Knowledge

Irrational number

Source 📝

633:, who formalized a new theory of proportion that took into account commensurable as well as incommensurable quantities. Central to his idea was the distinction between magnitude and number. A magnitude "...was not a number but stood for entities such as line segments, angles, areas, volumes, and time which could vary, as we would say, continuously. Magnitudes were opposed to numbers, which jumped from one value to another, as from 4 to 5". Numbers are composed of some smallest, indivisible unit, whereas magnitudes are infinitely reducible. Because no quantitative values were assigned to magnitudes, Eudoxus was then able to account for both commensurable and incommensurable ratios by defining a ratio in terms of its magnitude, and proportion as an equality between two ratios. By taking quantitative values (numbers) out of the equation, he avoided the trap of having to express an irrational number as a number. "Eudoxus' theory enabled the Greek mathematicians to make tremendous progress in geometry by supplying the necessary logical foundation for incommensurable ratios". This incommensurability is dealt with in Euclid's Elements, Book X, Proposition 9. It was not until 618:, who questioned the conception that quantities are discrete and composed of a finite number of units of a given size. Past Greek conceptions dictated that they necessarily must be, for "whole numbers represent discrete objects, and a commensurable ratio represents a relation between two collections of discrete objects", but Zeno found that in fact " in general are not discrete collections of units; this is why ratios of incommensurable appear... .uantities are, in other words, continuous". What this means is that contrary to the popular conception of the time, there cannot be an indivisible, smallest unit of measure for any quantity. In fact, these divisions of quantity must necessarily be 5305: 611:, or inexpressible. Hippasus, however, was not lauded for his efforts: according to one legend, he made his discovery while out at sea, and was subsequently thrown overboard by his fellow Pythagoreans 'for having produced an element in the universe which denied the... doctrine that all phenomena in the universe can be reduced to whole numbers and their ratios.' Another legend states that Hippasus was merely exiled for this revelation. Whatever the consequence to Hippasus himself, his discovery posed a very serious problem to Pythagorean mathematics, since it shattered the assumption that numbers and geometry were inseparable; a foundation of their theory. 179: 31: 1131: 6036: 622:. For example, consider a line segment: this segment can be split in half, that half split in half, the half of the half in half, and so on. This process can continue infinitely, for there is always another half to be split. The more times the segment is halved, the closer the unit of measure comes to zero, but it never reaches exactly zero. This is just what Zeno sought to prove. He sought to prove this by formulating 626:, which demonstrated the contradictions inherent in the mathematical thought of the time. While Zeno's paradoxes accurately demonstrated the deficiencies of contemporary mathematical conceptions, they were not regarded as proof of the alternative. In the minds of the Greeks, disproving the validity of one view did not necessarily prove the validity of another, and therefore, further investigation had to occur. 343:. The Pythagorean method would have claimed that there must be some sufficiently small, indivisible unit that could fit evenly into one of these lengths as well as the other. Hippasus in the 5th century BC, however, was able to deduce that there was no common unit of measure, and that the assertion of such an existence was a contradiction. He did this by demonstrating that if the 849:"It will be a rational (magnitude) when we, for instance, say 10, 12, 3%, 6%, etc., because its value is pronounced and expressed quantitatively. What is not rational is irrational and it is impossible to pronounce and represent its value quantitatively. For example: the roots of numbers such as 10, 15, 20 which are not squares, the sides of numbers which are not cubes 665:
to the third power. Also crucial to Zeno's work with incommensurable magnitudes was the fundamental focus on deductive reasoning that resulted from the foundational shattering of earlier Greek mathematics. The realization that some basic conception within the existing theory was at odds with reality
640:
As a result of the distinction between number and magnitude, geometry became the only method that could take into account incommensurable ratios. Because previous numerical foundations were still incompatible with the concept of incommensurability, Greek focus shifted away from numerical conceptions
3432:
is not valid, so it is not true that every real number is rational or irrational. Thus, the notion of an irrational number bifurcates into multiple distinct notions. One could take the traditional definition of an irrational number as a real number that is not rational. However, there is a second
1910:
The decimal expansion of an irrational number never repeats (meaning the decimal expansion does not repeat the same number or sequence of numbers) or terminates (this means there is not a finite number of nonzero digits), unlike any rational number. The same is true for
2659: 3633:: that is, there is a metric on the irrationals inducing the same topology as the restriction of the Euclidean metric, but with respect to which the irrationals are complete. One can see this without knowing the aforementioned fact about G-delta sets: the 674:
that "...established the deductive organization on the basis of explicit axioms..." as well as "...reinforced the earlier decision to rely on deductive reasoning for proof". This method of exhaustion is the first step in the creation of calculus.
4496:
period, but such claims are not well substantiated. The case for early Hindu awareness of incommensurable magnitudes is rendered most unlikely by the lack of evidence that Indian mathematicians of that period had come to grips with fundamental
2028:
Here the repetend is 162 and the length of the repetend is 3. First, we multiply by an appropriate power of 10 to move the decimal point to the right so that it is just in front of a repetend. In this example we would multiply by 10 to obtain:
139:
exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number. These are provable properties of rational numbers and positional number systems and are not used as definitions in mathematics.
87:, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself. 3302: 1746: 4114: 2476: 1051:, closely related to irrational numbers (and due to Cataldi, 1613), received attention at the hands of Euler, and at the opening of the 19th century were brought into prominence through the writings of 844:
and cubic irrationals. He provided definitions for rational and irrational magnitudes, which he treated as irrational numbers. He dealt with them freely but explains them in geometric terms as follows:
737:
Later, in their treatises, Indian mathematicians wrote on the arithmetic of surds including addition, subtraction, multiplication, rationalization, as well as separation and extraction of square roots.
2263: 869:"their sums or differences, or results of their addition to a rational magnitude, or results of subtracting a magnitude of this kind from an irrational one, or of a rational magnitude from it." 641:
such as algebra and focused almost exclusively on geometry. In fact, in many cases, algebraic conceptions were reformulated into geometric terms. This may account for why we still conceive of
2128: 3637:
expansion of an irrational number defines a homeomorphism from the space of irrationals to the space of all sequences of positive integers, which is easily seen to be completely metrizable.
1534:
The number 2 raised to any positive integer power must be even (because it is divisible by 2) and the number 3 raised to any positive integer power must be odd (since none of its
901:
mathematician Al-Hashimi provided general proofs (rather than geometric demonstrations) for irrational numbers, as he considered multiplication, division, and other arithmetical functions.
2023: 2071: 961: 2522: 1372: 3640:
Furthermore, the set of all irrationals is a disconnected metrizable space. In fact, the irrationals equipped with the subspace topology have a basis of clopen groups so the space is
2784: 3611: 2939: 3621:. Restricting the Euclidean distance function gives the irrationals the structure of a metric space. Since the subspace of irrationals is not closed, the induced metric is not 1483: 2514: 3901: 3863: 3825: 3787: 3749: 3487: 2720: 924:
and denominators are separated by a horizontal bar. In his discussion he writes, "..., for example, if you are told to write three-fifths and a third of a fifth, write thus,
5533: 1021:. Méray had taken in 1869 the same point of departure as Heine, but the theory is generally referred to the year 1872. Weierstrass's method has been completely set forth by 5848: 5771: 5732: 5694: 5666: 5638: 5610: 5498: 5465: 5437: 5409: 3207: 2871: 1529: 320: 298: 276: 254: 232: 210: 2211: 1809: 614:
The discovery of incommensurable ratios was indicative of another problem facing the Greeks: the relation of the discrete to the continuous. This was brought to light by
3181: 2828: 3027: 2989: 1419: 3360: 3149: 637:
developed a theory of proportion that took into account irrational as well as rational ratios that a strong mathematical foundation of irrational numbers was created.
3415: 3328: 3091: 3065: 1073: = 0). While Lambert's proof is often called incomplete, modern assessments support it as satisfactory, and in fact for its time it is unusually rigorous. 3389: 1776: 3117: 592:
must be even. Hence they have a common factor of 2. However, this contradicts the assumption that they have no common factors. This contradiction proves that
3527: 3507: 3451: 4627: 666:
necessitated a complete and thorough investigation of the axioms and assumptions that underlie that theory. Out of this necessity, Eudoxus developed his
4510: 995:, the proof of the existence of transcendental numbers, and the resurgence of the scientific study of the theory of irrationals, largely ignored since 2080:
is the length of the repetend. This has the effect of moving the decimal point to be in front of the "next" repetend. In our example, multiply by 10:
1037:, separating them into two groups having certain characteristic properties. The subject has received later contributions at the hands of Weierstrass, 828:, developed the theory of composite ratios, and extended the concept of number to ratios of continuous magnitude. In his commentary on Book 10 of the 1538:
will be 2). Clearly, an integer cannot be both odd and even at the same time: we have a contradiction. The only assumption we made was that log
355:
with a leg, then one of those lengths measured in that unit of measure must be both odd and even, which is impossible. His reasoning is as follows:
1105:(1882), starting from Hermite's conclusions, showed the same for π. Lindemann's proof was much simplified by Weierstrass (1885), still further by 857:
In contrast to Euclid's concept of magnitudes as lines, Al-Mahani considered integers and fractions as rational magnitudes, and square roots and
3215: 2133:
The result of the two multiplications gives two different expressions with exactly the same "decimal portion", that is, the tail end of 10,000
1619: 5083: 1090: 761: 4854:
Jarden, Dov (1953). "Curiosa No. 339: A simple proof that a power of an irrational number to an irrational exponent may be rational".
2421: 1877:
of the real numbers, many irrational real numbers can be constructed by combining transcendental and algebraic numbers. For example, 3
1272:
in the denominator that does not divide into the numerator whatever power each is raised to. Therefore, if an integer is not an exact
3529:
is positive. This definition is stronger than the traditional definition of an irrational number. This second definition is used in
1264:
into primes. Using it we can show that if a rational number is not an integer then no integral power of it can be an integer, as in
144: 5359: 1848:
is an irrational algebraic number. There are countably many algebraic numbers, since there are countably many integer polynomials.
1973:− 1 steps without using any remainder more than once. After that, a remainder must recur, and then the decimal expansion repeats. 4600: 685:
of whole numbers up to 17, but stopped there probably because the algebra he used could not be applied to the square root of 17.
1195: 905: 2481:
The base of the left side is irrational and the right side is rational, so one must prove that the exponent on the left side,
1167: 4977: 4178: 2222: 693:
Geometrical and mathematical problems involving irrational numbers such as square roots were addressed very early during the
5051: 1081:, provided a proof to show that π is irrational, whence it follows immediately that π is irrational also. The existence of 5548: 1029:(1894). Weierstrass, Cantor, and Heine base their theories on infinite series, while Dedekind founds his on the idea of a 1174: 1025:
in 1880, and Dedekind's has received additional prominence through the author's later work (1888) and the endorsement by
5543: 1969:. If 0 appears as a remainder, the decimal expansion terminates. If 0 never occurs, then the algorithm can run at most 1148: 17: 2086: 5006: 4890: 4690: 4448: 2874: 1257: 1214: 917: 4770: 3629:—i.e., a countable intersection of open subsets—in a complete metric space, the space of irrationals is 878: 4998: 4682: 4440: 2654:{\displaystyle \log _{\sqrt {2}}3={\frac {\log _{2}3}{\log _{2}{\sqrt {2}}}}={\frac {\log _{2}3}{1/2}}=2\log _{2}3} 1986: 1181: 5503: 2035: 927: 5921: 5076: 5999: 1328: 1055:. Dirichlet also added to the general theory, as have numerous contributors to the applications of the subject. 127:, notably as a decimal number. In the case of irrational numbers, the decimal expansion does not terminate, nor 4738:"Saggio di una introduzione alla teoria delle funzioni analitiche secondo i principii del prof. C. Weierstrass" 4477: 1152: 600:
cannot both be integers and thus the existence of a number that cannot be expressed as a ratio of two integers.
