Knowledge

Ion-mobility spectrometry–mass spectrometry

Source 📝

78:. In 1963 McAfee and Edelson published an IMS-TOF combination. In 1967 McKnight, McAfee and Sipler published an IMS-TOF combination. Their instrument included an orthogonal TOF. In 1969 Cohen et al. filed a patent on an IMS-QMS system. The QMS at that time was an improvement compared to the TOFMS, because the TOFMS had a slow electronic data acquisition systems at that time. In 1970, Young, Edelson and Falconer published an IMS-TOF with orthogonal extraction. They seem to have used the same system as McKnight et al. in 1967, incorporating slight modifications. Their work was later reproduced in the landmark book of Mason/McDaniel, which is regarded as the “bible of IMS” by those skilled in the art. 28: 190:. Only ions with specific mobility will pass through the device. It is well known that the high RF field distort the conformation of the ions, FAIMS thus is a separation technique without preserving the structure of the ions and the CCSs of the ions cannot be measured. Because FAIMS is a mass selector (other ions are excluded), the sensitivity in the scan mode is much lower than that of the drift tube ion mobility (all the ions are analyzed). Therefore, FAIMS is usually coupled with triple quadrupole mass spectrometer which is also ion selection type instrument. 123: 208:
for each IMS spectrum (acquired on millisecond timescale). The quadrupole mass spectrometer has also been coupled to an IMS, although at a slower scan rate. Other mass spectrometers including the ion trap, Fourier transform ion cyclotron resonance (FT-ICR), or magnetic sector mass spectrometers have also been coupled with different IMS for various applications. Additionally, hybrid mass spectrometers have been interfaced to more than one ion mobility cell for tandem or IMS–MS applications.
166:
tube ion mobility does not employ RF voltage which may heat ions, and it can preserve the structure of the ions. The rotationally averaged collision cross section (CCS) which is a physical property of ions reflecting the shape of the ions can be measured accurately on drift tube ion mobility. The resolving power is high (CCS resolution can be higher than 100). Drift tube ion mobility is widely used for structure analysis. It is usually coupled with time-of-flight (TOF) mass spectrometer.
1681: 199:
on the speed and magnitude of the travelling wave, ions can be separated. Smaller ions have higher mobility through the wave due to fewer collisions with gas molecules and exit the cell faster than ions of lower mobility (larger ions). Similar to DTIMS, CCS values of ions can be calculated with TWIMS using a calibration derived with known standards. A commercial example of the TWIMS-MS instrumentation is Waters Corp Synapt G2-S instrument.
87:
of the world's first commercial ion mobility-mass spectrometer instrument in 2006. The Synapt, as it is called, incorporates a pre ion mobility quadrupole allowing precursor ion selection prior to IMS separation further enhancing the flexibility of the ion mobility-mass spectrometry combinations. In 2013, Agilent Technologies released the first commercial drift tube ion mobility-mass spectrometer named 6560 with an 80 cm drift tube.
1705: 1693: 217:
signal-to-noise ratio is obviously improved because the noise can be physically separated with signal in IM-MS. In addition, isomers can be separated if their shapes are different. The peak capacity of IM-MS is much larger than MS so more compounds can be found and analyzed. This character is very critical for
198:
In TWIMS, ions are separated according to their mobility through a travelling wave in a gas filled cell. Both radio-frequency (RF) and direct current (DC) voltages are applied to a series of ring electrodes called a stacked ring ion guide (SRIG) to confine the ions and create a travelling wave. Based
165:
In DTIMS, ions are drifted through a tube whose length could vary from 5 cm to 300 cm using as electric field gradient. Smaller ions travel faster through the drift tube than ions with larger collision cross section. Thus, ions are separated based on their drift time through the tube. Drift
135:
The first stage of the instrument is an ion source where samples are converted to gas phase ions. Many ionization methods similar to those traditionally used for mass spectrometry have been employed for IM-MS depending on the physical state of the analyte. Gas phase samples are typically ionized with
86:
developed an IMS-TOF combination, using a co-axial IMS-TOF setup. In 1999 Clemmer developed an IMS-TOF with an orthogonal TOF system. This work led to the development of an ion mobility-quadrupole-CID-TOFMS instrument by Micromass in the UK and ultimately led Micromass / Waters corporation to develop
207:
