Knowledge

Protein isoform

Source đź“ť

301:), and can share few to no exons with the canonical sequence. In addition, they can have different biological effects—for example, in an extreme case, the function of one isoform can promote cell survival, while another promotes cell death—or can have similar basic functions but differ in their sub-cellular localization. A 2016 study, however, functionally characterized all the isoforms of 1,492 genes and determined that most isoforms behave as "functional alloforms." The authors came to the conclusion that isoforms behave like distinct proteins after observing that the functional of most isoforms did not overlap. Because the study was conducted on cells 31: 197: 270:
protein isoforms. Although ~95% of multi-exonic genes are thought to be alternatively spliced, one study on noisy splicing observed that most of the different low-abundance transcripts are noise, and predicts that most alternative transcript and protein isoforms present in a cell are not functionally relevant.
265:
experiments using gel electrophoresis and mass spectrometry have demonstrated that the correlation between transcript and protein counts is often low, and that one protein isoform is usually dominant. One 2015 study states that the cause of this discrepancy likely occurs after translation, though the
125:
of mRNA, though it is not clear to what extent such a process affects the diversity of the human proteome, as the abundance of mRNA transcript isoforms does not necessarily correlate with the abundance of protein isoforms. Three-dimensional protein structure comparisons can be used to help determine
269:
Alternative splicing generally describes a tightly regulated process in which alternative transcripts are intentionally generated by the splicing machinery. However, such transcripts are also produced by splicing errors in a process called "noisy splicing," and are also potentially translated into
134:. The specificity of translated isoforms is derived by the protein's structure/function, as well as the cell type and developmental stage during which they are produced. Determining specificity becomes more complicated when a protein has multiple subunits and each subunit has multiple isoforms. 297:—or functionally analogous—sequences in other species. Isoforms are assumed to have similar functional properties, as most have similar sequences, and share some to most exons with the canonical sequence. However, some isoforms show much greater divergence (for example, through 305:, it is not known if the isoforms in the expressed human proteome share these characteristics. Additionally, because the function of each isoform must generally be determined separately, most identified and predicted isoforms still have unknown functions. 266:
mechanism is essentially unknown. Consequently, although alternative splicing has been implicated as an important link between variation and disease, there is no conclusive evidence that it acts primarily by producing novel protein isoforms.
436:
G6PDA: normal ratio of active isoforms in cells of any tissue is 1:1 shared with G6PDG. This is precisely the normal isoform ratio in hyperplasia. Only one of these isoforms is found during neoplasia.
58:
or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have unique functions. A set of protein isoforms may be formed from
433:, an enzyme superfamily responsible for the detoxification pathway of many drugs, environmental pollutants, and toxic endogenous compounds has 16 known isoforms encoded in the human genome. 273:
Other transcriptional and post-transcriptional regulatory steps can also produce different protein isoforms. Variable promoter usage occurs when the transcriptional machinery of a cell (
261:
have been used to identify alternatively spliced transcripts and measure their abundances. Transcript abundance is often used as a proxy for the abundance of protein isoforms, though
285:) begin transcription at different promoters—the region of DNA near a gene that serves as an initial binding site—resulting in slightly modified transcripts and protein isoforms. 113:) can be identified in humans. Isoforms at the protein level can manifest in the deletion of whole domains or shorter loops, usually located on the surface of the protein. 644:
Breitbart RE, Andreadis A, Nadal-Ginard B (1987-01-01). "Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes".
838:
Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ (March 2013). "Alternative splicing: a pivotal step between eukaryotic transcription and translation".
730:
Sommer, Markus J.; Cha, Sooyoung; Varabyou, Ales; Rincon, Natalia; Park, Sukhwan; Minkin, Ilia; Pertea, Mihaela; Steinegger, Martin; Salzberg, Steven L. (2022-12-15).
604:
Andreadis A, Gallego ME, Nadal-Ginard B (1987-01-01). "Generation of protein isoform diversity by alternative splicing: mechanistic and biological implications".
