Knowledge

Differential form

Source 📝

10843: 10035: 3768: 12137: 8353: 9410: 10536: 6742: 14855: 9659: 9767: 2981: 12967: 12731:
forms ensures that this is possible not just for products, but in more general situations as well. Under some hypotheses, it is possible to integrate along the fibers of a smooth map, and the analog of Fubini's theorem is the case where this map is the projection from a product to one of its factors.
12730:
states that the integral over a set that is a product may be computed as an iterated integral over the two factors in the product. This suggests that the integral of a differential form over a product ought to be computable as an iterated integral as well. The geometric flexibility of differential
3563: 11874: 3525: 10492: 11751: 5635: 5401: 8090:
of differential forms, which can be viewed as a Clifford algebra where the quadratic form vanishes (since the exterior product of any vector with itself is zero). Clifford algebras are thus non-anticommutative ("quantum") deformations of the exterior algebra. They are studied in
15496:
be integrated over subsets of the manifold; this distinction is key to the distinction between differential forms, which are integrated over chains or oriented submanifolds, and measures, which are integrated over subsets. The simplest example is attempting to integrate the
9150: 8135: 4820: 10261: 9241: 16545: 12288:. But such a parametrization is always possible locally, so it is possible to define integrals over arbitrary manifolds by defining them as sums of integrals over collections of local parametrizations. Moreover, it is also possible to define parametrizations of 10838:{\displaystyle f^{*}\omega =\sum _{i_{1}<\cdots <i_{k}}\sum _{j_{1}<\cdots <j_{k}}(\omega _{i_{1}\cdots i_{k}}\circ f){\frac {\partial (f_{i_{1}},\ldots ,f_{i_{k}})}{\partial (x^{j_{1}},\ldots ,x^{j_{k}})}}\,dx^{j_{1}}\wedge \cdots \wedge dx^{j_{k}}.} 13255: 6201: 2267: 7300: 811:
under smooth functions between two manifolds. This feature allows geometrically invariant information to be moved from one space to another via the pullback, provided that the information is expressed in terms of differential forms. As an example, the
6551: 16364: 14695: 9537: 6850: 14638: 7477: 8946: 10975: 824:
Differential forms are part of the field of differential geometry, influenced by linear algebra. Although the notion of a differential is quite old, the initial attempt at an algebraic organization of differential forms is usually credited to
3262: 4924: 14184: 2684: 9510: 5082: 14973: 12258: 11407: 11863: 10030:{\displaystyle {\begin{aligned}f^{*}(c\omega )&=c(f^{*}\omega ),\\f^{*}(\omega +\eta )&=f^{*}\omega +f^{*}\eta ,\\f^{*}(\omega \wedge \eta )&=f^{*}\omega \wedge f^{*}\eta ,\\f^{*}(d\omega )&=d(f^{*}\omega ).\end{aligned}}} 7880:, the metric defines a fibre-wise isomorphism of the tangent and cotangent bundles. This makes it possible to convert vector fields to covector fields and vice versa. It also enables the definition of additional operations such as the 6514: 1094:
for one-dimensional integrals, that the sign changes when the orientation of the interval is reversed. A standard explanation of this in one-variable integration theory is that, when the limits of integration are in the opposite order
397: 14418: 7862: 2804: 1995: 11148:
correspond to line integrals, surface integrals, volume integrals, and so on. There are several equivalent ways to formally define the integral of a differential form, all of which depend on reducing to the case of Euclidean space.
7594: 4311: 13986: 12839: 7970: 2112: 15110: 12547: 3763:{\displaystyle {\begin{aligned}(\partial _{\mathbf {v} +\mathbf {w} }f)(p)&=(\partial _{\mathbf {v} }f)(p)+(\partial _{\mathbf {w} }f)(p)\\(\partial _{c\mathbf {v} }f)(p)&=c(\partial _{\mathbf {v} }f)(p)\end{aligned}}} 2794: 12132:{\displaystyle \int _{M}\omega =\int _{D}\sum _{i_{1}<\cdots <i_{n}}a_{i_{1},\ldots ,i_{n}}(\varphi ({\mathbf {u} })){\frac {\partial (x^{i_{1}},\ldots ,x^{i_{n}})}{\partial (u^{1},\dots ,u^{n})}}\,du^{1}\cdots du^{n},} 7071: 13081: 6891:
As well as the addition and multiplication by scalar operations which arise from the vector space structure, there are several other standard operations defined on differential forms. The most important operations are the
6086: 4165: 13332: 7660: 6289: 16723: 16048: 14472: 14070: 8043: 3398: 7765: 8665:. The existence of pullbacks is one of the key features of the theory of differential forms. It leads to the existence of pullback maps in other situations, such as pullback homomorphisms in de Rham cohomology. 10333: 5936: 11595: 1599: 9729: 5456: 5233: 15642: 11271: 15332: 3019:, and many areas in physics. Of note, although the above definition of the exterior derivative was defined with respect to local coordinates, it can be defined in an entirely coordinate-free manner, as an 12628:. Here, the form has a well-defined Riemann or Lebesgue integral as before. The change of variables formula and the assumption that the chart is positively oriented together ensure that the integral of 11040: 1085: 15225: 12734:
Because integrating a differential form over a submanifold requires fixing an orientation, a prerequisite to integration along fibers is the existence of a well-defined orientation on those fibers. Let
8348:{\displaystyle 0\ \to \ \Omega ^{0}(M)\ {\stackrel {d}{\to }}\ \Omega ^{1}(M)\ {\stackrel {d}{\to }}\ \Omega ^{2}(M)\ {\stackrel {d}{\to }}\ \Omega ^{3}(M)\ \to \ \cdots \ \to \ \Omega ^{n}(M)\ \to \ 0.} 1214: 9405:{\displaystyle M\ {\stackrel {f}{\to }}\ N\ {\stackrel {\omega }{\to }}\ {\textstyle \bigwedge }^{k}T^{*}N\ {\stackrel {{\bigwedge }^{k}(df)^{*}}{\longrightarrow }}\ {\textstyle \bigwedge }^{k}T^{*}M.} 9021: 15389: 5176: 4706: 4500: 1703: 10124: 2335: 15836:-dimensional subset can be turned around in place, yielding the same subset with the opposite orientation; for example, the horizontal axis in a plane can be rotated by 180 degrees. Compare the 6994:. When the exterior algebra is viewed as a quotient of the tensor algebra, the exterior product corresponds to the tensor product (modulo the equivalence relation defining the exterior algebra). 4606: 1428: 16470: 13406: 12844: 12422: 9772: 3568: 2496: 16465: 13667: 7007:
is viewed as a multilinear functional, it is alternating. However, when the exterior algebra is embedded as a subspace of the tensor algebra by means of the alternation map, the tensor product
13530: 11432:. Riemann and Lebesgue integrals cannot see this dependence on the ordering of the coordinates, so they leave the sign of the integral undetermined. The orientation resolves this ambiguity. 7118: 1309: 15564: 16233: 12667:-dimensional submanifolds using this more intrinsic approach. The form is pulled back to the submanifold, where the integral is defined using charts as before. For example, given a path 6737:{\displaystyle \operatorname {Alt} (\tau _{p})(x_{1},\dots ,x_{k})={\frac {1}{k!}}\sum _{\sigma \in S_{k}}\operatorname {sgn}(\sigma )\tau _{p}(x_{\sigma (1)},\dots ,x_{\sigma (k)}),} 587: 7160: 6106: 2128: 7214: 7186: 139: 14850:{\displaystyle (\beta _{\mathbf {v} })_{x}=\left(\alpha _{x}\wedge f^{*}(\mathbf {v} \,\lrcorner \,\zeta _{y})\right){\big /}\zeta _{y}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}M.} 11509: 985: 16606: 13143: 9654:{\displaystyle {\textstyle \bigwedge }^{k}TM\ {\stackrel {{\bigwedge }^{k}df}{\longrightarrow }}\ {\textstyle \bigwedge }^{k}TN\ {\stackrel {\omega }{\to }}\ N\times \mathbf {R} } 7206: 2399: 9215: 16252: 11141:, integration over oriented 0-dimensional submanifolds is just the summation of the integrand evaluated at points, according to the orientation of those points. Other values of 762: 11078: 6774: 14546: 7346: 625: 509: 8793: 16409:. However, the vector rsp. tensor components and the above-mentioned forms have different physical dimensions. Moreover, by decision of an international commission of the 10851: 3154: 16440: 16120: 16091: 4835: 696: 14085: 2582: 1809:, in the same way that the cross product of parallel vectors, whose magnitude is the area of the parallelogram spanned by those vectors, is zero. In higher dimensions, 9442: 6768:
elements. The alternation map is constant on the cosets of the ideal in the tensor algebra generated by the symmetric 2-forms, and therefore descends to an embedding
4970: 662: 14890: 12148: 11308: 16568: 11768: 2976:{\displaystyle d\tau =\sum _{I\in {\mathcal {J}}_{k,n}}\left(\sum _{j=1}^{n}{\frac {\partial a_{I}}{\partial x^{j}}}\,dx^{j}\right)\wedge dx^{I}\in \Omega ^{k+1}(M)} 8071:-forms can be identified with vector fields; vector fields have additional distinct algebraic structures, which are listed here for context and to avoid confusion. 6537: 6440: 15758:-forms (top-dimensional forms) over the entire manifold or over compact subsets; integration over the entire manifold corresponds to integrating the form over the 240: 14338: 12962:{\displaystyle {\begin{aligned}\omega _{x}&\in {\textstyle \bigwedge }^{m}T_{x}^{*}M,\\\eta _{y}&\in {\textstyle \bigwedge }^{n}T_{y}^{*}N,\end{aligned}}} 7780: 1872: 7534: 4197: 13893: 7886: 15044: 2003: 12457: 15795:
on non-orientable manifolds), but there are nowhere-vanishing densities— thus while one can integrate densities over compact subsets, one cannot integrate
5740:
Differential forms, the exterior product and the exterior derivative are independent of a choice of coordinates. Consequently, they may be defined on any
16776: 2697: 7023: 17: 12993: 5767:-forms on each chart which agree on the overlaps. However, there are more intrinsic definitions which make the independence of coordinates manifest. 4079: 6026: 990:
which is the negative of the integral of the same differential form over the same interval, when equipped with the opposite orientation. That is:
7600: 6219: 1798:
in vector calculus allows one to compute the area vector of a parallelogram from vectors pointing up the two sides. Alternating also implies that
18155: 16676: 16410: 3520:{\displaystyle {\frac {\partial f}{\partial x^{j}}}=\sum _{i=1}^{n}{\frac {\partial y^{i}}{\partial x^{j}}}{\frac {\partial f}{\partial y^{i}}}.} 3011:
The exterior derivative itself applies in an arbitrary finite number of dimensions, and is a flexible and powerful tool with wide application in
15969: 17346: 14429: 16648:, in which the Lie group is not abelian. In that case, one gets relations which are similar to those described here. The analog of the field 13997: 10487:{\displaystyle f^{*}\omega =\sum _{i_{1}<\cdots <i_{k}}(\omega _{i_{1}\cdots i_{k}}\circ f)\,df_{i_{1}}\wedge \cdots \wedge df_{i_{k}}.} 7978: 13266: 7707: 1346:
at each point on the manifold that may be thought of as measuring a small displacement in the corresponding coordinate direction. A general
12342:. That is, it is a collection of smooth embeddings, each of which is assigned an integer multiplicity. Each smooth embedding determines a 11746:{\displaystyle \omega =\sum _{i_{1}<\cdots <i_{n}}a_{i_{1},\ldots ,i_{n}}({\mathbf {x} })\,dx^{i_{1}}\wedge \cdots \wedge dx^{i_{n}}.} 3008:, although this correspondence, like the cross product, does not generalize to higher dimensions, and should be treated with some caution. 18150: 5630:{\displaystyle \sum _{i_{1},i_{2}\ldots i_{k}=1}^{n}f_{i_{1}i_{2}\ldots i_{k}}\,dx^{i_{1}}\wedge dx^{i_{2}}\wedge \cdots \wedge dx^{i_{k}}} 5396:{\displaystyle d\alpha =\sum _{j=1}^{n}df_{j}\wedge dx^{j}=\sum _{i,j=1}^{n}{\frac {\partial f_{j}}{\partial x^{i}}}\,dx^{i}\wedge dx^{j}.} 11412:
Fixing an orientation is necessary for this to be well-defined. The skew-symmetry of differential forms means that the integral of, say,
6434:
The exterior algebra may be embedded in the tensor algebra by means of the alternation map. The alternation map is defined as a mapping
5876: 3027:
of differential forms. The benefit of this more general approach is that it allows for a natural coordinate-free approach to integrate on
14189:
It is also possible to integrate forms of other degrees along the fibers of a submersion. Assume the same hypotheses as before, and let
8078:, where the product of a (co)vector with itself is given by the value of a quadratic form – in this case, the natural one induced by the 1513: 17437: 9683: 15569: 895:. An example of a 1-dimensional manifold is an interval , and intervals can be given an orientation: they are positively oriented if 17461: 11205: 2500:
This also demonstrates that there are no nonzero differential forms of degree greater than the dimension of the underlying manifold.
15287: 1794:. The exterior product allows higher-degree differential forms to be built out of lower-degree ones, in much the same way that the 18567: 17656: 16739:, but this does not hold in general. Likewise the field equations are modified by additional terms involving exterior products of 9145:{\displaystyle M\ {\stackrel {f}{\to }}\ N\ {\stackrel {\omega }{\to }}\ T^{*}N\ {\stackrel {(df)^{*}}{\longrightarrow }}\ T^{*}M.} 6865: 6428: 996: 15175: 10980: 7017:
is not alternating. There is an explicit formula which describes the exterior product in this situation. The exterior product is
4815:{\displaystyle {\frac {\partial ^{2}f}{\partial x^{i}\,\partial x^{j}}}={\frac {\partial ^{2}f}{\partial x^{j}\,\partial x^{i}}},} 10256:{\displaystyle \omega =\sum _{i_{1}<\cdots <i_{k}}\omega _{i_{1}\cdots i_{k}}\,dy^{i_{1}}\wedge \cdots \wedge dy^{i_{k}},} 15337: 5097: 4420: 18716: 1627: 17526: 17199: 17062: 17041: 16941: 2274: 1161: 17752: 16540:{\displaystyle {\begin{aligned}d{\textbf {F}}&={\textbf {0}}\\d{\star {\textbf {F}}}&={\textbf {J}},\end{aligned}}} 4543: 1356: 881:-form can be thought of as measuring an infinitesimal oriented length, or 1-dimensional oriented density. A differential 839:
Die Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik (The Theory of Linear Extension, a New Branch of Mathematics)
17805: 17333: 16792: 12360: 15779:
On an orientable but not oriented manifold, there are two choices of orientation; either choice allows one to integrate
13614: 3875:, and returns a real-valued function whose value at each point is the derivative along the vector field of the function 2429: 18751: 18430: 18089: 13474: 7079: 15943:-forms. Currents play the role of generalized domains of integration, similar to but even more flexible than chains. 18210: 17220: 17168: 17145: 17124: 17085: 17069:
provides a brief discussion of integration on manifolds from the point of view of measure theory in the last section.
16988: 16890: 11290:. Such a function has an integral in the usual Riemann or Lebesgue sense. This allows us to define the integral of 3020: 15521: 13355: 8050: 1242: 885:-form can be thought of as measuring an infinitesimal oriented area, or 2-dimensional oriented density. And so on. 18632: 17854: 16198: 12558:. However, it is still possible to assign such a meaning indirectly because every smooth manifold may be smoothly 8438: 808: 17837: 17446: 16802: 15791:-forms and densities cannot be identified —notably, any top-dimensional form must vanish somewhere (there are no 15456: 12264: 10527: 3032: 765: 8639:
may be viewed as a linear functional on each tangent space. Precomposing this functional with the differential
6196:{\displaystyle {\textstyle \bigwedge }^{k}T_{p}^{*}M\cong {\Big (}{\textstyle \bigwedge }^{k}T_{p}M{\Big )}^{*}} 2262:{\displaystyle {\mathcal {J}}_{k,n}:=\{I=(i_{1},\ldots ,i_{k}):1\leq i_{1}<i_{2}<\cdots <i_{k}\leq n\}} 18859: 16764: 15960: 7295:{\displaystyle \alpha \wedge \beta ={\frac {(k+\ell )!}{k!\ell !}}\operatorname {Alt} (\alpha \otimes \beta ).} 3894:
is not a real number, but a linear functional on tangent vectors, and a prototypical example of a differential
12552:
This approach to defining integration does not assign a direct meaning to integration over the whole manifold
539: 18483: 18415: 18049: 17456: 16807: 15507:
over the interval . Assuming the usual distance (and thus measure) on the real line, this integral is either
13250:{\displaystyle \omega _{x}=(f^{*}\eta _{y})_{x}\wedge \sigma '_{x}\in {\textstyle \bigwedge }^{m}T_{x}^{*}M,} 7123: 7165: 90: 18508: 18034: 17757: 17531: 16824: 16812: 16359:{\displaystyle {\textbf {J}}={\frac {1}{6}}j^{a}\,\varepsilon _{abcd}\,dx^{b}\wedge dx^{c}\wedge dx^{d}\,,} 11482: 6406: 2116:
Another useful notation is obtained by defining the set of all strictly increasing multi-indices of length
939: 16584: 15889:-dimensional subsets of the manifold. A function times this Hausdorff measure can then be integrated over 7191: 3374:. By their very definition, partial derivatives depend upon the choice of coordinates: if new coordinates 2367: 807:. The algebra of differential forms along with the exterior derivative defined on it is preserved by the 18854: 18746: 18079: 7771: 1315:. This is a minor distinction in one dimension, but becomes subtler on higher-dimensional manifolds; see 813: 9174: 6845:{\displaystyle \operatorname {Alt} \colon {\textstyle \bigwedge }^{k}T^{*}M\to {\bigotimes }^{k}T^{*}M.} 18557: 18377: 18084: 18054: 17762: 17718: 17699: 17466: 17410: 15916: 14633:{\displaystyle f^{*}(\mathbf {v} \,\lrcorner \,\zeta _{y})\in {\textstyle \bigwedge }^{n-k}T_{x}^{*}M.} 13699:-form in a neighborhood of the fiber, and the same notation is used. A consequence is that each fiber 7877: 7472:{\displaystyle (\alpha \wedge \beta )_{p}(v,w)=\alpha _{p}(v)\beta _{p}(w)-\alpha _{p}(w)\beta _{p}(v)} 4629:
The second idea leading to differential forms arises from the following question: given a differential
3825: 2519: 1220: 781: 699: 15230:
A key consequence of this is that "the integral of a closed form over homologous chains is equal": If
8941:{\displaystyle (f^{*}\omega )_{p}(v_{1},\ldots ,v_{k})=\omega _{f(p)}(f_{*}v_{1},\ldots ,f_{*}v_{k}).} 18229: 17621: 17486: 16797: 15166: 12646:-forms, each of which is supported in a single positively oriented chart, and define the integral of 11045: 10970:{\textstyle {\frac {\partial (f_{i_{1}},\ldots ,f_{i_{k}})}{\partial (x^{j_{1}},\ldots ,x^{j_{k}})}}} 8397: 7337: 1219:
These conventions correspond to interpreting the integrand as a differential form, integrated over a
628: 18711: 3257:{\displaystyle (\partial _{\mathbf {v} }f)(p)=\left.{\frac {d}{dt}}f(p+t\mathbf {v} )\right|_{t=0}.} 592: 473: 18813: 18731: 18685: 18392: 18006: 17871: 17563: 17405: 15785:-forms over compact subsets, with the two choices differing by a sign. On non-orientable manifold, 15009:. Integration along fibers is important for the construction of Gysin maps in de Rham cohomology. 12722: 12559: 5711:
Differential forms can be multiplied together using the exterior product, and for any differential
4919:{\displaystyle {\frac {\partial f_{j}}{\partial x^{i}}}-{\frac {\partial f_{i}}{\partial x^{j}}}=0} 4068: 709: 15951:
Differential forms arise in some important physical contexts. For example, in Maxwell's theory of
14179:{\displaystyle \int _{M}\omega =\int _{N}{\bigg (}\int _{f^{-1}(y)}\omega /\eta {\bigg )}\,\eta .} 2679:{\displaystyle d\omega =\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}\,dx^{i}\wedge dx^{I}.} 18783: 18470: 18387: 18357: 17703: 17673: 17597: 17587: 17543: 17373: 17326: 17158: 15769: 9505:{\displaystyle {\textstyle \bigwedge }^{k}TN\ {\stackrel {\omega }{\to }}\ N\times \mathbf {R} ,} 8098:
Another alternative is to consider vector fields as derivations. The (noncommutative) algebra of
5077:{\displaystyle \sum _{i,j=1}^{n}{\frac {\partial f_{j}}{\partial x^{i}}}\,dx^{i}\wedge dx^{j}=0,} 3929: 796: 16416: 16096: 16067: 14968:{\displaystyle \langle \gamma _{y},\mathbf {v} \rangle =\int _{f^{-1}(y)}\beta _{\mathbf {v} },} 12616:
is supported on a single positively oriented chart. On this chart, it may be pulled back to an
12253:{\displaystyle {\frac {\partial (x^{i_{1}},\ldots ,x^{i_{n}})}{\partial (u^{1},\ldots ,u^{n})}}} 11402:{\displaystyle \int _{U}\omega \ {\stackrel {\text{def}}{=}}\int _{U}f(x)\,dx^{1}\cdots dx^{n}.} 1322:
Making the notion of an oriented density precise, and thus of a differential form, involves the
675: 18741: 18597: 18552: 18044: 17663: 17558: 17471: 17378: 16752: 16654:
in such theories is the curvature form of the connection, which is represented in a gauge by a
16452: 15471: 11858:{\displaystyle \varphi ({\mathbf {u} })=(x^{1}({\mathbf {u} }),\ldots ,x^{I}({\mathbf {u} })).} 10321:. Using the linearity of pullback and its compatibility with exterior product, the pullback of 8579:
has two or more preimages, then the vector field may determine two or more distinct vectors in
6912:
of a differential form with respect to a vector field on a manifold with a defined connection.
