Knowledge

Intermolecular force

Source 📝

350:
Most salts form crystals with characteristic distances between the ions; in contrast to many other noncovalent interactions, salt bridges are not directional and show in the solid state usually contact determined only by the van der Waals radii of the ions. Inorganic as well as organic ions display in water at moderate ionic strength I similar salt bridge as association ΔG values around 5 to 6 kJ/mol for a 1:1 combination of anion and cation, almost independent of the nature (size, polarizability, etc.) of the ions. The ΔG values are additive and approximately a linear function of the charges, the interaction of e.g. a doubly charged phosphate anion with a single charged ammonium cation accounts for about 2x5 = 10 kJ/mol. The ΔG values depend on the ionic strength I of the solution, as described by the Debye-HĂŒckel equation, at zero ionic strength one observes ΔG = 8 kJ/mol.
986:
electron clouds in non-polar molecules. Thus, London interactions are caused by random fluctuations of electron density in an electron cloud. An atom with a large number of electrons will have a greater associated London force than an atom with fewer electrons. The dispersion (London) force is the most important component because all materials are polarizable, whereas Keesom and Debye forces require permanent dipoles. The London interaction is universal and is present in atom-atom interactions as well. For various reasons, London interactions (dispersion) have been considered relevant for interactions between macroscopic bodies in condensed systems.
295: 2505: 555:
power of the distance, unlike the interaction energy of two spatially fixed dipoles, which depends on the inverse third power of the distance. The Keesom interaction can only occur among molecules that possess permanent dipole moments, i.e., two polar molecules. Also Keesom interactions are very weak van der Waals interactions and do not occur in aqueous solutions that contain electrolytes. The angle averaged interaction is given by the following equation:
796:
molecule's electrons. A molecule with permanent dipole can induce a dipole in a similar neighboring molecule and cause mutual attraction. Debye forces cannot occur between atoms. The forces between induced and permanent dipoles are not as temperature dependent as Keesom interactions because the induced dipole is free to shift and rotate around the polar molecule. The Debye induction effects and Keesom orientation effects are termed polar interactions.
2499: 291:. The number of Hydrogen bonds formed between molecules is equal to the number of active pairs. The molecule which donates its hydrogen is termed the donor molecule, while the molecule containing lone pair participating in H bonding is termed the acceptor molecule. The number of active pairs is equal to the common number between number of hydrogens the donor has and the number of lone pairs the acceptor has. 2511: 474: 221:, but several such weak interactions with the required spatial configuration of the active center of the enzyme lead to significant restructuring changes the energy state of molecules or substrate, which ultimately leads to the breaking of some and the formation of other covalent chemical bonds. Strictly speaking, all 1162:
When a gas is compressed to increase its density, the influence of the attractive force increases. If the gas is made sufficiently dense, the attractions can become large enough to overcome the tendency of thermal motion to cause the molecules to disperse. Then the gas can condense to form a solid or
795:
The second contribution is the induction (also termed polarization) or Debye force, arising from interactions between rotating permanent dipoles and from the polarizability of atoms and molecules (induced dipoles). These induced dipoles occur when one molecule with a permanent dipole repels another
985:
The third and dominant contribution is the dispersion or London force (fluctuating dipole–induced dipole), which arises due to the non-zero instantaneous dipole moments of all atoms and molecules. Such polarization can be induced either by a polar molecule or by the repulsion of negatively charged
814:
One example of an induction interaction between permanent dipole and induced dipole is the interaction between HCl and Ar. In this system, Ar experiences a dipole as its electrons are attracted (to the H side of HCl) or repelled (from the Cl side) by HCl. The angle averaged interaction is given by
554:
averaged over different rotational orientations of the dipoles. It is assumed that the molecules are constantly rotating and never get locked into place. This is a good assumption, but at some point molecules do get locked into place. The energy of a Keesom interaction depends on the inverse sixth
358:
Dipole–dipole interactions (or Keesom interactions) are electrostatic interactions between molecules which have permanent dipoles. This interaction is stronger than the London forces but is weaker than ion-ion interaction because only partial charges are involved. These interactions tend to align
502:
Ion–dipole and ion–induced dipole forces are similar to dipole–dipole and dipole–induced dipole interactions but involve ions, instead of only polar and non-polar molecules. Ion–dipole and ion–induced dipole forces are stronger than dipole–dipole interactions because the charge of any ion is much
349:
The attraction between cationic and anionic sites is a noncovalent, or intermolecular interaction which is usually referred to as ion pairing or salt bridge. It is essentially due to electrostatic forces, although in aqueous medium the association is driven by entropy and often even endothermic.
1177:
Intermolecular forces observed between atoms and molecules can be described phenomenologically as occurring between permanent and instantaneous dipoles, as outlined above. Alternatively, one may seek a fundamental, unifying theory that is able to explain the various types of interactions such as
1198:
methods, such a quantum mechanical explanation of intermolecular interactions provides an array of approximate methods that can be used to analyze intermolecular interactions. One of the most helpful methods to visualize this kind of intermolecular interactions, that we can find in quantum
302:
Though both not depicted in the diagram, water molecules have four active bonds. The oxygen atom’s two lone pairs interact with a hydrogen each, forming two additional hydrogen bonds, and the second hydrogen atom also interacts with a neighbouring oxygen. Intermolecular hydrogen bonding is
1090:
This comparison is approximate. The actual relative strengths will vary depending on the molecules involved. For instance, the presence of water creates competing interactions that greatly weaken the strength of both ionic and hydrogen bonds. We may consider that for static systems,
385: 506:
An ion–dipole force consists of an ion and a polar molecule interacting. They align so that the positive and negative groups are next to one another, allowing maximum attraction. An important example of this interaction is hydration of ions in water which give rise to
529:
The van der Waals forces arise from interaction between uncharged atoms or molecules, leading not only to such phenomena as the cohesion of condensed phases and physical absorption of gases, but also to a universal force of attraction between macroscopic bodies.