352: 83: 1163: 6065: 5882: 3308: 2725: 2409: 2370: 805: 155: 5210: 4525: 3682: 3563: 5352: 4632: 4595: 2883: 1078: 5304: 4760:"Mémoire sur quelques propriétés remarquables des quantités transcendentes, circulaires et logarithmiques" 749:(in 629 AD) made contributions in this area as did other mathematicians who followed. In the 12th century 6060: 5508: 4864: 4034: 1427: 148: 2484: 1818: = (2 + 1). It is clearly algebraic since it is the root of an integer polynomial, ( 5069: 3673: 81:
of lengths of two line segments is an irrational number, the line segments are also described as being
3534: 5916: 5872: 5279: 3880: 3842: 3804: 3766: 3728: 3663: 3460: 2675: 97: 5514: 4492:
It has been claimed also that the first recognition of incommensurables appears in India during the
1240:
is another famous quadratic irrational number. The square roots of all natural numbers that are not
6039: 5911: 4605: 3425: 865:
approach to the concept of irrationality, as he attributes the following to irrational magnitudes:
348: 5831: 5754: 5715: 5677: 5649: 5621: 5593: 5481: 5448: 5420: 5392: 3190: 2833: 1491: 303: 281: 259: 237: 215: 193: 5345: 4755: 4737: 2187: 1781: 1141: 1102: 1058: 817: 775: 757: 3154: 2789: 5140: 3641: 3184: 2998: 2960: 2665: 1383: 1296: 1188: 992: 5165: 4430:
T. K. Puttaswamy, "The Accomplishments of Ancient Indian Mathematicians", pp. 411–2, in
3336: 3122: 2516:, is irrational. This is so because, by the formula relating logarithms with different bases, 904:
Many of these concepts were eventually accepted by European mathematicians sometime after the
5984: 5820: 5321: 5103: 5024: 4797: 4199: 4041: 3668: 3630: 3394: 3313: 3304: 2381: 1912: 1860: 1831: 1598: 1082: 1074: 1052: 3070: 3044: 5737: 5470: 5326: 5316: 4969: 4931: 4841: 4641: 4555: 4100: 3701: 3365: 1754: 1261: 1245: 841: 671: 667: 8: 5948: 5858: 5815: 5797: 5575: 5160: 5150: 5133: 4591: 4465: 3622: 3096: 1924: 1874: 1022: 1009: 784: 779: 734:, however, writes that "such claims are not well substantiated and unlikely to be true". 731: 678: 623: 402: 124: 4946: 4832:
Fowler, David H. (2001), "The story of the discovery of incommensurability, revisited",
4645: 4168: 3433:
definition of an irrational number used in constructive mathematics, that a real number
5853: 5565: 4814: 4657: 4653: 4572: 4389: 4381: 4267: 4259: 4224: 4216: 4142: 3634: 3557: 3512: 3492: 3454: 3436: 2277: 1590: 1048: 964: 882: 719: 109: 6011: 5938: 5877: 5863: 5558: 5538: 5235: 5200: 5178: 5002: 4973: 4886: 4818: 4686: 4661: 4483: 4473: 4444: 4393: 4271: 4228: 4174: 4146: 4134: 4096: 3989: 3658: 3618: 1977: 1554: ≠ 0). The contradiction means that this assumption must be false, i.e. log 1038: 980: 634: 630: 604: 128: 753:
evaluated some of these formulas and critiqued them, identifying their limitations.
6029: 5958: 5933: 5867: 5776: 5742: 5583: 5553: 5475: 5378: 5272: 5267: 5245: 5230: 5195: 5113: 4905:
Lord, Nick, "Maths bite: irrational powers of irrational numbers can be rational",
4806: 4649: 4564: 4377: 4373: 4251: 4242:
James R. Choike (1980). "The Pentagram and the Discovery of an Irrational Number".
4208: 4126: 4064: 4027: 3947: 3932: 3696: 3691: 2393: 1610: 1586: 1233: 1018: 1000: 991:
in the 19th century entailed the differentiation of irrationals into algebraic and
976: 35: 4291:, Vol. 1. New York: Oxford University Press (original work published 1972), p. 33. 1042: 331:
The first proof of the existence of irrational numbers is usually attributed to a
5906: 5810: 5442: 5055: 5048: 4837: 4164: 3982: 3799: 3429: 1241: 1094: 1093:, which showed that every interval in the reals contains transcendental numbers. 1034: 765: 163: 70: 4630:(1987). "The theory of quadratic irrationals in medieval Oriental mathematics". 881:(c. 850 – 930) was the first to accept irrational numbers as solutions to 178: 5953: 5943: 5928: 5747: 5615: 5386: 5128: 5118: 4550: 4194: 3975: 3875: 3723: 2873:, which is a contradictory pair of prime factorizations and hence violates the 1931: 1927: 1830: − 1 = 0. This polynomial has no rational roots, since the 988: 984: 833: 332: 113: 4877: 4130: 750: 57: 6054: 6016: 5989: 5898: 5183: 5145: 4432: 4138: 3716: 3653: 3550: 3530: 1980:, we can prove that it is a fraction of two integers. For example, consider: 1950: 1110: 1106: 718:
It is suggested that the concept of irrationality was implicitly accepted by
711: 183: 117: 1558: 3 is irrational, and can never be expressed as a quotient of integers 746: 30: 5979: 5781: 5250: 5220: 4284: 4160: 4115:"95.42 Irrational square roots of natural numbers — a geometrical approach" 3925: 3614: 1535: 1269: 1265: 1237: 1086: 1030: 1026: 1014: 1004: 920:
during the 12th century, first mentions the use of a fractional bar, where
694: 615: 103: 4487: 2880:
A stronger result is the following: Every rational number in the interval
909: 5805: 5587: 4759: 4197:(1945). "The Discovery of Incommensurability by Hippasus of Metapontum". 3761: 3626: 3546: 1920: 1114: 886: 821: 797: 742: 727: 159: 66: 48: 3297:{\displaystyle \pi e,\ \pi /e,\ \pi ^{e},\ \pi ^{\sqrt {2}},\ \ln \pi ,} 1741:{\displaystyle p(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_{1}x+a_{0}=0\;,} 1256:
The proof above for the square root of two can be generalized using the
5786: 5643: 4810: 4576: 4385: 4263: 4220: 2369:
Although the above argument does not decide between the two cases, the
1856: 1594: 862: 730:
of numbers such as 2 and 61 could not be exactly determined. Historian
344: 167: 73:. That is, irrational numbers cannot be expressed as the ratio of two 5061: 4410:"Ritual Geometry in India and its Parallelism in other Culture Areas" 4409: 3331: 2957:. Similarly, every positive rational number can be written either as 1962: 1292: 921: 858: 837: 359:
Start with an isosceles right triangle with side lengths of integers
340: 4788: 4568: 4255: 4212: 1130: 5894: 5825: 5671: 5034:
Rolf Wallisser, "On Lambert's proof of the irrationality of π", in
4679:
Mathematics Across Cultures: The History of Non-western Mathematics
4437:
Mathematics Across Cultures: The History of Non-western Mathematics
3966: 1277: 963:." This same fractional notation appears soon after in the work of 894: 890: 705: 682: 619: 336: 5038:, Franz Halter-Koch and Robert F. Tichy, (2000), Walter de Gruyter 4966:
Real Analysis: A Constructive Approach through Interval Arithmetic
4170:
Contributions to the Founding of the Theory of Transfinite Numbers
1542: 3 is rational (and so expressible as a quotient of integers 135:
starts with 3.14159, but no finite number of digits can represent
5414: 5337: 4921:
Marshall, Ash J., and Tan, Yiren, "A rational number of the form
3837: 801: 699: 74: 3093:) is irrational. In fact, there is no pair of non-zero integers 2471:{\displaystyle \left({\sqrt {2}}\right)^{\log _{\sqrt {2}}3}=3.} 2408:
is a transcendental number (there can be more than one value if
5368: 996: 813: 723: 339:), who probably discovered them while identifying sides of the 1867:
and π, which are transcendental for all nonzero rational 
1291:
Perhaps the numbers most easy to prove irrational are certain
123:
Like all real numbers, irrational numbers can be expressed in
3553:
subset, the complementary set of irrationals is uncountable.
3457:
from every rational number, or equivalently, if the distance
1916: 874: 825: 812:. Middle Eastern mathematicians also merged the concepts of " 78: 4992: 4364:
Robert L. McCabe (1976). "Theodorus' Irrationality Proofs".
1597:
with integer coefficients. Those that are not algebraic are
96:
of a circle's circumference to its diameter, Euler's number
3909: 898: 697:
in India. There are references to such calculations in the
3917: 1085:
was first established by Liouville (1844, 1851). Later,
913: 371:. The ratio of the hypotenuse to a leg is represented by 187: 4711:. La Salle, Illinois: The Open Court Publishing Company. 2415:
An example that provides a simple constructive proof is
2268:
is a ratio of integers and therefore a rational number.
5289: 2258:{\displaystyle A={\frac {7155}{9990}}={\frac {53}{74}}} 1276:
th power of another integer, then that first integer's
999:. The year 1872 saw the publication of the theories of 770: 91: 4509:
Datta, Bibhutibhusan; Singh, Awadhesh Narayan (1993).