5798: 3106: 892: 870: 850: 463: 15802: 6509:{\displaystyle \operatorname {Alt} \colon {\bigotimes }^{k}T^{*}M\to {\bigotimes }^{k}T^{*}M.} 647: 18823: 18778: 18258: 18203: 17693: 17688: 17256: 17104: 16645: 16609: 15921: 15483: 15126:
The fundamental relationship between the exterior derivative and integration is given by the
8633:
By contrast, it is always possible to pull back a differential form. A differential form on
8099: 3016: 3012: 1841: 392:{\displaystyle \int _{S}(f(x,y,z)\,dx\wedge dy+g(x,y,z)\,dz\wedge dx+h(x,y,z)\,dy\wedge dz).} 226: 16915:"Linear algebra – "Natural" pairings between exterior powers of a vector space and its dual" 16553: 16375:
are the four components of the current density. (Here it is a matter of convention to write
14413:{\displaystyle {\textstyle \bigwedge }^{k}T_{y}N\to {\textstyle \bigwedge }^{n-k}T_{y}^{*}N} 12634:
is independent of the chosen chart. In the general case, use a partition of unity to write
7857:{\displaystyle d(\alpha \wedge \beta )=d\alpha \wedge \beta +(-1)^{k}\alpha \wedge d\beta .} 1990:{\displaystyle I=(i_{1},i_{2},\ldots ,i_{k}),1\leq i_{1}<i_{2}<\cdots <i_{k}\leq n} 18798: 18726: 18612: 18478: 18440: 18372: 18024: 17962: 17810: 17514: 17504: 17476: 17451: 17361: 17288: 17014: 16965: 15808:
Even in the presence of an orientation, there is in general no meaningful way to integrate
15676: 14788: 6909: 6862: 6522: 1861: 15156: 11476:
by an open subset of Euclidean space. That is, assume that there exists a diffeomorphism
7589:{\displaystyle \alpha \wedge (\beta +\gamma )=\alpha \wedge \beta +\alpha \wedge \gamma ,} 4306:{\displaystyle df_{p}=\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}(p)(dx^{i})_{p}.} 8: 18675: 18498: 18488: 18337: 18322: 18278: 18162: 17844: 17722: 17707: 17636: 17395: 15460: 15121: 13981:{\displaystyle y\mapsto {\bigg (}\int _{f^{-1}(y)}\omega /\eta _{y}{\bigg )}\,\eta _{y}.} 12727: 8407: 7881: 7873: 6897: 5991: 5190: 2993: 2509: 1845: 816:
for integration becomes a simple statement that an integral is preserved under pullback.
635: 533: 18135: 17292: 17240: 16969: 7965:{\displaystyle \star \colon \Omega ^{k}(M)\ {\stackrel {\sim }{\to }}\ \Omega ^{n-k}(M)} 2107:{\textstyle dx^{I}:=dx^{i_{1}}\wedge \cdots \wedge dx^{i_{k}}=\bigwedge _{i\in I}dx^{i}} 18808: 18665: 18518: 18332: 18268: 18104: 18059: 17956: 17827: 17631: 17319: 17278: 17266: 17208: 16955: 16850: 16829: 15467: 15127: 15105:{\displaystyle \alpha ^{\flat }\wedge \lambda =(\alpha \wedge f^{*}\lambda )^{\flat }.} 8363: 4183:
The meaning of this expression is given by evaluating both sides at an arbitrary point
3911: 3330: 3036: 3001: 1720:
is to be regarded as having the opposite orientation as the square whose first side is
777: 773: 769: 17641: 16574:
operator. Similar considerations describe the geometry of gauge theories in general.
12542:{\displaystyle \int _{c}\omega =\sum _{i=1}^{r}m_{i}\int _{D}\varphi _{i}^{*}\omega .} 7973: 18803: 18547: 18362: 18273: 18253: 18039: 18019: 18014: 17921: 17646: 17626: 17481: 17237: 17216: 17195: 17164: 17141: 17120: 17113: 17081: 17058: 17037: 17021: 16984: 16937: 16896: 16886: 16780: 16456: 15874: 15858:
vectors, is always positive, corresponding to a squared number. An orientation of a
15759: 8417:, which in turn implies a form of de Rham's theorem: de Rham cohomology computes the 8092: 7674: 6385: 6339: 3314: 1350:-form is a linear combination of these differentials at every point on the manifold: 834: 17107:
introduces the exterior algebra of differential forms at the college calculus level.
17002: 8373: 1493:-forms. This may be thought of as an infinitesimal oriented square parallel to the 18818: 18493: 18460: 18445: 18327: 18196: 18177: 17971: 17926: 17849: 17820: 17678: 17611: 17606: 17601: 17591: 17383: 17366: 17187: 17029: 16862: 16819: 16175: 15952: 15837: 15722: 15452: 8418: 8087: 8075: 6901: 6893: 6207: 5812: 5808: 5776: 5752: 4961: 3024: 2789:{\textstyle \tau =\sum _{I\in {\mathcal {J}}_{k,n}}a_{I}\,dx^{I}\in \Omega ^{k}(M)} 1607: 1323: 830: 804: 407: 18788: 18736: 18680: 18660: 18562: 18450: 18317: 18288: 18120: 18029: 17859: 17815: 17581: 17299: 17094: 17073: 17010: 16768: 16183: 15762:
of the manifold, . Formally, in the presence of an orientation, one may identify
8126: 7066:{\displaystyle \alpha \wedge \beta =\operatorname {Alt} (\alpha \otimes \beta ).} 6759: 6210: 5788: 5741: 5673:-forms, makes it possible to restrict the sum to those sets of indices for which 3548: 3066: 13076:{\displaystyle \sigma _{x}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}(f^{-1}(y))} 12568:
may be defined to be the integral over the chain determined by a triangulation.
5848:
The definition of a differential form may be restated as follows. At any point
18828: 18793: 18690: 18523: 18513: 18503: 18425: 18397: 18382: 18367: 18283: 17986: 17911: 17881: 17779: 17772: 17712: 17683: 17553: 17548: 17509: 17154: 17050: 16179: 16166: 9223:
th exterior power of the dual map to the differential. Then the pullback of a
8377: 6905: 6410: 6081:{\textstyle \beta _{p}\colon {\textstyle \bigwedge }^{k}T_{p}M\to \mathbf {R} } 6008: 4160:{\displaystyle df=\sum _{i=1}^{n}{\frac {\partial f}{\partial x^{i}}}\,dx^{i}.} 1611: 1224: 1091: 451: 18773: 17191: 17033: 15864:-submanifold is therefore extra data not derivable from the ambient manifold. 15698:, which further reflects the issue of orientation. For example, under the map 826: 47: 18848: 18765: 18670: 18582: 18455: 18172: 17996: 17991: 17976: 17966: 17916: 17893: 17767: 17727: 17668: 17616: 17415: 16900: 16641: 16637: 15895:-dimensional subsets, providing a measure-theoretic analog to integration of 9434: 8079: 6367: 5956: 4941: 2518:. The exterior derivative of a differential form is a generalization of the 1795: 1618: 889: 16763:
Numerous minimality results for complex analytic manifolds are based on the
15824:
because there is no consistent way to use the ambient orientation to orient
7655:{\displaystyle \alpha \wedge (f\cdot \beta )=f\cdot (\alpha \wedge \beta ).} 6284:{\displaystyle \beta _{p}\colon \bigoplus _{n=1}^{k}T_{p}M\to \mathbf {R} .} 18833: 18637: 18622: 18587: 18435: 18420: 18099: 18094: 17936: 17903: 17876: 17784: 17425: 17304: 17179: 17133: 16976: 16718:{\displaystyle \mathbf {F} =d\mathbf {A} +\mathbf {A} \wedge \mathbf {A} .} 16625: 15492:
differentiable manifold (without additional structure), differential forms
12610:-dimensional manifold is defined by working in charts. Suppose first that 11567:. In coordinates, this has the following expression. Fix an embedding of 8103: 6868: 5834: 3274: 792: 50:. It has many applications, especially in geometry, topology and physics. 16043:{\displaystyle {\textbf {F}}={\frac {1}{2}}f_{ab}\,dx^{a}\wedge dx^{b}\,,} 1621:
from vector calculus, in that it is an alternating product. For instance,
18721: 18695: 18617: 18306: 18245: 17942: 17931: 17888: 17789: 17390: 17305:
Visual differential geometry and forms: a mathematical drama in five acts
16655: 15792: 14467:{\displaystyle \mathbf {v} \mapsto \mathbf {v} \,\lrcorner \,\zeta _{y},} 12310:-forms. To make this precise, it is convenient to fix a standard domain 6431:, covector fields, or "dual vector fields", particularly within physics. 4659:? The above expansion reduces this question to the search for a function 525: 31: 14065:{\displaystyle {\bigg (}\int _{f^{-1}(y)}\omega /\eta {\bigg )}\,\eta .} 8038:{\displaystyle \delta \colon \Omega ^{k}(M)\rightarrow \Omega ^{k-1}(M)} 18602: 18167: 18125: 17951: 17864: 17496: 17400: 17311: 16960: 16867: 16571: 16186:
for the principal bundle is the vector potential, typically denoted by
13327:{\displaystyle \sigma '_{x}\in {\textstyle \bigwedge }^{m-n}T_{x}^{*}M} 12808:
looks like the projection from a product onto one of its factors. Fix
12652:
to be the sum of the integrals of each term in the partition of unity.
10040:
The pullback of a form can also be written in coordinates. Assume that
8359: 7760:{\displaystyle \alpha \wedge \beta =(-1)^{k\ell }\beta \wedge \alpha .} 5986: 3821: 3794: 3039:, which is a central result in the theory of integration on manifolds. 3005: 2576:-form defined by taking the differential of the coefficient functions: 1509:-form is a linear combination of these at every point on the manifold: 854: 13823:
that is almost everywhere positive with respect to the orientation of
8618:
does not determine any tangent vector at all. Since a vector field on
7305:
This description is useful for explicit computations. For example, if
6206:
By the universal property of exterior powers, this is equivalently an
18577: 18528: 17981: 17946: 17651: 17538: 17283: 17245: 16629: 15448: 8624:
determines, by definition, a unique tangent vector at every point of
4188: 3530:
The first idea leading to differential forms is the observation that
39: 9427:
as a linear functional on tangent spaces. From this point of view,
5931:{\displaystyle \beta _{p}\in {\textstyle \bigwedge }^{k}T_{p}^{*}M,} 18607: 18592: 18145: 18140: 18130: 17521: 17342: 16914: 16851:"Sur certaines expressions différentielles et le problème de Pfaff" 3052: 3028: 2997: 1594:{\textstyle \sum _{1\leq i<j\leq n}f_{i,j}\,dx^{i}\wedge dx^{j}} 1343: 75: 43: 15772:; densities in turn define a measure, and thus can be integrated ( 9724:{\textstyle {\textstyle \bigwedge }^{k}TM\to M\times \mathbf {R} } 8951:
There are several more abstract ways to view this definition. If
6997:
The antisymmetry inherent in the exterior algebra means that when
4964:, so that these equations can be combined into a single condition 18301: 18263: 17097:(1965), "Chapter 6: Exterior algebra and differential calculus", 17028:, Modern Birkhäuser Classics, Boston, Basel, Berlin: Birkhäuser, 15451:, hence homologous (a weaker condition). This case is called the 15801:-forms. One can instead identify densities with top-dimensional 15637:{\displaystyle \textstyle {\int _{1}^{0}dx=-\int _{0}^{1}dx=-1}} 13710:
is orientable. In particular, a choice of orientation forms on
10076:, and that these coordinate systems are related by the formulas 8982:. Using to denote a dual map, the dual to the differential of 1466:-form is integrated along an oriented curve as a line integral. 18627: 18219: 17737: 11266:{\displaystyle \omega =f(x)\,dx^{1}\wedge \cdots \wedge dx^{n}} 9415:
Another abstract way to view the pullback comes from viewing a
3895: 68: 15327:{\displaystyle \textstyle {\int _{M}\omega =\int _{N}\omega }} 6908:
of a differential form with respect to a vector field and the
5450:-forms, which can be expressed in terms of the coordinates as 1489:
can be used as a basis at every point on the manifold for all
933:
over the interval (with its natural positive orientation) is
17078:
Differential forms with applications to the physical sciences
11035:{\textstyle {\frac {\partial f_{i_{m}}}{\partial x^{j_{n}}}}} 8967:, then it may be viewed as a section of the cotangent bundle 4696:, such a function does not always exist: any smooth function 1606:
A fundamental operation defined on differential forms is the
1080:{\displaystyle \int _{b}^{a}f(x)\,dx=-\int _{a}^{b}f(x)\,dx.} 454:
that can be integrated over a region of space. In general, a
15220:{\displaystyle \int _{M}d\omega =\int _{\partial M}\omega .} 12685:-form on the path is simply pulling back the form to a form 12580:), which does directly assign a meaning to integration over 12445:
is defined to be the sum of the integrals over the terms of
9743:
Pullback respects all of the basic operations on forms. If
6988:
are elements of an exterior power of the cotangent space at
1130:-form can be integrated over an oriented surface, etc.) If 1118:-form is an oriented density that can be integrated over an 46:. The modern notion of differential forms was pioneered by 16758: 16621: 16171: 15907:-dimensional Hausdorff measure yields a density, as above. 15669:). Similarly, under a change of coordinates a differential 8630:, the pushforward of a vector field does not always exist. 3193: 1840:
are equal, in the same way that the "volume" enclosed by a
18188: 17235: 15937:
is the dual space to an appropriate space of differential
15404:
is the derivative of a potential function on the plane or
13731:
The analog of Fubini's theorem is as follows. As before,
12773:
is a surjective submersion. This implies that each fiber
8406:. Therefore, the complex is a resolution of the constant 8118:
One important property of the exterior derivative is that
6883:
are in one-to-one correspondence with such tensor fields.
1227:, by contrast, one interprets the integrand as a function 888:
Integration of differential forms is well-defined only on
803:-forms is extended to arbitrary differential forms by the 16448:; i.e., the same name is used for different quantities.) 15384:{\displaystyle \textstyle \int _{W}d\omega =\int _{W}0=0} 5442:-forms are special cases of differential forms. For each 5413:
is a necessary condition for the existence of a function
5171:{\displaystyle dx^{i}\wedge dx^{j}=-dx^{j}\wedge dx^{i}.} 4495:{\displaystyle \alpha _{p}=\sum _{i}g_{i}(p)(dh_{i})_{p}} 3871:
can be viewed as a function that takes a vector field on
16775:. The Wirtinger inequality is also a key ingredient in 14643:
Each of these covectors has an exterior product against
12571: 10977:
denotes the determinant of the matrix whose entries are
3267:(This notion can be extended pointwise to the case that 1698:{\displaystyle dx^{1}\wedge dx^{2}=-dx^{2}\wedge dx^{1}} 17055:
Real Analysis: Modern Techniques and Their Applications
15428:
does not depend on the choice of path (the integral is
13535:
is a smooth section of the projection map; we say that
12702:
on , and this integral is the integral of the function
8563:. However, the same is not true of a vector field. If 8106:
and is a noncommutative ("quantum") deformation of the
2508:
In addition to the exterior product, there is also the
17009:, vol. 3, New York-London: Academic Press, Inc., 15573: 15525: 15341: 15291: 14808: 14591: 14374: 14344: 13288: 13214: 13012: 12922: 12866: 12586:, but this approach requires fixing an orientation of 12282:-manifold cannot be parametrized by an open subset of 10983: 10854: 9689: 9686: 9670:, and therefore it factors through the trivial bundle 9600: 9543: 9448: 9374: 9297: 9177: 7085: 6786: 6154: 6112: 6045: 6029: 5895: 3989:
provides a way of encoding the partial derivatives of
2700: 2432: 2330:{\displaystyle \{dx^{I}\}_{I\in {\mathcal {J}}_{k,n}}} 2006: 1856:
A common notation for the wedge product of elementary
1516: 1462:
are functions of all the coordinates. A differential
1245: 1209:{\displaystyle \int _{M}\omega =-\int _{M'}\omega \,.} 829:
with reference to his 1899 paper. Some aspects of the
42:
over curves, surfaces, solids, and higher-dimensional
16679: 16587: 16556: 16468: 16419: 16255: 16201: 16099: 16070: 15972: 15852:-dimensional space, which, unlike the determinant of 15572: 15524: 15340: 15290: 15178: 15047: 14893: 14698: 14549: 14432: 14341: 14088: 14000: 13896: 13617: 13477: 13358: 13269: 13146: 12996: 12842: 12460: 12363: 12151: 11877: 11771: 11598: 11485: 11311: 11208: 11048: 10539: 10336: 10127: 9770: 9664:
defines a linear functional on each tangent space of
9540: 9445: 9244: 9024: 8796: 8653:
defines a linear functional on each tangent space of
8138: 7981: 7889: 7783: 7710: 7603: 7537: 7349: 7217: 7194: 7168: 7126: 7082: 7026: 6777: 6554: 6525: 6443: 6222: 6109: 5879: 5459: 5236: 5100: 4973: 4838: 4709: 4546: 4423: 4200: 4082: 3993:. It can be decoded by noticing that the coordinates 3566: 3401: 3157: 3031:. It also allows for a natural generalization of the 2807: 2585: 2370: 2277: 2131: 1875: 1630: 1359: 1164: 999: 942: 712: 678: 650: 638:
is an operation on differential forms that, given a
595: 542: 476: 243: 93: 14287:, and the value of that pairing is an integral over 12562:
in an essentially unique way, and the integral over
12304:, and this makes it possible to define integrals of 11470:. First, assume that there is a parametrization of 8358:
This complex is called the de Rham complex, and its
8125:. This means that the exterior derivative defines a 4601:{\displaystyle \alpha =\sum _{i=1}^{n}f_{i}\,dx^{i}} 1732:. This is why we only need to sum over expressions 1423:{\displaystyle f_{1}\,dx^{1}+\cdots +f_{n}\,dx^{n},} 16855:
Annales Scientifiques de l'École Normale Supérieure