The traditional IM-MS instrument uses a time‐of‐flight (TOF) mass spectrometer interfaced to an IMS. The TOF-MS has many advantages including the high speed of data acquisition and good sensitivity. Since mass spectral data is acquired on a microsecond time scale, multiple mass spectra are collected
156:
There are different types of ion mobility spectrometers and there are different types of mass spectrometers. In principle it is possible to combine every type of the former with any type of the latter. However, in the real world, different types of ion mobility are coupled with different types of
225:
for the analysis of proteins, peptides, drug-like molecules and nano particles. Moreover, IM-MS can be used to monitor isomeric reaction intermediates and probe their kinetics. Recently, microscale FAIMS has been integrated with electrospray ionization MS and liquid chromatography MS to rapidly
229:
Recently, gas phase ion activation methods have been used to gain new insights into complex structures. Collision induced unfolding (CIU) is a technique in which an ion's internal energy is increased through collisions with a buffer gas prior to IM-MS analysis. Unfolding of the ion is observed
216:
The IM-MS technique can be used for analyzing complex mixtures based on differing mobilities in an electric field. The gas phase ion structure can be studied using IM-MS through measurement of the CCS and comparison with CCS of standard samples or CCS calculated from molecular modelling. The
226:
separate ions in milliseconds prior to mass analysis. The use of microscale FAIMS in electrospray ionization MS and liquid chromatography MS can significantly improve peak capacity and signal-to-noise for a range of applications including proteomics, and pharmaceutical analysis.
81:
In 1996 Guevremont et al. presented a poster at the ASMS conference about IMS-TOF. In 1997 Tanner patented a quadrupole with axial fields which can be used as a drift cell for IMS separation. He also mentions the combination of these quadrupoles with an orthogonal TOFMS. In 1998
94:
A variation of IMS-MS is differential ion mobility spectrometry-mass spectrometry (DIMS-MS), in which gas phase ions are separated based on their ion mobility in varying strengths of electric fields. This analytical method is currently being advanced by
46:
method that separates gas phase ions based on their interaction with a collision gas and their masses. In the first step, the ions are separated according to their mobility through a buffer gas on a millisecond timescale using an
230:
through larger CCSs, and the energy at which unfolding occurs corresponds partially to noncovalent interactions within the ion. This technique has been used to differentiate polyubiquitin linkages and intact antibodies.
55:
can be determined on a microsecond timescale. The effective separation of analytes achieved with this method makes it widely applicable in the analysis of complex samples such as in proteomics and metabolomics.
1141:
Wagner ND, Clemmer DE, Russell DH (September 2017). "ESI-IM-MS and Collision-Induced Unfolding That Provide Insight into the Linkage-Dependent Interfacial Interactions of Covalently Linked Diubiquitin".
1177:
Tian Y, Han L, Buckner AC, Ruotolo BT (November 2015). "Collision Induced Unfolding of Intact Antibodies: Rapid Characterization of Disulfide Bonding Patterns, Glycosylation, and Structures".
427:
Henderson SC, Valentine SJ, Counterman AE, Clemmer DE (January 1999). "ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures".
157:
mass spectrometers to achieve reasonable sensitivity. The main types of ion mobility spectrometers that have been coupled to a mass spectrometer for IM-MS applications are discussed below.
814:
Kolakowski BM, Mester Z (September 2007). "Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS)".
174:
Also known as field asymmetric-waveform ion mobility spectrometry (FAIMS) or RF-DC ion mobility spectrometry is a technique in which ions are separated by the application of a
504:
Lanucara F, Holman SW, Gray CJ, Eyers CE (April 2014). "The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics".
221:
study which requires analyzing as many compounds as possible in a single run. It has been used in the detection of chemical warfare agents, detection of explosives, in
1425: 67:
has been called the father of ion mobility mass spectrometry. In the early 1960s, he coupled a low-field ion mobility drift cell to a sector mass spectrometer.
186:) waveform applied between two electrodes. Depending on the ratio of the high-field and low-field mobility of the ion, it will migrate toward one or the other 462:
Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE (June 1998). "Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules".
671: 990:
Aizpurua-Olaizola O, Toraño JS, Falcon-Perez JM, Williams C, Reichardt N, Boons GJ (March 2018). "Mass spectrometry for glycan biomarker discovery".