5834: 5757: 5718: 5680: 5652: 5624: 5596: 5517: 5484: 5451: 5423: 5395: 4589: 3883: 3845: 3807: 3769: 3731: 3566: 3515: 3495: 3463: 3439: 3397: 3368: 3339: 3316: 3218: 3193: 3157: 3125: 3099: 3073: 3047: 3001: 2963: 2886: 2836: 2792: 2728: 2678: 2525: 2487: 2424: 2225: 2190: 2089: 2038: 1989: 1784: 1757: 1622: 1494: 1430: 1386: 1331: 930: 306: 284: 262: 240: 218: 196: 4952:. Department of Mathematics, University of Oklahoma. 4767:
Mémoires de l'Académie royale des sciences de Berlin
3151:
is irrational. Moreover, it is not known if the set
2664:
which we can assume, for the sake of establishing a
4735: 4676: 4675:Jacques Sesiano, "Islamic mathematics", p. 148, in 4431: 4308: 4306: 1923:expansions, and in general for expansions in every 1834:shows that the only possibilities are ±1, but 1236:was likely the first number proved irrational. The 1155:. Unsourced material may be challenged and removed. 5842: 5765: 5726: 5688: 5660: 5632: 5604: 5527: 5492: 5459: 5431: 5403: 4339: 3895: 3857: 3819: 3781: 3743: 3605: 3521: 3501: 3481: 3445: 3409: 3383: 3354: 3330:are irrational. It is not known if either of the 3322: 3296: 3201: 3175: 3143: 3111: 3085: 3059: 3021: 2983: 2933: 2865: 2822: 2778: 2714: 2653: 2508: 2470: 2257: 2205: 2122: 2065: 2017: 1811:. An example of an irrational algebraic number is 1803: 1770: 1740: 1523: 1477: 1413: 1366: 1061:proved (1761) that π cannot be rational, and that 955: 314: 292: 278:). The real numbers also include the irrationals ( 270: 248: 226: 204: 4289:Mathematical Thought from Ancient to Modern Times 782:provided proofs for these infinite series in the 6052: 5036:Algebraic Number Theory and Diophantine Analysis 4954:(Senior Mathematics Seminar, Spring 2008 course) 4553:(1995). "Ideas of Calculus in Islam and India". 4363: 4303: 2384:, hence irrational. This theorem states that if 2123:{\displaystyle 10,000A=7\,162.162\,162\,\ldots } 1314: 3 is rational. For some positive integers 861:as irrational magnitudes. He also introduced an 607:termed this ratio of incommensurable magnitudes 4876:George, Alexander; Velleman, Daniel J. (2002). 4622: 4620: 4618: 4616: 4241: 1613:are the real solutions of polynomial equations 4875: 4193: 3419: 5353: 5077: 4677:Selin, Helaine; D'Ambrosio, Ubiratan (2000). 3535:proof that the square root of 2 is irrational 2018:{\displaystyle A=0.7\,162\,162\,162\,\ldots } 131:. For example, the decimal representation of 4963: 4626: 4613: 3600: 3588: 3476: 3464: 3170: 3158: 2404:is not a rational number, then any value of 2066:{\displaystyle 10A=7.162\,162\,162\,\ldots } 1822: − 1) = 2, which is equivalent to 956:{\displaystyle {\frac {3\quad 1}{5\quad 3}}} 808:allowed irrational numbers to be treated as 143:Irrational numbers can also be expressed as 4917: 4915: 4709:A History of Mathematical Notations (Vol.1) 4596:"Arabic mathematics: forgotten brilliance?" 1244:are irrational and a proof may be found in 1109:(1893), and was finally made elementary by 6035: 5360: 5346: 5084: 5070: 4633:Annals of the New York Academy of Sciences 4508: 4342:The historical development of the calculus 3887: 3849: 3811: 3773: 3735: 2076:Now we multiply this equation by 10 where 1902:are irrational (and even transcendental). 1734: 1367:{\displaystyle \log _{2}3={\frac {m}{n}}.} 762:Kerala school of astronomy and mathematics 726:(c. 750 – 690 BC) believed that the 5836: 5759: 5720: 5682: 5654: 5626: 5598: 5486: 5453: 5425: 5397: 4947:"Some unsolved problems in number theory" 4458: 4097:The 15 Most Famous Transcendental Numbers 3889: 3851: 3813: 3775: 3737: 3540: 3195: 2116: 2112: 2108: 2059: 2055: 2051: 2011: 2007: 2003: 1999: 1937:To show this, suppose we divide integers 1215:Learn how and when to remove this message 308: 286: 264: 242: 220: 198: 4912: 4666:See in particular pp. 254 & 259–260. 4244:The Two-Year College Mathematics Journal 2280:that there exist two irrational numbers 1976:Conversely, suppose we are faced with a 1260:. This asserts that every integer has a 177: 29: 5049:Zeno's Paradoxes and Incommensurability 4993:Errett Bishop; Douglas Bridges (1985). 4754: 4601:MacTutor History of Mathematics Archive 4112: 2779:{\displaystyle 2^{\log _{2}3}=2^{m/2n}} 1307: 3 ≈ 1.58 > 0). 979:become a powerful tool in the hands of 768:for several irrational numbers such as 90:Among irrational numbers are the ratio 14: 6053: 5091: 4853: 4831: 4786: 4723: 4706: 4159: 3606:{\displaystyle d(x,y)=\vert x-y\vert } 906:Latin translations of the 12th century 570:is divisible by 2, and therefore even. 452:is divisible by 2, and therefore even. 256:), which include the natural numbers ( 27:Number that is not a ratio of integers 5341: 5065: 4464: 4435:; D'Ambrosio, Ubiratan, eds. (2000). 2934:{\displaystyle ((1/e)^{1/e},\infty )} 1905: 1873:Because the algebraic numbers form a 840:(d. 874/884) examined and classified 394:are in the smallest possible terms ( 4549: 4518:Indian Journal of History of Science 4472:(2nd ed.). Wiley. p. 208. 4414:Indian Journal of History of Science 2271: 1153:adding citations to reliable sources 1124: 429:. (Since the triangle is isosceles, 5549:Set-theoretically definable numbers 4407: 1478:{\displaystyle (2^{m/n})^{n}=3^{n}} 1089:(1873) proved their existence by a 756:During the 14th to 16th centuries, 145:non-terminating continued fractions 24: 5520: 5367: 5018: 4944: 4654:10.1111/j.1749-6632.1987.tb37206.x 3549:set, of which the rationals are a 2925: 2509:{\displaystyle \log _{\sqrt {2}}3} 2177:cancels out the tail end of 10,000 2165:Therefore, when we subtract the 10 1577: 2 can be treated similarly. 987:. The completion of the theory of 25: 6077: 5042: 3453:is an irrational number if it is 3036: 2875:fundamental theorem of arithmetic 2303:; if this is rational, then take 1851: 1258:fundamental theorem of arithmetic 918:Islamic inheritance jurisprudence 774:and certain irrational values of 326: 6034: 5303: 4776:from the original on 2016-04-28. 4103:. URL retrieved 24 October 2007. 1251: 1129: 970: 912:, a Moroccan mathematician from 893:in the form of square roots and 791: 681:proved the irrationality of the 212:), which include the rationals ( 112:. In fact, all square roots of 5058:(n.d.). Retrieved April 1, 2008 4986: 4957: 4938: 4899: 4869: 4847: 4825: 4780: 4748: 4729: 4716: 4700: 4669: 4583: 4543: 4502: 4424: 4401: 4357: 4348: 4333: 4324: 4113:Jackson, Terence (2011-07-01). 3896:{\displaystyle :\;\mathbb {N} } 3858:{\displaystyle :\;\mathbb {Z} } 3820:{\displaystyle :\;\mathbb {Q} } 3782:{\displaystyle :\;\mathbb {R} } 3744:{\displaystyle :\;\mathbb {C} } 3482:{\displaystyle \vert r-q\vert } 2715:{\displaystyle \log _{2}3=m/2n} 1227: 1140:needs additional citations for 946: 937: 722:since the 7th century BC, when 234:), which include the integers ( 5528:{\displaystyle {\mathcal {P}}} 4378:10.1080/0025570X.1976.11976579 4315: 4294: 4278: 4235: 4187: 4153: 4106: 4090: 3582: 3570: 3119:for which it is known whether 2928: 2905: 2890: 2887: 2877:(unique prime factorization). 1953:is applied to the division of 1632: 1626: 1453: 1431: 1079:Bessel–Clifford function 1077:(1794), after introducing the 824:, criticized Euclid's idea of 820:" into a more general idea of 13: 1: 5883:Plane-based geometric algebra 4084: 3391:is rational for some integer 2410:complex number exponentiation 2276:Dov Jarden gave a simple non- 1286: 1003:(by his pupil Ernst Kossak), 584:We have just shown that both 398:they have no common factors). 170:real numbers are irrational. 129:end with a repeating sequence 5843:{\displaystyle \mathbb {S} } 5766:{\displaystyle \mathbb {C} } 5727:{\displaystyle \mathbb {R} } 5689:{\displaystyle \mathbb {O} } 5661:{\displaystyle \mathbb {H} } 5633:{\displaystyle \mathbb {C} } 5605:{\displaystyle \mathbb {R} } 5493:{\displaystyle \mathbb {A} } 5460:{\displaystyle \mathbb {Q} } 5432:{\displaystyle \mathbb {Z} } 5404:{\displaystyle \mathbb {N} } 4935:96, March 2012, pp. 106-109. 