16413:, the magnetic polarization vector has been called 12417:{\displaystyle c=\sum _{i=1}^{r}m_{i}\varphi _{i},} 11868:Then the integral may be written in coordinates as 11181:the restriction of that orientation. Every smooth 2491:{\textstyle |{\mathcal {J}}_{k,n}|={\binom {n}{k}}} 1603:and it is integrated just like a surface integral. 1147:is the same manifold with opposite orientation and 17112: 16717: 16600: 16562: 16539: 16434: 16358: 16227: 16114: 16085: 16042: 15636: 15558: 15447:), since different paths with given endpoints are 15383: 15326: 15219: 15104: 14967: 14849: 14632: 14466: 14412: 14178: 14064: 13980: 13662:{\displaystyle \sigma _{x}=\omega _{x}/\eta _{y}.} 13661: 13524: 13400: 13326: 13249: 13075: 12961: 12541: 12416: 12252: 12131: 11857: 11745: 11503: 11401: 11265: 11072: 11034: 10969: 10837: 10486: 10255: 10029: 9723: 9653: 9504: 9404: 9209: 9144: 8940: 8347: 8037: 7964: 7856: 7759: 7654: 7588: 7471: 7294: 7200: 7180: 7154: 7112: 7065: 6844: 6736: 6531: 6508: 6283: 6195: 6080: 5930: 5629: 5395: 5170: 5076: 4918: 4814: 4600: 4494: 4305: 4159: 3762: 3519: 3256: 2975: 2788: 2678: 2490: 2393: 2329: 2261: 2106: 1989: 1697: 1593: 1422: 1303: 1208: 1126:-form can be integrated over an oriented curve, a 1079: 979: 756: 690: 656: 619: 581: 503: 391: 133: 14164: 14117: 14050: 14003: 13959: 13905: 13769:is a surjective submersion. Fix orientations of 13525:{\displaystyle \omega \colon f^{-1}(y)\to T^{*}M} 11152: 7113:{\displaystyle {\textstyle \bigwedge }^{n}T^{*}M} 6182: 6147: 1122:-dimensional oriented manifold. (For example, a 780:as special cases of a single general result, the 517:-dimensional manifold, the top-dimensional form ( 458:-form is an object that may be integrated over a 18846: 17026:Advanced Calculus; A Differential Forms Approach 16777:Gromov's inequality for complex projective space 16192:, when represented in some gauge. One then has 15883:(integer or real), which may be integrated over 15466:This theorem also underlies the duality between 13743:are two orientable manifolds of pure dimensions 8113: 1239:, without any notion of orientation; one writes 16728:In the abelian case, such as electromagnetism, 16411:International Union of Pure and Applied Physics 12747:be two orientable manifolds of pure dimensions 6904:of a differential form and a vector field, the 2522:, in the sense that the exterior derivative of 2409:-dimensional manifold, and in general space of 2271:Then locally (wherever the coordinates apply), 1304:{\textstyle \int _{A}f\,d\mu =\int _{}f\,d\mu } 27:Expression that may be integrated over a region 17258:Manifolds and differential forms lecture notes 15559:{\displaystyle \textstyle {\int _{0}^{1}dx=1}} 13401:{\displaystyle \sigma _{x}=j^{*}\sigma '_{x}.} 13086:which may be thought of as the fibral part of 8599:is not surjective, then there will be a point 5669:. Antisymmetry, which was already present for 4952:suggests introducing an antisymmetric product 4187:: on the right hand side, the sum is defined " 1326:. The differentials of a set of coordinates, 860: 18204: 17327: 16880: 16228:{\displaystyle {\textbf {F}}=d{\textbf {A}}.} 15748:In the presence of the additional data of an 9155:This is a section of the cotangent bundle of 8530:, there is a well-defined pushforward vector 7677:that depends on the degrees of the forms: if 2482: 2469: 1111:is negative in the direction of integration. 78:over an interval contained in the domain of 16442:for several decades, and by some publishers 16397:, i.e. to use capital letters, and to write 15661:(i.e. the integral of the constant function 14915: 14894: 12796:-dimensional and that, around each point of 8074:Firstly, each (co)tangent space generates a 6306:-tuple of tangent vectors to the same point 3975:, which are just the partial derivatives of 2295: 2278: 2256: 2155: 799:, and the pairing between vector fields and 16178:on which both electromagnetism and general 16064:are formed from the electromagnetic fields 15867:On a Riemannian manifold, one may define a 15459:. This path independence is very useful in 12716: 1316: 18211: 18197: 17334: 17320: 17275:A Geometric Approach to Differential Forms 17163:, Menlo Park, California: W. A. Benjamin, 16952:A Geometric Approach to Differential Forms 16934:A Geometric Approach to Differential Forms 15946: 11435: 8062: 7673:), meaning that it satisfies a variant of 3865:. Extended over the whole set, the object 2503: 849:Differential forms provide an approach to 17282: 17080:, Mineola, New York: Dover Publications, 17001: 16959: 16866: 16352: 16306: 16286: 16036: 16006: 15776:, Section 11.4, pp. 361–362). 15477: 15017: 14985: 14767: 14763: 14572: 14568: 14450: 14446: 14169: 14076: 14055: 13964: 13722:defines an orientation of every fiber of 12984: 12577: 12576:There is another approach, expounded in ( 12096: 11690: 11366: 11227: 11094:-form can be integrated over an oriented 10782: 10431: 10200: 5554: 5360: 5035: 4825:so it will be impossible to find such an 4792: 4741: 4584: 4356:More generally, for any smooth functions 4140: 2996:, the exterior derivative corresponds to 2910: 2750: 2643: 1561: 1403: 1370: 1294: 1259: 1202: 1067: 1027: 970: 905:, and negatively oriented otherwise. If 869:-form can be integrated over an oriented 414:, of two differential forms. Likewise, a 367: 324: 281: 121: 18568:Covariance and contravariance of vectors 17341: 17072: 16759:Applications in geometric measure theory 15830:-dimensional subsets. Geometrically, a 14860:This form depends on the orientation of 14079:) proves the generalized Fubini formula 11422:must be the negative of the integral of 5770: 4347:were arbitrary, this proves the formula 3042: 2349:, when viewed as a module over the ring 1090:This gives a geometrical context to the 582:{\displaystyle dy\wedge dx=-dx\wedge dy} 17272: 17254: 17093: 17049: 17020: 16949: 16931: 16451:Using the above-mentioned definitions, 15773: 15334:, since the difference is the integral 15260:-chains that are homologous (such that 15012:Integration along fibers satisfies the 13564:. Then there is a smooth differential 8737:. To define the pullback, fix a point 7155:{\displaystyle {\bigotimes }^{n}T^{*}M} 6094:th exterior power is isomorphic to the 5791:. A smooth differential form of degree 3065:-form ("zero-form") is defined to be a 2545:. When generalized to higher forms, if 1851: 1708:because the square whose first side is 627:This alternating property reflects the 14: 18847: 17207: 17153: 17110: 16975: 16848: 15721:; orientation has reversed; while the 11128:-form can be integrated over oriented 7867: 7181:{\displaystyle n!\operatorname {Alt} } 1311:to indicate integration over a subset 915:then the integral of the differential 134:{\displaystyle \int _{a}^{b}f(x)\,dx.} 18192: 17315: 17236: 17132: 16644:. There are gauge theories, such as 12572:Integration using partitions of unity 12332:is a formal sum of smooth embeddings 11537: 11504:{\displaystyle \varphi \colon D\to M} 8700:. Then there is a differential form 8659:and therefore a differential form on 7504:The exterior product is bilinear: If 5181:This is an example of a differential 980:{\displaystyle \int _{a}^{b}f(x)\,dx} 38:provide a unified approach to define 16885:(2nd ed.). New York: Springer. 16767:. A succinct proof may be found in 16619:Electromagnetism is an example of a 16612:to the Faraday form, is also called 16601:{\displaystyle {\star }\mathbf {F} } 15919:or generalized function is called a 14884:is uniquely defined by the property 13875:. Moreover, there is an integrable 7201:{\displaystyle \operatorname {Alt} } 4519:-form arises this way, and by using 4073: 2562:-form, then its exterior derivative 2394:{\displaystyle {\mathcal {J}}_{k,n}} 1342:-forms. Each of these represents a 17308:. Princeton University Press, 2021. 17138:Principles of Mathematical Analysis 17101:, Addison-Wesley, pp. 205–238. 16793:Closed and exact differential forms 16525: 16510: 16492: 16478: 16258: 16217: 16204: 16165:This form is a special case of the 15975: 15708:on the line, the differential form 15644:. By contrast, the integral of the 15115: 14235:which is the result of integrating 9210:{\textstyle \bigwedge ^{k}(df)^{*}} 9015:may be defined to be the composite 7522:are any differential forms, and if 6915: 6900:of a single differential form, the 6300:-form may be evaluated against any 5446:, there is a space of differential 4641:, when does there exist a function 4537:may be expressed in coordinates as 702:(a function can be considered as a 24: 18431:Tensors in curvilinear coordinates 17178: 15915:The differential form analog of a 15203: 15094: 15053: 14253:is defined by specifying, at each 13687:. The same construction works if 12322:, usually a cube or a simplex. A 12209: 12155: 12055: 12001: 11009: 10987: 10912: 10858: 10727: 10673: 9525:is the trivial rank one bundle on 8315: 8275: 8234: 8193: 8152: 8011: 7989: 7938: 7897: 5733:called the exterior derivative of 5344: 5329: 5019: 5004: 4894: 4879: 4857: 4842: 4793: 4779: 4765: 4742: 4728: 4714: 4249: 4241: 4124: 4116: 3730: 3687: 3653: 3620: 3575: 3498: 3490: 3471: 3456: 3413: 3405: 3162: 2949: 2894: 2879: 2831: 2768: 2721: 2627: 2619: 2473: 2441: 2374: 2308: 2135: 25: 18:Integration of a differential form 18871: 17229: 16455:can be written very compactly in 15684:, while a measure changes by the 15657:on the interval is unambiguously 12655:It is also possible to integrate 11100:-dimensional manifold. When the 8725:, which captures the behavior of 8376:, the de Rham complex is locally 8067:On a pseudo-Riemannian manifold, 4525:it follows that any differential 4327:, the result on each side is the 833:of differential forms appears in 16765:Wirtinger inequality for 2-forms 16708: 16700: 16692: 16681: 16594: 15665:with respect to this measure is 14956: 14911: 14759: 14708: 14564: 14442: 14434: 14423:defined by the interior product 13462:varies smoothly with respect to 13137:is defined by the property that 11987: 11841: 11809: 11780: 11682: 9717: 9647: 9495: 8439:Pullback (differential geometry) 6274: 6074: 3735: 3695: 3658: 3625: 3588: 3580: 3227: 3167: 2798:then its exterior derivative is 2337:spans the space of differential 631:of the domain of integration. 470:in the coordinate differentials 16803:Vector-valued differential form 15457:fundamental theorem of calculus 15143:)-form with compact support on 12267:. The Jacobian exists because 11134:-dimensional submanifolds. If 11073:{\displaystyle 1\leq m,n\leq k} 8477:between the tangent bundles of 8457:is smooth. The differential of 6896:of two differential forms, the 6318:. For example, a differential 6100:th exterior power of the dual: 5821:. The set of all differential 5763:to be a family of differential 3120:, which is another function on 3033:fundamental theorem of calculus 2541:is exactly the differential of 2401:combinatorially, the module of 1338:can be used as a basis for all 766:fundamental theorem of calculus 706:-form, and its differential is 532:The differential forms form an 17374:Differentiable/Smooth manifold 17115:Geometry of Differential Forms 17099:Functions of Several Variables 16907: 16874: 16842: 16426: 16106: 16077: 15961:electromagnetic field strength 15752:, it is possible to integrate 15090: 15067: 14945: 14939: 14778: 14755: 14715: 14699: 14583: 14560: 14477:for any choice of volume form 14438: 14369: 14146: 14140: 14032: 14026: 13934: 13928: 13900: 13787:the induced orientation. Let 13506: 13503: 13497: 13184: 13160: 13070: 13067: 13061: 13045: 12759:, respectively. Suppose that 12244: 12212: 12204: 12158: 12090: 12058: 12050: 12004: 11995: 11992: 11982: 11976: 11849: 11846: 11836: 11814: 11804: 11791: 11785: 11775: 11687: 11677: 11495: 11363: 11357: 11224: 11218: 11153:Integration on Euclidean space 11083: 10961: 10915: 10907: 10861: 10776: 10730: 10722: 10676: 10667: 10628: 10428: 10389: 10017: 10001: 9988: 9979: 9923: 9911: 9855: 9843: 9823: 9807: 9794: 9785: 9707: 9680:. The vector bundle morphism 9625: 9568: 9473: 9356: 9346: 9329: 9280: 9255: 9198: 9188: 9110: 9100: 9095: 9060: 9035: 8932: 8880: 8875: 8869: 8855: 8823: 8814: 8797: 8569:is not injective, say because 8336: 8330: 8324: 8308: 8296: 8290: 8284: 8259: 8249: 8243: 8218: 8208: 8202: 8177: 8167: 8161: 8145: 8110:algebra in the vector fields. 8032: 8026: 8007: 8004: 7998: 7959: 7953: 7922: 7912: 7906: 7830: 7820: 7799: 7787: 7733: 7723: 7646: 7634: 7622: 7610: 7556: 7544: 7466: 7460: 7447: 7441: 7425: 7419: 7406: 7400: 7384: 7372: 7363: 7350: 7286: 7274: 7245: 7233: 7057: 7045: 6811: 6728: 6723: 6717: 6695: 6689: 6678: 6665: 6659: 6609: 6577: 6574: 6561: 6475: 6270: 6070: 5747:. One way to do this is cover 5640:for a collection of functions 4483: 4466: 4463: 4457: 4291: 4274: 4271: 4265: 3753: 3747: 3744: 3726: 3713: 3707: 3704: 3683: 3676: 3670: 3667: 3649: 3643: 3637: 3634: 3616: 3606: 3600: 3597: 3571: 3370:are the coordinate vectors in 3231: 3214: 3185: 3179: 3176: 3158: 3076:– the set of which is denoted 2970: 2964: 2783: 2777: 2459: 2434: 2417:-dimensional vector space, is 2196: 2164: 1927: 1882: 1286: 1274: 1064: 1058: 1024: 1018: 967: 961: 764:). This allows expressing the 745: 739: 725: 719: 620:{\displaystyle dx\wedge dx=0.} 504:{\displaystyle dx,dy,\ldots .} 462:-dimensional manifold, and is 383: 364: 346: 321: 303: 278: 260: 254: 225:that can be integrated over a 118: 112: 13: 1: 18484:Exterior covariant derivative 18416:Tensor (intrinsic definition) 16925: 16808:Equivariant differential form 16162:, or equivalent definitions. 15688:of the Jacobian determinant, 13854:is a well-defined integrable 12983:does not vanish. Following ( 11175:its standard orientation and 10309:is a real-valued function of 8114:Exterior differential complex 8053:to the exterior differential 7528:is any smooth function, then 7330:-form whose value at a point 6886: 6294:Consequently, a differential 4382:, we define the differential 4015:, and so define differential 2693:-forms through linearity: if 2364:. By calculating the size of 1235:and integrates over a subset 791:-forms are naturally dual to 757:{\displaystyle df(x)=f'(x)dx} 53:For instance, the expression 18509:Raising and lowering indices 17184:An Introduction to Manifolds 16883:An introduction to manifolds 16825:Polynomial differential form 12802:, there is a chart on which 12348:-dimensional submanifold of 10508:can be expanded in terms of 6877:. The differential forms on 6427:-forms are sometimes called 6409:as the inner product with a 6023:is also a linear functional 4011:are themselves functions on 3341:th coordinate vector, i.e., 7: 18747:Gluon field strength tensor 18218: 18080:Classification of manifolds 17175:standard introductory text. 16786: 15910: 14988:). This form also denoted 14322:. More precisely, at each 13126:to be the inclusion. Then 12622:-form on an open subset of 11530:the orientation induced by 11112:-dimensional manifold with 10526:-form can be written using 9171:. In full generality, let 8489:. This map is also denoted 8432: 4521: 4349: 4173: 3035:, called the (generalized) 1617:). This is similar to the 1138:-dimensional manifold, and 861:Integration and orientation 814:change of variables formula 698:This operation extends the 10: 18876: 18558:Cartan formalism (physics) 18378:Penrose graphical notation 17186:, Universitext, Springer, 17111:Morita, Shigeyuki (2001), 16435:{\displaystyle {\vec {J}}} 16115:{\displaystyle {\vec {B}}} 16086:{\displaystyle {\vec {E}}} 15481: 15119: 14332:, there is an isomorphism 14310:, and the orientations of 13829:. Then, for almost every 13108:. More precisely, define 12720: 12263:is the determinant of the 11540:) defines the integral of 10266:where, for each choice of 8787:is defined by the formula 8436: 8398:locally constant functions 7878:pseudo-Riemannian manifold 7208:, the exterior product is 6920:The exterior product of a 6001:of the dual bundle of the 5774: 5755:and define a differential 5719:, there is a differential 4663:whose partial derivatives 4611:for some smooth functions 3938:is uniquely determined by 3134:is the rate of change (at 2689:with extension to general 2520:differential of a function 2120:, in a space of dimension 1868:-dimensional context, for 1820:if any two of the indices 1231:with respect to a measure 844: 819: 782:generalized Stokes theorem 700:differential of a function 691:{\displaystyle d\varphi .} 144:Similarly, the expression 18764: 18704: 18653: 18646: 18538: 18469: 18406: 18350: 18297: 18244: 18237: 18230:Glossary of tensor theory 18226: 18156:over commutative algebras 18113: 18072: 18005: 17902: 17798: 17745: 17736: 17572: 17495: 17434: 17354: 17192:10.1007/978-1-4419-7400-6 17140:, New York: McGraw-Hill, 17034:10.1007/978-0-8176-8412-9 16798:Complex differential form 16640:, which is in particular 14195:be a compactly supported 13781:, and give each fiber of 13541:is a smooth differential 13468:. That is, suppose that 12294:-dimensional subsets for 11276:for some smooth function 10497:Each exterior derivative 9161:and hence a differential 7338:alternating bilinear form 6007:th exterior power of the 4944:of the left hand side in 4331:th partial derivative of 1726:and whose second side is 18814:Gregorio Ricci-Curbastro 18686:Riemann curvature tensor 18393:Van der Waerden notation 17872:Riemann curvature tensor 17296:, an undergraduate text. 17213:Mathematical Analysis II 16835: 16773:Geometric Measure Theory 16664:. The Yang–Mills field 15814:-forms over subsets for 12723:Integration along fibers 12717:Integration along fibers 6366:. In the presence of an 4069:Kronecker delta function 657:{\displaystyle \varphi } 18784:Elwin Bruno Christoffel 18717:Angular momentum tensor 18388:Tetrad (index notation) 18358:Abstract index notation 17273:Bachman, David (2003), 17255:Sjamaar, Reyer (2006), 16950:Bachman, David (2003), 16932:Bachman, David (2006), 16182:may be described. The 15947:Applications in physics 15770:densities on a manifold 15725:, which here we denote 15410:, then the integral of 12427:then the integral of a 11436:Integration over chains 11106:-form is defined on an 9761:is a real number, then 9731:defined in this way is 8512:and any tangent vector 8063:Vector field structures 6429:covariant vector fields 6088:, i.e. the dual of the 4316:Applying both sides to 3124:whose value at a point 2504:The exterior derivative 2360:of smooth functions on 1844:whose edge vectors are 853:that is independent of 797:differentiable manifold 410:, sometimes called the 18598:Levi-Civita connection 17664:Manifold with boundary 17379:Differential structure 16996:Formes différentielles 16881:Tu, Loring W. (2011). 