207:
The primary mechanisms that produce protein isoforms are alternative splicing and variable promoter usage, though modifications due to genetic changes, such as
1293:"Substrate specificity of the human UDP-glucuronosyltransferase UGT2B4 and UGT2B7. Identification of a critical aromatic amino acid residue at position 33" 360:. Glycoforms may be detected through detailed chemical analysis of separated glycoforms, but more conveniently detected through differential reaction with 90:) of a gene, or even different parts of exons from RNA to form different mRNA sequences. Each unique sequence produces a specific form of a protein. 1343: 126:
which, if any, isoforms represent functional protein products, and the structure of most isoforms in the human proteome has been predicted by
121:
One single gene has the ability to produce multiple proteins that differ both in structure and composition; this process is regulated by the
97:
and the large diversity of proteins seen in an organism: different proteins encoded by the same gene could increase the diversity of the
93:
The discovery of isoforms could explain the discrepancy between the small number of protein coding regions of genes revealed by the
1375: 222:
process that produces mRNA transcript isoforms, and is a major molecular mechanism that may contribute to protein diversity. The
1143:"Revisiting the identification of canonical splice isoforms through integration of functional genomics and proteomics evidence" 293:
Generally, one protein isoform is labeled as the canonical sequence based on criteria such as its prevalence and similarity to
585: 219: 67: 182:
In human skeletal muscle, the preferred form is α2β2γ1. But in the human liver, the most abundant form is α1β2γ1.
1403: 71: 1193:
Sundvall M, Veikkolainen V, Kurppa K, Salah Z, Tvorogov D, van Zoelen EJ, Aqeilan R, Elenius K (December 2010).
568:
Kozlowski, L.; Orlowski, J.; Bujnicki, J. M. (2012). "Structure Prediction for Alternatively Spliced Proteins".
474:
Brett D, Pospisil H, Valcárcel J, Reich J, Bork P (January 2002). "Alternative splicing and genome complexity".
365: 254: 392: 1368: 231: 139: 443:, a family of enzymes that catalyze the oxidation of monoamines, exists in two isoforms, MAO-A and MAO-B. 1142: 430: 1550: 1242:
Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, et al. (February 2016).
372: 1361: 427:, the enzyme responsible for the production of hyaluronan, has three isoforms in mammalian cells. 242: 17: 212: 110: 411:: despite its conserved nature, it has a varying number of isoforms (at least six in mammals). 1507: 418: 246: 328:
is an isoform of a protein that differs only with respect to the number or type of attached
1398: 357: 278: 191: 122: 106: 94: 59: 35: 908: 8: 424: 63: 657: 617: 1268: 1243: 1219: 1194: 1170: 1118: 1093: 1069: 1042: 1018: 993: 969: 944: 917: 892: 873: 812: 787: 758: 731: 545: 518: 499: 992:
Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y (February 2015).
1439: 1413: 1314: 1309: 1292: 1273: 1224: 1175: 1123: 1074: 1023: 974: 922: 865: 817: 763: 712: 661: 621: 581: 550: 491: 440: 294: 227: 102: 877: 336:
often consist of a number of different glycoforms, with alterations in the attached
1517: 1475: 1470: 1465: 1304: 1291:
Barre L, Fournel-Gigleux S, Finel M, Netter P, Magdalou J, Ouzzine M (March 2007).
1263: 1255: 1214: 1206: 1165: 1157: 1113: 1105: 1064: 1054: 1013: 1005: 964: 956: 912: 904: 855: 847: 807: 799: 753: 743: 702: 692: 653: 613: 573: 540: 530: 503: 483: 1244:"Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing" 143:(AMPK), an enzyme, which performs different roles in human cells, has 3 subunits: 1423: 1408: 1059: 414: 396: 341: 167:γ, regulatory domain, has three isoforms: γ1, γ2, and γ3 which are encoded from 1444: 1259: 960: 803: 707: 697: 680: 577: 417:, the presence of which in the blood can be used as an aid in the diagnosis of 376: 298: 274: 230:, is the molecular machine inside the nucleus responsible for RNA cleavage and 788:"Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer" 1544: 1502: 1497: 349: 333: 1210: 1009: 1348: 1318: 1277: 1228: 1179: 1161: 1127: 1078: 1027: 978: 926: 869: 821: 767: 716: 554: 535: 495: 452: 353: 345: 319: 201: 79: 30: 665: 625: 1522: 1512: 388: 384: 380: 223: 157:β, regulatory domain, has two isoforms: β1 and β2 which are encoded from 748: 147:α, catalytic domain, has two isoforms: α1 and α2 which are encoded from 1449: 1109: 994:"Genomic variation. Impact of regulatory variation from RNA to protein" 860: 337: 262: 196: 109:
isoforms. It has been estimated that ~100,000 expressed sequence tags (
75: 1527: 732:"Structure-guided isoform identification for the human transcriptome" 517:
SchlĂĽter H, Apweiler R, HolzhĂĽtter HG, Jungblut PR (September 2009).