4736:Salvatore Pincherle (1880). 4524:(3): 253–264. Archived from 4511:"Surds in Hindu mathematics" 3202:{\displaystyle \mathbb {Q} } 2866:{\displaystyle 3^{2n}=2^{m}} 2400:is not equal to 0 or 1, and 2322:to be the irrational number 2173:equation, the tail end of 10 1604: 1585:An irrational number may be 1524:{\displaystyle 2^{m}=3^{n}.} 474:by 2 yields an integer. Let 315:{\displaystyle \mathbb {Q} } 293:{\displaystyle \mathbb {R} } 271:{\displaystyle \mathbb {N} } 249:{\displaystyle \mathbb {Z} } 227:{\displaystyle \mathbb {Q} } 205:{\displaystyle \mathbb {R} } 7: 4885:. Blackwell. pp. 3–4. 4879:Philosophies of mathematics 4468:(1991). "China and India". 4340:Charles H. Edwards (1982). 3647: 3420:In constructive mathematics 2991:for some irrational number 2945:for some irrational number 2672:of positive integers. Then 2206:{\displaystyle 9990A=7155.} 1804:{\displaystyle a_{n}\neq 0} 1120: 897:. In the 10th century, the 629:The next step was taken by 166:countable, it follows that 151:), and in many other ways. 10: 6082: 4909:92, November 2008, p. 534. 4408:Bag, Amulya Kumar (1990). 3509:and every rational number 3176:{\displaystyle \{\pi ,e\}} 2823:{\displaystyle 3=2^{m/2n}} 2141:exactly. Here, both 10,000 2137:matches the tail end of 10 1303: 3 is irrational (log 173: 158:that the real numbers are 6025: 5967: 5893: 5873:Algebra of physical space 5795: 5703: 5574: 5376: 5312: 5301: 5099: 4805:(2–3). Teubner: 222–224. 4131:10.1017/S0025557200003193 3664:Diophantine approximation 3613:, the real numbers are a 3309:Euler–Mascheroni constant 3185:algebraically independent 3022:{\displaystyle n^{n^{n}}} 2984:{\displaystyle a^{a^{a}}} 2941:can be written either as 2371:Gelfond–Schneider theorem 2162:after the decimal point. 1965:greater than or equal to 1414:{\displaystyle 2^{m/n}=3} 879:Abū Kāmil Shujā ibn Aslam 147:(which in some cases are 5929:Extended complex numbers 5912:Extended natural numbers 5031:, Note IV, (1802), Paris 4707:Cajori, Florian (1928). 4606:University of St Andrews 4470:A History of Mathematics 4119:The Mathematical Gazette 3545:Since the reals form an 3426:constructive mathematics 3355:{\displaystyle ^{n}\pi } 3144:{\displaystyle m\pi +ne} 3029:for some natural number 2953:for some natural number 2169:equation from the 10,000 1580: 688: 661:to the second power and 349:isosceles right triangle 4742:Giornale di Matematiche 3410:{\displaystyle n>1.} 3323:{\displaystyle \gamma } 2365:= 2, which is rational. 1961:, there can never be a 1859:irrational numbers are 1751:where the coefficients 1103:Ferdinand von Lindemann 1059:Johann Heinrich Lambert 776:trigonometric functions 758:Madhava of Sangamagrama 524:in the first equation ( 489:Squaring both sides of 5985:Transcendental numbers 5844: 5821:Hyperbolic quaternions 5767: 5728: 5690: 5662: 5634: 5606: 5529: 5494: 5461: 5433: 5405: 4769:(in French): 265–322. 3983:Dyadic (finite binary) 3897: 3859: 3821: 3783: 3745: 3607: 3541:Set of all irrationals 3523: 3503: 3483: 3447: 3411: 3385: 3356: 3324: 3298: 3203: 3177: 3145: 3113: 3087: 3086:{\displaystyle \pi -e} 3061: 3060:{\displaystyle \pi +e} 3023: 2985: 2935: 2867: 2824: 2780: 2716: 2655: 2510: 2472: 2259: 2207: 2124: 2067: 2019: 1841:is greater than 1. So 1805: 1772: 1742: 1525: 1479: 1415: 1368: 1297:proof by contradiction 1083:transcendental numbers 993:transcendental numbers 957: 871: 855: 543:Dividing by 2 yields 2 337:Hippasus of Metapontum 323: 316: 294: 272: 250: 228: 206: 44: 5917:Extended real numbers 5845: 5768: 5738:Split-complex numbers 5729: 5691: 5663: 5635: 5607: 5530: 5495: 5471:Constructible numbers 5462: 5434: 5406: 5029:Éléments de Géometrie 5025:Adrien-Marie Legendre 4995:Constructive Analysis 4970:John Wiley & Sons 4964:Mark Bridger (2007). 4798:Mathematische Annalen 4787:Gordan, Paul (1893). 4200:Annals of Mathematics 3898: 3860: 3822: 3784: 3746: 3669:Irrationality measure 3631:completely metrizable 3608: 3524: 3504: 3484: 3448: 3412: 3386: 3384:{\displaystyle ^{n}e} 3357: 3325: 3299: 3204: 3178: 3146: 3114: 3088: 3062: 3024: 2986: 2936: 2868: 2825: 2781: 2717: 2656: 2511: 2473: 2260: 2208: 2125: 2068: 2020: 1832:rational root theorem 1806: 1773: 1771:{\displaystyle a_{i}} 1743: 1526: 1480: 1416: 1369: 1246:quadratic irrationals 1075:Adrien-Marie Legendre 1053:Joseph-Louis Lagrange 1033:in the system of all 975:The 17th century saw 967:in the 13th century. 958: 867: 847: 842:quadratic irrationals 806:Muslim mathematicians 800:, the development of 720:Indian mathematicians 715:(800 BC or earlier). 317: 295: 273: 251: 229: 207: 181: 33: 6066:Sets of real numbers 5949:Supernatural numbers 5859:Multicomplex numbers 5832: 5816:Dual-complex numbers 5755: 5716: 5678: 5650: 5622: 5594: 5576:Composition algebras 5544:Arithmetical numbers 5515: 5482: 5449: 5421: 5393: 4932:Mathematical Gazette 4907:Mathematical Gazette 4628:Matvievskaya, Galina 4592:Robertson, Edmund F. 4556:Mathematics Magazine 4366:Mathematics Magazine 4101:Clifford A. Pickover 4028:Algebraic irrational 3881: 3843: 3805: 3767: 3729: 3702:Trigonometric number 3564: 3560:) distance function 3513: 3493: 3461: 3437: 3395: 3366: 3337: 3314: 3216: 3191: 3155: 3123: 3097: 3071: 3045: 2999: 2961: 2884: 2834: 2790: 2726: 2676: 2523: 2485: 2422: 2223: 2188: 2087: 2036: 1987: 1782: 1755: 1620: 1492: 1428: 1384: 1329: 1262:unique factorization 1149:improve this article 1101:transcendental, and 1097:(1873) first proved 1069:is rational (unless 983:, and especially of 928: 741:Mathematicians like 672:reductio ad absurdum 668:method of exhaustion 605:Greek mathematicians 558:is an integer, and 2 304: 282: 260: 238: 216: 194: 154:As a consequence of 5854:Split-biquaternions 5566:Eisenstein integers 5504:Closed-form numbers 4856:Scripta Mathematica 4744:: 178–254, 317–320. 4646:1987NYASA.500..253M 4590:O'Connor, John J.; 4173:. New York: Dover. 3719: 3212:It is not known if 3112:{\displaystyle m,n} 3041:It is not known if 2318:. Otherwise, take 1164:"Irrational number" 1049:Continued fractions 1041:(Crelle, 101), and 1023:Salvatore Pincherle 883:quadratic equations 732:Carl Benjamin Boyer 679:Theodorus of Cyrene 403:Pythagorean theorem 125:positional notation 102:, the golden ratio 6061:Irrational numbers 6012:Profinite integers 5975:Irrational numbers 5840: 5763: 5724: 5686: 5658: 5630: 5602: 5559:Gaussian rationals 5539:Computable numbers 5525: 5490: 5457: 5429: 5401: 5093:Irrational numbers 5054:2016-05-13 at the 4811:10.1007/bf01443647 4789:"Transcendenz von 4354:Kline 1990, p. 50. 4330:Kline 1990, p. 49. 4321:Kline 1990, p. 48. 4312:Kline 1990, p. 34. 4300:Kline 1990, p. 32. 3893: 3855: 3817: 3779: 3741: 3715: 3635:continued fraction 3603: 3519: 3499: 3479: 3443: 3407: 3381: 3352: 3320: 3305:Catalan's constant 3294: 3199: 3173: 3141: 3109: 3083: 3057: 3019: 2981: 2931: 2863: 2820: 2776: 2712: 2651: 2506: 2468: 2278:constructive proof 2255: 2203: 2120: 2063: 2015: 1949:is nonzero). When 1906:Decimal expansions 1801: 1768: 1738: 1521: 1475: 1411: 1364: 1017:(Annalen, 5), and 965:Leonardo Fibonacci 953: 470:is even, dividing 324: 312: 290: 268: 246: 224: 202: 120:, are irrational. 