689: 511:. The polar water molecules surround themselves around ions in water and the energy released during the process is known as hydration enthalpy. The interaction has its immense importance in justifying the stability of various ions (like Cu) in water. 1206:
Concerning electron density topology, recent methods based on electron density gradient methods have emerged recently, notably with the development of IBSI (Intrinsic Bond Strength Index), relying on the IGM (Independent Gradient Model) methodology.
931: 1143:
at the same temperature and pressure. The attractive force draws molecules closer together and gives a real gas a tendency to occupy a smaller volume than an ideal gas. Which interaction is more important depends on temperature and pressure (see
538:
The first contribution to van der Waals forces is due to electrostatic interactions between rotating permanent dipoles, quadrupoles (all molecules with symmetry lower than cubic), and multipoles. It is termed the
367:(HCl): the positive end of a polar molecule will attract the negative end of the other molecule and influence its position. Polar molecules have a net attraction between them. Examples of polar molecules include 514:
An ion–induced dipole force consists of an ion and a non-polar molecule interacting. Like a dipole–induced dipole force, the charge of the ion causes distortion of the electron cloud on the non-polar molecule.
966:
This kind of interaction can be expected between any polar molecule and non-polar/symmetrical molecule. The induction-interaction force is far weaker than dipole–dipole interaction, but stronger than the
469:{\displaystyle {\overset {\color {Red}\delta +}{{\ce {H}}}}-{\overset {\color {Red}\delta -}{{\ce {Cl}}}}\cdots {\overset {\color {Red}\delta +}{{\ce {H}}}}-{\overset {\color {Red}\delta -}{{\ce {Cl}}}}} 1159:
is the measure of thermal energy, so increasing temperature reduces the influence of the attractive force. In contrast, the influence of the repulsive force is essentially unaffected by temperature.
1163:
liquid, i.e., a condensed phase. Lower temperature favors the formation of a condensed phase. In a condensed phase, there is very nearly a balance between the attractive and repulsive forces.
561: 1151:
In a gas, the distances between molecules are generally large, so intermolecular forces have only a small effect. The attractive force is not overcome by the repulsive force, but by the
279:. The hydrogen bond is often described as a strong electrostatic dipole–dipole interaction. However, it also has some features of covalent bonding: it is directional, stronger than a 821: 803:), which is the attractive interaction between a permanent multipole on one molecule with an induced (by the former di/multi-pole) 31 on another. This interaction is called the 750: 723: 781: 961: 990:
developed the theory of van der Waals between macroscopic bodies in 1937 and showed that the additivity of these interactions renders them considerably more long-range.
62:, involving sharing electron pairs between atoms, is much stronger than the forces present between neighboring molecules. Both sets of forces are essential parts of 483:
on the molecule as a whole. This occurs if there is symmetry within the molecule that causes the dipoles to cancel each other out. This occurs in molecules such as
197:) in which the formation of chemical, that is, ionic, covalent or metallic bonds does not occur. In other words, these interactions are significantly weaker than 1267: 2264:
Ponce-Vargas M, Lefebvre C, Boisson JC, HĂ©non E (January 2020). "Atomic Decomposition Scheme of Noncovalent Interactions Applied to Host-Guest Assemblies".
1534: 1364:"Biochemistry and Molecular Biology - Paperback - Despo Papachristodoulou, Alison Snape, William H. Elliott, Daphne C. Elliott - Oxford University Press" 1386: 2174:"Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density" 2598: 1623:"The second virial coefficient for rigid spherical molecules whose mutual attraction is equivalent to that of a quadruplet placed at its center" 2224:"The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations" 2716: 2643: 2324: 1222: 344: 144: 2752: 1135:). In a gas, the repulsive force chiefly has the effect of keeping two molecules from occupying the same volume. This gives a 1852: 1817: 1767: 1517: 1457: 1433: 1347: 2115: 491:. The dipole–dipole interaction between two individual atoms is usually zero, since atoms rarely carry a permanent dipole. 547:. These forces originate from the attraction between permanent dipoles (dipolar molecules) and are temperature dependent. 2638: 1257: 17: 1099:
will always be stronger than intermolecular forces in any given substance. But it is not so for big moving systems like
1363: 684:{\displaystyle {\frac {-d_{1}^{2}d_{2}^{2}}{24\pi ^{2}\varepsilon _{0}^{2}\varepsilon _{r}^{2}k_{\text{B}}Tr^{6}}}=V,} 81:
published in Paris in 1743. Other scientists who have contributed to the investigation of microscopic forces include:
2563: 2387: 1342:. International Series of Monographs in Natural Philosophy. Vol. 18 (1st ed.). Oxford: Pergamon Press. 1200: 2578: 494:
The Keesom interaction is a van der Waals force. It is discussed further in the section "Van der Waals forces".
2742: 2414: 2375: 2365: 1878:"Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition" 1542: 311:, which have little capability to hydrogen bond. Intramolecular hydrogen bonding is partly responsible for the 2370: 2173: 1203:, which is based on the electron density of the system. London dispersion forces play a big role with this. 1172: 2317: 926:{\displaystyle {\frac {-d_{1}^{2}\alpha _{2}}{16\pi ^{2}\varepsilon _{0}^{2}\varepsilon _{r}^{2}r^{6}}}=V,} 1783: 1572:"Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy" 116: 287:, and usually involves a limited number of interaction partners, which can be interpreted as a kind of 218: 728: 701: 2747: 2633: 2623: 2613: 2588: 2558: 1272: 1227: 1156: 1688:
Roberts JK, Orr WJ (1938). "Induced dipoles and the heat of adsorption of argon on ionic crystals".
1473:
Biedermann F, Schneider HJ (May 2016). "Experimental Binding Energies in Supramolecular Complexes".