91:
are used to improve the ion transmission efficiency. The design thus greatly improved the sensitivity of ion mobility and allowed commercialization.
1608: 1355: 857:
Shvartsburg AA, Li F, Tang K, Smith RD (February 2007). "Distortion of ion structures by field asymmetric waveform ion mobility spectrometry".
17: 392:
Young C, Edelson D, Falconer WE (December 1970). "Water Cluster Ions: Rates of Formation and Decomposition of Hydrates of the Hydronium Ion".
1460: 1410: 1598: 1420: 1271: 145: 1435: 1626: 1516: 1593: 1335: 1709: 1661: 1111:
Kabir KM, Donald WA (December 2017). "Microscale differential ion mobility spectrometry for field deployable chemical analysis".
239: 1651: 1415: 1027:
Angel LA, Majors LT, Dharmaratne AC, Dass A (August 2010). "Ion mobility mass spectrometry of Au25(SCH2CH2Ph)18 nanoclusters".
357:
McKnight LG, McAfee KB, Sipler DP (5 December 1967). "Low-Field Drift Velocities and Reactions of Nitrogen Ions in Nitrogen".
1340: 1232: 779:
Guevremont R (November 2004). "High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry".
1345: 244: 314:
McDaniel E, Martin DW, Barnes WS (1962). "Drift Tube-Mass Spectrometer for Studies of Low-Energy Ion-Molecule Reactions".
1578: 1697: 1375: 1365: 1317: 672:"Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions" 1656: 1618: 1440: 1641: 1496: 1405: 1370: 71: 1445: 1264: 1736: 1646: 1631: 126:
A drift-time ion mobility spectrometer. In IM-MS, the detector is typically a time-of-flight mass spectrometer.
1636: 1583: 1666: 1557: 1360: 1542: 148:(MALDI) for large mass molecules or laser desorption ionization (LDI) for molecules with smaller masses. 1731: 1685: 1312: 1257: 108: 48: 1588: 1573: 1501: 1486: 1291: 720:
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, et al. (May 2019).
1385: 141: 1062:
Hilgers R, Yong Teng S, Briš A, Pereverzev AY, White P, Jansen JJ, Roithová J (September 2022).
1455: 1224: 1390: 271:
Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (January 2008). "Ion mobility-mass spectrometry".
823: 733: 686: 623: 563: 513: 401: 366: 323: 280: 144:
is a common method for ionizing samples in solution. Solid-phase analytes are ionized with
52: 51:. The separated ions are then introduced into a mass analyzer in a second step where their 43: 27: 8: 1537: 1506: 1380: 1350: 1064:"Monitoring Reaction Intermediates to Predict Enantioselectivity Using Mass Spectrometry" 943:"Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry" 827: 737: 690: 627: 567: 517: 405: 370: 327: 284: 1465: 1088: 1063: 967: 942: 918: 893: 756: 721: 644: 611: 584: 551: 792: 1280: 1228: 1194: 1159: 1093: 1044: 972: 923: 874: 839: 796: 761: 702: 649: 589: 529: 479: 444: 339: 296: 112: 122: 1450: 1430: 1395: 1186: 1151: 1120: 1083: 1075: 1036: 1007: 999: 962: 954: 913: 905: 866: 831: 788: 751: 741: 694: 639: 631: 579: 571: 521: 471: 436: 409: 374: 331: 288: 83: 64: 1218: 1190: 1155: 958: 179: 137: 116: 1400: 1124: 1003: 552:"Optimization of peptide separations by differential ion mobility spectrometry" 575: 1725: 1547: 1307: 343: 1511: 1198: 1163: 1097: 1079: 1048: 989: 976: 927: 878: 843: 800: 765: 722:"Recommendations for reporting ion mobility Mass Spectrometry measurements" 706: 653: 593: 533: 378: 300: 175: 947:
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
483: 448: 1552: 1491: 1470: 1327: 1012: 635: 525: 222: 96: 88: 1220:
Ion Mobility Spectrometry - Mass Spectrometry: Theory and Applications
1040: 909: 870: 746: 698: 612:"Review on ion mobility spectrometry. Part 1: current instrumentation" 475: 440: 413: 335: 835: 610:
Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I (March 2015).