16719: 16636:, the one-dimensional 16602: 16564: 16563:{\displaystyle \star } 16541: 16436: 16360: 16229: 16116: 16087: 16044: 15745:; it does not change. 15638: 15560: 15478:Relation with measures 15455:, and generalizes the 15385: 15328: 15221: 15106: 14969: 14866:but not the choice of 14851: 14634: 14483:in the orientation of 14468: 14414: 14180: 14066: 13982: 13663: 13526: 13402: 13328: 13251: 13077: 12963: 12592:. The integral of an 12543: 12497: 12418: 12390: 12254: 12133: 11859: 11747: 11552:to be the integral of 11505: 11403: 11296:to be the integral of 11267: 11074: 11036: 10971: 10839: 10488: 10257: 10031: 9725: 9655: 9506: 9406: 9211: 9146: 8942: 8349: 8100:differential operators 8039: 7966: 7876:, or more generally a 7865: 7858: 7761: 7656: 7590: 7473: 7296: 7202: 7182: 7156: 7114: 7067: 6964:)-form. At each point 6846: 6738: 6533: 6510: 6328:assigns to each point 6285: 6256: 6197: 6082: 5932: 5631: 5513: 5397: 5325: 5266: 5172: 5078: 5000: 4920: 4816: 4602: 4573: 4496: 4307: 4237: 4161: 4112: 3764: 3521: 3452: 3258: 3107:directional derivative 2977: 2875: 2790: 2680: 2615: 2492: 2395: 2331: 2263: 2108: 1991: 1699: 1595: 1424: 1305: 1210: 1081: 981: 851:multivariable calculus 758: 692: 658: 621: 583: 505: 393: 135: 18860:Differential geometry 18824:Jan Arnoldus Schouten 18779:Augustin-Louis Cauchy 18259:Differential geometry 17265:, a course taught at 17160:Calculus on Manifolds 17105:multivariate calculus 16849:Cartan, Élie (1899), 16814:Calculus on Manifolds 16720: 16603: 16565: 16542: 16437: 16361: 16230: 16117: 16088: 16045: 15675:-form changes by the 15639: 15561: 15484:Density on a manifold 15482:Further information: 15386: 15329: 15270:is the boundary of a 15222: 15107: 14970: 14852: 14635: 14469: 14415: 14298:that depends only on 14181: 14067: 13983: 13672:This form is denoted 13664: 13527: 13403: 13329: 13252: 13078: 12987:), there is a unique 12964: 12544: 12477: 12419: 12370: 12255: 12134: 11860: 11748: 11506: 11404: 11268: 11163:be an open subset of 11075: 11037: 10972: 10840: 10489: 10258: 10032: 9726: 9656: 9531:. The composite map 9507: 9407: 9212: 9147: 8943: 8362:is by definition the 8350: 8102:they generate is the 8040: 7967: 7859: 7776: 7762: 7657: 7591: 7474: 7297: 7203: 7183: 7157: 7115: 7068: 6863:totally antisymmetric 6847: 6739: 6534: 6532:{\displaystyle \tau } 6511: 6286: 6236: 6198: 6083: 5933: 5827:-forms on a manifold 5771:Intrinsic definitions 5632: 5460: 5398: 5299: 5246: 5173: 5079: 4974: 4921: 4817: 4603: 4553: 4497: 4308: 4217: 4162: 4092: 3765: 3522: 3432: 3392:are introduced, then 3259: 3043:Differential calculus 3017:differential topology 3013:differential geometry 2978: 2855: 2791: 2681: 2595: 2493: 2396: 2341:-forms in a manifold 2332: 2264: 2109: 1992: 1700: 1596: 1425: 1306: 1211: 1155:-form, then one has: 1082: 982: 759: 693: 659: 622: 584: 506: 394: 136: 18799:Carl Friedrich Gauss 18732:stress–energy tensor 18727:Cauchy stress tensor 18479:Covariant derivative 18441:Antisymmetric tensor 18373:Multi-index notation 17811:Covariant derivative 17362:Topological manifold 17007:Treatise on Analysis 16755:of the gauge group. 16677: 16585: 16554: 16466: 16417: 16253: 16199: 16097: 16068: 15970: 15677:Jacobian determinant 15570: 15522: 15338: 15288: 15176: 15045: 15002:along the fibers of 14891: 14696: 14547: 14430: 14339: 14241:along the fibers of 14086: 13998: 13991:Denote this form by 13894: 13615: 13475: 13445:Moreover, for fixed 13422:may also be notated 13356: 13349:-covector for which 13267: 13144: 12994: 12840: 12458: 12361: 12149: 11875: 11769: 11596: 11483: 11309: 11206: 11046: 10981: 10852: 10537: 10334: 10125: 9768: 9684: 9538: 9443: 9242: 9175: 9022: 8794: 8749:and tangent vectors 8731:as seen relative to 8136: 7979: 7887: 7781: 7708: 7601: 7535: 7347: 7215: 7192: 7166: 7162:is done via the map 7124: 7080: 7076:If the embedding of 7024: 6910:covariant derivative 6775: 6552: 6523: 6441: 6220: 6107: 6027: 5992:naturally isomorphic 5877: 5457: 5234: 5189:-form is called the 5098: 5091:is defined so that: 4971: 4836: 4707: 4544: 4421: 4198: 4080: 3879:. Note that at each 3785:and any real number 3564: 3399: 3337:with respect to the 3291:in the definition.) 3155: 2805: 2698: 2583: 2430: 2368: 2275: 2129: 2004: 1873: 1862:multi-index notation 1860:-forms is so called 1852:Multi-index notation 1628: 1514: 1357: 1243: 1162: 997: 940: 710: 676: 648: 593: 540: 536:. This implies that 474: 241: 91: 18676:Nonmetricity tensor 18531:(2nd-order tensors) 18499:Hodge star operator 18489:Exterior derivative 18338:Transport phenomena 18323:Continuum mechanics 18279:Multilinear algebra 17845:Exterior derivative 17447:Atiyah–Singer index 17396:Riemannian manifold 17293:2003math......6194B 17241:"Differential form" 17209:Zorich, Vladimir A. 17095:Fleming, Wendell H. 17057:(Second ed.), 16970:2003math......6194B 16753:structure equations 16670:is then defined by 16453:Maxwell's equations 15616: 15589: 15541: 15461:contour integration 14840: 14623: 14406: 14217:. Then there is a 13593:such that, at each 13394: 13320: 13282: 13240: 13208: 13044: 12948: 12892: 12661:-forms on oriented 12532: 12354:. If the chain is 12273:is differentiable. 10070:are coordinates on 10052:are coordinates on 9009:. The pullback of 8781:. The pullback of 8682:be smooth, and let 8045:, which has degree 7882:Hodge star operator 7874:Riemannian manifold 7868:Riemannian manifold 7772:graded Leibniz rule 6898:exterior derivative 6138: 5921: 5870:defines an element 5191:exterior derivative 4515:. Any differential 3883:, the differential 3023:of degree 1 on the 2994:Hodge star operator 2510:exterior derivative 1714:and second side is 1610:(the symbol is the 1505:-plane. A general 1114:More generally, an 1054: 1014: 957: 636:exterior derivative 534:alternating algebra 523:-form) is called a 108: 67:is an example of a 18855:Differential forms 18809:Tullio Levi-Civita 18752:Metric tensor (GR) 18666:Levi-Civita symbol 18519:Tensor contraction 18333:General relativity 18269:Euclidean geometry 18151:Secondary calculus 18105:Singularity theory 18060:Parallel transport 17828:De Rham cohomology 17467:Generalized Stokes 17267:Cornell University 17238:Weisstein, Eric W. 17051:Folland, Gerald B. 17022:Edwards, Harold M. 16981:Differential Forms 16868:10.24033/asens.467 16830:Presymplectic form 16715: 16598: 16560: 16537: 16535: 16432: 16356: 16225: 16112: 16083: 16040: 15634: 15633: 15602: 15575: 15556: 15555: 15527: 15468:de Rham cohomology 15381: 15380: 15324: 15323: 15217: 15102: 15014:projection formula 14965: 14847: 14826: 14812: 14630: 14609: 14595: 14464: 14410: 14392: 14378: 14348: 14176: 14062: 13978: 13659: 13522: 13398: 13382: 13324: 13306: 13292: 13270: 13247: 13226: 13218: 13196: 13073: 13030: 13016: 12959: 12957: 12934: 12926: 12878: 12870: 12539: 12518: 12414: 12250: 12129: 11939: 11855: 11743: 11640: 11501: 11399: 11263: 11070: 11032: 10967: 10835: 10627: 10591: 10484: 10388: 10253: 10169: 10118:can be written as 10027: 10025: 9721: 9693: 9651: 9604: 9547: 9502: 9452: 9402: 9378: 9301: 9207: 9142: 8938: 8364:de Rham cohomology 8345: 8082:. This algebra is 8035: 7962: 7854: 7757: 7671:graded commutative 7652: 7586: 7469: 7292: 7198: 7178: 7152: 7110: 7089: 7063: 6855:This map exhibits 6842: 6790: 6734: 6652: 6529: 6506: 6281: 6193: 6158: 6124: 6116: 6078: 6049: 5928: 5907: 5899: 5627: 5393: 5227:. It is given by 5168: 5074: 4916: 4812: 4598: 4492: 4446: 4303: 4157: 4071:, it follows that 3912:linear combination 3760: 3758: 3517: 3331:partial derivative 3294:In particular, if 3254: 2973: 2849: 2786: 2739: 2676: 2488: 2421: choose  2391: 2327: 2259: 2104: 2090: 1987: 1846:linearly dependent 1695: 1591: 1544: 1420: 1301: 1206: 1077: 1040: 1000: 977: 943: 877:. A differential 770:divergence theorem 754: 688: 654: 617: 579: 501: 389: 131: 94: 36:differential forms 18842: 18841: 18804:Hermann Grassmann 18760: 18759: 18712:Moment of inertia 18573:Differential form 18548:Affine connection 18363:Einstein notation 18346: 18345: 18274:Exterior calculus 18254:Coordinate system 18186: 18185: 18068: 18067: 17833:Differential form 17487:Whitney embedding 17421:Differential form 17201:978-0-387-48098-5 17103:This textbook in 17064:978-0-471-31716-6 17043:978-0-8176-8411-2 16943:978-0-8176-4499-4 16781:systolic geometry 16658:-valued one-form 16646:Yang–Mills theory 16527: 16512: 16494: 16480: 16457:geometrized units 16429: 16274: 16260: 16219: 16206: 16109: 16080: 15991: 15977: 15875:Hausdorff measure 15760:fundamental class 15416:over a path from 15165:with its induced 14649:, so there is an 12713:on the interval. 12248: 12094: 11904: 11605: 11579:with coordinates 11341: 11339: 11327: 11030: 10965: 10780: 10592: 10556: 10353: 10134: 9639: 9634: 9620: 9597: 9592: 9563: 9487: 9482: 9468: 9433:is a morphism of 9371: 9366: 9324: 9294: 9289: 9275: 9269: 9264: 9250: 9235:is the composite 9187: 9125: 9120: 9090: 9074: 9069: 9055: 9049: 9044: 9030: 8388:. The kernel at 8341: 8335: 8313: 8307: 8301: 8295: 8273: 8268: 8254: 8232: 8227: 8213: 8191: 8186: 8172: 8150: 8144: 8093:geometric algebra 7936: 7931: 7917: 7770:One also has the 7675:anticommutativity 7266: 6630: 6628: 6386:Riemannian metric 6340:linear functional 5989:. This space is 5753:coordinate charts 5358: 5033: 4908: 4871: 4807: 4756: 4437: 4263: 4181: 4180: 4138: 3904:Since any vector 3512: 3485: 3427: 3315:coordinate vector 3209: 3093:is any vector in 3061:. A differential 2908: 2817: 2707: 2641: 2480: 2413:-covectors on an 2075: 1517: 1105:), the increment 835:Hermann Grassmann 16:(Redirected from 18867: 18819:Bernhard Riemann 18651: 18650: 18494:Exterior product 18461:Two-point tensor 18446:Symmetric tensor 18328:Electromagnetism 18242: 18241: 18213: 18206: 18199: 18190: 18189: 18178:Stratified space 18136:Fréchet manifold 17850:Interior product 17743: 17742: 17440: 17336: 17329: 17322: 17313: 17312: 17300:Needham, Tristan 17295: 17286: 17264: 17263: 17251: 17250: 17225: 17204: 17174: 17150: 17129: 17118: 17102: 17090: 17074:Flanders, Harley 17068: 17046: 17017: 16994:—Translation of 16993: 16972: 16963: 16946: 16919: 16918: 16911: 16905: 16904: 16878: 16872: 16871: 16870: 16846: 16820:Multilinear form 16771:'s classic text 16750: 16744: 16738: 16724: 16722: 16721: 16716: 16711: 16703: 16695: 16684: 16669: 16663: 16653: 16635: 16624: 16607: 16605: 16604: 16599: 16597: 16592: 16580: 16569: 16567: 16566: 16561: 16546: 16544: 16543: 16538: 16536: 16529: 16528: 16515: 16514: 16513: 16496: 16495: 16482: 16481: 16447: 16441: 16439: 16438: 16433: 16431: 16430: 16422: 16408: 16402: 16396: 16385: 16374: 16365: 16363: 16362: 16357: 16351: 16350: 16335: 16334: 16319: 16318: 16305: 16304: 16285: 16284: 16275: 16267: 16262: 16261: 16243: 16234: 16232: 16231: 16226: 16221: 16220: 16208: 16207: 16191: 16176:principal bundle 16174: 16161: 16143: 16121: 16119: 16118: 16113: 16111: 16110: 16102: 16092: 16090: 16089: 16084: 16082: 16081: 16073: 16063: 16049: 16047: 16046: 16041: 16035: 16034: 16019: 16018: 16005: 16004: 15992: 15984: 15979: 15978: 15953:electromagnetism 15942: 15936: 15930: 15925:. The space of 15906: 15900: 15894: 15888: 15882: 15872: 15863: 15857: 15851: 15845: 15838:Gram determinant 15835: 15829: 15823: 15813: 15800: 15790: 15784: 15767: 15757: 15744: 15742: 15735:, pulls back to 15734: 15732: 15723:Lebesgue measure 15720: 15713: 15707: 15697: 15695: 15683: 15674: 15668: 15664: 15660: 15656: 15654: 15643: 15641: 15640: 15635: 15632: 15615: 15610: 15588: 15583: 15565: 15563: 15562: 15557: 15554: 15540: 15535: 15514: 15510: 15506: 15500: 15453:gradient theorem 15446: 15427: 15421: 15415: 15409: 15403: 15394:For example, if 15390: 15388: 15387: 15382: 15370: 15369: 15351: 15350: 15333: 15331: 15330: 15325: 15322: 15318: 15317: 15302: 15301: 15283: 15277: 15269: 15259: 15253: 15247: 15241: 15235: 15226: 15224: 15223: 15218: 15210: 15209: 15188: 15187: 15164: 15154: 15148: 15142: 15135: 15122:Stokes's theorem 15116:Stokes's theorem 15111: 15109: 15108: 15103: 15098: 15097: 15085: 15084: 15057: 15056: 15037: 15031: 15025: 15007: 15001: 14993: 14983: 14974: 14972: 14971: 14966: 14961: 14960: 14959: 14949: 14948: 14938: 14937: 14914: 14906: 14905: 14883: 14877: 14871: 14865: 14856: 14854: 14853: 14848: 14839: 14834: 14825: 14824: 14813: 14802: 14801: 14792: 14791: 14785: 14781: 14777: 14776: 14762: 14754: 14753: 14741: 14740: 14723: 14722: 14713: 14712: 14711: 14688: 14677: 14671: 14660: 14648: 14639: 14637: 14636: 14631: 14622: 14617: 14608: 14607: 14596: 14582: 14581: 14567: 14559: 14558: 14539: 14533: 14521: 14515: 14509: 14503: 14488: 14482: 14473: 14471: 14470: 14465: 14460: 14459: 14445: 14437: 14419: 14417: 14416: 14411: 14405: 14400: 14391: 14390: 14379: 14365: 14364: 14355: 14354: 14349: 14331: 14321: 14315: 14309: 14303: 14297: 14286: 14280: 14274: 14269:pairs with each 14268: 14262: 14252: 14246: 14240: 14234: 14228: 14222: 14216: 14210: 14194: 14185: 14183: 14182: 14177: 14168: 14167: 14158: 14150: 14149: 14139: 14138: 14121: 14120: 14114: 14113: 14098: 14097: 14071: 14069: 14068: 14063: 14054: 14053: 14044: 14036: 14035: 14025: 14024: 14007: 14006: 13987: 13985: 13984: 13979: 13974: 13973: 13963: 13962: 13956: 13955: 13946: 13938: 13937: 13927: 13926: 13909: 13908: 13886: 13880: 13874: 13863: 13853: 13838: 13828: 13822: 13816: 13810: 13804: 13798: 13792: 13786: 13780: 13774: 13768: 13754: 13748: 13742: 13736: 13727: 13721: 13715: 13709: 13698: 13692: 13686: 13668: 13666: 13665: 13660: 13655: 13654: 13645: 13640: 13639: 13627: 13626: 13607: 13592: 13581: 13575: 13563: 13552: 13546: 13540: 13531: 13529: 13528: 13523: 13518: 13517: 13496: 13495: 13467: 13461: 13450: 13441: 13421: 13407: 13405: 13404: 13399: 13390: 13381: 13380: 13368: 13367: 13348: 13333: 13331: 13330: 13325: 13319: 13314: 13305: 13304: 13293: 13278: 13256: 13254: 13253: 13248: 13239: 13234: 13225: 13224: 13219: 13204: 13192: 13191: 13182: 13181: 13172: 13171: 13156: 13155: 13136: 13125: 13107: 13097:with respect to 13096: 13082: 13080: 13079: 13074: 13060: 13059: 13043: 13038: 13029: 13028: 13017: 13006: 13005: 12982: 12968: 12966: 12965: 12960: 12958: 12947: 12942: 12933: 12932: 12927: 12912: 12911: 12891: 12886: 12877: 12876: 12871: 12856: 12855: 12833:. Suppose that 12832: 12817: 12807: 12801: 12795: 12783: 12772: 12758: 12752: 12746: 12740: 12728:Fubini's theorem 12712: 12701: 12697: 12684: 12681:, integrating a 12680: 12666: 12660: 12651: 12645: 12639: 12633: 12627: 12621: 12615: 12609: 12603: 12597: 12591: 12585: 12567: 12557: 12548: 12546: 12545: 12540: 12531: 12526: 12517: 12516: 12507: 12506: 12496: 12491: 12470: 12469: 12450: 12444: 12438: 12432: 12423: 12421: 12420: 12415: 12410: 12409: 12400: 12399: 12389: 12384: 12353: 12347: 12341: 12327: 12321: 12315: 12309: 12303: 12293: 12287: 12281: 12272: 12259: 12257: 12256: 12251: 12249: 12247: 12243: 12242: 12224: 12223: 12207: 12203: 12202: 12201: 12200: 12177: 12176: 12175: 12174: 12153: 12138: 12136: 12135: 12130: 12125: 12124: 12109: 12108: 12095: 12093: 12089: 12088: 12070: 12069: 12053: 12049: 12048: 12047: 12046: 12023: 12022: 12021: 12020: 11999: 11991: 11990: 11975: 11974: 11973: 11972: 11954: 11953: 11938: 11937: 11936: 11918: 11917: 11903: 11902: 11887: 11886: 11864: 11862: 11861: 11856: 11845: 11844: 11835: 11834: 11813: 11812: 11803: 11802: 11784: 11783: 11761: 11752: 11750: 11749: 11744: 11739: 11738: 11737: 11736: 11710: 11709: 11708: 11707: 11686: 11685: 11676: 11675: 11674: 11673: 11655: 11654: 11639: 11638: 11637: 11619: 11618: 11588: 11578: 11572: 11566: 11560: 11551: 11545: 11535: 11529: 11523: 11510: 11508: 11507: 11502: 11475: 11469: 11463: 11457: 11451: 11445: 11431: 11421: 11408: 11406: 11405: 11400: 11395: 11394: 11379: 11378: 11353: 11352: 11343: 11342: 11340: 11337: 11335: 11330: 11325: 11321: 11320: 11301: 11295: 11289: 11272: 11270: 11269: 11264: 11262: 11261: 11240: 11239: 11198: 11192: 11186: 11180: 11174: 11168: 11162: 11147: 11140: 11133: 11127: 11121: 11111: 11105: 11099: 11093: 11079: 11077: 11076: 11071: 11041: 