091:An 1702:in 1304:An 1060:is 436:or 128:log 52:or 40:In 7433:: 7354:(H 7352:, 7348:, 7344:, 7281:) 7277:, 7157:) 7135:K- 6978:, 6961:, 6957:, 6944:, 6938:, 6915:, 6905:51 6903:, 6885:, 6877:, 6855:MR 6853:, 6845:, 6835:97 6833:, 6813:17 6811:, 6797:MR 6795:, 6783:38 6781:, 6765:MR 6763:, 6751:52 6749:, 6714:, 6697:MR 6693:29 6691:, 6687:, 6671:, 6665:MR 6663:, 6651:, 6630:, 6624:MR 6622:, 6610:98 6608:, 6602:, 6573:MR 6555:, 6549:MR 6547:, 6539:, 6527:11 6525:, 6508:}} 6504:{{ 6495:MR 6493:, 6452:14 6450:, 6430:53 6428:, 6405:MR 6403:, 6395:, 6385:74 6364:MR 6320:, 6314:MR 6312:, 6300:34 6298:, 6280:, 6270:11 6268:, 6250:, 6225:MR 6223:, 6213:, 6201:, 6183:33 6181:, 6161:MR 6159:, 6147:19 6145:, 6131:MR 6129:, 6115:, 6097:, 6089:, 6079:23 6077:, 6059:, 6038:, 6021:MR 6019:, 6007:, 5974:, 5968:MR 5966:, 5956:12 5954:, 5937:MR 5935:, 5907:16 5905:, 5891:MR 5889:, 5881:, 5871:, 5861:41 5832:, 5826:, 5818:; 5791:, 5781:14 5779:, 5747:, 5741:MR 5739:, 5729:, 5702:MR 5700:, 5686:, 5668:, 5660:, 5652:, 5640:19 5638:, 5620:, 5610:, 5602:, 5590:, 5549:MR 5547:, 5539:, 5527:30 5525:, 5509:MR 5507:, 5495:15 5493:, 5474:MR 5472:, 5460:44 5458:, 5433:, 5423:, 5387:MR 5381:, 5364:MR 5362:, 5350:53 5348:, 5309:MR 5307:, 5295:, 5285:; 5263:, 5244:, 5236:, 5226:27 5224:, 5218:, 5201:MR 5199:, 5189:, 5173:; 5169:; 5154:, 5148:MR 5146:, 5138:, 5128:90 5126:, 5106:, 5080:, 5070:67 5068:, 5064:, 5047:MR 5033:; 5016:29 5014:, 5004:; 5000:; 4987:MR 4981:, 4977:, 4956:MR 4954:, 4946:, 4936:45 4934:, 4915:MR 4913:, 4903:, 4887:; 4870:MR 4868:, 4860:, 4848:17 4846:, 4826:20 4824:, 4808:, 4800:, 4788:10 4786:, 4780:, 4760:MR 4758:, 4748:31 4746:, 4727:MR 4725:, 4711:, 4695:MR 4693:, 4683:22 4681:, 4659:; 4655:; 4651:; 4636:, 4624:, 4608:MR 4606:, 4598:, 4588:38 4586:, 4565:, 4559:MR 4557:, 4549:, 4537:31 4535:, 4525:; 4511:MR 4509:, 4501:, 4489:86 4487:, 4464:MR 4462:, 4450:, 4425:, 4419:MR 4417:, 4407:66 4405:, 4399:, 4382:MR 4376:, 4353:, 4273:; 4015:; 3909:^ 3880:^ 3835:; 3831:; 3815:; 3579:; 3519:; 3515:; 3445:^ 3412:, 3384:^ 3369:^ 3054:A 3042:. 3027:. 2904:. 2510:. 2079:. 1900:. 1783:. 1338:: 1170:). 444:. 192:. 