375:. Typical examples of glycoproteins consisting of glycoforms are the 127: 1241: 851: 1480: 1418: 250: 208: 98: 51: 34:
Protein A, B and C are isoforms encoded from the same gene through
1195:"Cell death or survival promoted by alternative isoforms of ErbB4" 516: 487: 1490: 1485: 1384: 519:"Finding one's way in proteomics: a protein species nomenclature" 408: 361: 258: 945:"Alternative Splicing May Not Be the Key to Proteome Complexity" 681:"On the Dependency of Cellular Protein Levels on mRNA Abundance" 1290: 1192: 369: 329: 282: 235: 176: 172: 168: 162: 158: 152: 148: 643: 1043:"Noisy splicing drives mRNA isoform diversity in human cells" 86:
has the ability to select different protein-coding segments (
1041:
Pickrell JK, Pai AA, Gilad Y, Pritchard JK (December 2010).
893:"Mechanisms and Regulation of Alternative Pre-mRNA Splicing" 603: 1353: 837: 473: 87: 83: 55: 1094:"Proteoform: a single term describing protein complexity" 1040: 567: 131: 101:. Isoforms at the RNA level are readily characterized by 729: 249:, its primary effects have mainly been studied through 105:
transcript studies. Many human genes possess confirmed
991: 344:. These modifications may result from differences in 942: 1141:Li HD, Menon R, Omenn GS, Guan Y (December 2014). 241:Because splicing is a process that occurs between 943:Tress ML, Abascal F, Valencia A (February 2017). 678: 215:are sometimes also considered distinct isoforms. 1542: 1140: 27:Forms of a protein produced from different genes 785: 1369: 1091: 74:are generally not considered. (For that, see 1284: 391:. An unusual glycoform variation is seen in 1376: 1362: 679:Liu Y, Beyer A, Aebersold R (April 2016). 50:", is a member of a set of highly similar 1308: 1267: 1218: 1169: 1117: 1068: 1058: 1017: 968: 916: 859: 811: 757: 747: 706: 696: 544: 534: 234:, removing non-protein coding segments ( 195: 29: 14: 1543: 890: 1357: 938: 936: 909:10.1146/annurev-biochem-060614-034316 840:Nature Reviews Molecular Cell Biology 393:neuronal cell adhesion molecule, NCAM 1092:Smith LM, Kelleher NL (March 2013). 833: 831: 786:Dasgupta B, Chhipa RR (March 2016). 781: 779: 777: 639: 637: 635: 599: 597: 469: 467: 658:10.1146/annurev.bi.56.070187.002343 618:10.1146/annurev.cb.03.110187.001231 308: 24: 1331:Pathoma, Fundamentals of Pathology 933: 884: 792:Trends in Pharmacological Sciences 288: 68:post-transcriptional modifications 25: 1562: 1337: 828: 774: 632: 594: 464: 220:post-transcriptional modification 218:Alternative splicing is the main 1310:10.1111/j.1742-4658.2007.05670.x 72:post-translational modifications 1404:Post-translational modification 1325: 1235: 1186: 1134: 1085: 1034: 985: 140:5' AMP-activated protein kinase 949:Trends in Biochemical Sciences 723: 672: 561: 510: 366:lectin affinity chromatography 13: 1: 1199:Molecular Biology of the Cell 897:Annual Review of Biochemistry 646:Annual Review of Biochemistry 606:Annual Review of Cell Biology 570:Alternative pre-mRNA Splicing 458: 116: 54:that originate from a single 1383: 1060:10.1371/journal.pgen.1001236 891:Lee Y, Rio DC (2015-01-01). 