11039: 11038: 11033: 11031: 11029: 11028: 11027: 11026: 11025: 11007: 11006: 11005: 11004: 11003: 10985: 10976: 10974: 10973: 10968: 10966: 10964: 10960: 10959: 10958: 10957: 10934: 10933: 10932: 10931: 10910: 10906: 10905: 10904: 10903: 10880: 10879: 10878: 10877: 10856: 10844: 10842: 10841: 10836: 10831: 10830: 10829: 10828: 10802: 10801: 10800: 10799: 10781: 10779: 10775: 10774: 10773: 10772: 10749: 10748: 10747: 10746: 10725: 10721: 10720: 10719: 10718: 10695: 10694: 10693: 10692: 10671: 10660: 10659: 10658: 10657: 10645: 10644: 10626: 10625: 10624: 10606: 10605: 10590: 10589: 10588: 10570: 10569: 10549: 10548: 10525: 10520:. The resulting 10519: 10513: 10507: 10493: 10491: 10490: 10485: 10480: 10479: 10478: 10477: 10451: 10450: 10449: 10448: 10421: 10420: 10419: 10418: 10406: 10405: 10387: 10386: 10385: 10367: 10366: 10346: 10345: 10327:has the formula 10326: 10320: 10314: 10308: 10285: 10274: 10262: 10260: 10259: 10254: 10249: 10248: 10247: 10246: 10220: 10219: 10218: 10217: 10199: 10198: 10197: 10196: 10184: 10183: 10168: 10167: 10166: 10148: 10147: 10117: 10111: 10105: 10099: 10075: 10069: 10063: 10057: 10051: 10045: 10036: 10034: 10033: 10028: 10026: 10013: 10012: 9978: 9977: 9958: 9957: 9942: 9941: 9910: 9909: 9890: 9889: 9874: 9873: 9842: 9841: 9819: 9818: 9784: 9783: 9760: 9754: 9748: 9739: 9730: 9728: 9727: 9722: 9720: 9700: 9699: 9694: 9679: 9669: 9660: 9658: 9657: 9652: 9650: 9637: 9636: 9635: 9633: 9628: 9623: 9618: 9611: 9610: 9605: 9595: 9594: 9593: 9591: 9584: 9583: 9578: 9571: 9566: 9561: 9554: 9553: 9548: 9530: 9524: 9511: 9509: 9508: 9503: 9498: 9485: 9484: 9483: 9481: 9476: 9471: 9466: 9459: 9458: 9453: 9432: 9426: 9420: 9411: 9409: 9408: 9403: 9395: 9394: 9385: 9384: 9379: 9369: 9368: 9367: 9365: 9364: 9363: 9345: 9344: 9339: 9332: 9327: 9322: 9318: 9317: 9308: 9307: 9302: 9292: 9291: 9290: 9288: 9283: 9278: 9273: 9267: 9266: 9265: 9263: 9258: 9253: 9248: 9234: 9228: 9222: 9216: 9214: 9213: 9208: 9206: 9205: 9186: 9178: 9170: 9164: 9160: 9151: 9149: 9148: 9143: 9135: 9134: 9123: 9122: 9121: 9119: 9118: 9117: 9098: 9093: 9088: 9084: 9083: 9072: 9071: 9070: 9068: 9063: 9058: 9053: 9047: 9046: 9045: 9043: 9038: 9033: 9028: 9014: 9008: 8987: 8981: 8975: 8966: 8960: 8956: 8947: 8945: 8944: 8939: 8931: 8930: 8921: 8920: 8902: 8901: 8892: 8891: 8879: 8878: 8854: 8853: 8835: 8834: 8822: 8821: 8809: 8808: 8786: 8780: 8774: 8768: 8757: 8748: 8742: 8736: 8730: 8724: 8714: 8708: 8699: 8693: 8687: 8681: 8664: 8658: 8652: 8638: 8629: 8623: 8617: 8608: 8598: 8592: 8578: 8568: 8562: 8543: 8529: 8511: 8502:. For any point 8497: 8488: 8482: 8476: 8463:is a smooth map 8462: 8456: 8428: 8427: 8419:sheaf cohomology 8416: 8415: 8405: 8396:is the space of 8395: 8387: 8371: 8354: 8352: 8351: 8346: 8339: 8333: 8323: 8322: 8311: 8305: 8299: 8293: 8283: 8282: 8271: 8270: 8269: 8267: 8262: 8257: 8252: 8242: 8241: 8230: 8229: 8228: 8226: 8221: 8216: 8211: 8201: 8200: 8189: 8188: 8187: 8185: 8180: 8175: 8170: 8160: 8159: 8148: 8142: 8124: 8088:exterior algebra 8076:Clifford algebra 8070: 8058: 8048: 8044: 8042: 8041: 8036: 8025: 8024: 7997: 7996: 7971: 7969: 7968: 7963: 7952: 7951: 7934: 7933: 7932: 7930: 7925: 7920: 7915: 7905: 7904: 7863: 7861: 7860: 7855: 7838: 7837: 7766: 7764: 7763: 7758: 7744: 7743: 7700: 7694: 7688: 7682: 7667:skew commutative 7661: 7659: 7658: 7653: 7595: 7593: 7592: 7587: 7527: 7521: 7515: 7509: 7500: 7478: 7476: 7475: 7470: 7459: 7458: 7440: 7439: 7418: 7417: 7399: 7398: 7371: 7370: 7335: 7329: 7325: 7315: 7301: 7299: 7298: 7293: 7267: 7265: 7251: 7231: 7207: 7205: 7204: 7199: 7187: 7185: 7184: 7179: 7161: 7159: 7158: 7153: 7148: 7147: 7138: 7137: 7132: 7119: 7117: 7116: 7111: 7106: 7105: 7096: 7095: 7090: 7072: 7070: 7069: 7064: 7016: 7006: 6993: 6987: 6981: 6975: 6970:of the manifold 6969: 6963: 6953: 6943: 6937: 6931: 6925: 6916:Exterior product 6902:interior product 6894:exterior product 6882: 6876: 6860: 6851: 6849: 6848: 6843: 6835: 6834: 6825: 6824: 6819: 6807: 6806: 6797: 6796: 6791: 6767: 6757: 6743: 6741: 6740: 6735: 6727: 6726: 6699: 6698: 6677: 6676: 6651: 6650: 6649: 6629: 6627: 6616: 6608: 6607: 6589: 6588: 6573: 6572: 6544: 6538: 6536: 6535: 6530: 6515: 6513: 6512: 6507: 6499: 6498: 6489: 6488: 6483: 6471: 6470: 6461: 6460: 6455: 6426: 6422: 6404: 6393: 6383: 6365: 6351: 6337: 6327: 6321: 6317: 6311: 6305: 6299: 6290: 6288: 6287: 6282: 6277: 6266: 6265: 6255: 6250: 6232: 6231: 6202: 6200: 6199: 6194: 6192: 6191: 6186: 6185: 6175: 6174: 6165: 6164: 6159: 6151: 6150: 6137: 6132: 6123: 6122: 6117: 6099: 6093: 6087: 6085: 6084: 6079: 6077: 6066: 6065: 6056: 6055: 6050: 6039: 6038: 6022: 6016: 6006: 6000: 5995:to the fiber at 5994: 5984: 5970: 5964: 5954: 5937: 5935: 5934: 5929: 5920: 5915: 5906: 5905: 5900: 5889: 5888: 5869: 5863: 5857: 5844: 5837:, often denoted 5832: 5826: 5820: 5813:cotangent bundle 5806: 5796: 5786: 5777:Exterior algebra 5766: 5762: 5758: 5750: 5746: 5736: 5732: 5726: 5718: 5714: 5707: 5672: 5668: 5636: 5634: 5633: 5628: 5626: 5625: 5624: 5623: 5597: 5596: 5595: 5594: 5574: 5573: 5572: 5571: 5553: 5552: 5551: 5550: 5538: 5537: 5528: 5527: 5512: 5507: 5500: 5499: 5487: 5486: 5474: 5473: 5449: 5445: 5441: 5437: 5433: 5426: 5416: 5412: 5402: 5400: 5399: 5394: 5389: 5388: 5373: 5372: 5359: 5357: 5356: 5355: 5342: 5341: 5340: 5327: 5324: 5319: 5295: 5294: 5279: 5278: 5265: 5260: 5226: 5214: 5213: 5197: 5188: 5184: 5177: 5175: 5174: 5169: 5164: 5163: 5148: 5147: 5129: 5128: 5113: 5112: 5090: 5083: 5081: 5080: 5075: 5064: 5063: 5048: 5047: 5034: 5032: 5031: 5030: 5017: 5016: 5015: 5002: 4999: 4994: 4962:exterior product 4959: 4956:on differential 4955: 4951: 4947: 4936: 4932: 4925: 4923: 4922: 4917: 4909: 4907: 4906: 4905: 4892: 4891: 4890: 4877: 4872: 4870: 4869: 4868: 4855: 4854: 4853: 4840: 4828: 4821: 4819: 4818: 4813: 4808: 4806: 4805: 4804: 4791: 4790: 4777: 4773: 4772: 4762: 4757: 4755: 4754: 4753: 4740: 4739: 4726: 4722: 4721: 4711: 4699: 4695: 4688: 4678:given functions 4677: 4673: 4662: 4658: 4648: 4644: 4640: 4636: 4632: 4625: 4621: 4607: 4605: 4604: 4599: 4597: 4596: 4583: 4582: 4572: 4567: 4536: 4532: 4528: 4518: 4514: 4501: 4499: 4498: 4493: 4491: 4490: 4481: 4480: 4456: 4455: 4445: 4433: 4432: 4413: 4385: 4381: 4377: 4366: 4346: 4342: 4338: 4334: 4330: 4326: 4312: 4310: 4309: 4304: 4299: 4298: 4289: 4288: 4264: 4262: 4261: 4260: 4247: 4239: 4236: 4231: 4213: 4212: 4186: 4175: 4166: 4164: 4163: 4158: 4153: 4152: 4139: 4137: 4136: 4135: 4122: 4114: 4111: 4106: 4074: 4066: 4046: 4036: 4030: 4024: 4018: 4014: 4010: 4004: 3998: 3992: 3988: 3982: 3978: 3974: 3964: 3958: 3937: 3927: 3909: 3898: 3893: 3882: 3878: 3874: 3870: 3864: 3835: 3831: 3819: 3808: 3802: 3789:. At each point 3788: 3784: 3778: 3773:for any vectors 3769: 3767: 3766: 3761: 3759: 3740: 3739: 3738: 3700: 3699: 3698: 3663: 3662: 3661: 3630: 3629: 3628: 3593: 3592: 3591: 3583: 3556: 3546: 3526: 3524: 3523: 3518: 3513: 3511: 3510: 3509: 3496: 3488: 3486: 3484: 3483: 3482: 3469: 3468: 3467: 3454: 3451: 3446: 3428: 3426: 3425: 3424: 3411: 3403: 3391: 3385: 3379: 3373: 3369: 3363: 3357: 3351: 3340: 3336: 3328: 3312: 3308: 3290: 3286: 3280: 3272: 3263: 3261: 3260: 3255: 3250: 3249: 3238: 3234: 3230: 3210: 3208: 3197: 3172: 3171: 3170: 3147: 3141: 3137: 3133: 3123: 3119: 3104: 3098: 3092: 3086: 3075: 3071: 3064: 3060: 3050: 3025:exterior algebra 2991: 2982: 2980: 2979: 2974: 2963: 2962: 2944: 2943: 2928: 2924: 2923: 2922: 2909: 2907: 2906: 2905: 2892: 2891: 2890: 2877: 2874: 2869: 2848: 2847: 2846: 2835: 2834: 2797: 2795: 2793: 2792: 2787: 2776: 2775: 2763: 2762: 2749: 2748: 2738: 2737: 2736: 2725: 2724: 2692: 2685: 2683: 2682: 2677: 2672: 2671: 2656: 2655: 2642: 2640: 2639: 2638: 2625: 2617: 2614: 2609: 2575: 2567: 2561: 2557: 2544: 2540: 2517: 2499: 2497: 2495: 2494: 2489: 2487: 2486: 2485: 2472: 2462: 2457: 2456: 2445: 2444: 2437: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2398: 2397: 2392: 2390: 2389: 2378: 2377: 2363: 2359: 2348: 2344: 2340: 2336: 2334: 2333: 2328: 2326: 2325: 2324: 2323: 2312: 2311: 2293: 2292: 2270: 2268: 2266: 2265: 2260: 2249: 2248: 2230: 2229: 2217: 2216: 2195: 2194: 2176: 2175: 2151: 2150: 2139: 2138: 2123: 2119: 2115: 2113: 2111: 2110: 2105: 2103: 2102: 2089: 2071: 2070: 2069: 2068: 2042: 2041: 2040: 2039: 2019: 2018: 1998: 1996: 1994: 1993: 1988: 1980: 1979: 1961: 1960: 1948: 1947: 1926: 1925: 1907: 1906: 1894: 1893: 1867: 1859: 1839: 1828: 1819: 1808: 1793: 1751: 1741: 1731: 1725: 1719: 1713: 1704: 1702: 1701: 1696: 1694: 1693: 1678: 1677: 1659: 1658: 1643: 1642: 1616: 1608:exterior product 1602: 1600: 1598: 1597: 1592: 1590: 1589: 1574: 1573: 1560: 1559: 1543: 1508: 1504: 1498: 1492: 1488: 1478: 1469:The expressions 1465: 1461: 1429: 1427: 1426: 1421: 1416: 1415: 1402: 1401: 1383: 1382: 1369: 1368: 1349: 1341: 1337: 1331: 1324:exterior algebra 1314: 1310: 1308: 1307: 1302: 1290: 1289: 1255: 1254: 1238: 1234: 1230: 1215: 1213: 1212: 1207: 1198: 1197: 1196: 1174: 1173: 1154: 1150: 1146: 1145: 1137: 1133: 1129: 1125: 1121: 1117: 1110: 1104: 1086: 1084: 1083: 1078: 1053: 1048: 1013: 1008: 986: 984: 983: 978: 956: 951: 932: 918: 914: 904: 884: 880: 876: 868: 831:exterior algebra 805:interior product 802: 790: 763: 761: 760: 755: 738: 705: 697: 695: 694: 689: 671: 663: 661: 660: 655: 643: 626: 624: 623: 618: 588: 586: 585: 580: 522: 516: 510: 508: 507: 502: 469: 461: 457: 449: 418: 408:exterior product 405: 398: 396: 395: 390: 253: 252: 233: 222: 217: 140: 138: 137: 132: 107: 102: 83: 71: 66: 21: 18875: 18874: 18870: 18869: 18868: 18866: 18865: 18864: 18845: 18844: 18843: 18838: 18789:Albert Einstein 18756: 18737:Einstein tensor 18700: 18681:Ricci curvature 18661:Kronecker delta 18647:Notable tensors 18642: 18563:Connection form 18540: 18534: 18465: 18451:Tensor operator 18408: 18402: 18342: 18318:Computer vision 18311: 18293: 18289:Tensor calculus 18233: 18222: 18217: 18187: 18182: 18121:Banach manifold 18114:Generalizations 18109: 18064: 18001: 17898: 17860:Ricci curvature 17816:Cotangent space 17794: 17732: 17574: 17568: 17527:Exponential map 17491: 17436: 17430: 17350: 17340: 17261: 17232: 17223: 17202: 17171: 17155:Spivak, Michael 17148: 17127: 17088: 17065: 17044: 17003:Dieudonné, Jean 16991: 16944: 16928: 16923: 16922: 16913: 16912: 16908: 16893: 16879: 16875: 16847: 16843: 16838: 16789: 16769:Herbert Federer 16761: 16751:, owing to the 16746: 16740: 16729: 16707: 16699: 16691: 16680: 16678: 16675: 16674: 16665: 16659: 16649: 16633: 16620: 16593: 16588: 16586: 16583: 16582: 16578: 16555: 16552: 16551: 16534: 16533: 16524: 16523: 16516: 16509: 16508: 16504: 16498: 16497: 16491: 16490: 16483: 16477: 16476: 16469: 16467: 16464: 16463: 16443: 16421: 16420: 16418: 16415: 16414: 16404: 16398: 16395: 16387: 16384: 16376: 16370: 16346: 16342: 16330: 16326: 16314: 16310: 16291: 16287: 16280: 16276: 16266: 16257: 16256: 16254: 16251: 16250: 16241: 16216: 16215: 16203: 16202: 16200: 16197: 16196: 16187: 16184:connection form 16170: 16160: 16151: 16145: 16138: 16129: 16123: 16101: 16100: 16098: 16095: 16094: 16072: 16071: 16069: 16066: 16065: 16062: 16054: 16030: 16026: 16014: 16010: 15997: 15993: 15983: 15974: 15973: 15971: 15968: 15967: 15949: 15938: 15932: 15926: 15913: 15902: 15896: 15890: 15884: 15878: 15868: 15859: 15853: 15847: 15841: 15831: 15825: 15815: 15809: 15796: 15786: 15780: 15763: 15753: 15738: 15736: 15728: 15726: 15715: 15709: 15699: 15691: 15689: 15679: 15670: 15666: 15662: 15658: 15650: 15648: 15611: 15606: 15584: 15579: 15574: 15571: 15568: 15567: 15536: 15531: 15526: 15523: 15520: 15519: 15515:, depending on 15512: 15508: 15502: 15498: 15486: 15480: 15429: 15423: 15417: 15411: 15405: 15395: 15365: 15361: 15346: 15342: 15339: 15336: 15335: 15313: 15309: 15297: 15293: 15292: 15289: 15286: 15285: 15279: 15271: 15261: 15255: 15249: 15243: 15237: 15231: 15202: 15198: 15183: 15179: 15177: 15174: 15173: 15160: 15150: 15144: 15137: 15131: 15128:Stokes' theorem 15124: 15118: 15093: 15089: 15080: 15076: 15052: 15048: 15046: 15043: 15042: 15033: 15027: 15021: 15003: 14997: 14994:and called the 14989: 14979: 14955: 14954: 14950: 14930: 14926: 14925: 14921: 14910: 14901: 14897: 14892: 14889: 14888: 14879: 14873: 14867: 14861: 14835: 14830: 14814: 14807: 14806: 14797: 14793: 14787: 14786: 14772: 14768: 14758: 14749: 14745: 14736: 14732: 14731: 14727: 14718: 14714: 14707: 14706: 14702: 14697: 14694: 14693: 14679: 14673: 14670: 14662: 14650: 14644: 14618: 14613: 14597: 14590: 14589: 14577: 14573: 14563: 14554: 14550: 14548: 14545: 14544: 14535: 14523: 14517: 14511: 14505: 14490: 14484: 14478: 14455: 14451: 14441: 14433: 14431: 14428: 14427: 14401: 14396: 14380: 14373: 14372: 14360: 14356: 14350: 14343: 14342: 14340: 14337: 14336: 14323: 14317: 14311: 14305: 14299: 14288: 14282: 14276: 14270: 14264: 14254: 14248: 14242: 14236: 14230: 14224: 14218: 14212: 14196: 14190: 14163: 14162: 14154: 14131: 14127: 14126: 14122: 14116: 14115: 14109: 14105: 14093: 14089: 14087: 14084: 14083: 14049: 14048: 14040: 14017: 14013: 14012: 14008: 14002: 14001: 13999: 13996: 13995: 13969: 13965: 13958: 13957: 13951: 13947: 13942: 13919: 13915: 13914: 13910: 13904: 13903: 13895: 13892: 13891: 13882: 13876: 13865: 13855: 13852: 13840: 13830: 13824: 13818: 13812: 13806: 13800: 13794: 13788: 13782: 13776: 13770: 13756: 13750: 13744: 13738: 13732: 13723: 13717: 13711: 13700: 13694: 13688: 13685: 13673: 13650: 13646: 13641: 13635: 13631: 13622: 13618: 13616: 13613: 13612: 13594: 13583: 13577: 13565: 13554: 13548: 13542: 13536: 13513: 13509: 13488: 13484: 13476: 13473: 13472: 13463: 13460: 13452: 13446: 13440: 13431: 13423: 13420: 13412: 13386: 13376: 13372: 13363: 13359: 13357: 13354: 13353: 13338: 13315: 13310: 13294: 13287: 13286: 13274: 13268: 13265: 13264: 13235: 13230: 13220: 13213: 13212: 13200: 13187: 13183: 13177: 13173: 13167: 13163: 13151: 13147: 13145: 13142: 13141: 13135: 13127: 13109: 13106: 13098: 13095: 13087: 13052: 13048: 13039: 13034: 13018: 13011: 13010: 13001: 12997: 12995: 12992: 12991: 12981: 12973: 12956: 12955: 12943: 12938: 12928: 12921: 12920: 12913: 12907: 12903: 12900: 12899: 12887: 12882: 12872: 12865: 12864: 12857: 12851: 12847: 12843: 12841: 12838: 12837: 12819: 12809: 12803: 12797: 12785: 12774: 12760: 12754: 12748: 12742: 12736: 12725: 12719: 12703: 12695: 12686: 12682: 12668: 12662: 12656: 12647: 12641: 12635: 12629: 12623: 12617: 12611: 12605: 12599: 12593: 12587: 12581: 12574: 12563: 12553: 12527: 12522: 12512: 12508: 12502: 12498: 12492: 12481: 12465: 12461: 12459: 12456: 12455: 12446: 12440: 12434: 12428: 12405: 12401: 12395: 12391: 12385: 12374: 12362: 12359: 12358: 12349: 12343: 12333: 12323: 12317: 12311: 12305: 12295: 12289: 12283: 12277: 12276:In general, an 12268: 12238: 12234: 12219: 12215: 12208: 12196: 12192: 12191: 12187: 12170: 12166: 12165: 12161: 12154: 12152: 12150: 12147: 12146: 12120: 12116: 12104: 12100: 12084: 12080: 12065: 12061: 12054: 12042: 12038: 12037: 12033: 12016: 12012: 12011: 12007: 12000: 11998: 11986: 11985: 11968: 11964: 11949: 11945: 11944: 11940: 11932: 11928: 11913: 11909: 11908: 11898: 11894: 11882: 11878: 11876: 11873: 11872: 11840: 11839: 11830: 11826: 11808: 11807: 11798: 11794: 11779: 11778: 11770: 11767: 11766: 11757: 11732: 11728: 11727: 11723: 11703: 11699: 11698: 11694: 11681: 11680: 11669: 11665: 11650: 11646: 11645: 11641: 11633: 11629: 11614: 11610: 11609: 11597: 11594: 11593: 11580: 11574: 11568: 11562: 11553: 11547: 11541: 11531: 11525: 11515: 11484: 11481: 11480: 11471: 11465: 11459: 11453: 11447: 11441: 11438: 11423: 11413: 11390: 11386: 11374: 11370: 11348: 11344: 11336: 11331: 11329: 11328: 11316: 11312: 11310: 11307: 11306: 11297: 11291: 11277: 11257: 11253: 11235: 11231: 11207: 11204: 11203: 11194: 11188: 11182: 11176: 11170: 11164: 11158: 11155: 11142: 11135: 11129: 11123: 11113: 11107: 11101: 11095: 11089: 11088:A differential 11086: 11047: 11044: 11043: 11021: 11017: 11016: 11012: 11008: 10999: 10995: 10994: 10990: 10986: 10984: 10982: 10979: 10978: 10953: 10949: 10948: 10944: 10927: 10923: 10922: 10918: 10911: 10899: 10895: 10894: 10890: 10873: 10869: 10868: 10864: 10857: 10855: 10853: 10850: 10849: 10824: 10820: 10819: 10815: 10795: 10791: 10790: 10786: 10768: 10764: 10763: 10759: 10742: 10738: 10737: 10733: 10726: 10714: 10710: 10709: 10705: 10688: 10684: 10683: 10679: 10672: 10670: 10653: 10649: 10640: 10636: 10635: 10631: 10620: 10616: 10601: 10597: 10596: 10584: 10580: 10565: 10561: 10560: 10544: 10540: 10538: 10535: 10534: 10521: 10515: 10509: 10506: 10498: 10473: 10469: 10468: 10464: 10444: 10440: 10439: 10435: 10414: 10410: 10401: 10397: 10396: 10392: 10381: 10377: 10362: 10358: 10357: 10341: 10337: 10335: 10332: 10331: 10322: 10316: 10310: 10307: 10306: 10297: 10287: 10284: 10276: 10273: 10267: 10242: 10238: 10237: 10233: 10213: 10209: 10208: 10204: 10192: 10188: 10179: 10175: 10174: 10170: 10162: 10158: 10143: 10139: 10138: 10126: 10123: 10122: 10113: 10107: 10101: 10089: 10077: 10071: 10065: 10059: 10053: 10047: 10041: 10024: 10023: 10008: 10004: 9991: 9973: 9969: 9966: 9965: 9953: 9949: 9937: 9933: 