2404: 759: 503:
greater than the charge of a dipole moment. Ion–dipole bonding is stronger than hydrogen bonding.
2665: 2568: 2540: 2310: 1936: 1298: 1232: 1132: 1131:
Intermolecular forces are repulsive at short distances and attractive at long distances (see the
980: 968: 939: 175: 134: 63: 150:
Information on intermolecular forces is obtained by macroscopic measurements of properties like
1145: 480: 139: 2073: 1650:
Blustin PH (1978). "A Floating Gaussian Orbital calculation on argon hydrochloride (Ar·HCl)".
2709: 2670: 2223: 1977: 1104: 544: 308: 226: 2704: 2222:
Lefebvre C, Khartabil H, Boisson JC, Contreras-GarcĂ­a J, Piquemal JP, HĂ©non E (March 2018).
2015:
Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. (2011-07-08).
2628: 2382: 2341: 2188: 2130: 1948: 1889: 1724: 1310: 1242: 1111:) bonds form an active intermediate state where the intermolecular bonds cause some of the 800: 320: 284: 202: 171: 86: 82: 55: 974: 8: 2530: 2394: 2360: 2114:
Klein J, Khartabil H, Boisson JC, Contreras-GarcĂ­a J, Piquemal JP, HĂ©non E (March 2020).
1844: 1715:
Sapse AM, Rayez-Meaume MT, Rayez JC, Massa LJ (1979). "Ion-induced dipole H−n clusters".
1262: 1191: 1183: 524: 312: 288: 280: 122: 90: 67: 2694: 2192: 2134: 1952: 1893: 1728: 1622: 1314: 181:
In the broadest sense, it can be understood as such interactions between any particles (
2449: 2289: 2172:
Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contreras-GarcĂ­a J, HĂ©non E (July 2017).
2154: 2046: 1912: 1877: 1740: 1667: 1598: 1571: 1237: 551: 484: 316: 159: 229:
and the enzyme, therefore the importance of these interactions is especially great in
2680: 2469: 2429: 2419: 2293: 2281: 2246: 2204: 2158: 2146: 2066: 2038: 1997: 1917: 1858: 1848: 1813: 1763: 1603: 1513: 1490: 1453: 1429: 1343: 1195: 1187: 808: 368: 364: 264: 234: 2050: 1671: 1396: 2721: 2461: 2434: 2273: 2238: 2196: 2138: 2096: 2028: 1989: 1956: 1907: 1897: 1744: 1732: 1697: 1659: 1593: 1583: 1482: 1421: 1400: 1391: 1318: 1179: 1116: 1115:
to be broken, while the others are formed, in this way proceeding the thousands of
508: 360: 259:
is an extreme form of dipole-dipole bonding, referring to the attraction between a
222: 94: 43: 2699: 2573: 2444: 1902: 1840: 1247: 1186:
and dipole–dipole interactions. Typically, this is done by applying the ideas of
74: 1961: 1486: 1425: 1323: 2608: 2409: 1152: 987: 488: 294: 163: 2736: 2657: 2617: 2550: 2504: 2479: 2352: 2333: 2277: 2142: 2042: 2033: 2016: 2001: 1862: 1395:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 1217: 1112: 1108: 1096: 1092: 1046: 250: 205:
of the interacting particles. (This is only partially true. For example, all
198: 194: 167: 155: 108: 98: 59: 1416:
Lindh U (2013), "Biological functions of the elements", in Selinus O (ed.),
1404: 27:
Force of attraction or repulsion between molecules and neighboring particles
2603: 2285: 2250: 2242: 2208: 2150: 1993: 1921: 1607: 1494: 328: 230: 126: 104:
Attractive intermolecular forces are categorized into the following types:
1834: 1588: 283:
interaction, produces interatomic distances shorter than the sum of their
42:) is the force that mediates interaction between molecules, including the 2689: 2439: 1701: 130: 2221: 2100: 213:
begin with a weak intermolecular interaction between a substrate and an
46:
which act between atoms and other types of neighbouring particles, e.g.
2200: 1663: 1570:
Leite FL, Bueno CC, Da RĂłz AL, Ziemath EC, Oliveira ON (October 2012).
1194:
has been especially effective in this regard. When applied to existing
975:
London dispersion force (fluctuating dipole–induced dipole interaction)
372: 1762:(5th ed.). Boston: Houghton Mifflin Company. pp. 30–33, 67. 2424: 2399: 2113: 1736: 1277: 1140: 533: 479:
Often molecules contain dipolar groups of atoms, but have no overall
210: 151: 73:
The first reference to the nature of microscopic forces is found in
2498: 1136: 1120: 332: 276: 268: 260: 182: 790: 2302: 1630:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
1252: 799:
The induced dipole forces appear from the induction (also termed
550:
They consist of attractive interactions between dipoles that are
324: 2263: 1100: 272: 238: 214: 206: 2017:"Definition of the hydrogen bond (IUPAC Recommendations 2011)" 1084:
Estimated from the enthalpies of vaporization of hydrocarbons
58:– the forces which hold a molecule together. For example, the 2171: 304: 1976:
Lenhard, Johannes; Stephan, Simon; Hasse, Hans (June 2024).