292: 187: 75: 1249: 193: 1521: 426: 894:"Ion mobility-mass spectrometry: time-dispersive instrumentation" 183: 461: 719: 160: 1061: 218: 609: 31:
Ion mobility spectrometry-mass spectrometry (IM-MS) workflow
169: 1026: 1296: 136:
radioactive ionization, corona discharge ionization and
503: 74:
and ion mobility spectrometry was pioneered in 1963 at
856: 669: 550:
Isenberg SL, Armistead PM, Glish GL (September 2014).
549: 1176: 556:
Journal of the American Society for Mass Spectrometry
130: 1140: 391: 356: 313: 270: 307: 194:Travelling wave ion mobility spectrometry (TWIMS) 1723: 813: 940: 1216: 1265: 941:Kliman M, May JC, McLean JA (November 2011). 161:Drift tube ion mobility spectrometry (DTIMS) 1110: 146:matrix-assisted laser desorption ionization 36:Ion mobility spectrometry–mass spectrometry 1272: 1258: 1217:Wilkins CL, Trimpin S (16 December 2010). 1136: 1134: 778: 670:Lapthorn C, Pullen F, Chowdhry BZ (2013). 151: 1087: 1020: 1011: 966: 917: 891: 755: 745: 643: 583: 170:Differential mobility spectrometry (DMS) 121: 26: 1131: 240:Liquid chromatography-mass spectrometry 14: 1724: 1279: 1253: 665: 663: 1692: 605: 603: 545: 543: 499: 497: 495: 493: 266: 264: 262: 260: 245:Gas chromatography-mass spectrometry 1704: 1113:TrAC Trends in Analytical Chemistry 992:TrAC Trends in Analytical Chemistry 892:May JC, McLean JA (February 2015). 119:and colleagues in a recent review. 24: 934: 660: 202: 131:Sample introduction and ionization 107:The IMS-MS is a combination of an 102: 25: 1748: 600: 540: 490: 257: 1703: 1691: 1680: 1679: 316:Review of Scientific Instruments 72:time-of-flight mass spectrometry 1209: 1170: 1104: 1055: 983: 885: 850: 807: 772: 713: 394:The Journal of Chemical Physics 211: 455: 420: 385: 350: 18:Ion mobility mass spectrometry 13: 1: 793:10.1016/S0021-9673(04)01478-5 250: 182:(RF) combined with a static ( 1191:10.1021/acs.analchem.5b03291 1156:10.1021/acs.analchem.7b02932 959:10.1016/j.bbalip.2011.05.016 273:Journal of Mass Spectrometry 115:, as discussed by Professor 7: 1543:Microchannel plate detector 781:Journal of Chromatography A 233: 10: 1753: 1125:10.1016/j.trac.2017.10.011 1004:10.1016/j.trac.2017.12.015 59: 1675: 1617: 1566: 1530: 1479: 1326: 1287: 726:Mass Spectrometry Reviews 679:Mass Spectrometry Reviews 576:10.1007/s13361-014-0941-9 109:ion mobility spectrometer 49:ion mobility spectrometer 1558:Langmuir–Taylor detector 1225:Taylor & Francis US 178:asymmetric waveform at 152:Ion mobility separation 142:Electrospray ionization 1502:Quadrupole mass filter 1080:10.1002/anie.202205720 379:10.1103/PhysRev.164.62 127: 32: 1737:Laboratory techniques 125: 99:and the Glish Group. 53:mass-to-charge ratios 30: 1179:Analytical Chemistry 1144:Analytical Chemistry 898:Analytical Chemistry 859:Analytical Chemistry 464:Analytical Chemistry 429:Analytical Chemistry 44:analytical chemistry 1538:Electron multiplier 1507:Quadrupole ion trap 1185:(22): 11509–11515. 1150:(18): 10094–10103. 