9926: 9905: 9901: 9898: 9897: 9885: 9881: 9869: 9865: 9858: 9837: 9833: 9830: 9829: 9814: 9810: 9797: 9779: 9775: 9771: 9769: 9766: 9765: 9756: 9750: 9744: 9732: 9716: 9695: 9688: 9687: 9685: 9682: 9681: 9671: 9665: 9646: 9629: 9624: 9622: 9621: 9606: 9599: 9598: 9579: 9574: 9573: 9572: 9567: 9565: 9564: 9549: 9542: 9541: 9539: 9536: 9535: 9526: 9516: 9494: 9477: 9472: 9470: 9469: 9454: 9447: 9446: 9444: 9441: 9440: 9428: 9422: 9416: 9390: 9386: 9380: 9373: 9372: 9359: 9355: 9340: 9335: 9334: 9333: 9328: 9326: 9325: 9313: 9309: 9303: 9296: 9295: 9284: 9279: 9277: 9276: 9259: 9254: 9252: 9251: 9243: 9240: 9239: 9230: 9224: 9218: 9201: 9197: 9182: 9176: 9173: 9172: 9166: 9162: 9156: 9130: 9126: 9113: 9109: 9099: 9094: 9092: 9091: 9079: 9075: 9064: 9059: 9057: 9056: 9039: 9034: 9032: 9031: 9023: 9020: 9019: 9010: 8989: 8983: 8977: 8968: 8962: 8958: 8952: 8926: 8922: 8916: 8912: 8897: 8893: 8887: 8883: 8865: 8861: 8849: 8845: 8830: 8826: 8817: 8813: 8804: 8800: 8795: 8792: 8791: 8782: 8776: 8770: 8767: 8759: 8756: 8750: 8744: 8738: 8732: 8726: 8720: 8710: 8701: 8695: 8689: 8683: 8669: 8660: 8654: 8640: 8634: 8625: 8619: 8616: 8610: 8600: 8594: 8588: 8580: 8570: 8564: 8558: 8545: 8537: 8531: 8525: 8513: 8503: 8498:and called the 8496: 8490: 8484: 8478: 8464: 8458: 8444: 8441: 8435: 8423: 8422: 8411: 8410: 8401: 8389: 8381: 8367: 8318: 8314: 8278: 8274: 8263: 8258: 8256: 8255: 8237: 8233: 8222: 8217: 8215: 8214: 8196: 8192: 8181: 8176: 8174: 8173: 8155: 8151: 8137: 8134: 8133: 8127:cochain complex 8119: 8116: 8068: 8065: 8054: 8046: 8014: 8010: 7992: 7988: 7980: 7977: 7976: 7941: 7937: 7926: 7921: 7919: 7918: 7900: 7896: 7888: 7885: 7884: 7870: 7833: 7829: 7782: 7779: 7778: 7736: 7732: 7709: 7706: 7705: 7696: 7690: 7684: 7678: 7669:(also known as 7602: 7599: 7598: 7536: 7533: 7532: 7523: 7517: 7511: 7505: 7496: 7483: 7454: 7450: 7435: 7431: 7413: 7409: 7394: 7390: 7366: 7362: 7348: 7345: 7344: 7331: 7327: 7317: 7306: 7252: 7232: 7230: 7216: 7213: 7212: 7193: 7190: 7189: 7167: 7164: 7163: 7143: 7139: 7133: 7128: 7127: 7125: 7122: 7121: 7101: 7097: 7091: 7084: 7083: 7081: 7078: 7077: 7025: 7022: 7021: 7008: 6998: 6989: 6983: 6977: 6971: 6965: 6955: 6945: 6939: 6933: 6927: 6921: 6918: 6889: 6878: 6872: 6856: 6830: 6826: 6820: 6815: 6814: 6802: 6798: 6792: 6785: 6784: 6776: 6773: 6772: 6763: 6760:symmetric group 6756: 6748: 6713: 6709: 6685: 6681: 6672: 6668: 6645: 6641: 6634: 6620: 6615: 6603: 6599: 6584: 6580: 6568: 6564: 6553: 6550: 6549: 6540: 6524: 6521: 6520: 6494: 6490: 6484: 6479: 6478: 6466: 6462: 6456: 6451: 6450: 6442: 6439: 6438: 6424: 6423:. Differential 6421: 6413: 6403: 6395: 6389: 6379: 6371: 6361: 6353: 6350: 6342: 6329: 6323: 6319: 6313: 6307: 6301: 6295: 6273: 6261: 6257: 6251: 6240: 6227: 6223: 6221: 6218: 6217: 6211:multilinear map 6187: 6181: 6180: 6179: 6170: 6166: 6160: 6153: 6152: 6146: 6145: 6133: 6128: 6118: 6111: 6110: 6108: 6105: 6104: 6095: 6089: 6073: 6061: 6057: 6051: 6044: 6043: 6034: 6030: 6028: 6025: 6024: 6018: 6012: 6002: 5996: 5990: 5980: 5972: 5966: 5960: 5950: 5942: 5916: 5911: 5901: 5894: 5893: 5884: 5880: 5878: 5875: 5874: 5865: 5859: 5849: 5838: 5828: 5822: 5816: 5802: 5792: 5789:smooth manifold 5782: 5779: 5773: 5764: 5760: 5756: 5748: 5744: 5742:smooth manifold 5734: 5728: 5720: 5716: 5712: 5706: 5697: 5687: 5680: 5674: 5670: 5667: 5666: 5657: 5651: 5641: 5619: 5615: 5614: 5610: 5590: 5586: 5585: 5581: 5567: 5563: 5562: 5558: 5546: 5542: 5533: 5529: 5523: 5519: 5518: 5514: 5508: 5495: 5491: 5482: 5478: 5469: 5465: 5464: 5458: 5455: 5454: 5447: 5443: 5439: 5435: 5431: 5418: 5414: 5407: 5384: 5380: 5368: 5364: 5351: 5347: 5343: 5336: 5332: 5328: 5326: 5320: 5303: 5290: 5286: 5274: 5270: 5261: 5250: 5235: 5232: 5231: 5222: 5212: 5206: 5205: 5204: 5199: 5193: 5186: 5182: 5159: 5155: 5143: 5139: 5124: 5120: 5108: 5104: 5099: 5096: 5095: 5088: 5059: 5055: 5043: 5039: 5026: 5022: 5018: 5011: 5007: 5003: 5001: 4995: 4978: 4972: 4969: 4968: 4957: 4953: 4949: 4945: 4934: 4930: 4901: 4897: 4893: 4886: 4882: 4878: 4876: 4864: 4860: 4856: 4849: 4845: 4841: 4839: 4837: 4834: 4833: 4826: 4800: 4796: 4786: 4782: 4778: 4768: 4764: 4763: 4761: 4749: 4745: 4735: 4731: 4727: 4717: 4713: 4712: 4710: 4708: 4705: 4704: 4697: 4690: 4687: 4679: 4675: 4664: 4660: 4650: 4646: 4642: 4638: 4634: 4630: 4623: 4620: 4612: 4592: 4588: 4578: 4574: 4568: 4557: 4545: 4542: 4541: 4534: 4530: 4526: 4516: 4506: 4486: 4482: 4476: 4472: 4451: 4447: 4441: 4428: 4424: 4422: 4419: 4418: 4412: 4404: 4396: 4387: 4383: 4379: 4376: 4368: 4365: 4357: 4344: 4340: 4336: 4332: 4328: 4325: 4317: 4294: 4290: 4284: 4280: 4256: 4252: 4248: 4240: 4238: 4232: 4221: 4208: 4204: 4199: 4196: 4195: 4184: 4148: 4144: 4131: 4127: 4123: 4115: 4113: 4107: 4096: 4081: 4078: 4077: 4065: 4048: 4038: 4032: 4026: 4020: 4016: 4012: 4006: 4000: 3994: 3990: 3984: 3980: 3976: 3966: 3960: 3956: 3947: 3939: 3933: 3926: 3914: 3905: 3896: 3892: 3884: 3880: 3876: 3872: 3866: 3855: 3845: 3837: 3833: 3829: 3820:and called the 3818: 3810: 3804: 3798: 3786: 3780: 3774: 3757: 3756: 3734: 3733: 3729: 3716: 3694: 3690: 3686: 3680: 3679: 3657: 3656: 3652: 3624: 3623: 3619: 3609: 3587: 3579: 3578: 3574: 3567: 3565: 3562: 3561: 3552: 3549:linear function 3537: 3531: 3505: 3501: 3497: 3489: 3487: 3478: 3474: 3470: 3463: 3459: 3455: 3453: 3447: 3436: 3420: 3416: 3412: 3404: 3402: 3400: 3397: 3396: 3387: 3381: 3375: 3371: 3365: 3359: 3353: 3342: 3338: 3334: 3324: 3318: 3310: 3307: 3295: 3288: 3282: 3278: 3268: 3239: 3226: 3201: 3196: 3195: 3192: 3191: 3166: 3165: 3161: 3156: 3153: 3152: 3143: 3139: 3135: 3125: 3121: 3115: 3109: 3100: 3094: 3088: 3077: 3073: 3069: 3067:smooth function 3062: 3056: 3048: 3045: 3037:Stokes' theorem 2987: 2952: 2948: 2939: 2935: 2918: 2914: 2901: 2897: 2893: 2886: 2882: 2878: 2876: 2870: 2859: 2854: 2850: 2836: 2830: 2829: 2828: 2821: 2806: 2803: 2802: 2771: 2767: 2758: 2754: 2744: 2740: 2726: 2720: 2719: 2718: 2711: 2699: 2696: 2695: 2694: 2690: 2667: 2663: 2651: 2647: 2634: 2630: 2626: 2618: 2616: 2610: 2599: 2584: 2581: 2580: 2569: 2563: 2559: 2546: 2542: 2523: 2513: 2506: 2481: 2468: 2467: 2466: 2458: 2446: 2440: 2439: 2438: 2433: 2431: 2428: 2427: 2426: 2422: 2418: 2414: 2410: 2406: 2402: 2379: 2373: 2372: 2371: 2369: 2366: 2365: 2361: 2350: 2346: 2342: 2338: 2313: 2307: 2306: 2305: 2298: 2294: 2288: 2284: 2276: 2273: 2272: 2244: 2240: 2225: 2221: 2212: 2208: 2190: 2186: 2171: 2167: 2140: 2134: 2133: 2132: 2130: 2127: 2126: 2125: 2121: 2117: 2098: 2094: 2079: 2064: 2060: 2059: 2055: 2035: 2031: 2030: 2026: 2014: 2010: 2005: 2002: 2001: 2000: 1975: 1971: 1956: 1952: 1943: 1939: 1921: 1917: 1902: 1898: 1889: 1885: 1874: 1871: 1870: 1869: 1865: 1857: 1854: 1838: 1830: 1827: 1821: 1810: 1799: 1753: 1752:; for example: 1743: 1733: 1727: 1721: 1715: 1709: 1689: 1685: 1673: 1669: 1654: 1650: 1638: 1634: 1629: 1626: 1625: 1614: 1585: 1581: 1569: 1565: 1549: 1545: 1521: 1515: 1512: 1511: 1510: 1506: 1500: 1494: 1490: 1480: 1470: 1463: 1451: 1442: 1434: 1411: 1407: 1397: 1393: 1378: 1374: 1364: 1360: 1358: 1355: 1354: 1347: 1339: 1333: 1327: 1312: 1273: 1269: 1250: 1246: 1244: 1241: 1240: 1236: 1232: 1228: 1189: 1188: 1184: 1169: 1165: 1163: 1160: 1159: 1152: 1148: 1143: 1139: 1135: 1134:is an oriented 1131: 1127: 1123: 1119: 1115: 1106: 1096: 1049: 1044: 1009: 1004: 998: 995: 994: 952: 947: 941: 938: 937: 920: 916: 906: 896: 882: 878: 874: 866: 865:A differential 863: 847: 822: 800: 788: 778:Stokes' theorem 774:Green's theorem 731: 711: 708: 707: 703: 677: 674: 673: 665: 649: 646: 645: 639: 594: 591: 590: 541: 538: 537: 518: 512: 475: 472: 471: 467: 459: 455: 421: 416: 403: 248: 244: 242: 239: 238: 229: 220: 145: 103: 98: 92: 89: 88: 79: 69: 54: 28: 23: 22: 15: 12: 11: 5: 18873: 18863: 18862: 18857: 18840: 18839: 18837: 18836: 18831: 18829:Woldemar Voigt 18826: 18821: 18816: 18811: 18806: 18801: 18796: 18794:Leonhard Euler 18791: 18786: 18781: 18776: 18770: 18768: 18766:Mathematicians 18762: 18761: 18758: 18757: 18755: 18754: 18749: 18744: 18739: 18734: 18729: 18724: 18719: 18714: 18708: 18706: 18702: 18701: 18699: 18698: 18693: 18691:Torsion tensor 18688: 18683: 18678: 18673: 18668: 18663: 18657: 18655: 18648: 18644: 18643: 18641: 18640: 18635: 18630: 18625: 18620: 18615: 18610: 18605: 18600: 18595: 18590: 18585: 18580: 18575: 18570: 18565: 18560: 18555: 18550: 18544: 18542: 18536: 18535: 18533: 18532: 18526: 18524:Tensor product 18521: 18516: 18514:Symmetrization 18511: 18506: 18504:Lie derivative 18501: 18496: 18491: 18486: 18481: 18475: 18473: 18467: 18466: 18464: 18463: 18458: 18453: 18448: 18443: 18438: 18433: 18428: 18426:Tensor density 18423: 18418: 18412: 18410: 18404: 18403: 18401: 18400: 18398:Voigt notation 18395: 18390: 18385: 18383:Ricci calculus 18380: 18375: 18370: 18368:Index notation 18365: 18360: 18354: 18352: 18348: 18347: 18344: 18343: 18341: 18340: 18335: 18330: 18325: 18320: 18314: 18312: 18310: 18309: 18304: 18298: 18295: 18294: 18292: 18291: 18286: 18284:Tensor algebra 18281: 18276: 18271: 18266: 18264:Dyadic algebra 18261: 18256: 18250: 18248: 18239: 18235: 18234: 18227: 18224: 18223: 18216: 18215: 18208: 18201: 18193: 18184: 18183: 18181: 18180: 18175: 18170: 18165: 18160: 18159: 18158: 18148: 18143: 18138: 18133: 18128: 18123: 18117: 18115: 18111: 18110: 18108: 18107: 18102: 18097: 18092: 18087: 18082: 18076: 18074: 18070: 18069: 18066: 18065: 18063: 18062: 18057: 18052: 18047: 18042: 18037: 18032: 18027: 18022: 18017: 18011: 18009: 18003: 18002: 18000: 17999: 17994: 17989: 17984: 17979: 17974: 17969: 17959: 17954: 17949: 17939: 17934: 17929: 17924: 17919: 17914: 17908: 17906: 17900: 17899: 17897: 17896: 17891: 17886: 17885: 17884: 17874: 17869: 17868: 17867: 17857: 17852: 17847: 17842: 17841: 17840: 17830: 17825: 17824: 17823: 17813: 17808: 17802: 17800: 17796: 17795: 17793: 17792: 17787: 17782: 17777: 17776: 17775: 17765: 17760: 17755: 17749: 17747: 17740: 17734: 17733: 17731: 17730: 17725: 17715: 17710: 17696: 17691: 17686: 17681: 17676: 17674:Parallelizable 17671: 17666: 17661: 17660: 17659: 17649: 17644: 17639: 17634: 17629: 17624: 17619: 17614: 17609: 17604: 17594: 17584: 17578: 17576: 17570: 17569: 17567: 17566: 17561: 17556: 17554:Lie derivative 17551: 17549:Integral curve 17546: 17541: 17536: 17535: 17534: 17524: 17519: 17518: 17517: 17510:Diffeomorphism 17507: 17501: 17499: 17493: 17492: 17490: 17489: 17484: 17479: 17474: 17469: 17464: 17459: 17454: 17449: 17443: 17441: 17432: 17431: 17429: 17428: 17423: 17418: 17413: 17408: 17403: 17398: 17393: 17388: 17387: 17386: 17381: 17371: 17370: 17369: 17358: 17356: 17355:Basic concepts 17352: 17351: 17339: 17338: 17331: 17324: 17316: 17310: 17309: 17297: 17270: 17252: 17231: 17230:External links 17228: 17227: 17226: 17221: 17205: 17200: 17176: 17169: 17151: 17146: 17130: 17125: 17108: 17091: 17086: 17070: 17063: 17047: 17042: 17018: 16999: 16989: 16973: 16961:math/0306194v1 16947: 16942: 16936:, Birkhäuser, 16927: 16924: 16921: 16920: 16906: 16891: 16873: 16840: 16839: 16837: 16834: 16833: 16832: 16827: 16822: 16817: 16810: 16805: 16800: 16795: 16788: 16785: 16760: 16757: 16726: 16725: 16714: 16710: 16706: 16702: 16698: 16694: 16690: 16687: 16683: 16614:Maxwell 2-form 16596: 16591: 16559: 16548: 16547: 16532: 16522: 16519: 16517: 16507: 16503: 16500: 16499: 16489: 16486: 16484: 16475: 16472: 16471: 16428: 16425: 16391: 16380: 16367: 16366: 16355: 16349: 16345: 16341: 16338: 16333: 16329: 16325: 16322: 16317: 16313: 16309: 16303: 16300: 16297: 16294: 16290: 16283: 16279: 16273: 16270: 16265: 16236: 16235: 16224: 16214: 16211: 16180:gauge theories 16167:curvature form 16156: 16149: 16134: 16127: 16108: 16105: 16079: 16076: 16058: 16051: 16050: 16039: 16033: 16029: 16025: 16022: 16017: 16013: 16009: 16003: 16000: 15996: 15990: 15987: 15982: 15957:Faraday 2-form 15948: 15945: 15912: 15909: 15846:vectors in an 15714:pulls back to 15686:absolute value 15631: 15628: 15625: 15622: 15619: 15614: 15609: 15605: 15601: 15598: 15595: 15592: 15587: 15582: 15578: 15553: 15550: 15547: 15544: 15539: 15534: 15530: 15479: 15476: 15379: 15376: 15373: 15368: 15364: 15360: 15357: 15354: 15349: 15345: 15321: 15316: 15312: 15308: 15305: 15300: 15296: 15228: 15227: 15216: 15213: 15208: 15205: 15201: 15197: 15194: 15191: 15186: 15182: 15120:Main article: 15117: 15114: 15113: 15112: 15101: 15096: 15092: 15088: 15083: 15079: 15075: 15072: 15069: 15066: 15063: 15060: 15055: 15051: 15018:Dieudonné 1972 14986:Dieudonné 1972 14976: 14975: 14964: 14958: 14953: 14947: 14944: 14941: 14936: 14933: 14929: 14924: 14920: 14917: 14913: 14909: 14904: 14900: 14896: 14858: 14857: 14846: 14843: 14838: 14833: 14829: 14823: 14820: 14817: 14811: 14805: 14800: 14796: 14790: 14784: 14780: 14775: 14771: 14766: 14761: 14757: 14752: 14748: 14744: 14739: 14735: 14730: 14726: 14721: 14717: 14710: 14705: 14701: 14666: 14641: 14640: 14629: 14626: 14621: 14616: 14612: 14606: 14603: 14600: 14594: 14588: 14585: 14580: 14576: 14571: 14566: 14562: 14557: 14553: 14522:determines an 14475: 14474: 14463: 14458: 14454: 14449: 14444: 14440: 14436: 14421: 14420: 14409: 14404: 14399: 14395: 14389: 14386: 14383: 14377: 14371: 14368: 14363: 14359: 14353: 14347: 14187: 14186: 14175: 14172: 14166: 14161: 14157: 14153: 14148: 14145: 14142: 14137: 14134: 14130: 14125: 14119: 14112: 14108: 14104: 14101: 14096: 14092: 14077:Dieudonné 1972 14073: 14072: 14061: 14058: 14052: 14047: 14043: 14039: 14034: 14031: 14028: 14023: 14020: 14016: 14011: 14005: 13989: 13988: 13977: 13972: 13968: 13961: 13954: 13950: 13945: 13941: 13936: 13933: 13930: 13925: 13922: 13918: 13913: 13907: 13902: 13899: 13848: 13681: 13670: 13669: 13658: 13653: 13649: 13644: 13638: 13634: 13630: 13625: 13621: 13533: 13532: 13521: 13516: 13512: 13508: 13505: 13502: 13499: 13494: 13491: 13487: 13483: 13480: 13456: 13436: 13427: 13416: 13409: 13408: 13397: 13393: 13389: 13385: 13379: 13375: 13371: 13366: 13362: 13335: 13334: 13323: 13318: 13313: 13309: 13303: 13300: 13297: 13291: 13285: 13281: 13277: 13273: 13258: 13257: 13246: 13243: 13238: 13233: 13229: 13223: 13217: 13211: 13207: 13203: 13199: 13195: 13190: 13186: 13180: 13176: 13170: 13166: 13162: 13159: 13154: 13150: 13131: 13102: 13091: 13084: 13083: 13072: 13069: 13066: 13063: 13058: 13055: 13051: 13047: 13042: 13037: 13033: 13027: 13024: 13021: 13015: 13009: 13004: 13000: 12985:Dieudonné 1972 12977: 12970: 12969: 12954: 12951: 12946: 12941: 12937: 12931: 12925: 12919: 12916: 12914: 12910: 12906: 12902: 12901: 12898: 12895: 12890: 12885: 12881: 12875: 12869: 12863: 12860: 12858: 12854: 12850: 12846: 12845: 12721:Main article: 12718: 12715: 12578:Dieudonné 1972 12573: 12570: 12550: 12549: 12538: 12535: 12530: 12525: 12521: 12515: 12511: 12505: 12501: 12495: 12490: 12487: 12484: 12480: 12476: 12473: 12468: 12464: 12425: 12424: 12413: 12408: 12404: 12398: 12394: 12388: 12383: 12380: 12377: 12373: 12369: 12366: 12261: 12260: 12246: 12241: 12237: 12233: 12230: 12227: 12222: 12218: 12214: 12211: 12206: 12199: 12195: 12190: 12186: 12183: 12180: 12173: 12169: 12164: 12160: 12157: 12140: 12139: 12128: 12123: 12119: 12115: 12112: 12107: 12103: 12099: 12092: 12087: 12083: 12079: 12076: 12073: 12068: 12064: 12060: 12057: 12052: 12045: 12041: 12036: 12032: 12029: 12026: 12019: 12015: 12010: 12006: 12003: 11997: 11994: 11989: 11984: 11981: 11978: 11971: 11967: 11963: 11960: 11957: 11952: 11948: 11943: 11935: 11931: 11927: 11924: 11921: 11916: 11912: 11907: 11901: 11897: 11893: 11890: 11885: 11881: 11866: 11865: 11854: 11851: 11848: 11843: 11838: 11833: 11829: 11825: 11822: 11819: 11816: 11811: 11806: 11801: 11797: 11793: 11790: 11787: 11782: 11777: 11774: 11762:is defined by 11754: 11753: 11742: 11735: 11731: 11726: 11722: 11719: 11716: 11713: 11706: 11702: 11697: 11693: 11689: 11684: 11679: 11672: 11668: 11664: 11661: 11658: 11653: 11649: 11644: 11636: 11632: 11628: 11625: 11622: 11617: 11613: 11608: 11604: 11601: 11512: 11511: 11500: 11497: 11494: 11491: 11488: 11452:-manifold and 11437: 11434: 11410: 11409: 11398: 11393: 11389: 11385: 11382: 11377: 11373: 11369: 11365: 11362: 11359: 11356: 11351: 11347: 11334: 11324: 11319: 11315: 11274: 11273: 11260: 11256: 11252: 11249: 11246: 11243: 11238: 11234: 11230: 11226: 11223: 11220: 11217: 11214: 11211: 11154: 11151: 11146:= 1, 2, 3, ... 