363:). An example of a dipole–dipole interaction can be seen in 1937:"On the history of key empirical intermolecular potentials" 1714: 1420:(Revised ed.), Dordrecht: Springer, pp. 129–177, 1299:"On the history of key empirical intermolecular potentials" 497: 201:
ones and do not lead to a significant restructuring of the
186: 47: 2510: 1801: 1450:
Ionic Interactions in Natural and Synthetic Macromolecules
1107:
molecules. Here the numerous intramolecular (most often -
2014: 353: 190: 51: 1751: 158:(PVT) data. The link to microscopic aspects is given by 1569: 1268:
Comparison of software for molecular mechanics modeling
331:. It also plays an important role in the structure of 1512:. United States: Pearson Education Inc. p. 466. 942: 824: 762: 731: 704: 564: 388: 1975: 1683: 1681: 1472: 1173:
Covalent bond § Quantum mechanical description
534:Keesom force (permanent dipole – permanent dipole) 225:begin with intermolecular interactions between the 2065: 1935:Fischer, Johann; Wendland, Martin (October 2023). 1526: 1297:Fischer, Johann; Wendland, Martin (October 2023). 1126: 955: 925: 775: 744: 717: 683: 468: 44:electromagnetic forces of attraction or repulsion 2734: 1708: 1678: 1057:About 5 kcal/mol (21 kJ/mol) in water 791:Debye force (permanent dipoles–induced dipoles) 1978:"On the History of the Lennard-Jones Potential" 1934: 1810:Enthalpies of Vaporization of Organic Compounds 1645: 1643: 1337: 1296: 752:= dielectric constant of surrounding material, 359:the molecules to increase attraction (reducing 2087:King M (1976). "Theory of the Chemical Bond". 2063: 1776: 1380: 1166: 993: 113:Ion–dipole forces and ion–induced dipole force 2318: 1447: 1139:a tendency to occupy a larger volume than an 54:. Intermolecular forces are weak relative to 2266:Journal of Chemical Information and Modeling 1807: 1640: 263:atom that is bonded to an element with high 1875: 1760:Organic Chemistry: Structure and Reactivity 1576:International Journal of Molecular Sciences 1452:. Hoboken, NJ: John Wiley & Sons, Inc. 2325: 2311: 1687: 303:responsible for the high boiling point of 2032: 1960: 1911: 1901: 1597: 1587: 1322: 2717:Polyhedral skeletal electron pair theory 2089:Journal of the American Chemical Society 498:Ion–dipole and ion–induced dipole forces 345:Salt bridge (protein and supramolecular) 293: 145:Salt bridge (protein and supramolecular) 1832: 1649: 1190:to molecules, and Rayleigh–Schrödinger 518: 354:Dipole–dipole and similar interactions 14: 2735: 1620: 1532: 2306: 1565: 1563: 1561: 1559: 1415: 456: 436: 416: 396: 2086: 1833:Alberts, Bruce; et al. (2015). 307:(100 Â°C) compared to the other 2181:Physical Chemistry Chemical Physics 2123:The Journal of Physical Chemistry A 2116:"New Way for Probing Bond Strength" 2068:Electrodynamics of Continuous Media 1757: 1690:Transactions of the Faraday Society 1507: 1258:Quantum chemistry computer programs 244: 24: 2332: 2057: 2008: 1556: 1448:Ciferri A, Perico A, eds. (2012). 1392:Compendium of Chemical Terminology 25: 2764: 79:ThĂ©orie de la figure de la Terre, 2509: 2503: 2497: 1812:. Oxford: Blackwell Scientific. 745:{\displaystyle \varepsilon _{r}} 718:{\displaystyle \varepsilon _{0}} 2257: 2215: 2165: 2107: 2080: 2064:Landau LD, Lifshitz EM (1960). 1969: 1928: 1869: 1826: 1614: 1510:Chemistry: A Molecular Approach 1340:Theory of Intermolecular Forces 1338:Margenau H, Kestner NR (1969). 1127:Effect on the behavior of gases 2753:Johannes Diderik van der Waals 1876:Savir Y, Tlusty T (May 2007). 1839:(6th ed.). New York, NY: 1788:Division of Chemical Education 1501: 1466: 1441: 1409: 1356: 1331: 1290: 1201:non-covalent interaction index 787:= distance between molecules. 725:= permittivity of free space, 338: 335:, both synthetic and natural. 13: 1: 2072:. Oxford: Pergamon. pp.  1836:Molecular biology of the cell 1418:Essentials of Medical Geology 1284: 156:pressure, volume, temperature 1903:10.1371/journal.pone.0000468 776:{\displaystyle k_{\text{B}}} 7: 1962:10.1016/j.fluid.2023.113876 1808:Majer V, Svoboda V (1985). 