313: 185: 7: 1344:MeSH entry protein isoforms 446: 431:UDP-glucuronosyltransferase 402: 10: 1567: 1445:Protein structural domains 1260:10.1016/j.cell.2016.01.029 961:10.1016/j.tibs.2016.08.008 804:10.1016/j.tips.2015.11.007 698:10.1016/j.cell.2016.03.014 578:10.1002/9783527636778.ch54 352:, or due to the action of 317: 189: 1458: 1432: 1391: 523:Chemistry Central Journal 130:and publicly released at 373:affinity electrophoresis 253:techniques—for example, 200:Different mechanisms of 1211:10.1091/mbc.E10-04-0332 1010:10.1126/science.1260793 421:, exists in 3 isoforms. 1162:10.1002/pmic.201400170 536:10.1186/1752-153X-3-11 348:during the process of 204: 39: 1508:Photoreceptor protein 419:myocardial infarction 397:polysialic acids, PSA 279:transcription factors 199: 60:alternative splicings 33: 1399:Protein biosynthesis 358:glycosyltransferases 192:Alternative splicing 123:alternative splicing 107:alternative splicing 95:human genome project 36:alternative splicing 1349:Definitions Isoform 749:10.7554/eLife.82556 708:20.500.11850/116226 425:Hyaluronan synthase 1156:(23–24): 2709–18. 1110:10.1038/nmeth.2369 205: 70:of a single gene; 40: 1551:Protein structure 1538: 1537: 1440:Protein structure 1414:Protein targeting 441:Monoamine oxidase 228:ribonucleoprotein 137:For example, the 16:(Redirected from 1558: 1518:Phycobiliprotein 1476:Globular protein 1471:Membrane protein 1466:List of proteins 1378: 1371: 1364: 1355: 1354: 1332: 1329: 1323: 1322: 1312: 1297:The FEBS Journal 1288: 1282: 1281: 1271: 1239: 1233: 1232: 1222: 1190: 1184: 1183: 1173: 1147: 1138: 1132: 1131: 1121: 1089: 1083: 1082: 1072: 1062: 1053:(12): e1001236. 1038: 1032: 1031: 1021: 989: 983: 982: 972: 940: 931: 930: 920: 888: 882: 881: 863: 835: 826: 825: 815: 783: 772: 771: 761: 751: 727: 721: 720: 710: 700: 676: 670: 669: 641: 630: 629: 601: 592: 591: 565: 559: 558: 548: 538: 514: 508: 507: 471: 309:Related concepts 66:usage, or other 21: 1566: 1565: 1561: 1560: 1559: 1557: 1556: 1555: 1541: 1540: 1539: 1534: 1498:Fibrous protein 1454: 1428: 1424:Protein methods 1409:Protein folding 1387: 1382: 1340: 1335: 1330: 1326: 1289: 1285: 1240: 1236: 1205:(23): 4275–86. 1191: 1187: 1145: 1139: 1135: 1090: 1086: 1039: 1035: 1004:(6222): 664–7. 990: 986: 941: 934: 889: 885: 852:10.1038/nrm3525 836: 829: 784: 775: 728: 724: 677: 673: 642: 633: 602: 595: 588: 572:. p. 582. 566: 562: 515: 511: 476:Nature Genetics 472: 465: 461: 449: 415:Creatine kinase 405: 342:oligosaccharide 322: 316: 311: 291: 289:Characteristics 194: 188: 119: 48:protein variant 44:protein isoform 28: 23: 22: 15: 12: 11: 5: 1564: 1554: 1553: 1536: 1535: 1533: 1532: 1531: 1530: 1525: 1520: 1510: 1505: 1500: 1495: 1494: 1493: 1488: 1483: 1473: 1468: 1462: 1460: 1456: 1455: 1453: 1452: 1447: 1442: 1436: 1434: 1430: 1429: 1427: 1426: 1421: 1416: 1411: 1406: 1401: 1395: 1393: 1389: 1388: 1381: 1380: 1373: 1366: 1358: 1352: 1351: 1346: 1339: 1338:External links 1336: 1334: 1333: 1324: 1303:(5): 1256–64. 1283: 1234: 1185: 1133: 1098:Nature Methods 1084: 1033: 984: 932: 903:(1): 291–323. 883: 827: 798:(3): 192–206. 