110:square root of two 53:irrational numbers 45: 18:Irrational numbers 6048: 6047: 5959:Superreal numbers 5939:Levi-Civita field 5934:Hyperreal numbers 5878:Spacetime algebra 5864:Geometric algebra 5777:Bicomplex numbers 5743:Split-quaternions 5584:Division algebras 5554:Gaussian integers 5476:Algebraic numbers 5379:definable numbers 5335: 5334: 5236:Supersilver ratio 5201:Supergolden ratio 5161:Twelfth root of 2 4979:978-1-470-45144-8 4180:978-0-486-60045-1 4082: 4081: 4078: 4077: 4074: 4073: 4070: 4069: 4059: 4058: 4055: 4054: 4051: 4050: 4047: 4046: 4035:Irrational period 4009: 4008: 4005: 4004: 4001: 4000: 3997: 3996: 3990:Repeating decimal 3957: 3956: 3953: 3952: 3948:Negative integers 3942: 3941: 3938: 3937: 3933:Composite numbers 3659:Computable number 3619:topological space 3617:and hence also a 3556:Under the usual ( 3522:{\displaystyle q} 3502:{\displaystyle r} 3446:{\displaystyle r} 3281: 3273: 3263: 3247: 3230: 2668:, equals a ratio 2627: 2589: 2586: 2535: 2497: 2451: 2435: 2394:algebraic numbers 2272:Irrational powers 2253: 2240: 2181:leaving us with: 1978:repeating decimal 1778:are integers and 1611:algebraic numbers 1589:, that is a real 1573:Cases such as log 1359: 1225: 1224: 1217: 1199: 1065:is irrational if 1039:Leopold Kronecker 981:Abraham de Moivre 977:imaginary numbers 951: 810:algebraic objects 657:cubed instead of 631:Eudoxus of Cnidus 478:be this integer ( 190:of real numbers ( 16:(Redirected from 6073: 6038: 6037: 6005: 5995: 5907:Cardinal numbers 5868:Clifford algebra 5849: 5847: 5846: 5841: 5839: 5811:Dual quaternions 5772: 5770: 5769: 5764: 5762: 5733: 5731: 5730: 5725: 5723: 5695: 5693: 5692: 5687: 5685: 5667: 5665: 5664: 5659: 5657: 5639: 5637: 5636: 5631: 5629: 5611: 5609: 5608: 5603: 5601: 5534: 5532: 5531: 5526: 5524: 5523: 5499: 5497: 5496: 5491: 5489: 5466: 5464: 5463: 5458: 5456: 5443:Rational numbers 5438: 5436: 5435: 5430: 5428: 5410: 5408: 5407: 5402: 5400: 5362: 5355: 5348: 5339: 5338: 5307: 5295: 5285: 5273:Square root of 7 5268:Square root of 6 5263: 5246:Square root of 5 5241: 5231:Square root of 3 5226: 5216: 5206: 5196:Square root of 2 5189: 5174: 5156: 5124: 5109: 5086: 5079: 5072: 5063: 5062: 5013: 5012: 4990: 4984: 4983: 4961: 4955: 4953: 4951: 4942: 4936: 4919: 4910: 4903: 4897: 4896: 4884: 4873: 4867: 4863: 4851: 4845: 4844: 4829: 4823: 4822: 4784: 4778: 4777: 4775: 4764: 4752: 4746: 4745: 4733: 4727: 4720: 4714: 4712: 4704: 4698: 4696: 4673: 4667: 4665: 4624: 4611: 4609: 4587: 4581: 4580: 4547: 4541: 4540: 4538: 4536: 4530: 4515: 4506: 4500: 4499: 4462: 4456: 4454: 4428: 4422: 4421: 4405: 4399: 4397: 4361: 4355: 4352: 4346: 4345: 4337: 4331: 4328: 4322: 4319: 4313: 4310: 4301: 4298: 4292: 4282: 4276: 4275: 4239: 4233: 4232: 4191: 4185: 4184: 4157: 4151: 4150: 4125:(533): 327–330. 4110: 4104: 4094: 4024: 4023: 4015: 4014: 3972: 3971: 3963: 3962: 3906: 3905: 3902: 3900: 3899: 3894: 3892: 3872: 3871: 3868: 3867: 3864: 3862: 3861: 3856: 3854: 3834: 3833: 3830: 3829: 3826: 3824: 3823: 3818: 3816: 3796: 3795: 3792: 3791: 3788: 3786: 3785: 3780: 3778: 3758: 3757: 3754: 3753: 3750: 3748: 3747: 3742: 3740: 3720: 3714: 3711: 3710: 3707: 3706: 3697:Square root of 5 3692:Square root of 3 3686: 3677: 3642:zero-dimensional 3612: 3610: 3609: 3604: 3528: 3526: 3525: 3520: 3508: 3506: 3505: 3500: 3488: 3486: 3485: 3480: 3452: 3450: 3449: 3444: 3416: 3414: 3413: 3408: 3390: 3388: 3387: 3382: 3377: 3376: 3361: 3359: 3358: 3353: 3348: 3347: 3329: 3327: 3326: 3321: 3303: 3301: 3300: 3295: 3279: 3275: 3274: 3269: 3261: 3257: 3256: 3245: 3238: 3228: 3208: 3206: 3205: 3200: 3198: 3182: 3180: 3179: 3174: 3150: 3148: 3147: 3142: 3118: 3116: 3115: 3110: 3092: 3090: 3089: 3084: 3066: 3064: 3063: 3058: 3028: 3026: 3025: 3020: 3018: 3017: 3016: 3015: 2990: 2988: 2987: 2982: 2980: 2979: 2978: 2977: 2940: 2938: 2937: 2932: 2921: 2920: 2916: 2900: 2872: 2870: 2869: 2864: 2862: 2861: 2849: 2848: 2829: 2827: 2826: 2821: 2819: 2818: 2811: 2785: 2783: 2782: 2777: 2775: 2774: 2767: 2751: 2750: 2743: 2742: 2721: 2719: 2718: 2713: 2705: 2688: 2687: 2660: 2658: 2657: 2652: 2644: 2643: 2628: 2626: 2622: 2613: 2606: 2605: 2595: 2590: 2588: 2587: 2582: 2577: 2576: 2566: 2559: 2558: 2548: 2537: 2536: 2531: 2515: 2513: 2512: 2507: 2499: 2498: 2493: 2477: 2475: 2474: 2469: 2461: 2460: 2453: 2452: 2447: 2440: 2436: 2431: 2379: 2378: 2364: 2363: 2357: 2356: 2350: 2349: 2339: 2338: 2328: 2327: 2317: 2316: 2302: 2301: 2264: 2262: 2261: 2256: 2254: 2246: 2241: 2233: 2212: 2210: 2209: 2204: 2161: 2160: 2157: 2154: 2129: 2127: 2126: 2121: 2072: 2070: 2069: 2064: 2024: 2022: 2021: 2016: 1901: 1900: 1891: 1890: 1884: 1881: + 2, 1880: 1810: 1808: 1807: 1802: 1794: 1793: 1777: 1775: 1774: 1769: 1767: 1766: 1747: 1745: 1744: 1739: 1727: 1726: 1711: 1710: 1692: 1691: 1676: 1675: 1657: 1656: 1647: 1646: 1570: ≠ 0. 1530: 1528: 1527: 1522: 1517: 1516: 1504: 1503: 1484: 1482: 1481: 1476: 1474: 1473: 1461: 1460: 1451: 1450: 1446: 1420: 1418: 1417: 1412: 1404: 1403: 1399: 1377:It follows that 1373: 1371: 1370: 1365: 1360: 1352: 1341: 1340: 1280: 1275: 1268:there must be a 1234:square root of 2 1220: 1213: 1209: 1206: 1200: 1198: 1157: 1133: 1125: 1091:different method 1035:rational numbers 1019:Richard Dedekind 1010:Crelle's Journal 1001:Karl Weierstrass 962: 960: 959: 954: 952: 950: 941: 932: 916:specializing in 745:(in 628 AD) and 321: 319: 318: 313: 311: 299: 297: 296: 291: 289: 277: 275: 274: 269: 267: 255: 253: 252: 247: 245: 233: 231: 230: 225: 223: 211: 209: 208: 203: 201: 138: 134: 116:, other than of 94: 71:rational numbers 41: 40: 21: 6081: 6080: 6076: 6075: 6074: 6072: 6071: 6070: 6051: 6050: 6049: 6044: 6021: 6000: 5990: 5963: 5954:Surreal numbers 5944:Ordinal numbers 5889: 5835: 5833: 5830: 5829: 5791: 5758: 5756: 5753: 5752: 5750: 5748:Split-octonions 5719: 5717: 5714: 5713: 5705: 5699: 5681: 5679: 5676: 5675: 5653: 5651: 5648: 5647: 5625: 5623: 5620: 5619: 5616:Complex numbers 5597: 5595: 5592: 5591: 5570: 5519: 5518: 5516: 5513: 5512: 5485: 5483: 5480: 5479: 5452: 5450: 5447: 5446: 5424: 5422: 5419: 5418: 5396: 5394: 5391: 5390: 5387:Natural numbers 5372: 5366: 5336: 5331: 5308: 5299: 5293: 5283: 5262: 5254: 5239: 5224: 5214: 5204: 5187: 5169: 5154: 5122: 5107: 5095: 5090: 5056:Wayback Machine 5045: 5021: 5019:Further reading 5016: 5009: 4991: 4987: 4980: 4962: 4958: 4949: 4943: 4939: 4920: 4913: 4904: 4900: 4893: 4882: 4874: 4870: 4852: 4848: 4830: 4826: 4785: 4781: 4773: 4762: 4753: 4749: 4734: 4730: 4721: 4717: 4705: 4701: 4693: 4674: 4670: 4625: 4614: 4588: 4584: 4569:10.2307/2691411 4548: 4544: 4534: 4532: 4528: 4513: 4507: 4503: 4480: 4463: 4459: 4451: 4429: 4425: 4406: 4402: 4362: 4358: 4353: 4349: 4338: 4334: 4329: 4325: 4320: 4316: 4311: 4304: 4299: 4295: 4283: 4279: 4256:10.2307/3026893 4240: 4236: 4213:10.2307/1969021 4192: 4188: 4181: 4165:Philip Jourdain 4158: 4154: 4111: 4107: 4095: 4091: 4087: 3888: 3882: 3879: 3878: 3850: 3844: 3841: 3840: 3812: 3806: 3803: 3802: 3774: 3768: 3765: 3764: 3736: 3730: 3727: 3726: 3684: 3675: 3650: 3565: 3562: 3561: 3543: 3514: 3511: 3510: 3494: 3491: 3490: 3462: 3459: 3458: 3438: 3435: 3434: 3430:excluded middle 3422: 3396: 3393: 3392: 3372: 3369: 3367: 3364: 3363: 3343: 3340: 3338: 3335: 3334: 3315: 3312: 3311: 3268: 3264: 3252: 3248: 3234: 3217: 3214: 3213: 3194: 3192: 3189: 3188: 3156: 3153: 3152: 3124: 3121: 3120: 3098: 3095: 3094: 3072: 3069: 3068: 3046: 3043: 3042: 3039: 3011: 3007: 3006: 3002: 3000: 2997: 2996: 2973: 2969: 2968: 2964: 2962: 2959: 2958: 2912: 2908: 2904: 2896: 2885: 2882: 2881: 2857: 2853: 2841: 2837: 2835: 2832: 2831: 2807: 2803: 2799: 2791: 2788: 2787: 2763: 2759: 2755: 2738: 2734: 2733: 2729: 2727: 2724: 2723: 2701: 2683: 2679: 2677: 2674: 2673: 2639: 2635: 2618: 2614: 2601: 2597: 2596: 2594: 2581: 2572: 2568: 2567: 2554: 2550: 2549: 2547: 2530: 2526: 2524: 2521: 2520: 2492: 2488: 2486: 2483: 2482: 2446: 2442: 2441: 2430: 2426: 2425: 2423: 2420: 2419: 2376: 2374: 2361: 2359: 2354: 2352: 2347: 2345: 2336: 2334: 2325: 2323: 2314: 2312: 2299: 2297: 2274: 2245: 2232: 2224: 2221: 2220: 2189: 2186: 2185: 2158: 2155: 2152: 2150: 2088: 2085: 2084: 2037: 2034: 2033: 1988: 1985: 1984: 1908: 1898: 1896: 1888: 1886: 1882: 1878: 1863:. Examples are 1854: 1847: 1840: 1817: 1789: 1785: 1783: 1780: 1779: 1762: 1758: 1756: 1753: 1752: 1722: 1718: 1706: 1702: 1681: 1677: 1665: 1661: 1652: 1648: 1642: 1638: 1621: 1618: 1617: 1607: 1583: 1576: 1557: 1541: 1512: 1508: 1499: 1495: 1493: 1490: 1489: 1469: 1465: 1456: 1452: 1442: 1438: 1434: 1429: 1426: 1425: 1395: 1391: 1387: 1385: 1382: 1381: 1351: 1336: 1332: 1330: 1327: 1326: 1313: 1306: 1302: 1289: 1283:is irrational. 