828:2007Ana...132..842K 738:2019MSRv...38..291G 691:2013MSRv...32...43L 628:2015Ana...140.1376C 568:2014JASMS..25.1592I 518:2014NatCh...6..281L 406:1970JChPh..53.4295Y 371:1967PhRv..164...62M 328:1962RScI...33....2M 285:2008JMSp...43....1K 70:The combination of 1074:(36): e202205720. 636:10.1039/C4AN01100G 526:10.1038/nchem.1889 128: 33: 1732:Mass spectrometry 1719: 1718: 1281:Mass spectrometry 1234:978-1-4398-1324-9 1068:Angewandte Chemie 1041:10.1021/nn1012447 910:10.1021/ac504720m 871:10.1021/ac061306c 747:10.1002/mas.21585 699:10.1002/mas.21349 476:10.1021/ac980059c 470:(11): 2236–2242. 441:10.1021/ac9809175 414:10.1063/1.1673936 400:(11): 4295–4302. 336:10.1063/1.1717656 113:mass spectrometer 16:(Redirected from 1744: 1707: 1706: 1695: 1694: 1683: 1682: 1274: 1267: 1260: 1251: 1250: 1245: 1243: 1241: 1203: 1202: 1174: 1168: 1167: 1138: 1129: 1128: 1108: 1102: 1101: 1091: 1059: 1053: 1052: 1035:(8): 4691–4700. 1024: 1018: 1017: 1015: 987: 981: 980: 970: 938: 932: 931: 921: 904:(3): 1422–1436. 889: 883: 882: 865:(4): 1523–1528. 854: 848: 847: 836:10.1039/b706039d 811: 805: 804: 776: 770: 769: 759: 749: 717: 711: 710: 676: 667: 658: 657: 647: 622:(5): 1376–1390. 607: 598: 597: 587: 562:(9): 1592–1599. 547: 538: 537: 506:Nature Chemistry 501: 488: 487: 459: 453: 452: 424: 418: 417: 389: 383: 382: 354: 348: 347: 311: 305: 304: 293:10.1002/jms.1383 268: 65:Earl W. McDaniel 21: 1752: 1751: 1747: 1746: 1745: 1743: 1742: 1741: 1722: 1721: 1720: 1715: 1671: 1613: 1562: 1526: 1475: 1322: 1283: 1278: 1248: 1239: 1237: 1235: 1212: 1207: 1206: 1175: 1171: 1139: 1132: 1109: 1105: 1060: 1056: 1025: 1021: 988: 984: 953:(11): 935–945. 939: 935: 890: 886: 855: 851: 812: 808: 777: 773: 718: 714: 674: 668: 661: 608: 601: 548: 541: 502: 491: 460: 456: 425: 421: 390: 386: 359:Physical Review 355: 351: 312: 308: 269: 258: 253: 236: 214: 205: 203:Mass separation 196: 180:radio frequency 172: 163: 154: 138:photoionization 133: 117:Claire E. Eyers 105: 103:Instrumentation 62: 23: 22: 15: 12: 11: 5: 1750: 1740: 1739: 1734: 1717: 1716: 1714: 1713: 1701: 1689: 1676: 1673: 1672: 1670: 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1623: 1621: 1615: 1614: 1612: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1576: 1570: 1568: 1567:MS combination 1564: 1563: 1561: 1560: 1555: 1550: 1545: 1540: 1534: 1532: 1528: 1527: 1525: 1524: 1519: 1514: 1509: 1504: 1499: 1497:Time-of-flight 1494: 1489: 1483: 1481: 1477: 1476: 1474: 1473: 1468: 1463: 1458: 1453: 1448: 1443: 1438: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1388: 1383: 1378: 1373: 1368: 1363: 1358: 1353: 1348: 1343: 1338: 1332: 1330: 1324: 1323: 1321: 1320: 1315: 1310: 1305: 1294: 1288: 1285: 1284: 1277: 1276: 1269: 1262: 1254: 1247: 1246: 1233: 1213: 1211: 1208: 1205: 1204: 1169: 1130: 1103: 1054: 1019: 982: 933: 884: 849: 822:(9): 842–864. 806: 771: 732:(3): 291–320. 712: 659: 599: 539: 512:(4): 281–294. 489: 454: 435:(2): 291–301. 