1487:10.1021/acs.chemrev.5b00583 1426:10.1007/978-94-007-4375-5_7 1324:10.1016/j.fluid.2023.113876 1210: 1167:Quantum mechanical theories 1103:molecules interacting with 994:Relative strength of forces 956:{\displaystyle \alpha _{2}} 10: 2769: 2415:Metal–ligand multiple bond 2021:Pure and Applied Chemistry 1170: 978: 783:= Boltzmann constant, and 698:= electric dipole moment, 522: 342: 248: 2679: 2656: 2587: 2549: 2529: 2518: 2495: 2478: 2460: 2351: 2340: 1273:Non-covalent interactions 1075:London dispersion forces 298:Hydrogen bonding in water 2278:10.1021/acs.jcim.9b01016 2143:10.1021/acs.jpca.9b09845 2034:10.1351/PAC-REC-10-01-02 815:the following equation: 1652:Theoretica Chimica Acta 1535:"Intermolecular Forces" 1405:10.1351/goldbook.H02899 1233:Force field (chemistry) 1133:Lennard-Jones potential 981:London dispersion force 969:London dispersion force 176:Lennard-Jones potential 135:London dispersion force 2243:10.1002/cphc.201701325 1994:10.1002/andp.202400115 1941:Fluid Phase Equilibria 1303:Fluid Phase Equilibria 1228:Coomber's relationship 1146:compressibility factor 957: 927: 777: 746: 719: 685: 470: 299: 237:, and is the basis of 2743:Intermolecular forces 1589:10.3390/ijms131012773 958: 928: 778: 747: 720: 686: 545:Willem Hendrik Keesom 471: 321:quaternary structures 297: 217:or a molecule with a 140:Cation–cation bonding 119:, σ–π and π–π bonding 56:intramolecular forces 2405:Coordinate (dipolar) 1845:Taylor & Francis 1702:10.1039/TF9383401346 1243:Intramolecular force 1009:Dissociation energy 940: 822: 760: 729: 702: 562: 519:Van der Waals forces 386: 203:electronic structure 172:Buckingham potential 123:Van der Waals forces 32:intermolecular force 2579:C–H···O interaction 2361:Electron deficiency 2193:2017PCCP...1917928L 2187:(27): 17928–17936. 2135:2020JPCA..124.1850K 2101:10.1021/ja00428a004 1953:2023FlPEq.57313876F 1894:2007PLoSO...2..468S 1790:. Purdue University 1729:1979Natur.278..332S 1582:(10): 12773–12856. 1315:2023FlPEq.57313876F 1263:van der Waals force 1192:perturbation theory 1184:van der Waals force 1119:, so important for 1117:enzymatic reactions 1004:Dissociation energy 900: 885: 845: 645: 630: 600: 585: 525:van der Waals force 285:van der Waals radii 281:van der Waals force 223:enzymatic reactions 211:catalytic reactions 162:and intermolecular 160:virial coefficients 68:molecular mechanics 66:frequently used in 18:Intermolecular bond 2564:Resonance-assisted 2201:10.1039/C7CP02110K 1982:Annalen der Physik 1784:"Lattice Energies" 1664:10.1007/BF00577166 1621:Keesom WH (1915). 1238:Hydrophobic effect 1199:chemistry, is the 1155:of the molecules. 963:= polarizability. 953: 923: 886: 871: 831: 773: 742: 715: 681: 631: 616: 586: 571: 541:Keesom interaction 509:hydration enthalpy 485:tetrachloromethane 466: 463: 443: 423: 403: 300: 2730: 2729: 2681:Electron counting 2652: 2651: 2541:London dispersion 2493: 2492: 2470:Metal aromaticity 2095:(12): 3415–3420. 1854:978-0-8153-4432-2 1819:978-0-632-01529-0 1769:978-0-618-31809-4 1723:(5702): 332–333. 1533:Blaber M (1996). 1519:978-0-321-65178-5 1459:978-0-470-52927-0 1435:978-94-007-4374-8 1349:978-0-08-016502-8 1196:quantum chemistry 1188:quantum mechanics 1088: 1087: 912: 809:Peter J. W. Debye 770: 670: 653: 464: 454: 444: 434: 424: 414: 404: 394: 369:hydrogen chloride 365:hydrogen chloride 309:group 16 hydrides 265:electronegativity 235:molecular biology 16:(Redirected from 2760: 2748:Chemical bonding 2722:Jemmis mno rules 2574:Dihydrogen bonds 2527: 2526: 2513: 2507: 2501: 2435:Hyperconjugation 2349: 2348: 2327: 2320: 2313: 2304: 2303: 2298: 2297: 2261: 2255: 2254: 2228: 2219: 2213: 2212: 2178: 2169: 2163: 2162: 2129:(9): 1850–1860. 2120: 2111: 2105: 2104: 2084: 2078: 2077: 2071: 2061: 2055: 2054: 2036: 2027:(8): 1637–1641. 2012: 2006: 2005: 1973: 1967: 1966: 1964: 1932: 1926: 1925: 1915: 1905: 1873: 1867: 1866: 1830: 1824: 1823: 1805: 1799: 1798: 1796: 1795: 1780: 1774: 1773: 1755: 1749: 1748: 1737:10.1038/278332a0 1712: 1706: 1705: 1685: 1676: 1675: 1647: 1638: 1637: 1627: 1618: 1612: 1611: 1601: 1591: 1567: 1554: 1553: 1551: 1550: 1541:. Archived from 1530: 1524: 1523: 1505: 1499: 1498: 1481:(9): 5216–5300. 