180:, 176:, 164:, 160:, 48:, 7368:) 7366:) 7364:x 7358:) 7356:x 7340:( 7315:/ 7273:( 7128:( 7009:e 7002:t 6995:v 6911:: 6881:: 6873:: 6841:: 6789:: 6757:: 6659:: 6616:: 6588:: 6543:: 6533:: 6514:) 6479:: 6458:: 6436:: 6391:: 6306:: 6276:: 6246:: 6209:: 6189:: 6153:: 6123:: 6093:: 6085:: 6055:: 6015:: 6009:9 5962:: 5913:: 5875:: 5867:: 5840:: 5834:9 5787:: 5725:: 5694:: 5664:: 5656:: 5646:: 5606:: 5598:: 5592:9 5543:: 5501:: 5466:: 5419:: 5356:: 5303:: 5297:4 5265:2 5240:: 5232:: 5185:: 5134:: 5102:: 5076:: 5022:: 4983:1 4942:: 4899:: 4854:: 4832:: 4804:: 4754:: 4719:: 4713:1 4689:: 4632:: 4626:9 4594:: 4553:: 4495:: 4458:: 4452:7 4413:: 4361:: 4355:9 4321:. 4296:. 4261:. 4249:. 4237:. 4225:. 4213:. 4201:. 4174:. 4162:. 4138:. 4114:. 4102:. 4090:. 4078:. 4066:. 4054:. 4042:. 4030:. 4003:. 3991:. 3979:. 3967:. 3955:. 3943:. 3931:. 3919:. 3904:. 3892:. 3875:. 3863:. 3851:. 3839:. 3791:. 3755:. 3743:. 3731:. 3719:. 3707:. 3695:. 3619:. 3607:. 3595:. 3567:. 3542:. 3491:. 3479:. 3440:. 3428:. 3269:3 3267:C 3265:2 3259:– 2803:. 2798:1 2795:+ 2792:n 2787:R 2763:n 2758:R 2717:. 2664:/ 2660:1 2633:p 2613:p 2494:) 2486:2 2482:/ 2478:d 2471:n 2467:( 2464:O 2444:3 2438:d 2410:) 2407:h 2398:n 2395:( 2392:O 2368:) 2365:n 2356:n 2353:( 2350:O 2330:n 2306:n 2286:h 2266:n 2197:f 2173:f 2149:f 2064:2 2060:/ 2050:1 1994:2 1990:/ 1888:n 1868:) 1860:2 1856:/ 1852:d 1845:n 1841:( 1838:O 1818:d 1798:n 1763:S 1743:S 1717:d 1712:R 1686:2 1683:= 1680:d 1654:d 1649:R 1641:S 1570:. 1558:X 1538:X 1518:X 1501:. 1489:Y 1469:X 1449:Y 1443:X 1423:Y 1403:X 1386:. 1374:X 1354:X 1251:} 1242:2 1238:x 1234:+ 1231:1 1227:1 1219:y 1211:| 1206:) 1203:y 1200:, 1197:x 1194:( 1190:{ 1138:d 1135:2 1111:X 1091:d 1088:2 1068:d 1048:X 1017:X 993:X 973:X 949:X 884:X 864:X 836:) 833:1 830:+ 827:d 824:( 804:X 784:1 781:+ 778:d 758:X 738:d 718:X 691:X 671:X 651:X 631:X 611:X 588:X 568:Y 548:X 528:Y 508:X 488:X 468:X 401:S 381:S 357:X 322:X 296:X 270:X 248:X 224:X 137:) 134:n 125:n 122:( 119:O 36:. 23:.

Index

Hull (watercraft) § Hull shapes

convex set
geometry
convex set
Euclidean space
convex combinations
bounded
open sets
compact sets
extreme points
closure operator
antimatroid
algorithmic
dual
half-spaces
computational geometry
upper bound theorem
simple polygons
Brownian motion
space curves
epigraphs of functions
orthogonal convex hull
convex layers
Delaunay triangulation
Voronoi diagram
convex skull

Euclidean space
convex

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