419: 384: 349: 306: 255: 254: 252: 249: 248: 247: 242: 235: 232: 213: 210: 204: 201: 195: 192: 171: 168: 162: 159: 153: 150: 132: 129: 104: 101: 61: 58: 9: 6: 4: 3: 2: 1749: 1738: 1735: 1733: 1730: 1729: 1727: 1712: 1711: 1702: 1700: 1699: 1690: 1688: 1687: 1678: 1677: 1674: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1624: 1622: 1620: 1619:Fragmentation 1616: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1571: 1569: 1565: 1559: 1556: 1554: 1551: 1549: 1548:Daly detector 1546: 1544: 1541: 1539: 1536: 1535: 1533: 1529: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1484: 1482: 1480:Mass analyzer 1478: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1333: 1331: 1329: 1325: 1319: 1316: 1314: 1311: 1309: 1308:Mass spectrum 1306: 1304: 1303: 1299: 1295: 1293: 1290: 1289: 1286: 1282: 1275: 1270: 1268: 1263: 1261: 1256: 1255: 1252: 1236: 1230: 1226: 1222: 1221: 1215: 1214: 1200: 1196: 1192: 1188: 1184: 1180: 1173: 1165: 1161: 1157: 1153: 1149: 1145: 1137: 1135: 1126: 1122: 1118: 1114: 1107: 1099: 1095: 1090: 1085: 1081: 1077: 1073: 1069: 1065: 1058: 1050: 1046: 1042: 1038: 1034: 1030: 1023: 1014: 1009: 1005: 1001: 997: 993: 986: 978: 974: 969: 964: 960: 956: 952: 948: 944: 937: 929: 925: 920: 915: 911: 907: 903: 899: 895: 888: 880: 876: 872: 868: 864: 860: 853: 845: 841: 837: 833: 829: 825: 821: 817: 810: 802: 798: 794: 790: 787:(1–2): 3–19. 786: 782: 775: 767: 763: 758: 753: 748: 743: 739: 735: 731: 727: 723: 716: 708: 704: 700: 696: 692: 688: 684: 680: 673: 666: 664: 655: 651: 646: 641: 637: 633: 629: 625: 621: 617: 613: 606: 604: 595: 591: 586: 581: 577: 573: 569: 565: 561: 557: 553: 546: 544: 535: 531: 527: 523: 519: 515: 511: 507: 500: 498: 496: 494: 485: 481: 477: 473: 469: 465: 458: 450: 446: 442: 438: 434: 430: 423: 415: 411: 407: 403: 399: 395: 388: 380: 376: 372: 368: 364: 360: 353: 345: 341: 337: 333: 329: 325: 321: 317: 310: 302: 298: 294: 290: 286: 282: 278: 274: 267: 265: 263: 261: 256: 246: 243: 241: 238: 237: 231: 227: 224: 220: 209: 200: 191: 189: 185: 181: 177: 167: 158: 149: 147: 143: 139: 124: 120: 118: 114: 110: 100: 98: 92: 90: 85: 79: 77: 73: 68: 66: 57: 54: 50: 45: 41: 37: 29: 19: 1708: 1696: 1684: 1603: 1512:Penning trap 1301: 1297: 1238:. Retrieved 1219: 1210:Bibliography 1182: 1178: 1172: 1147: 1143: 1116: 1112: 1106: 1071: 1067: 1057: 1032: 1028: 1022: 995: 991: 985: 950: 946: 936: 901: 897: 887: 862: 858: 852: 819: 815: 809: 784: 780: 774: 729: 725: 715: 685:(1): 43–71. 682: 678: 619: 615: 559: 555: 509: 505: 467: 463: 457: 432: 428: 422: 397: 393: 387: 365:(1): 62–70. 362: 358: 352: 319: 315: 309: 276: 272: 228: 215: 212:Applications 206: 197: 176:high-voltage 173: 164: 155: 140:techniques. 134: 106: 93: 80: 69: 63: 39: 35: 34: 1710:WikiProject 1553:Faraday cup 1492:Wien filter 1313:MS software 1240:27 November 1119:: 399–427. 1013:1874/364403 816:The Analyst 616:The Analyst 279:(1): 1–22. 89:Ion funnels 1726:Categories 1328:Ion source 322:(1): 2–7. 251:References 223:proteomics 97:Gary Glish 1589:Hybrid MS 344:0034-6748 188:electrode 76:Bell Labs 1686:Category 1531:Detector 1522:Orbitrap 1318:Acronyms 1199:26471104 1164:28841006 1098:35561144 1049:20731448 1029:ACS Nano 998:: 7–14. 