1475:Chemical Reviews 1470: 1464: 1463: 1445: 1439: 1438: 1413: 1407: 1384: 1378: 1377: 1375: 1374: 1360: 1354: 1353: 1335: 1329: 1328: 1326: 1294: 1180:hydrogen bonding 1121:living organisms 1097:covalent bonding 998: 997: 962: 960: 959: 954: 952: 951: 932: 930: 929: 924: 913: 911: 910: 909: 899: 894: 884: 879: 870: 869: 856: 855: 854: 844: 839: 826: 782: 780: 779: 774: 772: 771: 768: 751: 749: 748: 743: 741: 740: 724: 722: 721: 716: 714: 713: 690: 688: 687: 682: 671: 669: 668: 667: 655: 654: 651: 644: 639: 629: 624: 615: 614: 601: 599: 594: 584: 579: 566: 475: 473: 472: 467: 465: 455: 452: 450: 445: 435: 432: 430: 425: 415: 412: 410: 405: 395: 392: 390: 361:potential energy 245:Hydrogen bonding 109:Hydrogen bonding 21: 2768: 2767: 2763: 2762: 2761: 2759: 2758: 2757: 2733: 2732: 2731: 2726: 2675: 2648: 2591: 2583: 2545: 2532: 2522: 2514: 2508: 2502: 2489: 2474: 2456: 2344: 2336: 2331: 2301: 2262: 2258: 2226: 2220: 2216: 2176: 2170: 2166: 2118: 2112: 2108: 2085: 2081: 2062: 2058: 2013: 2009: 1974: 1970: 1933: 1929: 1874: 1870: 1855: 1841:Garland Science 1831: 1827: 1820: 1806: 1802: 1793: 1791: 1782: 1781: 1777: 1770: 1758:Eğe SN (2004). 1756: 1752: 1713: 1709: 1686: 1679: 1648: 1641: 1625: 1619: 1615: 1568: 1557: 1548: 1546: 1531: 1527: 1520: 1506: 1502: 1471: 1467: 1460: 1446: 1442: 1436: 1414: 1410: 1385: 1381: 1372: 1370: 1362: 1361: 1357: 1350: 1336: 1332: 1295: 1291: 1287: 1282: 1248:Molecular solid 1213: 1175: 1169: 1129: 1005: 996: 983: 977: 947: 943: 941: 938: 937: 905: 901: 895: 890: 880: 875: 865: 861: 857: 850: 846: 840: 835: 827: 825: 823: 820: 819: 793: 767: 763: 761: 758: 757: 756:= temperature, 736: 732: 730: 727: 726: 709: 705: 703: 700: 699: 663: 659: 650: 646: 640: 635: 625: 620: 610: 606: 602: 595: 590: 580: 575: 567: 565: 563: 560: 559: 536: 527: 521: 500: 451: 449: 431: 429: 411: 409: 391: 389: 387: 384: 383: 378: 356: 347: 341: 253: 247: 164:pair potentials 75:Alexis Clairaut 40:secondary force 28: 23: 22: 15: 12: 11: 5: 2766: 2756: 2755: 2750: 2745: 2728: 2727: 2725: 2724: 2719: 2714: 2713: 2712: 2707: 2702: 2697: 2686: 2684: 2677: 2676: 2674: 2673: 2668: 2662: 2660: 2654: 2653: 2650: 2649: 2647: 2646: 2641: 2636: 2631: 2626: 2621: 2611: 2606: 2601: 2595: 2593: 2585: 2584: 2582: 2581: 2576: 2571: 2566: 2561: 2555: 2553: 2547: 2546: 2544: 2543: 2537: 2535: 2524: 2520:Intermolecular 2516: 2515: 2496: 2494: 2491: 2490: 2488: 2487: 2484: 2482: 2476: 2475: 2473: 2472: 2466: 2464: 2458: 2457: 2455: 2454: 2453: 2452: 2447: 2437: 2432: 2427: 2422: 2417: 2412: 2407: 2402: 2397: 2392: 2391: 2390: 2380: 2379: 2378: 2373: 2368: 2357: 2355: 2346: 2342:Intramolecular 2338: 2337: 2334:Chemical bonds 2330: 2329: 2322: 2315: 2307: 2300: 2299: 2272:(1): 268–278. 2256: 2237:(6): 724–735. 2214: 2164: 2106: 2079: 2056: 2007: 1968: 1927: 1868: 1853: 1825: 1818: 1800: 1775: 1768: 1750: 1707: 1677: 1658:(3): 249–257. 1639: 1613: 1555: 1539:mikeblaber.org 1525: 1518: 1508:Tro N (2011). 1500: 1465: 1458: 1440: 1434: 1408: 1379: 1368:global.oup.com 1355: 1348: 1330: 1288: 1286: 1283: 1281: 1280: 1275: 1270: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1214: 1212: 1209: 1171:Main article: 1168: 1165: 1153:thermal energy 1128: 1125: 1109:hydrogen bonds 1086: 1085: 1082: 1079: 1076: 1072: 1071: 1069: 1066: 1063: 1062:Dipole–dipole 1059: 1058: 1055: 1052: 1049: 1043: 1042: 1040: 1037: 1034: 1033:Covalent bond 1030: 1029: 1027: 1024: 1021: 1020:Ionic lattice 1017: 1016: 1013: 1007: 1002: 995: 992: 979:Main article: 976: 973: 950: 946: 934: 933: 922: 919: 916: 908: 904: 898: 893: 889: 883: 878: 874: 868: 864: 860: 853: 849: 843: 838: 834: 830: 807:, named after 792: 789: 766: 739: 735: 712: 708: 692: 691: 680: 677: 674: 666: 662: 658: 649: 643: 638: 634: 628: 623: 619: 613: 609: 605: 598: 593: 589: 583: 578: 574: 570: 543:, named after 535: 532: 523:Main article: 520: 517: 499: 496: 489:carbon dioxide 477: 476: 462: 459: 448: 442: 439: 428: 422: 419: 408: 402: 399: 376: 355: 352: 343:Main article: 340: 337: 249:Main article: 246: 243: 195:molecular ions 166:, such as the 148: 147: 142: 137: 120: 114: 111: 26: 9: 6: 4: 3: 2: 2765: 2754: 2751: 2749: 2746: 2744: 2741: 2740: 2738: 2723: 2720: 2718: 2715: 2711: 2708: 2706: 2703: 2701: 2698: 2696: 2695:HĂŒckel's rule 2693: 2692: 2691: 2688: 2687: 2685: 2682: 2678: 2672: 2669: 2667: 2664: 2663: 2661: 2659: 2658:Bond cleavage 2655: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2624:Intercalation 2622: 2619: 2615: 2614:Metallophilic 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2596: 2594: 2590: 2586: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2556: 2554: 2552: 2548: 2542: 2539: 2538: 2536: 2534: 2531:Van der Waals 2528: 2525: 2521: 2517: 2512: 