773: 722: 671: 631: 593: 586: 560: 509: 462: 460: 457: 456: 455: 448: 445: 438: 437: 434: 428: 422: 412: 404: 401: 377:blood proteins 318:Main article: 315: 312: 310: 307: 299:trans-splicing 290: 287: 275:RNA polymerase 259:RNA sequencing 190:Main article: 187: 184: 180: 179: 165: 155: 118: 115: 26: 9: 6: 4: 3: 2: 1563: 1552: 1549: 1548: 1546: 1529: 1526: 1524: 1521: 1519: 1516: 1515: 1514: 1511: 1509: 1506: 1504: 1503:Chromoprotein 1501: 1499: 1496: 1492: 1489: 1487: 1484: 1482: 1479: 1478: 1477: 1474: 1472: 1469: 1467: 1464: 1463: 1461: 1457: 1451: 1448: 1446: 1443: 1441: 1438: 1437: 1435: 1431: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1396: 1394: 1390: 1386: 1379: 1374: 1372: 1367: 1365: 1360: 1359: 1356: 1350: 1347: 1345: 1342: 1341: 1328: 1320: 1316: 1311: 1306: 1302: 1298: 1294: 1287: 1279: 1275: 1270: 1265: 1261: 1257: 1254:(4): 805–17. 1253: 1249: 1245: 1238: 1230: 1226: 1221: 1216: 1212: 1208: 1204: 1200: 1196: 1189: 1181: 1177: 1172: 1167: 1163: 1159: 1155: 1151: 1144: 1137: 1129: 1125: 1120: 1115: 1111: 1107: 1103: 1099: 1095: 1088: 1080: 1076: 1071: 1066: 1061: 1056: 1052: 1048: 1047:PLOS Genetics 1044: 1037: 1029: 1025: 1020: 1015: 1011: 1007: 1003: 999: 995: 988: 980: 976: 971: 966: 962: 958: 955:(2): 98–110. 954: 950: 946: 939: 937: 928: 924: 919: 914: 910: 906: 902: 898: 894: 887: 879: 875: 871: 867: 862: 857: 853: 849: 846:(3): 153–65. 845: 841: 834: 832: 823: 819: 814: 809: 805: 801: 797: 793: 789: 782: 780: 778: 769: 765: 760: 755: 750: 745: 741: 737: 733: 726: 718: 714: 709: 704: 699: 694: 691:(3): 535–50. 690: 686: 682: 675: 667: 663: 659: 655: 652:(1): 467–95. 651: 647: 640: 638: 636: 627: 623: 619: 615: 612:(1): 207–42. 611: 607: 600: 598: 589: 587:9783527636778 583: 579: 575: 571: 564: 556: 552: 547: 542: 537: 532: 528: 524: 520: 513: 505: 501: 497: 493: 489: 488:10.1038/ng803 485: 481: 477: 470: 468: 463: 454: 451: 450: 444: 442: 435: 432: 429: 426: 423: 420: 416: 413: 410: 407: 406: 400: 398: 394: 390: 386: 382: 378: 374: 371: 367: 363: 359: 355: 351: 350:glycosylation 347: 343: 339: 335: 334:Glycoproteins 331: 327: 321: 306: 304: 300: 296: 286: 284: 280: 276: 271: 267: 264: 260: 257:analyses and 256: 252: 248: 244: 243:transcription 239: 237: 233: 229: 225: 221: 216: 214: 213:polymorphisms 210: 203: 198: 193: 183: 178: 174: 170: 166: 164: 160: 156: 154: 150: 146: 145: 144: 142: 141: 135: 133: 129: 124: 114: 112: 108: 104: 100: 96: 91: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 37: 32: 19: 1327: 1300: 1296: 1286: 1251: 1247: 1237: 1202: 1198: 1188: 1153: 1149: 1136: 1104:(3): 186–7. 1101: 1097: 1087: 1050: 1046: 1036: 1001: 997: 987: 952: 948: 900: 896: 886: 843: 839: 795: 791: 739: 735: 725: 688: 684: 674: 649: 645: 609: 605: 569: 563: 526: 522: 512: 482:(1): 29–30. 479: 475: 453:Gene isoform 439: 354:glycosidases 346:biosynthesis 325: 323: 320:Glycoprotein 302: 292: 281:, and other 272: 268: 240: 217: 206: 202:RNA splicing 181: 138: 136: 120: 92: 82:mechanisms, 80:RNA splicing 47: 43: 41: 1523:Phytochrome 1513:Biliprotein 861:11336/21049 389:haptoglobin 385:antitrypsin 381:orosomucoid 295:orthologous 247:translation 224:spliceosome 78:.) Through 76:Proteoforms 62:, variable 1450:Proteasome 1433:Structures 1150:Proteomics 742:: e82556. 