1278: 1273: 1254: 1242:perfect squares 1230: 1221: 1210: 1204: 1201: 1158: 1156: 1146: 1134: 1123: 1095:Charles Hermite 989:complex numbers 973: 942: 933: 931: 929: 926: 925: 794: 766:infinite series 764:discovered the 691: 329: 307: 305: 302: 301: 285: 283: 280: 279: 263: 261: 258: 257: 241: 239: 236: 235: 219: 217: 214: 213: 197: 195: 192: 191: 176: 136: 132: 118:perfect squares 114:natural numbers 92: 84:incommensurable 38: 36: 28: 23: 22: 15: 12: 11: 5: 6079: 6069: 6068: 6063: 6046: 6045: 6043: 6042: 6032: 6030:Classification 6026: 6023: 6022: 6020: 6019: 6017:Normal numbers 6014: 6009: 5987: 5982: 5977: 5971: 5969: 5965: 5964: 5962: 5961: 5956: 5951: 5946: 5941: 5936: 5931: 5926: 5925: 5924: 5914: 5909: 5903: 5901: 5899:infinitesimals 5891: 5890: 5888: 5887: 5886: 5885: 5880: 5875: 5861: 5856: 5851: 5838: 5823: 5818: 5813: 5808: 5802: 5800: 5793: 5792: 5790: 5789: 5784: 5779: 5774: 5761: 5745: 5740: 5735: 5722: 5709: 5707: 5701: 5700: 5698: 5697: 5684: 5669: 5656: 5641: 5628: 5613: 5600: 5580: 5578: 5572: 5571: 5569: 5568: 5563: 5562: 5561: 5551: 5546: 5541: 5536: 5522: 5506: 5501: 5488: 5473: 5468: 5455: 5440: 5427: 5412: 5399: 5383: 5381: 5374: 5373: 5365: 5364: 5357: 5350: 5342: 5333: 5332: 5330: 5329: 5324: 5322:Transcendental 5319: 5313: 5310: 5309: 5302: 5300: 5298: 5297: 5287: 5276: 5275: 5270: 5265: 5258: 5248: 5243: 5233: 5228: 5218: 5208: 5198: 5192: 5191: 5181: 5179:Cube root of 2 5176: 5163: 5158: 5148: 5143: 5141:Logarithm of 2 5137: 5136: 5131: 5126: 5116: 5111: 5100: 5097: 5096: 5089: 5088: 5081: 5074: 5066: 5060: 5059: 5044: 5043:External links 5041: 5040: 5039: 5032: 5020: 5017: 5015: 5014: 5007: 4985: 4978: 4956: 4945:Albert, John. 4937: 4911: 4898: 4891: 4868: 4846: 4824: 4779: 4756:Lambert, J. H. 4747: 4728: 4715: 4699: 4691: 4668: 4640:(1): 253–277. 4612: 4582: 4563:(3): 163–174. 4542: 4501: 4478: 4457: 4449: 4433:Selin, Helaine 4423: 4400: 4372:(4): 201–203. 4356: 4347: 4332: 4323: 4314: 4302: 4293: 4277: 4250:(5): 312–316. 4234: 4207:(2): 242–264. 4195:Kurt Von Fritz 4186: 4179: 4152: 4105: 4088: 4086: 4083: 4080: 4079: 4076: 4075: 4072: 4071: 4068: 4067: 4061: 4060: 4057: 4056: 4053: 4052: 4049: 4048: 4045: 4044: 4042:Transcendental 4038: 4037: 4031: 4030: 4021: 4011: 4010: 4007: 4006: 4003: 4002: 3999: 3998: 3995: 3994: 3992: 3986: 3985: 3979: 3978: 3976:Finite decimal 3969: 3959: 3958: 3955: 3954: 3951: 3950: 3944: 3943: 3940: 3939: 3936: 3935: 3929: 3928: 3922: 3921: 3914: 3913: 3903: 3891: 3886: 3865: 3853: 3848: 3827: 3815: 3810: 3789: 3777: 3772: 3751: 3739: 3734: 3717:Number systems 3705: 3704: 3699: 3694: 3689: 3680: 3671: 3666: 3661: 3656: 3649: 3646: 3602: 3599: 3596: 3593: 3590: 3587: 3584: 3581: 3578: 3575: 3572: 3569: 3542: 3539: 3518: 3498: 3478: 3475: 3472: 3469: 3466: 3442: 3421: 3418: 3406: 3403: 3400: 3380: 3375: 3371: 3351: 3346: 3342: 3319: 3293: 3290: 3287: 3284: 3278: 3272: 3267: 3260: 3255: 3251: 3244: 3241: 3237: 3233: 3227: 3224: 3221: 3197: 3172: 3169: 3166: 3163: 3160: 3140: 3137: 3134: 3131: 3128: 3108: 3105: 3102: 3082: 3079: 3076: 3056: 3053: 3050: 3038: 3037:Open questions 3035: 3014: 3010: 3005: 2976: 2972: 2967: 2930: 2927: 2924: 2919: 2915: 2911: 2907: 2903: 2899: 2895: 2892: 2889: 2860: 2856: 2852: 2847: 2844: 2840: 2817: 2814: 2810: 2806: 2802: 2798: 2795: 2773: 2770: 2766: 2762: 2758: 2754: 2749: 2746: 2741: 2737: 2732: 2711: 2708: 2704: 2700: 2697: 2694: 2691: 2686: 2682: 2662: 2661: 2650: 2647: 2642: 2638: 2634: 2631: 2625: 2621: 2617: 2612: 2609: 2604: 2600: 2593: 2585: 2580: 2575: 2571: 2565: 2562: 2557: 2553: 2546: 2543: 2540: 2534: 2529: 2505: 2502: 2496: 2491: 2479: 2478: 2467: 2464: 2459: 2456: 2450: 2445: 2439: 2434: 2429: 2382:transcendental 2367: 2366: 2273: 2270: 2266: 2265: 2252: 2249: 2244: 2239: 2236: 2231: 2228: 2214: 2213: 2202: 2199: 2196: 2193: 2131: 2130: 2119: 2115: 2111: 2107: 2104: 2101: 2098: 2095: 2092: 2074: 2073: 2062: 2058: 2054: 2050: 2047: 2044: 2041: 2026: 2025: 2014: 2010: 2006: 2002: 1998: 1995: 1992: 1907: 1904: 1861:transcendental 1853: 1852:Transcendental 1850: 1845: 1838: 1826: − 2 1815: 1800: 1797: 1792: 1788: 1765: 1761: 1749: 1748: 1737: 1733: 1730: 1725: 1721: 1717: 1714: 1709: 1705: 1701: 1698: 1695: 1690: 1687: 1684: 1680: 1674: 1671: 1668: 1664: 1660: 1655: 1651: 1645: 1641: 1637: 1634: 1631: 1628: 1625: 1606: 1603: 1599:transcendental 1582: 1579: 1574: 1555: 1539: 1532: 1531: 1520: 1515: 1511: 1507: 1502: 1498: 1486: 1485: 1472: 1468: 1464: 1459: 1455: 1449: 1445: 1441: 1437: 1433: 1422: 1421: 1410: 1407: 1402: 1398: 1394: 1390: 1375: 1374: 1363: 1358: 1355: 1350: 1347: 1344: 1339: 1335: 1311: 1304: 1300: 1288: 1285: 1253: 1250: 1229: 1226: 1223: 1222: 1137: 1135: 1128: 1122: 1119: 985:Leonhard Euler 972: 969: 949: 945: 940: 936: 877:mathematician 836:mathematician 793: 790: 690: 687: 624:four paradoxes 602: 601: 582: 571: 552: 541: 516:Substituting 4 514: 487: 464: 453: 438: 399: 380: 328: 327:Ancient Greece 325: 310: 288: 266: 244: 222: 200: 175: 172: 156:Cantor's proof 65:) are all the 43:is irrational. 26: 9: 6: 4: 3: 2: 6078: 6067: 6064: 6062: 6059: 6058: 6056: 6041: 6033: 6031: 6028: 6027: 6024: 6018: 6015: 6013: 6010: 6007: 6003: 5997: 5993: 5988: 5986: 5983: 5981: 5980:Fuzzy numbers 5978: 5976: 5973: 5972: 5970: 5966: 5960: 5957: 5955: 5952: 5950: 5947: 5945: 5942: 5940: 5937: 5935: 5932: 5930: 5927: 5923: 5920: 5919: 5918: 5915: 5913: 5910: 5908: 5905: 5904: 5902: 5900: 5896: 5892: 5884: 5881: 5879: 5876: 5874: 5871: 5870: 5869: 5865: 5862: 5860: 5857: 5855: 5852: 5827: 5824: 5822: 5819: 5817: 5814: 5812: 5809: 5807: 5804: 5803: 5801: 5799: 5794: 5788: 5785: 5783: 5782:Biquaternions 5780: 5778: 5775: 5749: 5746: 5744: 5741: 5739: 5736: 5711: 5710: 5708: 5702: 5673: 5670: 5645: 5642: 5617: 5614: 5589: 5585: 5582: 5581: 5579: 5577: 5573: 5567: 5564: 5560: 5557: 5556: 5555: 5552: 5550: 5547: 5545: 5542: 5540: 5537: 5510: 5507: 5505: 5502: 5477: 5474: 5472: 5469: 5444: 5441: 5416: 5413: 5388: 5385: 5384: 5382: 5380: 5375: 5370: 5363: 5358: 5356: 5351: 5349: 5344: 5343: 5340: 5328: 5327:Trigonometric 5325: 5323: 5320: 5318: 5317:Schizophrenic 5315: 5314: 5311: 5306: 5291: 5288: 5281: 5278: 5277: 5274: 5271: 5269: 5266: 5261: 5257: 5252: 5249: 5247: 5244: 5237: 5234: 5232: 5229: 5222: 5219: 5212: 5211:Erdős–Borwein 5209: 5202: 5199: 5197: 5194: 5193: 5185: 5184:Plastic ratio 5182: 5180: 5177: 5172: 5167: 5164: 5162: 5159: 5152: 5149: 5147: 5144: 5142: 5139: 5138: 5135: 5132: 5130: 5127: 5120: 5117: 5115: 5112: 5105: 5102: 5101: 5098: 5094: 5087: 5082: 5080: 5075: 5073: 5068: 5067: 5064: 5057: 5053: 5050: 5047: 5046: 5037: 5033: 5030: 5026: 5023: 5022: 5010: 5008:0-387-15066-8 5004: 5000: 4996: 4989: 4981: 4975: 4971: 4967: 4960: 4948: 4941: 4934: 4933: 4929:irrational", 4928: 4924: 4918: 4916: 4908: 4902: 4894: 4892:0-631-19544-0 4888: 4881: 4880: 4872: 4866: 4861: 4857: 4850: 4843: 4839: 4836:(10): 45–61, 4835: 4828: 4820: 4816: 4812: 4808: 4804: 4800: 4799: 4794: 4792: 4783: 4772: 4768: 4761: 4757: 4751: 4743: 4739: 4732: 4725: 4719: 4710: 4703: 4694: 4692:1-4020-0260-2 4688: 4684: 4680: 4672: 4663: 4659: 4655: 4651: 4647: 4643: 4639: 4635: 4634: 4629: 4623: 4621: 4619: 4617: 4607: 4603: 4602: 4597: 4593: 4586: 4578: 4574: 4570: 4566: 4562: 4558: 4557: 4552: 4546: 4531:on 2018-10-03 4527: 4523: 4519: 4512: 4505: 4498: 4495: 4489: 4485: 4481: 4475: 4471: 4467: 4461: 4452: 4450:1-4020-0260-2 4446: 4442: 4438: 4434: 4427: 4419: 4415: 4411: 4404: 4395: 4391: 4387: 4383: 4379: 4375: 4371: 4367: 4360: 4351: 4343: 4336: 4327: 4318: 4309: 4307: 4297: 4290: 4286: 4281: 4273: 4269: 4265: 4261: 4257: 4253: 4249: 4245: 4238: 4230: 4226: 4222: 4218: 4214: 4210: 4206: 4202: 4201: 4196: 4190: 4182: 4176: 4172: 4171: 4166: 4162: 4161:Cantor, Georg 4156: 4148: 4144: 4140: 4136: 4132: 4128: 4124: 4120: 4116: 4109: 4102: 4098: 4093: 4089: 4066: 4063: 4062: 4043: 4040: 4039: 4036: 4033: 4032: 4029: 4026: 4025: 4022: 