11085: 11082: 11069: 11066: 11063: 11060: 11057: 11054: 11051: 11024: 11020: 11015: 11011: 11002: 10998: 10993: 10989: 10963: 10956: 10952: 10947: 10943: 10940: 10937: 10930: 10926: 10921: 10917: 10914: 10909: 10902: 10898: 10893: 10889: 10886: 10883: 10876: 10872: 10867: 10863: 10860: 10846: 10845: 10834: 10827: 10823: 10818: 10814: 10811: 10808: 10805: 10798: 10794: 10789: 10785: 10778: 10771: 10767: 10762: 10758: 10755: 10752: 10745: 10741: 10736: 10732: 10729: 10724: 10717: 10713: 10708: 10704: 10701: 10698: 10691: 10687: 10682: 10678: 10675: 10669: 10666: 10663: 10656: 10652: 10648: 10643: 10639: 10634: 10630: 10623: 10619: 10615: 10612: 10609: 10604: 10600: 10595: 10587: 10583: 10579: 10576: 10573: 10568: 10564: 10559: 10555: 10552: 10547: 10543: 10502: 10495: 10494: 10483: 10476: 10472: 10467: 10463: 10460: 10457: 10454: 10447: 10443: 10438: 10434: 10430: 10427: 10424: 10417: 10413: 10409: 10404: 10400: 10395: 10391: 10384: 10380: 10376: 10373: 10370: 10365: 10361: 10356: 10352: 10349: 10344: 10340: 10302: 10295: 10291: 10280: 10271: 10264: 10263: 10252: 10245: 10241: 10236: 10232: 10229: 10226: 10223: 10216: 10212: 10207: 10203: 10195: 10191: 10187: 10182: 10178: 10173: 10165: 10161: 10157: 10154: 10151: 10146: 10142: 10137: 10133: 10130: 10085: 10038: 10037: 10022: 10019: 10016: 10011: 10007: 10003: 10000: 9997: 9994: 9992: 9990: 9987: 9984: 9981: 9976: 9972: 9968: 9967: 9964: 9961: 9956: 9952: 9948: 9945: 9940: 9936: 9932: 9929: 9927: 9925: 9922: 9919: 9916: 9913: 9908: 9904: 9900: 9899: 9896: 9893: 9888: 9884: 9880: 9877: 9872: 9868: 9864: 9861: 9859: 9857: 9854: 9851: 9848: 9845: 9840: 9836: 9832: 9831: 9828: 9825: 9822: 9817: 9813: 9809: 9806: 9803: 9800: 9798: 9796: 9793: 9790: 9787: 9782: 9778: 9774: 9773: 9755:are forms and 9719: 9715: 9712: 9709: 9706: 9703: 9698: 9692: 9662: 9661: 9649: 9645: 9642: 9632: 9627: 9617: 9614: 9609: 9603: 9590: 9587: 9582: 9577: 9570: 9560: 9557: 9552: 9546: 9513: 9512: 9501: 9497: 9493: 9490: 9480: 9475: 9465: 9462: 9457: 9451: 9435:vector bundles 9413: 9412: 9401: 9398: 9393: 9389: 9383: 9377: 9362: 9358: 9354: 9351: 9348: 9343: 9338: 9331: 9321: 9316: 9312: 9306: 9300: 9287: 9282: 9272: 9262: 9257: 9247: 9204: 9200: 9196: 9193: 9190: 9185: 9181: 9153: 9152: 9141: 9138: 9133: 9129: 9116: 9112: 9108: 9105: 9102: 9097: 9087: 9082: 9078: 9067: 9062: 9052: 9042: 9037: 9027: 8949: 8948: 8937: 8934: 8929: 8925: 8919: 8915: 8911: 8908: 8905: 8900: 8896: 8890: 8886: 8882: 8877: 8874: 8871: 8868: 8864: 8860: 8857: 8852: 8848: 8844: 8841: 8838: 8833: 8829: 8825: 8820: 8816: 8812: 8807: 8803: 8799: 8763: 8754: 8668:Formally, let 8614: 8584: 8549: 8535: 8521: 8494: 8434: 8431: 8374:Poincaré lemma 8356: 8355: 8344: 8338: 8332: 8329: 8326: 8321: 8317: 8310: 8304: 8298: 8292: 8289: 8286: 8281: 8277: 8266: 8261: 8251: 8248: 8245: 8240: 8236: 8225: 8220: 8210: 8207: 8204: 8199: 8195: 8184: 8179: 8169: 8166: 8163: 8158: 8154: 8147: 8141: 8115: 8112: 8064: 8061: 8034: 8031: 8028: 8023: 8020: 8017: 8013: 8009: 8006: 8003: 8000: 7995: 7991: 7987: 7984: 7974:codifferential 7961: 7958: 7955: 7950: 7947: 7944: 7940: 7929: 7924: 7914: 7911: 7908: 7903: 7899: 7895: 7892: 7869: 7866: 7853: 7850: 7847: 7844: 7841: 7836: 7832: 7828: 7825: 7822: 7819: 7816: 7813: 7810: 7807: 7804: 7801: 7798: 7795: 7792: 7789: 7786: 7768: 7767: 7756: 7753: 7750: 7747: 7742: 7739: 7735: 7731: 7728: 7725: 7722: 7719: 7716: 7713: 7663: 7662: 7651: 7648: 7645: 7642: 7639: 7636: 7633: 7630: 7627: 7624: 7621: 7618: 7615: 7612: 7609: 7606: 7596: 7585: 7582: 7579: 7576: 7573: 7570: 7567: 7564: 7561: 7558: 7555: 7552: 7549: 7546: 7543: 7540: 7492: 7480: 7479: 7468: 7465: 7462: 7457: 7453: 7449: 7446: 7443: 7438: 7434: 7430: 7427: 7424: 7421: 7416: 7412: 7408: 7405: 7402: 7397: 7393: 7389: 7386: 7383: 7380: 7377: 7374: 7369: 7365: 7361: 7358: 7355: 7352: 7303: 7302: 7291: 7288: 7285: 7282: 7279: 7276: 7273: 7270: 7264: 7261: 7258: 7255: 7250: 7247: 7244: 7241: 7238: 7235: 7229: 7226: 7223: 7220: 7197: 7177: 7174: 7171: 7151: 7146: 7142: 7136: 7131: 7109: 7104: 7100: 7094: 7088: 7074: 7073: 7062: 7059: 7056: 7053: 7050: 7047: 7044: 7041: 7038: 7035: 7032: 7029: 6917: 6914: 6906:Lie derivative 6888: 6885: 6853: 6852: 6841: 6838: 6833: 6829: 6823: 6818: 6813: 6810: 6805: 6801: 6795: 6789: 6783: 6780: 6752: 6745: 6744: 6733: 6730: 6725: 6722: 6719: 6716: 6712: 6708: 6705: 6702: 6697: 6694: 6691: 6688: 6684: 6680: 6675: 6671: 6667: 6664: 6661: 6658: 6655: 6648: 6644: 6640: 6637: 6633: 6626: 6623: 6619: 6614: 6611: 6606: 6602: 6598: 6595: 6592: 6587: 6583: 6579: 6576: 6571: 6567: 6563: 6560: 6557: 6528: 6517: 6516: 6505: 6502: 6497: 6493: 6487: 6482: 6477: 6474: 6469: 6465: 6459: 6454: 6449: 6446: 6417: 6411:tangent vector 6399: 6384:(induced by a 6375: 6357: 6346: 6292: 6291: 6280: 6276: 6272: 6269: 6264: 6260: 6254: 6249: 6246: 6243: 6239: 6235: 6230: 6226: 6204: 6203: 6190: 6184: 6178: 6173: 6169: 6163: 6157: 6149: 6144: 6141: 6136: 6131: 6127: 6121: 6115: 6076: 6072: 6069: 6064: 6060: 6054: 6048: 6042: 6037: 6033: 6009:tangent bundle 5976: 5946: 5939: 5938: 5927: 5924: 5919: 5914: 5910: 5904: 5898: 5892: 5887: 5883: 5809:exterior power 5799:smooth section 5772: 5769: 5702: 5692: 5688:< ... < 5685: 5678: 5662: 5655: 5649: 5645: 5638: 5637: 5622: 5618: 5613: 5609: 5606: 5603: 5600: 5593: 5589: 5584: 5580: 5577: 5570: 5566: 5561: 5557: 5549: 5545: 5541: 5536: 5532: 5526: 5522: 5517: 5511: 5506: 5503: 5498: 5494: 5490: 5485: 5481: 5477: 5472: 5468: 5463: 5406:To summarize: 5404: 5403: 5392: 5387: 5383: 5379: 5376: 5371: 5367: 5363: 5354: 5350: 5346: 5339: 5335: 5331: 5323: 5318: 5315: 5312: 5309: 5306: 5302: 5298: 5293: 5289: 5285: 5282: 5277: 5273: 5269: 5264: 5259: 5256: 5253: 5249: 5245: 5242: 5239: 5218: 5207: 5179: 5178: 5167: 5162: 5158: 5154: 5151: 5146: 5142: 5138: 5135: 5132: 5127: 5123: 5119: 5116: 5111: 5107: 5103: 5085: 5084: 5073: 5070: 5067: 5062: 5058: 5054: 5051: 5046: 5042: 5038: 5029: 5025: 5021: 5014: 5010: 5006: 4998: 4993: 4990: 4987: 4984: 4981: 4977: 4927: 4926: 4915: 4912: 4904: 4900: 4896: 4889: 4885: 4881: 4875: 4867: 4863: 4859: 4852: 4848: 4844: 4823: 4822: 4811: 4803: 4799: 4795: 4789: 4785: 4781: 4776: 4771: 4767: 4760: 4752: 4748: 4744: 4738: 4734: 4730: 4725: 4720: 4716: 4683: 4616: 4609: 4608: 4595: 4591: 4587: 4581: 4577: 4571: 4566: 4563: 4560: 4556: 4552: 4549: 4503: 4502: 4489: 4485: 4479: 4475: 4471: 4468: 4465: 4462: 4459: 4454: 4450: 4444: 4440: 4436: 4431: 4427: 4408: 4400: 4392: 4372: 4361: 4321: 4314: 4313: 4302: 4297: 4293: 4287: 4283: 4279: 4276: 4273: 4270: 4267: 4259: 4255: 4251: 4246: 4243: 4235: 4230: 4227: 4224: 4220: 4216: 4211: 4207: 4203: 4179: 4178: 4169: 4167: 4156: 4151: 4147: 4143: 4134: 4130: 4126: 4121: 4118: 4110: 4105: 4102: 4099: 4095: 4091: 4088: 4085: 4061: 3952: 3943: 3922: 3888: 3851: 3841: 3814: 3771: 3770: 3755: 3752: 3749: 3746: 3743: 3737: 3732: 3728: 3725: 3722: 3719: 3717: 3715: 3712: 3709: 3706: 3703: 3697: 3693: 3689: 3685: 3682: 3681: 3678: 3675: 3672: 3669: 3666: 3660: 3655: 3651: 3648: 3645: 3642: 3639: 3636: 3633: 3627: 3622: 3618: 3615: 3612: 3610: 3608: 3605: 3602: 3599: 3596: 3590: 3586: 3582: 3577: 3573: 3570: 3569: 3533: 3528: 3527: 3516: 3508: 3504: 3500: 3495: 3492: 3481: 3477: 3473: 3466: 3462: 3458: 3450: 3445: 3442: 3439: 3435: 3431: 3423: 3419: 3415: 3410: 3407: 3320: 3303: 3281:by evaluating 3265: 3264: 3253: 3248: 3245: 3242: 3237: 3233: 3229: 3225: 3222: 3219: 3216: 3213: 3207: 3204: 3200: 3194: 3190: 3187: 3184: 3181: 3178: 3175: 3169: 3164: 3160: 3111: 3044: 3041: 3021:antiderivation 2984: 2983: 2972: 2969: 2966: 2961: 2958: 2955: 2951: 2947: 2942: 2938: 2934: 2931: 2927: 2921: 2917: 2913: 2904: 2900: 2896: 2889: 2885: 2881: 2873: 2868: 2865: 2862: 2858: 2853: 2845: 2842: 2839: 2833: 2827: 2824: 2820: 2816: 2813: 2810: 2785: 2782: 2779: 2774: 2770: 2766: 2761: 2757: 2753: 2747: 2743: 2735: 2732: 2729: 2723: 2717: 2714: 2710: 2706: 2703: 2687: 2686: 2675: 2670: 2666: 2662: 2659: 2654: 2650: 2646: 2637: 2633: 2629: 2624: 2621: 2613: 2608: 2605: 2602: 2598: 2594: 2591: 2588: 2505: 2502: 2484: 2479: 2476: 2471: 2465: 2461: 2455: 2452: 2449: 2443: 2436: 2388: 2385: 2382: 2376: 2322: 2319: 2316: 2310: 2304: 2301: 2297: 2291: 2287: 2283: 2280: 2258: 2255: 2252: 2247: 2243: 2239: 2236: 2233: 2228: 2224: 2220: 2215: 2211: 2207: 2204: 2201: 2198: 2193: 2189: 2185: 2182: 2179: 2174: 2170: 2166: 2163: 2160: 2157: 2154: 2149: 2146: 2143: 2137: 2101: 2097: 2093: 2088: 2085: 2082: 2078: 2074: 2067: 2063: 2058: 2054: 2051: 2048: 2045: 2038: 2034: 2029: 2025: 2022: 2017: 2013: 2009: 1986: 1983: 1978: 1974: 1970: 1967: 1964: 1959: 1955: 1951: 1946: 1942: 1938: 1935: 1932: 1929: 1924: 1920: 1916: 1913: 1910: 1905: 1901: 1897: 1892: 1888: 1884: 1881: 1878: 1853: 1850: 1834: 1825: 1706: 1705: 1692: 1688: 1684: 1681: 1676: 1672: 1668: 1665: 1662: 1657: 1653: 1649: 1646: 1641: 1637: 1633: 1588: 1584: 1580: 1577: 1572: 1568: 1564: 1558: 1555: 1552: 1548: 1542: 1539: 1536: 1533: 1530: 1527: 1524: 1520: 1447: 1438: 1431: 1430: 1419: 1414: 1410: 1406: 1400: 1396: 1392: 1389: 1386: 1381: 1377: 1373: 1367: 1363: 1300: 1297: 1293: 1288: 1285: 1282: 1279: 1276: 1272: 1268: 1265: 1262: 1258: 1253: 1249: 1225:measure theory 1217: 1216: 1205: 1201: 1195: 1192: 1187: 1183: 1180: 1177: 1172: 1168: 1088: 1087: 1076: 1073: 1070: 1066: 1063: 1060: 1057: 1052: 1047: 1043: 1039: 1036: 1033: 1030: 1026: 1023: 1020: 1017: 1012: 1007: 1003: 988: 987: 976: 973: 969: 966: 963: 960: 955: 950: 946: 862: 859: 846: 843: 837:'s 1844 work, 821: 818: 753: 750: 747: 744: 741: 737: 734: 730: 727: 724: 721: 718: 715: 687: 684: 681: 653: 616: 613: 610: 607: 604: 601: 598: 578: 575: 572: 569: 566: 563: 560: 557: 554: 551: 548: 545: 500: 497: 494: 491: 488: 485: 482: 479: 452:volume element 400: 399: 388: 385: 382: 379: 376: 373: 370: 366: 363: 360: 357: 354: 351: 348: 345: 342: 339: 336: 333: 330: 327: 323: 320: 317: 314: 311: 308: 305: 302: 299: 296: 293: 290: 287: 284: 280: 277: 274: 271: 268: 265: 262: 259: 256: 251: 247: 142: 141: 130: 127: 124: 120: 117: 114: 111: 106: 101: 97: 26: 9: 6: 4: 3: 2: 18872: 18861: 18858: 18856: 18853: 18852: 18850: 18835: 18832: 18830: 18827: 18825: 18822: 18820: 18817: 18815: 18812: 18810: 18807: 18805: 18802: 18800: 18797: 18795: 18792: 18790: 18787: 18785: 18782: 18780: 18777: 18775: 18772: 18771: 18769: 18767: 18763: 18753: 18750: 18748: 18745: 18743: 18740: 18738: 18735: 18733: 18730: 18728: 18725: 18723: 18720: 18718: 18715: 18713: 18710: 18709: 18707: 18703: 18697: 18694: 18692: 18689: 18687: 18684: 18682: 18679: 18677: 18674: 18672: 18671:Metric tensor 18669: 18667: 18664: 18662: 18659: 18658: 18656: 18652: 18649: 18645: 18639: 18636: 18634: 18631: 18629: 18626: 18624: 18621: 18619: 18616: 18614: 18611: 18609: 18606: 18604: 18601: 18599: 18596: 18594: 18591: 18589: 18586: 18584: 18583:Exterior form 18581: 18579: 18576: 18574: 18571: 18569: 18566: 18564: 18561: 18559: 18556: 18554: 18551: 18549: 18546: 18545: 18543: 18537: 18530: 18527: 18525: 18522: 18520: 18517: 18515: 18512: 18510: 18507: 18505: 18502: 18500: 18497: 18495: 18492: 18490: 18487: 18485: 18482: 18480: 18477: 18476: 18474: 18472: 18468: 18462: 18459: 18457: 18456:Tensor bundle 18454: 18452: 18449: 18447: 18444: 18442: 18439: 18437: 18434: 18432: 18429: 18427: 18424: 18422: 18419: 18417: 18414: 18413: 18411: 18405: 18399: 18396: 18394: 18391: 18389: 18386: 18384: 18381: 18379: 18376: 18374: 18371: 18369: 18366: 18364: 18361: 18359: 18356: 18355: 18353: 18349: 18339: 18336: 18334: 18331: 18329: 18326: 18324: 18321: 18319: 18316: 18315: 18313: 18308: 18305: 18303: 18300: 18299: 18296: 18290: 18287: 18285: 18282: 18280: 18277: 18275: 18272: 18270: 18267: 18265: 18262: 18260: 18257: 18255: 18252: 18251: 18249: 18247: 18243: 18240: 18236: 18232: 18231: 18225: 18221: 18214: 18209: 18207: 18202: 18200: 18195: 18194: 18191: 18179: 18176: 18174: 18173:Supermanifold 18171: 18169: 18166: 18164: 18161: 18157: 18154: 18153: 18152: 18149: 18147: 18144: 18142: 18139: 18137: 18134: 18132: 18129: 18127: 18124: 18122: 18119: 18118: 18116: 18112: 18106: 18103: 18101: 18098: 18096: 18093: 18091: 18088: 18086: 18083: 18081: 18078: 18077: 18075: 18071: 18061: 18058: 18056: 18053: 18051: 18048: 18046: 18043: 18041: 18038: 18036: 18033: 18031: 18028: 18026: 18023: 18021: 18018: 18016: 18013: 18012: 18010: 18008: 18004: 17998: 17995: 17993: 17990: 17988: 17985: 17983: 17980: 17978: 17975: 17973: 17970: 17968: 17964: 17960: 17958: 17955: 17953: 17950: 17948: 17944: 17940: 17938: 17935: 17933: 17930: 17928: 17925: 17923: 17920: 17918: 17915: 17913: 17910: 17909: 17907: 17905: 17901: 17895: 17894:Wedge product 17892: 17890: 17887: 17883: 17880: 17879: 17878: 17875: 17873: 17870: 17866: 17863: 17862: 17861: 17858: 17856: 17853: 17851: 17848: 17846: 17843: 17839: 17838:Vector-valued 17836: 17835: 17834: 17831: 17829: 17826: 17822: 17819: 17818: 17817: 17814: 17812: 17809: 17807: 17804: 17803: 17801: 17797: 17791: 17788: 17786: 17783: 17781: 17778: 17774: 17771: 17770: 17769: 17768:Tangent space 17766: 17764: 17761: 17759: 17756: 17754: 17751: 17750: 17748: 17744: 17741: 17739: 17735: 17729: 17726: 17724: 17720: 17716: 17714: 17711: 17709: 17705: 17701: 17697: 17695: 17692: 17690: 17687: 17685: 17682: 17680: 17677: 17675: 17672: 17670: 17667: 17665: 17662: 17658: 17655: 17654: 17653: 17650: 17648: 17645: 17643: 17640: 17638: 17635: 17633: 17630: 17628: 17625: 17623: 17620: 17618: 17615: 17613: 17610: 17608: 17605: 17603: 17599: 17595: 17593: 17589: 17585: 17583: 17580: 17579: 17577: 17571: 17565: 17562: 17560: 17557: 17555: 17552: 17550: 17547: 17545: 17542: 17540: 17537: 17533: 17532:in Lie theory 17530: 17529: 17528: 17525: 17523: 17520: 17516: 17513: 17512: 17511: 17508: 17506: 17503: 17502: 17500: 17498: 17494: 17488: 17485: 17483: 17480: 17478: 17475: 17473: 17470: 17468: 17465: 17463: 17460: 17458: 17455: 17453: 17450: 17448: 17445: 17444: 17442: 17439: 17435:Main results 17433: 17427: 17424: 17422: 17419: 17417: 17416:Tangent space 17414: 17412: 17409: 17407: 17404: 17402: 17399: 17397: 17394: 17392: 17389: 17385: 17382: 17380: 17377: 17376: 17375: 17372: 17368: 17365: 17364: 17363: 17360: 17359: 17357: 17353: 17348: 17344: 17337: 17332: 17330: 17325: 17323: 17318: 17317: 17314: 17307: 17306: 17301: 17298: 17294: 17290: 17285: 17280: 17276: 17271: 17268: 17260: 17259: 17253: 17248: 17247: 17242: 17239: 17234: 17233: 17224: 17222:3-540-40633-6 17218: 17214: 17210: 17206: 17203: 17197: 17193: 17189: 17185: 17181: 17180:Tu, Loring W. 17177: 17172: 17170:0-8053-9021-9 17166: 17162: 17161: 17156: 17152: 17149: 17147:0-07-054235-X 17143: 17139: 17135: 17134:Rudin, Walter 17131: 17128: 17126:0-8218-1045-6 17122: 17117: 17116: 17109: 17106: 17100: 17096: 17092: 17089: 17087:0-486-66169-5 17083: 17079: 17075: 17071: 17066: 17060: 17056: 17052: 17048: 17045: 17039: 17035: 17031: 17027: 17023: 17019: 17016: 17012: 17008: 17004: 17000: 16997: 16992: 16990:0-486-45010-4 16986: 16982: 16978: 16977:Cartan, Henri 16974: 16971: 16967: 16962: 16957: 16953: 16948: 16945: 16939: 16935: 16930: 16929: 16916: 16910: 16902: 16898: 16894: 16892:9781441974006 16888: 16884: 16877: 16869: 16864: 16860: 16856: 16852: 16845: 16841: 16831: 16828: 16826: 16823: 16821: 16818: 16816: 16815: 16811: 16809: 16806: 16804: 16801: 16799: 16796: 16794: 16791: 16790: 16784: 16782: 16778: 16774: 16770: 16766: 16756: 16754: 16749: 16743: 16736: 16732: 16712: 16704: 16696: 16688: 16685: 16673: 16672: 16671: 16668: 16662: 16657: 16652: 16647: 16643: 16639: 16638:unitary group 16631: 16627: 16623: 16617: 16615: 16611: 16589: 16575: 16573: 16557: 16530: 16520: 16518: 16505: 16501: 16487: 16485: 16473: 16462: 16461: 16460: 16458: 16454: 16449: 16446: 16423: 16412: 16407: 16401: 16394: 16390: 16383: 16379: 16373: 16353: 16347: 16343: 16339: 16336: 16331: 16327: 16323: 16320: 16315: 16311: 16307: 16301: 16298: 16295: 16292: 16288: 16281: 16277: 16271: 16268: 16263: 16249: 16248: 16247: 16245: 16222: 16212: 16209: 16195: 16194: 16193: 16190: 16185: 16181: 16177: 16173: 16168: 16163: 16159: 16155: 16148: 16142: 16137: 16133: 16126: 16103: 16074: 16061: 16057: 16037: 16031: 16027: 16023: 16020: 16015: 16011: 16007: 16001: 15998: 15994: 15988: 15985: 15980: 15966: 15965: 15964: 15962: 15958: 15954: 15944: 15941: 15935: 15931:-currents on 15929: 15924: 15923: 15918: 15908: 15905: 15899: 15893: 15887: 15881: 15876: 15873:-dimensional 15871: 15865: 15862: 15856: 15850: 15844: 15839: 15834: 15828: 15822: 15818: 15812: 15806: 15804: 15799: 15794: 15789: 15783: 15777: 15775: 15771: 15766: 15761: 15756: 15751: 15746: 15741: 15731: 15724: 15719: 15712: 15706: 15702: 15694: 15687: 15682: 15678: 15673: 15653: 15647: 15629: 15626: 15623: 15620: 15617: 15612: 15607: 15603: 15599: 15596: 15593: 15590: 15585: 15580: 15576: 15551: 15548: 15545: 15542: 15537: 15532: 15528: 15518: 15505: 15495: 15491: 15485: 15475: 15473: 15469: 15464: 15462: 15458: 15454: 15450: 15444: 15440: 15436: 15432: 15426: 15420: 15414: 15408: 15402: 15398: 15392: 15377: 15374: 15371: 15366: 15362: 15358: 15355: 15352: 15347: 15343: 15319: 15314: 15310: 15306: 15303: 15298: 15294: 15282: 15275: 15268: 15264: 15258: 15252: 15246: 15240: 15234: 15214: 15211: 15206: 15199: 15195: 15192: 15189: 15184: 15180: 15172: 15171: 15170: 15168: 15163: 15158: 15153: 15147: 15140: 15134: 15129: 15123: 15099: 15086: 15081: 15077: 15073: 15070: 15064: 15061: 15058: 15049: 15041: 15040: 15039: 15036: 15030: 15024: 15019: 15015: 15010: 15008: 15006: 15000: 14992: 14987: 14982: 14962: 14951: 14942: 14934: 14931: 14927: 14922: 14918: 14907: 14902: 14898: 14887: 14886: 14885: 14882: 14876: 14870: 14864: 14844: 14841: 14836: 14831: 14827: 14821: 14818: 14815: 14809: 14803: 14798: 14794: 14782: 14773: 14769: 14764: 14750: 14746: 14742: 14737: 14733: 14728: 14724: 14719: 14703: 14692: 14691: 