977:21708282 928:25526595 879:17297950 844:17710259 801:15595648 766:30707468 707:22941854 654:25465076 594:24990303 534:24651194 301:18200615 234:See also 42:) is an 1698:Commons 1426:MALDESI 1089:9544535 968:3326421 919:4318620 824:Bibcode 757:6618043 734:Bibcode 687:Bibcode 645:4331213 624:Bibcode 585:4458851 564:Bibcode 514:Bibcode 484:9624897 449:9949724 402:Bibcode 367:Bibcode 324:Bibcode 281:Bibcode 84:Clemmer 60:History 1604:IMS/MS 1517:FT-ICR 1487:Sector 1231:  1197:  1162:  1096:  1086:  1047:  975:  965:  926:  916:  877:  842:  799:  764:  754:  705:  652:  642:  592:  582:  532:  482:  447:  342:  299:  219:-omics 111:and a 40:IMS-MS 1657:IRMPD 1609:CE-MS 1599:LC/MS 1594:GC/MS 1574:MS/MS 1461:SELDI 1421:MALDI 1416:LAESI 1356:DAPPI 675:(PDF) 1662:NETD 1627:BIRD 1446:SIMS 1441:SESI 1376:EESI 1371:DIOS 1366:DESI 1361:DART 1346:APPI 1341:APLI 1336:APCI 1292:Mass 1242:2012 1229:ISBN 1195:PMID 1160:PMID 1094:PMID 1045:PMID 973:PMID 951:1811 924:PMID 875:PMID 840:PMID 797:PMID 785:1058 762:PMID 703:PMID 650:PMID 590:PMID 530:PMID 480:PMID 445:PMID 340:ISSN 297:PMID 1667:SID 1652:HCD 1647:ETD 1642:EDD 1637:ECD 1632:CID 1584:AMS 1579:QqQ 1456:SSI 1436:PTR 1431:MIP 1411:ICP 1391:FAB 1386:ESI 1187:doi 1152:doi 1121:doi 1084:PMC 1076:doi 1037:doi 1008:hdl 1000:doi 996:100 963:PMC 955:doi 914:PMC 906:doi 867:doi 832:doi 820:132 789:doi 752:PMC 742:doi 695:doi 640:PMC 632:doi 620:140 580:PMC 572:doi 522:doi 472:doi 437:doi 410:doi 375:doi 363:164 332:doi 289:doi 1728:: 1471:TS 1466:TI 1451:SS 1406:IA 1401:GD 1396:FD 1381:EI 1351:CI 1227:. 1223:. 1193:. 1183:87 1181:. 1158:. 1148:89 1146:. 1133:^ 1117:97 1115:. 1092:. 1082:. 1072:61 1070:. 1066:. 1043:. 1031:. 1006:. 994:. 971:. 961:. 949:. 945:. 922:. 912:. 902:87 900:. 896:. 873:. 863:79 861:. 838:. 830:. 818:. 795:. 783:. 760:. 750:. 740:. 730:38 728:. 724:. 701:. 693:. 683:32 681:. 677:. 662:^ 648:. 638:. 630:. 618:. 614:. 602:^ 588:. 578:. 570:. 560:25 558:. 554:. 542:^ 528:. 520:. 508:. 492:^ 478:. 468:70 466:. 443:. 433:71 431:. 408:. 398:53 396:. 373:. 361:. 338:. 330:. 320:33 318:. 295:. 287:. 277:43 275:. 259:^ 184:DC 1302:z 1300:/ 1298:m 1273:e 1266:t 1259:v 1244:. 1201:. 1189:: 1166:. 1154:: 1127:. 1123:: 1100:. 1078:: 1051:. 1039:: 1033:4 1016:. 1010:: 1002:: 979:. 957:: 930:. 908:: 881:. 869:: 846:. 834:: 826:: 803:. 791:: 768:. 744:: 736:: 709:. 697:: 689:: 656:. 634:: 626:: 596:. 574:: 566:: 536:. 524:: 516:: 510:6 486:. 474:: 451:. 439:: 416:. 412:: 404:: 381:. 377:: 369:: 346:. 334:: 326:: 303:. 291:: 283:: 38:( 20:)

Index

Ion mobility mass spectrometry

analytical chemistry
ion mobility spectrometer
mass-to-charge ratios
Earl W. McDaniel
time-of-flight mass spectrometry
Bell Labs
Clemmer
Ion funnels
Gary Glish
ion mobility spectrometer
mass spectrometer
Claire E. Eyers

photoionization
Electrospray ionization
matrix-assisted laser desorption ionization
high-voltage
radio frequency
DC
electrode
-omics
proteomics
Liquid chromatography-mass spectrometry
Gas chromatography-mass spectrometry



Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.