2506: 2500: 2486: 2485: 2483: 2481: 2477: 2471: 2468: 2467: 2465: 2463: 2459: 2451: 2448: 2446: 2443: 2442: 2441: 2438: 2436: 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2389: 2386: 2385: 2384: 2381: 2377: 2374: 2372: 2369: 2367: 2364: 2363: 2362: 2359: 2358: 2356: 2354: 2350: 2347: 2343: 2339: 2335: 2328: 2323: 2321: 2316: 2314: 2309: 2308: 2305: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2260: 2252: 2248: 2244: 2240: 2236: 2232: 2225: 2218: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2182: 2175: 2168: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2117: 2110: 2102: 2098: 2094: 2090: 2083: 2075: 2070: 2069: 2060: 2052: 2048: 2044: 2040: 2035: 2030: 2026: 2022: 2018: 2011: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1972: 1963: 1958: 1954: 1950: 1946: 1942: 1938: 1931: 1923: 1919: 1914: 1909: 1904: 1899: 1895: 1891: 1887: 1883: 1879: 1872: 1864: 1860: 1856: 1850: 1846: 1842: 1838: 1837: 1829: 1821: 1815: 1811: 1804: 1789: 1785: 1779: 1771: 1765: 1761: 1754: 1746: 1742: 1738: 1734: 1730: 1726: 1722: 1718: 1711: 1703: 1699: 1695: 1691: 1684: 1682: 1673: 1669: 1665: 1661: 1657: 1653: 1646: 1644: 1635: 1631: 1624: 1617: 1609: 1605: 1600: 1595: 1590: 1585: 1581: 1577: 1573: 1566: 1564: 1562: 1560: 1545:on 2020-08-01 1544: 1540: 1536: 1529: 1521: 1515: 1511: 1504: 1496: 1492: 1488: 1484: 1480: 1476: 1469: 1461: 1455: 1451: 1444: 1437: 1431: 1427: 1423: 1419: 1412: 1406: 1402: 1398: 1397:hydrogen bond 1394: 1393: 1388: 1383: 1369: 1365: 1359: 1351: 1345: 1341: 1334: 1325: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1289: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1218:Ionic bonding 1216: 1215: 1208: 1204: 1202: 1197: 1193: 1189: 1185: 1181: 1174: 1164: 1160: 1158: 1154: 1149: 1147: 1142: 1138: 1134: 1124: 1122: 1118: 1114: 1113:covalent bond 1110: 1106: 1102: 1098: 1094: 1093:Ionic bonding 1083: 1080: 1077: 1074: 1073: 1070: 1067: 1064: 1061: 1060: 1056: 1053: 1050: 1048: 1047:Hydrogen bond 1045: 1044: 1041: 1038: 1035: 1032: 1031: 1028: 1025: 1022: 1019: 1018: 1014: 1012: 1008: 1003: 1000: 999: 991: 989: 982: 972: 970: 964: 948: 944: 920: 917: 914: 906: 902: 896: 891: 887: 881: 876: 872: 866: 862: 858: 851: 847: 841: 836: 832: 828: 818: 817: 816: 812: 810: 806: 802: 797: 788: 786: 764: 755: 737: 733: 710: 706: 697: 678: 675: 672: 664: 660: 656: 647: 641: 636: 632: 626: 621: 617: 611: 607: 603: 596: 591: 587: 581: 576: 572: 568: 558: 557: 556: 553: 548: 546: 542: 531: 526: 516: 512: 510: 504: 495: 492: 490: 486: 482: 481:dipole moment 460: 457: 446: 440: 437: 426: 420: 417: 406: 400: 397: 382: 381: 380: 374: 370: 366: 362: 351: 346: 336: 334: 330: 329:nucleic acids 326: 322: 318: 314: 310: 306: 296: 292: 290: 286: 282: 278: 274: 270: 266: 262: 258: 257:hydrogen bond 252: 251:Hydrogen bond 242: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 179: 177: 173: 169: 168:Mie potential 165: 161: 157: 153: 146: 143: 141: 138: 136: 132: 128: 124: 121: 118: 115: 112: 110: 107: 106: 105: 102: 100: 96: 92: 88: 84: 80: 76: 71: 69: 65: 61: 60:covalent bond 57: 53: 49: 45: 41: 37: 33: 19: 2700:Baird's rule 2519: 2420:Charge-shift 2383:Hypervalence 2269: 2265: 2259: 2234: 2231:ChemPhysChem 2230: 2217: 2184: 2180: 2167: 2126: 2122: 2109: 2092: 2088: 2082: 2067: 2059: 2024: 2020: 2010: 1985: 1981: 1971: 1944: 1940: 1930: 1885: 1881: 1871: 1835: 1828: 1809: 1803: 1792:. Retrieved 1787: 1778: 1759: 1753: 1720: 1716: 1710: 1693: 1689: 1655: 1651: 1633: 1629: 1616: 1579: 1575: 1547:. Retrieved 1543:the original 1538: 1528: 1509: 1503: 1478: 1474: 1468: 1449: 1443: 1417: 1411: 1390: 1382: 1371:. Retrieved 1367: 1358: 1339: 1333: 1306: 1302: 1292: 1223:Salt bridges 1205: 1176: 1161: 1150: 1130: 1089: 1081:<4 to 63 1078:<1 to 15 1010: 984: 965: 935: 813: 804: 801:polarization 798: 794: 784: 753: 695: 693: 549: 540: 537: 528: 513: 505: 501: 493: 478: 357: 348: 301: 256: 254: 231:biochemistry 180: 149: 127:Keesom force 103: 78: 72: 64:force fields 39: 35: 31: 29: 2690:Aromaticity 2666:Heterolysis 2644:Salt bridge 2589:Noncovalent 2559:Low-barrier 2440:Aromaticity 2430:Conjugation 2410:Pi backbond 1888:(5): e468. 1157:Temperature 1026:1100–20000 1006:(kcal/mol) 805:Debye force 339:Salt bridge 131:Debye force 2737:Categories 2618:aurophilic 2599:Mechanical 1947:: 113876. 1794:2014-01-21 1636:: 636–646. 