4020: 4017: 4016: 4013: 4012: 3993: 3991: 3988: 3987: 3984: 3981: 3980: 3977: 3974: 3973: 3970: 3968: 3965: 3964: 3961: 3960: 3949: 3946: 3945: 3934: 3931: 3930: 3927: 3926:Prime numbers 3924: 3923: 3919: 3916: 3915: 3911: 3908: 3907: 3904: 3884: 3877: 3874: 3873: 3870: 3869: 3866: 3846: 3839: 3836: 3835: 3832: 3831: 3828: 3808: 3801: 3798: 3797: 3794: 3793: 3790: 3770: 3763: 3760: 3759: 3756: 3755: 3752: 3732: 3725: 3722: 3721: 3718: 3713: 3712: 3709: 3708: 3703: 3700: 3698: 3695: 3693: 3690: 3688: 3687:is irrational 3681: 3679: 3678:is irrational 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3655: 3654:Brjuno number 3652: 3651: 3645: 3643: 3638: 3636: 3632: 3628: 3624: 3620: 3616: 3597: 3594: 3591: 3585: 3579: 3576: 3573: 3567: 3559: 3554: 3552: 3548: 3538: 3536: 3532: 3531:Errett Bishop 3516: 3496: 3473: 3470: 3467: 3456: 3440: 3431: 3427: 3417: 3404: 3401: 3398: 3378: 3373: 3370: 3349: 3344: 3341: 3333: 3317: 3310: 3306: 3291: 3288: 3285: 3282: 3276: 3270: 3265: 3258: 3253: 3249: 3242: 3239: 3235: 3231: 3225: 3222: 3219: 3210: 3186: 3167: 3164: 3161: 3138: 3135: 3132: 3129: 3126: 3106: 3103: 3100: 3080: 3077: 3074: 3054: 3051: 3048: 3034: 3032: 3012: 3008: 3003: 2994: 2974: 2970: 2965: 2956: 2952: 2948: 2944: 2922: 2917: 2913: 2909: 2901: 2897: 2893: 2878: 2876: 2858: 2854: 2850: 2845: 2842: 2838: 2815: 2812: 2808: 2804: 2800: 2796: 2793: 2771: 2768: 2764: 2760: 2756: 2752: 2747: 2744: 2739: 2735: 2730: 2709: 2706: 2702: 2698: 2695: 2692: 2689: 2684: 2680: 2671: 2667: 2666:contradiction 2648: 2645: 2640: 2636: 2632: 2629: 2623: 2619: 2615: 2610: 2607: 2602: 2598: 2591: 2583: 2578: 2573: 2569: 2563: 2560: 2555: 2551: 2544: 2541: 2538: 2532: 2527: 2519: 2518: 2517: 2503: 2500: 2494: 2489: 2465: 2462: 2457: 2454: 2448: 2443: 2437: 2432: 2427: 2418: 2417: 2416: 2413: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2372: 2343: 2332: 2321: 2310: 2306: 2295: 2294: 2293: 2292:is rational: 2291: 2287: 2283: 2279: 2269: 2250: 2247: 2242: 2237: 2234: 2229: 2226: 2219: 2218: 2217: 2200: 2197: 2194: 2191: 2184: 2183: 2182: 2180: 2176: 2172: 2168: 2163: 2148: 2144: 2140: 2136: 2117: 2113: 2109: 2105: 2102: 2099: 2096: 2093: 2090: 2083: 2082: 2081: 2079: 2060: 2056: 2052: 2048: 2045: 2042: 2039: 2032: 2031: 2030: 2012: 2008: 2004: 2000: 1996: 1993: 1990: 1983: 1982: 1981: 1979: 1974: 1972: 1968: 1964: 1960: 1956: 1952: 1951:long division 1948: 1944: 1940: 1935: 1933: 1929: 1926: 1922: 1918: 1914: 1903: 1895: 1885: +  1876: 1871: 1870: 1866: 1862: 1858: 1849: 1844: 1837: 1833: 1829: 1825: 1821: 1814: 1798: 1795: 1790: 1786: 1763: 1759: 1735: 1731: 1728: 1723: 1719: 1715: 1712: 1707: 1703: 1699: 1696: 1693: 1688: 1685: 1682: 1678: 1672: 1669: 1666: 1662: 1658: 1653: 1649: 1643: 1639: 1635: 1629: 1623: 1616: 1615: 1614: 1612: 1602: 1600: 1596: 1592: 1588: 1578: 1571: 1569: 1565: 1561: 1553: 1549: 1545: 1537: 1536:prime factors 1518: 1513: 1509: 1505: 1500: 1496: 1488: 1487: 1470: 1466: 1462: 1457: 1447: 1443: 1439: 1435: 1424: 1423: 1408: 1405: 1400: 1396: 1392: 1388: 1380: 1379: 1378: 1361: 1356: 1353: 1348: 1345: 1342: 1337: 1333: 1325: 1324: 1323: 1321: 1317: 1308: 1298: 1294: 1284: 1282: 1271: 1267: 1263: 1259: 1252:General roots 1249: 1247: 1243: 1239: 1235: 1219: 1216: 1208: 1197: 1194: 1190: 1187: 1183: 1180: 1176: 1173: 1169: 1166: –  1165: 1161: 1160:Find sources: 1154: 1150: 1144: 1143: 1138:This article 1136: 1132: 1127: 1126: 1118: 1116: 1112: 1111:Adolf Hurwitz 1108: 1107:David Hilbert 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1054: 1050: 1046: 1044: 1043:Charles Méray 1040: 1036: 1032: 1031:cut (Schnitt) 1028: 1024: 1020: 1016: 1012: 1011: 1006: 1002: 998: 994: 990: 986: 982: 978: 971:Modern period 968: 966: 947: 943: 938: 934: 923: 919: 915: 911: 907: 902: 900: 896: 892: 888: 884: 880: 876: 870: 866: 864: 860: 854: 852: 846: 843: 839: 835: 831: 827: 823: 819: 815: 811: 807: 803: 799: 792:Islamic World 789: 787: 786: 781: 777: 773: 772: 767: 763: 759: 754: 752: 748: 744: 739: 735: 733: 729: 725: 721: 716: 714: 713: 712:Shulba Sutras 708: 707: 702: 701: 696: 686: 684: 680: 676: 673: 669: 664: 660: 656: 652: 648: 644: 638: 636: 632: 627: 625: 621: 617: 612: 610: 606: 599: 595: 591: 587: 583: 581:must be even. 580: 576: 572: 569: 565: 561: 557: 553: 550: 546: 542: 539: 535: 531: 527: 523: 519: 515: 512: 508: 504: 500: 496: 492: 488: 485: 481: 477: 473: 469: 465: 463:must be even. 462: 458: 454: 451: 447: 443: 439: 436: 432: 428: 424: 420: 416: 412: 408: 404: 400: 397: 393: 389: 385: 381: 378: 374: 370: 366: 362: 358: 357: 356: 354: 353:commensurable 350: 346: 342: 338: 334: 189: 185: 184:Euler diagram 180: 171: 169: 165: 161: 157: 152: 150: 146: 141: 130: 126: 121: 119: 115: 111: 107: 106: 101: 100: 95: 88: 86: 85: 80: 76: 72: 69:that are not 68: 64: 60: 59: 54: 50: 42: 32: 19: 6001: 5991: 5974: 5806:Dual numbers 5798:hypercomplex 5588:Real numbers 5259: 5255: 5251:Silver ratio 5221:Golden ratio 5170: 5092: 5035: 5028: 4994: 4988: 4965: 4959: 4940: 4930: 4926: 4922: 4906: 4901: 4878: 4871: 4859: 4855: 4849: 4833: 4827: 4802: 4796: 4790: 4782: 4766: 4750: 4741: 4731: 4718: 4708: 4702: 4678: 4671: 4637: 4631: 4599: 4585: 4560: 4554: 4545: 4535:18 September 4533:. Retrieved 4526:the original 4521: 4517: 4504: 4493: 4491: 4469: 4460: 4436: 4426: 4417: 4413: 4403: 4369: 4365: 4359: 4350: 4341: 4335: 4326: 4317: 4296: 4288: 4280: 4247: 4243: 4237: 4204: 4198: 4189: 4169: 4155: 4122: 4118: 4108: 4092: 4018: 3639: 3615:metric space 3555: 3544: 3423: 3211: 3040: 3030: 2992: 2954: 2950: 2946: 2942: 2879: 2669: 2663: 2480: 2414: 2405: 2401: 2397: 2389: 2385: 2368: 2341: 2330: 2319: 2308: 2304: 2289: 2288:, such that 2285: 2281: 2275: 2267: 2215: 2178: 2174: 2170: 2166: 2164: 2146: 2142: 2138: 2134: 2132: 2077: 2075: 2027: 1975: 1970: 1966: 1958: 1954: 1946: 1942: 1938: 1936: 1909: 1893: 1872: 1868: 1864: 1855: 1842: 1835: 1827: 1823: 1819: 1812: 1750: 1608: 1584: 1572: 1567: 1563: 1559: 1551: 1547: 1543: 1533: 1376: 1319: 1315: 1309: 1295:. Here is a 1290: 1266:lowest terms 1255: 1238:golden ratio 1231: 1228:Square roots 1211: 1202: 1192: 1185: 1178: 1171: 1159: 1147:Please help 1142:verification 1139: 1098: 1087:Georg Cantor 1070: 1066: 1062: 1057: 1047: 1027:Paul Tannery 1015:Georg Cantor 1008: 1005:Eduard Heine 974: 903: 895:fourth roots 887:coefficients 872: 868: 863:arithmetical 856: 850: 848: 829: 822:real numbers 809: 795: 783: 769: 755: 740: 736: 728:square roots 717: 710: 704: 698: 695:Vedic period 692: 677: 670:, a kind of 662: 658: 654: 653:squared and 650: 646: 642: 639: 628: 616:Zeno of Elea 613: 608: 603: 597: 593: 589: 585: 578: 574: 567: 563: 559: 555: 548: 544: 537: 533: 532:) gives us 4 529: 525: 521: 517: 510: 506: 502: 498: 494: 490: 483: 479: 475: 471: 467: 460: 456: 449: 445: 441: 434: 430: 426: 422: 418: 414: 410: 406: 395: 391: 387: 383: 376: 372: 368: 364: 360: 330: 186:showing the 153: 142: 122: 104: 98: 89: 82: 67:real numbers 62: 56: 52: 46: 5968:Other types 5787:Bioctonions 5644:Quaternions 4724:Cajori 1928 4551:Katz, V. J. 4344:. Springer. 3683:Proof that 3674:Proof that 3627:G-delta set 3625:. Being a 3547:uncountable 2373:shows that 1921:hexadecimal 1115:Paul Gordan 798:Middle Ages 780:Jyeṣṭhadeva 751:Bhāskara II 743:Brahmagupta 351:was indeed 333:Pythagorean 160:uncountable 77:. When the 49:mathematics 34:The number 6055:Categories 5922:Projective 5895:Infinities 5151:Lemniscate 4494:Sulbasutra 4479:0471093742 4085:References 4019:Irrational 3332:tetrations 2412:is used). 1925:positional 1857:Almost all 1595:polynomial 1322:, we have 1310:Assume log 1293:logarithms 1287:Logarithms 1175:newspapers 922:numerators 859:cube roots 785:Yuktibhāṣā 747:Bhāskara I 709:, and the 345:hypotenuse 335:(possibly 168:almost all 108:, and the 6006:solenoids 5826:Sedenions 5672:Octonions 5114:Liouville 5104:Chaitin's 4819:123203471 4662:121416910 4497:concepts. 