459:References 395:involving 338:saccharide 263:proteomics 255:microarray 226:, a large 132:isoform.io 117:Definition 1528:Lipocalin 1392:Processes 326:glycoform 314:Glycoform 209:mutations 186:Mechanism 128:AlphaFold 1545:Category 1481:Globulin 1419:Proteome 1385:Proteins 1319:17263731 1278:26871637 1229:20943952 1180:25265570 1128:23443629 1079:21151575 1028:25657249 979:27712956 927:25784052 878:54560052 870:23385723 822:26711141 768:36519529 717:27104977 555:19740416 496:11743582 447:See also 403:Examples 364:, as in 303:in vitro 251:genomics 232:ligation 99:proteome 64:promoter 52:proteins 1491:Albumin 1486:Edestin 1269:4882190 1220:2993754 1171:4372202 1119:4114032 1070:3000347 1019:4507520 998:Science 970:6526280 918:4526142 813:4764394 759:9812405 666:3304142 626:2891362 546:2758878 504:2724843 409:G-actin 362:lectins 283:enzymes 236:introns 18:Isoform 1317:  1276:  1266:  1227:  1217:  1178:  1168:  1126:  1116:  1077:  1067:  1026:  1016:  977:  967:  925:  915:  876:  868:  820:  810:  766:  756:  715:  664:  624:  584:  553:  543:  529:: 11. 502:  494:  387:, and 370:lectin 330:glycan 177:PRKAG3 175:, and 173:PRKAG2 169:PRKAG1 163:PRKAB2 159:PRKAB1 153:PRKAA2 149:PRKAA1 46:, or " 1459:Types 1146:(PDF) 874:S2CID 736:eLife 500:S2CID 88:exons 1315:PMID 1274:PMID 1248:Cell 1225:PMID 1176:PMID 1124:PMID 1075:PMID 1024:PMID 975:PMID 923:PMID 866:PMID 818:PMID 764:PMID 713:PMID 685:Cell 662:PMID 622:PMID 582:ISBN 551:PMID 492:PMID 368:and 245:and 211:and 161:and 151:and 111:ESTs 103:cDNA 84:mRNA 56:gene 1305:doi 1301:274 1264:PMC 1256:doi 1252:164 1215:PMC 1207:doi 1166:PMC 1158:doi 1114:PMC 1106:doi 1065:PMC 1055:doi 1014:PMC 1006:doi 1002:347 965:PMC 957:doi 913:PMC 905:doi 856:hdl 848:doi 808:PMC 800:doi 754:PMC 744:doi 703:hdl 693:doi 689:165 654:doi 614:doi 574:doi 541:PMC 531:doi 484:doi 379:as 356:or 340:or 238:). 1547:: 1313:. 1299:. 1295:. 1272:. 1262:. 1250:. 1246:. 1223:. 1213:. 1203:21 1201:. 1197:. 1174:. 1164:. 1154:14 1152:. 1148:. 1122:. 1112:. 1102:10 1100:. 1096:. 1073:. 1063:. 1049:. 1045:. 1022:. 1012:. 1000:. 996:. 973:. 963:. 953:42 951:. 947:. 935:^ 921:. 911:. 901:84 899:. 895:. 872:. 864:. 854:. 844:14 842:. 830:^ 816:. 806:. 796:37 794:. 790:. 776:^ 762:. 752:. 740:11 738:. 734:. 711:. 701:. 687:. 683:. 660:. 650:56 648:. 634:^ 620:. 608:. 596:^ 580:. 549:. 539:. 525:. 521:. 498:. 490:. 480:30 478:. 466:^ 399:. 383:, 332:. 324:A 277:, 171:, 42:A 1377:e 1370:t 1363:v 1321:. 1307:: 1280:. 1258:: 1231:. 1209:: 1182:. 1160:: 1130:. 1108:: 1081:. 1057:: 1051:6 1030:. 1008:: 981:. 959:: 929:. 907:: 880:. 858:: 850:: 824:. 802:: 770:. 746:: 719:. 705:: 695:: 668:. 656:: 628:. 616:: 610:3 590:. 576:: 557:. 533:: 527:3 506:. 486:: 38:. 20:)

Index

Isoform

alternative splicing
proteins
gene
alternative splicings
promoter
post-transcriptional modifications
post-translational modifications
Proteoforms
RNA splicing
mRNA
exons
human genome project
proteome
cDNA
alternative splicing
ESTs
alternative splicing
AlphaFold
isoform.io
5' AMP-activated protein kinase
PRKAA1
PRKAA2
PRKAB1
PRKAB2
PRKAG1
PRKAG2
PRKAG3
Alternative splicing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