1549:2011-11-17 1373:2024-01-04 1309:: 113876. 1285:References 1001:Bond type 373:chloroform 371:(HCl) and 267:, usually 239:enzymology 2710:spherical 2671:Homolysis 2634:Cation–pi 2609:Chalcogen 2569:Symmetric 2425:Hapticity 2294:209488458 2159:211070812 2043:1365-3075 2002:0003-3804 1863:887605755 1278:Solvation 1141:ideal gas 1105:substrate 1039:130–1100 1023:250–4000 1011:(kJ/mol) 945:α 888:ε 873:ε 863:π 848:α 829:− 734:ε 707:ε 633:ε 618:ε 608:π 569:− 461:− 458:δ 447:− 438:δ 427:⋯ 421:− 418:δ 407:− 398:δ 313:secondary 227:substrate 207:enzymatic 183:molecules 152:viscosity 95:Boltzmann 2639:Anion–pi 2629:Stacking 2551:Hydrogen 2462:Metallic 2353:Covalent 2345:(strong) 2286:31877034 2251:29250908 2209:28664951 2151:32039597 2051:97688573 1922:17520027 1882:PLOS ONE 1696:: 1346. 1672:93104668 1608:23202925 1495:27136957 1211:See also 1137:real gas 552:ensemble 333:polymers 325:proteins 317:tertiary 277:fluorine 269:nitrogen 261:hydrogen 219:catalyst 199:covalent 117:Cation–π 77:'s work 2604:Halogen 2450:bicyclo 2395:Agostic 2189:Bibcode 2131:Bibcode 2074:368–376 1949:Bibcode 1913:1868595 1890:Bibcode 1745:4304250 1725:Bibcode 1599:3497299 1311:Bibcode 1253:Polymer 1036:30–260 988:Hamaker 289:valence 99:Pauling 91:Maxwell 83:Laplace 38:; also 2705:Möbius 2533:forces 2523:(weak) 2292:  2284:  2249:  2207:  2157:  2149:  2049:  2041:  2000:  1920:  1910:  1861:  1851:  1816:  1766:  1743:  1717:Nature 1670:  1606:  1596:  1516:  1493:  1456:  1432:  1346:  1101:enzyme 1065:0.5–2 936:where 694:where 319:, and 273:oxygen 215:enzyme 133:, and 2683:rules 2592:other 2480:Ionic 2388:3c–4e 2376:8c–2e 2371:4c–2e 2366:3c–2e 2290:S2CID 2227:(PDF) 2177:(PDF) 2155:S2CID 2119:(PDF) 2047:S2CID 1988:(6). 1741:S2CID 1668:S2CID 1626:(PDF) 1387:IUPAC 1054:4–50 1051:1–12 1015:Note 375:(CHCl 305:water 275:, or 187:atoms 87:Gauss 48:atoms 2445:homo 2400:Bent 2282:PMID 2247:PMID 2205:PMID 2147:PMID 2039:ISSN 1998:ISSN 1918:PMID 1859:OCLC 1849:ISBN 1814:ISBN 1764:ISBN 1604:PMID 1514:ISBN 1491:PMID 1454:ISBN 1430:ISBN 1344:ISBN 1095:and 1068:2–8 487:and 327:and 233:and 209:and 193:and 191:ions 97:and 52:ions 2274:doi 2239:doi 2197:doi 2139:doi 2127:124 2097:doi 2029:doi 1990:doi 1986:536 1957:doi 1945:573 1908:PMC 1898:doi 1733:doi 1721:278 1698:doi 1660:doi 1594:PMC 1584:doi 1483:doi 1479:116 1422:doi 1401:doi 1399:". 1319:doi 1307:573 1148:). 379:). 323:of 241:). 174:or 50:or 36:IMF 30:An 2739:: 2288:. 2280:. 2270:60 2268:. 2245:. 2235:19 2233:. 2229:. 2203:. 2195:. 2185:19 2183:. 2179:. 2153:. 2145:. 2137:. 2125:. 2121:. 2093:98 2091:. 2045:. 2037:. 2025:83 2023:. 2019:. 1996:. 1984:. 1980:. 1955:. 1943:. 1939:. 1916:. 1906:. 1896:. 1884:. 1880:. 1857:. 1847:. 1843:- 1786:. 1739:. 1731:. 1719:. 1694:34 1692:. 1680:^ 1666:. 1656:47 1654:. 1642:^ 1634:18 1632:. 1628:. 1602:. 1592:. 1580:13 1578:. 1574:. 1558:^ 1537:. 1489:. 1477:. 1428:, 1389:, 1366:. 1317:. 1305:. 1301:. 1182:, 1123:. 971:. 859:16 811:. 604:24 453:Cl 413:Cl 315:, 271:, 255:A 189:, 185:, 178:. 170:, 154:, 129:, 125:– 101:. 93:, 89:, 85:, 70:. 2620:) 2616:( 2326:e 2319:t 2312:v 2296:. 2276:: 2253:. 2241:: 2211:. 2199:: 2191:: 2161:. 2141:: 2133:: 2103:. 2099:: 2076:. 2053:. 2031:: 2004:. 1992:: 1965:. 1959:: 1951:: 1924:. 1900:: 1892:: 1886:2 1865:. 1822:. 1797:. 1772:. 1747:. 1735:: 1727:: 1704:. 1700:: 1674:. 1662:: 1610:. 1586:: 1552:. 1522:. 1497:. 1485:: 1462:. 1424:: 1403:: 1376:. 1352:. 1327:. 1321:: 1313:: 949:2 921:, 918:V 915:= 907:6 903:r 897:2 892:r 882:2 877:0 867:2 852:2 842:2 837:1 833:d 785:r 769:B 765:k 754:T 738:r 711:0 696:d 679:, 676:V 673:= 665:6 661:r 657:T 652:B 648:k 642:2 637:r 627:2 622:0 612:2 597:2 592:2 588:d 582:2 577:1 573:d 441:+ 433:H 401:+ 393:H 377:3 34:( 20:)

Index

Intermolecular bond
electromagnetic forces of attraction or repulsion
atoms
ions
intramolecular forces
covalent bond
force fields
molecular mechanics
Alexis Clairaut
Laplace
Gauss
Maxwell
Boltzmann
Pauling
Hydrogen bonding
Cation–π
Van der Waals forces
Keesom force
Debye force
London dispersion force
Cation–cation bonding
Salt bridge (protein and supramolecular)
viscosity
pressure, volume, temperature
virial coefficients
pair potentials
Mie potential
Buckingham potential
Lennard-Jones potential
molecules

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