4394:124565880 4285:Kline, M. 4272:115390951 4229:126296119 4163:(1955) . 4147:123995083 4139:0025-5572 4065:Imaginary 3595:− 3558:Euclidean 3551:countable 3471:− 3350:π 3318:γ 3307:, or the 3289:π 3286:⁡ 3266:π 3250:π 3232:π 3220:π 3162:π 3130:π 3078:− 3075:π 3049:π 2926:∞ 2745:⁡ 2690:⁡ 2646:⁡ 2608:⁡ 2579:⁡ 2561:⁡ 2539:⁡ 2501:⁡ 2455:⁡ 2392:are both 2296:Consider 2118:… 2061:… 2013:… 1963:remainder 1796:≠ 1697:⋯ 1686:− 1670:− 1609:The real 1605:Algebraic 1587:algebraic 1343:⁡ 910:Al-Hassār 838:Al-Mahani 818:magnitude 706:Brahmanas 577:is even, 459:is even, 341:pentagram 164:rationals 5415:Integers 5377:Sets of 5052:Archived 4999:Springer 4771:Archived 4758:(1761). 4726:, pg.89) 4713:pg. 269. 4683:Springer 4594:(1999). 4441:Springer 4287:(1990). 3967:Fraction 3800:Rational 3648:See also 3623:complete 3489:between 2340:. Then 1928:notation 1875:subfield 1299:that log 1205:May 2023 1121:Examples 891:equation 875:Egyptian 830:Elements 760:and the 700:Samhitas 620:infinite 162:and the 149:periodic 75:integers 63:rational 5996:numbers 5828: ( 5674: ( 5646: ( 5618: ( 5590: ( 5511: ( 5509:Periods 5478: ( 5445: ( 5417: ( 5389: ( 5371:systems 5280:Euler's 5166:Apéry's 4842:1891736 4642:Bibcode 4577:2691411 4386:2690123 4264:3026893 4221:1969021 4167:(ed.). 3876:Natural 3838:Integer 3724:Complex 2375:√ 2360:√ 2353:√ 2346:√ 2335:√ 2324:√ 2313:√ 2298:√ 2110:162.162 1945:(where 1934:bases. 1932:natural 1897:√ 1887:√ 1281:th root 1189:scholar 1013:, 74), 834:Persian 816:" and " 802:algebra 796:In the 635:Eudoxus 497:yields 401:By the 382:Assume 174:History 37:√ 5796:Other 5369:Number 5146:Dottie 5005:  4976:  4889:  4862:: 229. 4840:  4834:Neusis 4817:  4793:und π" 4689:  4660:  4575:  4488:414892 4486:  4476:  4447:  4392:  4384:  4270:  4262:  4227:  4219:  4177:  4145:  4137:  3685:π 3280:  3262:  3246:  3229:  2995:or as 2949:or as 2830:hence 2786:hence 2722:hence 2396:, and 2145:and 10 1913:binary 1191:  1184:  1177:  1170:  1162:  997:Euclid 889:in an 885:or as 832:, the 826:ratios 814:number 724:Manava 609:alogos 573:Since 554:Since 505:), or 466:Since 455:Since 440:Since 390:, and 367:, and 347:of an 51:, the 6004:-adic 5994:-adic 5751:Over 5712:Over 5706:types 5704:Split 5134:Cahen 5129:Omega 5119:Prime 4950:(PDF) 4925:with 4883:(PDF) 4815:S2CID 4774:(PDF) 4763:(PDF) 4658:S2CID 4573:JSTOR 4529:(PDF) 4514:(PDF) 4466:Boyer 4390:S2CID 4382:JSTOR 4268:S2CID 4260:JSTOR 4225:S2CID 4217:JSTOR 4143:S2CID 4099:. by 3455:apart 3187:over 2216:Then 2201:7155. 2149:have 2049:7.162 1930:with 1917:octal 1593:of a 1581:Types 1566:with 1550:with 1270:prime 1196:JSTOR 1182:books 899:Iraqi 689:India 683:surds 79:ratio 6040:List 5897:and 5003:ISBN 4974:ISBN 4887:ISBN 4865:copy 4687:ISBN 4537:2018 4484:OCLC 4474:ISBN 4445:ISBN 4175:ISBN 4135:ISSN 3920:: 1 3912:: 0 3910:Zero 3762:Real 3402:> 3067:(or 2388:and 2351:) = 2329:and 2284:and 2238:9990 2235:7155 2192:9990 2151:.162 1892:and 1591:root 1318:and 1232:The 1168:news 1113:and 873:The 851:etc. 645:and 596:and 588:and 520:for 501:= (2 396:i.e. 5173:(3) 4807:doi 4650:doi 4638:500 4565:doi 4374:doi 4252:doi 4209:doi 4127:doi 3918:One 3533:'s 3424:In 3362:or 3183:is 2736:log 2681:log 2670:m/n 2637:log 2599:log 2570:log 2552:log 2528:log 2490:log 2444:log 2380:is 2344:= ( 2159:... 2156:162 2153:162 2114:162 2097:000 2057:162 2053:162 2009:162 2005:162 2001:162 1997:0.7 1957:by 1941:by 1919:or 1334:log 1151:by 914:Fez 804:by 649:as 536:= 2 528:= 2 509:= 4 493:= 2 482:= 2 444:= 2 425:= 2 188:set 182:An 58:in- 47:In 6057:: 5586:: 5290:Pi 5027:, 5001:. 4997:. 4972:. 4968:. 4914:^ 4860:19 4858:. 4838:MR 4813:. 4803:43 4801:. 4795:. 4765:. 4740:. 4685:. 4681:. 4656:. 4648:. 4636:. 4615:^ 4604:. 4598:. 4571:. 4561:63 4559:. 4522:28 4520:. 4516:. 4490:. 4482:. 4443:. 4439:. 4418:25 4416:. 4412:. 4388:. 4380:. 4370:49 4368:. 4305:^ 4266:. 4258:. 4248:11 4246:. 4223:. 4215:. 4205:46 4203:. 4141:. 4133:. 4123:95 4121:. 4117:. 3644:. 3537:. 3428:, 3405:1. 3283:ln 3209:. 3033:. 2466:3. 2358:= 2333:= 2311:= 2307:= 2251:74 2248:53 2091:10 2040:10 1915:, 1869:r. 1601:. 1575:10 1248:. 1117:. 1045:. 908:. 788:. 778:. 703:, 566:, 562:= 547:= 486:). 448:, 437:). 433:= 417:= 409:= 405:: 386:, 363:, 322:). 61:+ 6008:) 6002:p 5998:( 5992:p 5866:/ 5850:) 5837:S 5773:: 5760:C 5734:: 5721:R 5696:) 5683:O 5668:) 5655:H 5640:) 5627:C 5612:) 5599:R 5535:) 5521:P 5500:) 5487:A 5467:) 5454:Q 5439:) 5426:Z 5411:) 5398:N 5361:e 5354:t 5347:v 5296:) 5294:π 5292:( 5286:) 5284:e 5282:( 5264:) 5260:S 5256:δ 5253:( 5242:) 5240:ς 5238:( 5227:) 5225:φ 5223:( 5217:) 5215:E 5213:( 5207:) 5205:ψ 5203:( 5190:) 5188:ρ 5186:( 5175:) 5171:ζ 5168:( 5157:) 5155:ϖ 5153:( 5125:) 5123:ρ 5121:( 5110:) 5108:Ω 5106:( 5085:e 5078:t 5071:v 5011:. 4982:. 4927:a 4923:a 4895:. 4821:. 4809:: 4791:e 4722:( 4697:. 4695:. 4664:. 4652:: 4644:: 4610:. 4608:. 4579:. 4567:: 4539:. 4455:. 4453:. 4420:. 4398:. 4396:. 4376:: 4274:. 4254:: 4231:. 4211:: 4183:. 4149:. 4129:: 3890:N 3885:: 3852:Z 3847:: 3814:Q 3809:: 3776:R 3771:: 3738:C 3733:: 3676:e 3601:| 3598:y 3592:x 3589:| 3586:= 3583:) 3580:y 3577:, 3574:x 3571:( 3568:d 3517:q 3497:r 3477:| 3474:q 3468:r 3465:| 3441:r 3399:n 3379:e 3374:n 3345:n 3292:, 3277:, 3271:2 3259:, 3254:e 3243:, 3240:e 3236:/ 3226:, 3223:e 3196:Q 3171:} 3168:e 3165:, 3159:{ 3139:e 3136:n 3133:+ 3127:m 3107:n 3104:, 3101:m 3081:e 3055:e 3052:+ 3031:n 3013:n 3009:n 3004:n 2993:a 2975:a 2971:a 2966:a 2955:n 2951:n 2947:a 2943:a 2929:) 2923:, 2918:e 2914:/ 2910:1 2906:) 2902:e 2898:/ 2894:1 2891:( 2888:( 2859:m 2855:2 2851:= 2846:n 2843:2 2839:3 2816:n 2813:2 2809:/ 2805:m 2801:2 2797:= 2794:3 2772:n 2769:2 2765:/ 2761:m 2757:2 2753:= 2748:3 2740:2 2731:2 2710:n 2707:2 2703:/ 2699:m 2696:= 2693:3 2685:2 2649:3 2641:2 2633:2 2630:= 2624:2 2620:/ 2616:1 2611:3 2603:2 2592:= 2584:2 2574:2 2564:3 2556:2 2545:= 2542:3 2533:2 2504:3 2495:2 2463:= 2458:3 2449:2 2438:) 2433:2 2428:( 2406:a 2402:b 2398:a 2390:b 2386:a 2377:2 2362:2 2355:2 2348:2 2342:a 2337:2 2331:b 2326:2 2320:a 2315:2 2309:b 2305:a 2300:2 2290:a 2286:b 2282:a 2243:= 2230:= 2227:A 2198:= 2195:A 2179:A 2175:A 2171:A 2167:A 2147:A 2143:A 2139:A 2135:A 2106:7 2103:= 2100:A 2094:, 2078:r 2046:= 2043:A 1994:= 1991:A 1971:m 1967:m 1959:m 1955:n 1947:m 1943:m 1939:n 1899:3 1894:e 1889:2 1883:π 1879:π 1865:e 1846:0 1843:x 1839:0 1836:x 1828:x 1824:x 1820:x 1816:0 1813:x 1799:0 1791:n 1787:a 1764:i 1760:a 1736:, 1732:0 1729:= 1724:0 1720:a 1716:+ 1713:x 1708:1 1704:a 1700:+ 1694:+ 1689:1 1683:n 1679:x 1673:1 1667:n 1663:a 1659:+ 1654:n 1650:x 1644:n 1640:a 1636:= 1633:) 1630:x 1627:( 1624:p 1568:n 1564:n 1562:/ 1560:m 1556:2 1552:n 1548:n 1546:/ 1544:m 1540:2 1519:. 1514:n 1510:3 1506:= 1501:m 1497:2 1471:n 1467:3 1463:= 1458:n 1454:) 1448:n 1444:/ 1440:m 1436:2 1432:( 1409:3 1406:= 1401:n 1397:/ 1393:m 1389:2 1362:. 1357:n 1354:m 1349:= 1346:3 1338:2 1320:n 1316:m 1312:2 1305:2 1301:2 1279:k 1274:k 1218:) 1212:( 1207:) 1203:( 1193:· 1186:· 1179:· 1172:· 1145:. 1099:e 1071:n 1067:n 1063:e 1007:( 948:3 944:5 939:1 935:3 853:" 771:π 663:x 659:x 655:x 651:x 647:x 643:x 598:b 594:c 590:c 586:b 579:b 575:b 568:b 564:b 560:y 556:y 551:. 549:b 545:y 540:. 538:b 534:y 530:b 526:c 522:c 518:y 513:. 511:y 507:c 503:y 499:c 495:y 491:c 484:y 480:c 476:y 472:c 468:c 461:c 457:c 450:c 446:b 442:c 435:b 431:a 427:b 423:b 421:+ 419:b 415:b 413:+ 411:a 407:c 392:c 388:b 384:a 379:. 377:b 375:: 373:c 369:c 365:b 361:a 309:Q 300:\ 287:R 265:N 243:Z 221:Q 199:R 137:π 133:π 105:φ 99:e 93:π 55:( 39:2 20:)

Index

Irrational numbers

2
mathematics
in-
real numbers
rational numbers
integers
ratio
incommensurable
π
e
φ
square root of two
natural numbers
perfect squares
positional notation
end with a repeating sequence
non-terminating continued fractions
periodic
Cantor's proof
uncountable
rationals
almost all

Euler diagram
set
Pythagorean
Hippasus of Metapontum
pentagram

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.