14690: 14686: 14682: 14676: 14669: 14665: 14658: 14654: 14647: 14627: 14624: 14619: 14614: 14610: 14604: 14601: 14598: 14592: 14586: 14578: 14574: 14569: 14555: 14551: 14543: 14542: 14541: 14540:by pullback: 14538: 14534:-covector at 14531: 14527: 14520: 14514: 14508: 14501: 14497: 14493: 14487: 14481: 14461: 14456: 14452: 14447: 14426: 14425: 14424: 14407: 14402: 14397: 14393: 14387: 14384: 14381: 14375: 14366: 14361: 14357: 14351: 14345: 14335: 14334: 14333: 14330: 14326: 14320: 14314: 14308: 14302: 14295: 14291: 14285: 14279: 14273: 14267: 14261: 14257: 14251: 14245: 14239: 14233: 14227: 14221: 14215: 14208: 14204: 14200: 14193: 14173: 14170: 14159: 14155: 14151: 14143: 14135: 14132: 14128: 14123: 14110: 14106: 14102: 14099: 14094: 14090: 14082: 14081: 14080: 14078: 14059: 14056: 14045: 14041: 14037: 14029: 14021: 14018: 14014: 14009: 13994: 13993: 13992: 13975: 13970: 13966: 13952: 13948: 13943: 13939: 13931: 13923: 13920: 13916: 13911: 13897: 13890: 13889: 13888: 13885: 13879: 13872: 13868: 13862: 13858: 13851: 13847: 13843: 13837: 13833: 13827: 13821: 13815: 13809: 13803: 13797: 13791: 13785: 13779: 13773: 13767: 13763: 13759: 13753: 13747: 13741: 13735: 13729: 13726: 13720: 13714: 13707: 13703: 13697: 13691: 13684: 13680: 13676: 13656: 13651: 13647: 13642: 13636: 13632: 13628: 13623: 13619: 13611: 13610: 13609: 13605: 13601: 13597: 13590: 13586: 13580: 13573: 13569: 13561: 13557: 13551: 13545: 13539: 13519: 13514: 13510: 13500: 13492: 13489: 13485: 13481: 13478: 13471: 13470: 13469: 13466: 13459: 13455: 13449: 13443: 13439: 13435: 13430: 13426: 13419: 13415: 13395: 13391: 13387: 13383: 13377: 13373: 13369: 13364: 13360: 13352: 13351: 13350: 13346: 13342: 13321: 13316: 13311: 13307: 13301: 13298: 13295: 13289: 13283: 13279: 13275: 13271: 13263: 13262: 13261: 13244: 13241: 13236: 13231: 13227: 13221: 13215: 13209: 13205: 13201: 13197: 13193: 13188: 13178: 13174: 13168: 13164: 13157: 13152: 13148: 13140: 13139: 13138: 13134: 13130: 13124: 13120: 13116: 13112: 13105: 13101: 13094: 13090: 13064: 13056: 13053: 13049: 13040: 13035: 13031: 13025: 13022: 13019: 13013: 13007: 13002: 12998: 12990: 12989: 12988: 12986: 12980: 12976: 12952: 12949: 12944: 12939: 12935: 12929: 12923: 12917: 12915: 12908: 12904: 12896: 12893: 12888: 12883: 12879: 12873: 12867: 12861: 12859: 12852: 12848: 12836: 12835: 12834: 12830: 12826: 12822: 12816: 12812: 12806: 12800: 12793: 12789: 12781: 12777: 12771: 12767: 12763: 12757: 12751: 12745: 12739: 12732: 12729: 12724: 12714: 12710: 12706: 12700: 12693: 12689: 12679: 12675: 12671: 12665: 12659: 12653: 12650: 12644: 12638: 12632: 12626: 12620: 12614: 12608: 12602: 12596: 12590: 12584: 12579: 12569: 12566: 12561: 12556: 12536: 12533: 12528: 12523: 12519: 12513: 12509: 12503: 12499: 12493: 12488: 12485: 12482: 12478: 12474: 12471: 12466: 12462: 12454: 12453: 12452: 12449: 12443: 12437: 12431: 12411: 12406: 12402: 12396: 12392: 12386: 12381: 12378: 12375: 12371: 12367: 12364: 12357: 12356: 12355: 12352: 12346: 12340: 12336: 12331: 12326: 12320: 12314: 12308: 12302: 12298: 12292: 12286: 12280: 12274: 12271: 12266: 12239: 12235: 12231: 12228: 12225: 12220: 12216: 12197: 12193: 12188: 12184: 12181: 12178: 12171: 12167: 12162: 12145: 12144: 12143: 12126: 12121: 12117: 12113: 12110: 12105: 12101: 12097: 12085: 12081: 12077: 12074: 12071: 12066: 12062: 12043: 12039: 12034: 12030: 12027: 12024: 12017: 12013: 12008: 11979: 11969: 11965: 11961: 11958: 11955: 11950: 11946: 11941: 11933: 11929: 11925: 11922: 11919: 11914: 11910: 11905: 11899: 11895: 11891: 11888: 11883: 11879: 11871: 11870: 11869: 11852: 11831: 11827: 11823: 11820: 11817: 11799: 11795: 11788: 11772: 11765: 11764: 11763: 11760: 11756:Suppose that 11740: 11733: 11729: 11724: 11720: 11717: 11714: 11711: 11704: 11700: 11695: 11691: 11670: 11666: 11662: 11659: 11656: 11651: 11647: 11642: 11634: 11630: 11626: 11623: 11620: 11615: 11611: 11606: 11602: 11599: 11592: 11591: 11590: 11587: 11583: 11577: 11571: 11565: 11559: 11556: 11550: 11544: 11539: 11534: 11528: 11522: 11518: 11498: 11492: 11489: 11486: 11479: 11478: 11477: 11474: 11468: 11462: 11456: 11450: 11444: 11433: 11430: 11426: 11420: 11416: 11396: 11391: 11387: 11383: 11380: 11375: 11371: 11367: 11360: 11354: 11349: 11345: 11332: 11322: 11317: 11313: 11305: 11304: 11303: 11300: 11294: 11288: 11284: 11280: 11258: 11254: 11250: 11247: 11244: 11241: 11236: 11232: 11228: 11221: 11215: 11212: 11209: 11202: 11201: 11200: 11199:has the form 11197: 11191: 11185: 11179: 11173: 11167: 11161: 11150: 11145: 11138: 11132: 11126: 11120: 11116: 11110: 11104: 11098: 11092: 11081: 11067: 11064: 11061: 11058: 11055: 11052: 11049: 11022: 11018: 11013: 11000: 10996: 10991: 10954: 10950: 10945: 10941: 10938: 10935: 10928: 10924: 10919: 10900: 10896: 10891: 10887: 10884: 10881: 10874: 10870: 10865: 10832: 10825: 10821: 10816: 10812: 10809: 10806: 10803: 10796: 10792: 10787: 10783: 10769: 10765: 10760: 10756: 10753: 10750: 10743: 10739: 10734: 10715: 10711: 10706: 10702: 10699: 10696: 10689: 10685: 10680: 10664: 10661: 10654: 10650: 10646: 10641: 10637: 10632: 10621: 10617: 10613: 10610: 10607: 10602: 10598: 10593: 10585: 10581: 10577: 10574: 10571: 10566: 10562: 10557: 10553: 10550: 10545: 10541: 10533: 10532: 10531: 10529: 10524: 10518: 10512: 10505: 10501: 10481: 10474: 10470: 10465: 10461: 10458: 10455: 10452: 10445: 10441: 10436: 10432: 10425: 10422: 10415: 10411: 10407: 10402: 10398: 10393: 10382: 10378: 10374: 10371: 10368: 10363: 10359: 10354: 10350: 10347: 10342: 10338: 10330: 10329: 10328: 10325: 10319: 10313: 10305: 10301: 10294: 10290: 10283: 10279: 10270: 10250: 10243: 10239: 10234: 10230: 10227: 10224: 10221: 10214: 10210: 10205: 10201: 10193: 10189: 10185: 10180: 10176: 10171: 10163: 10159: 10155: 10152: 10149: 10144: 10140: 10135: 10131: 10128: 10121: 10120: 10119: 10116: 10110: 10106:. Locally on 10104: 10097: 10093: 10088: 10084: 10080: 10074: 10068: 10062: 10056: 10050: 10044: 10020: 10014: 10009: 10005: 9998: 9995: 9993: 9985: 9982: 9974: 9970: 9962: 9959: 9954: 9950: 9946: 9943: 9938: 9934: 9930: 9928: 9920: 9917: 9914: 9906: 9902: 9894: 9891: 9886: 9882: 9878: 9875: 9870: 9866: 9862: 9860: 9852: 9849: 9846: 9838: 9834: 9826: 9820: 9815: 9811: 9804: 9801: 9799: 9791: 9788: 9780: 9776: 9764: 9763: 9762: 9759: 9753: 9747: 9741: 9738: 9735: 9713: 9710: 9704: 9701: 9696: 9690: 9678: 9674: 9668: 9643: 9640: 9630: 9615: 9612: 9607: 9601: 9588: 9585: 9580: 9575: 9558: 9555: 9550: 9544: 9534: 9533: 9532: 9529: 9523: 9519: 9499: 9491: 9488: 9478: 9463: 9460: 9455: 9449: 9439: 9438: 9437: 9436: 9431: 9425: 9419: 9399: 9396: 9391: 9387: 9381: 9375: 9360: 9352: 9349: 9341: 9336: 9319: 9314: 9310: 9304: 9298: 9285: 9270: 9260: 9245: 9238: 9237: 9236: 9233: 9227: 9221: 9202: 9194: 9191: 9183: 9179: 9169: 9159: 9139: 9136: 9131: 9127: 9114: 9106: 9103: 9085: 9080: 9076: 9065: 9050: 9040: 9025: 9018: 9017: 9016: 9013: 9007: 9004: 9000: 8997: 8993: 8986: 8980: 8974: 8971: 8965: 8955: 8935: 8927: 8923: 8917: 8913: 8909: 8906: 8903: 8898: 8894: 8888: 8884: 8872: 8866: 8862: 8858: 8850: 8846: 8842: 8839: 8836: 8831: 8827: 8818: 8810: 8805: 8801: 8790: 8789: 8788: 8785: 8779: 8773: 8766: 8762: 8753: 8747: 8741: 8735: 8729: 8723: 8718: 8715:, called the 8713: 8707: 8704: 8698: 8692: 8686: 8680: 8676: 8672: 8666: 8663: 8657: 8651: 8647: 8643: 8637: 8631: 8628: 8622: 8613: 8607: 8603: 8597: 8591: 8587: 8583: 8577: 8573: 8567: 8561: 8556: 8552: 8548: 8541: 8534: 8528: 8524: 8520: 8516: 8510: 8506: 8501: 8493: 8487: 8481: 8475: 8471: 8467: 8461: 8455: 8451: 8447: 8443:Suppose that 8440: 8430: 8426: 8420: 8414: 8409: 8404: 8399: 8393: 8385: 8379: 8375: 8370: 8365: 8361: 8342: 8327: 8319: 8302: 8287: 8279: 8264: 8246: 8238: 8223: 8205: 8197: 8182: 8164: 8156: 8139: 8132: 8131: 8130: 8128: 8122: 8111: 8109: 8105: 8101: 8096: 8094: 8089: 8085: 8081: 8077: 8072: 8060: 8057: 8052: 8029: 8021: 8018: 8015: 8001: 7993: 7985: 7982: 7975: 7956: 7948: 7945: 7942: 7927: 7909: 7901: 7893: 7890: 7883: 7879: 7875: 7864: 7851: 7848: 7845: 7842: 7839: 7834: 7826: 7823: 7817: 7814: 7811: 7808: 7805: 7802: 7796: 7793: 7790: 7784: 7775: 7773: 7754: 7751: 7748: 7745: 7740: 7737: 7729: 7726: 7720: 7717: 7714: 7711: 7704: 7703: 7702: 7699: 7693: 7687: 7681: 7676: 7672: 7668: 7649: 7643: 7640: 7637: 7631: 7628: 7625: 7619: 7616: 7613: 7607: 7604: 7597: 7583: 7580: 7577: 7574: 7571: 7568: 7565: 7562: 7559: 7553: 7550: 7547: 7541: 7538: 7531: 7530: 7529: 7526: 7520: 7514: 7508: 7502: 7499: 7495: 7490: 7486: 7463: 7455: 7451: 7444: 7436: 7432: 7428: 7422: 7414: 7410: 7403: 7395: 7391: 7387: 7381: 7378: 7375: 7367: 7359: 7356: 7353: 7343: 7342: 7341: 7339: 7334: 7324: 7320: 7313: 7309: 7289: 7283: 7280: 7277: 7271: 7268: 7262: 7259: 7256: 7253: 7248: 7242: 7239: 7236: 7227: 7224: 7221: 7218: 7211: 7210: 7209: 7195: 7175: 7172: 7169: 7149: 7144: 7140: 7134: 7129: 7107: 7102: 7098: 7092: 7086: 7060: 7054: 7051: 7048: 7042: 7039: 7036: 7033: 7030: 7027: 7020: 7019: 7018: 7015: 7011: 7005: 7001: 6995: 6992: 6986: 6980: 6974: 6968: 6962: 6958: 6952: 6948: 6942: 6936: 6930: 6924: 6913: 6911: 6907: 6903: 6899: 6895: 6884: 6881: 6875: 6870: 6867: 6864: 6859: 6839: 6836: 6831: 6827: 6821: 6816: 6808: 6803: 6799: 6793: 6787: 6781: 6778: 6771: 6770: 6769: 6766: 6761: 6755: 6751: 6731: 6720: 6714: 6710: 6706: 6703: 6700: 6692: 6686: 6682: 6673: 6669: 6662: 6656: 6653: 6646: 6642: 6638: 6635: 6631: 6624: 6621: 6617: 6612: 6604: 6600: 6596: 6593: 6590: 6585: 6581: 6569: 6565: 6558: 6555: 6548: 6547: 6546: 6543: 6526: 6519:For a tensor 6503: 6500: 6495: 6491: 6485: 6480: 6472: 6467: 6463: 6457: 6452: 6447: 6444: 6437: 6436: 6435: 6432: 6430: 6420: 6416: 6412: 6408: 6402: 6398: 6392: 6387: 6382: 6378: 6374: 6369: 6368:inner product 6364: 6360: 6356: 6349: 6345: 6341: 6336: 6332: 6326: 6316: 6310: 6304: 6298: 6278: 6267: 6262: 6258: 6252: 6247: 6244: 6241: 6237: 6233: 6228: 6224: 6216: 6215: 6214: 6212: 6209: 6188: 6176: 6171: 6167: 6161: 6155: 6142: 6139: 6134: 6129: 6125: 6119: 6113: 6103: 6102: 6101: 6098: 6092: 6067: 6062: 6058: 6052: 6046: 6040: 6035: 6031: 6021: 6015: 6010: 6005: 5999: 5993: 5988: 5983: 5979: 5975: 5969: 5963: 5958: 5957:tangent space 5953: 5949: 5945: 5925: 5922: 5917: 5912: 5908: 5902: 5896: 5890: 5885: 5881: 5873: 5872: 5871: 5868: 5862: 5856: 5852: 5846: 5842: 5836: 5831: 5825: 5819: 5814: 5810: 5805: 5800: 5795: 5790: 5785: 5778: 5768: 5754: 5743: 5738: 5731: 5724: 5709: 5705: 5701: 5695: 5691: 5684: 5677: 5665: 5661: 5654: 5648: 5644: 5620: 5616: 5611: 5607: 5604: 5601: 5598: 5591: 5587: 5582: 5578: 5575: 5568: 5564: 5559: 5555: 5547: 5543: 5539: 5534: 5530: 5524: 5520: 5515: 5509: 5504: 5501: 5496: 5492: 5488: 5483: 5479: 5475: 5470: 5466: 5461: 5453: 5452: 5451: 5430:Differential 5428: 5425: 5421: 5410: 5390: 5385: 5381: 5377: 5374: 5369: 5365: 5361: 5352: 5348: 5337: 5333: 5321: 5316: 5313: 5310: 5307: 5304: 5300: 5296: 5291: 5287: 5283: 5280: 5275: 5271: 5267: 5262: 5257: 5254: 5251: 5247: 5243: 5240: 5237: 5230: 5229: 5228: 5225: 5221: 5217: 5210: 5202: 5196: 5192: 5185:-form. This 5165: 5160: 5156: 5152: 5149: 5144: 5140: 5136: 5133: 5130: 5125: 5121: 5117: 5114: 5109: 5105: 5101: 5094: 5093: 5092: 5071: 5068: 5065: 5060: 5056: 5052: 5049: 5044: 5040: 5036: 5027: 5023: 5012: 5008: 4996: 4991: 4988: 4985: 4982: 4979: 4975: 4967: 4966: 4965: 4963: 4943: 4942:skew-symmetry 4938: 4913: 4910: 4902: 4898: 4887: 4883: 4873: 4865: 4861: 4850: 4846: 4832: 4831: 4830: 4809: 4801: 4797: 4787: 4783: 4774: 4769: 4758: 4750: 4746: 4736: 4732: 4723: 4718: 4703: 4702: 4701: 4693: 4686: 4682: 4674:are equal to 4672: 4668: 4657: 4653: 4627: 4619: 4615: 4593: 4589: 4585: 4579: 4575: 4569: 4564: 4561: 4558: 4554: 4550: 4547: 4540: 4539: 4538: 4524: 4523: 4513: 4509: 4487: 4477: 4473: 4469: 4460: 4452: 4448: 4442: 4438: 4434: 4429: 4425: 4417: 4416: 4415: 4414:pointwise by 4411: 4407: 4403: 4399: 4395: 4390: 4375: 4371: 4364: 4360: 4354: 4352: 4351: 4324: 4320: 4300: 4295: 4285: 4281: 4277: 4268: 4257: 4253: 4244: 4233: 4228: 4225: 4222: 4218: 4214: 4209: 4205: 4201: 4194: 4193: 4192: 4190: 4177: 4170: 4168: 4154: 4149: 4145: 4141: 4132: 4128: 4119: 4108: 4103: 4100: 4097: 4093: 4089: 4086: 4083: 4076: 4075: 4072: 4070: 4064: 4060: 4056: 4052: 4045: 4041: 4035: 4029: 4023: 4009: 4003: 3997: 3987: 3973: 3969: 3963: 3955: 3951: 3946: 3942: 3936: 3931: 3925: 3921: 3918: 3913: 3908: 3902: 3900: 3891: 3887: 3869: 3862: 3858: 3854: 3849: 3844: 3840: 3827: 3823: 3817: 3813: 3807: 3801: 3796: 3792: 3783: 3777: 3750: 3741: 3723: 3720: 3718: 3710: 3701: 3691: 3673: 3664: 3646: 3640: 3631: 3613: 3611: 3603: 3594: 3584: 3560: 3559: 3558: 3555: 3550: 3544: 3540: 3536: 3514: 3506: 3502: 3493: 3479: 3475: 3464: 3460: 3448: 3443: 3440: 3437: 3433: 3429: 3421: 3417: 3408: 3395: 3394: 3393: 3390: 3384: 3378: 3368: 3362: 3356: 3350: 3346: 3332: 3327: 3323: 3316: 3306: 3302: 3298: 3292: 3287:at the point 3285: 3276: 3271: 3251: 3246: 3243: 3240: 3235: 3223: 3220: 3217: 3211: 3205: 3202: 3198: 3188: 3182: 3173: 3151: 3150: 3149: 3146: 3132: 3128: 3118: 3114: 3108: 3103: 3097: 3091: 3084: 3080: 3068: 3059: 3054: 3040: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3009: 3007: 3003: 2999: 2995: 2990: 2967: 2959: 2956: 2953: 2945: 2940: 2936: 2932: 2929: 2925: 2919: 2915: 2911: 2902: 2898: 2887: 2883: 2871: 2866: 2863: 2860: 2856: 2851: 2843: 2840: 2837: 2825: 2822: 2818: 2814: 2811: 2808: 2801: 2800: 2799: 2780: 2772: 2764: 2759: 2755: 2751: 2745: 2741: 2733: 2730: 2727: 2715: 2712: 2708: 2704: 2701: 2673: 2668: 2664: 2660: 2657: 2652: 2648: 2644: 2635: 2631: 2622: 2611: 2606: 2603: 2600: 2596: 2592: 2589: 2586: 2579: 2578: 2577: 2573: 2566: 2556: 2553: 2549: 2538: 2534: 2530: 2526: 2521: 2516: 2511: 2501: 2477: 2474: 2463: 2453: 2450: 2447: 2405:-forms on an 2386: 2383: 2380: 2357: 2353: 2345:of dimension 2320: 2317: 2314: 2302: 2299: 2289: 2285: 2281: 2253: 2250: 2245: 2241: 2237: 2234: 2231: 2226: 2222: 2218: 2213: 2209: 2205: 2202: 2199: 2191: 2187: 2183: 2180: 2177: 2172: 2168: 2161: 2158: 2152: 2147: 2144: 2141: 2099: 2095: 2091: 2086: 2083: 2080: 2076: 2072: 2065: 2061: 2056: 2052: 2049: 2046: 2043: 2036: 2032: 2027: 2023: 2020: 2015: 2011: 2007: 1984: 1981: 1976: 1972: 1968: 1965: 1962: 1957: 1953: 1949: 1944: 1940: 1936: 1933: 1930: 1922: 1918: 1914: 1911: 1908: 1903: 1899: 1895: 1890: 1886: 1879: 1876: 1863: 1849: 1847: 1843: 1842:parallelotope 1837: 1833: 1824: 1817: 1813: 1806: 1802: 1797: 1796:cross product 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1750: 1746: 1740: 1736: 1730: 1724: 1718: 1712: 1690: 1686: 1682: 1679: 1674: 1670: 1666: 1663: 1660: 1655: 1651: 1647: 1644: 1639: 1635: 1631: 1624: 1623: 1622: 1620: 1619:cross product 1613: 1609: 1604: 1586: 1582: 1578: 1575: 1570: 1566: 1562: 1556: 1553: 1550: 1546: 1540: 1537: 1534: 1531: 1528: 1525: 1522: 1518: 1503: 1497: 1487: 1483: 1477: 1473: 1467: 1459: 1455: 1450: 1446: 1441: 1437: 1417: 1412: 1408: 1404: 1398: 1394: 1390: 1387: 1384: 1379: 1375: 1371: 1365: 1361: 1353: 1352: 1351: 1345: 1336: 1330: 1325: 1320: 1319:for details. 1318: 1298: 1295: 1291: 1283: 1280: 1277: 1270: 1266: 1263: 1260: 1256: 1251: 1247: 1226: 1222: 1203: 1199: 1193: 1190: 1185: 1181: 1178: 1175: 1170: 1166: 1158: 1157: 1156: 1142: 1112: 1109: 1103: 1099: 1093: 1074: 1071: 1068: 1061: 1055: 1050: 1045: 1041: 1037: 1034: 1031: 1028: 1021: 1015: 1010: 1005: 1001: 993: 992: 991: 974: 971: 964: 958: 953: 948: 944: 936: 935: 934: 931: 927: 923: 913: 909: 903: 899: 894: 891: 886: 873:of dimension 872: 858: 856: 852: 842: 840: 836: 832: 828: 817: 815: 810: 806: 798: 794: 793:vector fields 787:Differential 785: 783: 779: 775: 771: 767: 751: 748: 742: 735: 732: 728: 722: 716: 713: 701: 685: 682: 679: 669: 664:, produces a 651: 642: 637: 632: 630: 614: 611: 608: 605: 602: 599: 596: 576: 573: 570: 567: 564: 561: 558: 555: 552: 549: 546: 543: 535: 530: 528: 527: 521: 515: 498: 495: 492: 489: 486: 483: 480: 477: 465: 453: 450:represents a 448: 444: 440: 436: 432: 428: 424: 420: 413: 412:wedge product 409: 386: 380: 377: 374: 371: 368: 361: 358: 355: 352: 349: 343: 340: 337: 334: 331: 328: 325: 318: 315: 312: 309: 306: 300: 297: 294: 291: 288: 285: 282: 275: 272: 269: 266: 263: 257: 249: 245: 237: 236: 235: 232: 228: 224: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 160: 156: 152: 148: 128: 125: 122: 115: 109: 104: 99: 95: 87: 86: 85: 82: 77: 74:, and can be 73: 65: 61: 57: 51: 49: 45: 41: 37: 33: 19: 18834:Hermann Weyl 18638:Vector space 18623:Pseudotensor 18588:Fiber bundle 18572: 18541:abstractions 18436:Mixed tensor 18421:Tensor field 18228: 18100:Moving frame 18095:Morse theory 18085:Gauge theory 17877:Tensor field 17832: 17806:Closed/Exact 17785:Vector field 17753:Distribution 17694:Hypercomplex 17689:Quaternionic 17426:Vector field 17420: 17384:Smooth atlas 17303: 17284:math/0306194 17274: 17257: 17244: 17215:, Springer, 17212: 17183: 17159: 17137: 17114: 17098: 17077: 17054: 17025: 17006: 16995: 16980: 16951: 16933: 16909: 16882: 16876: 16858: 16854: 16844: 16813: 16772: 16762: 16747: 16741: 16734: 16730: 16727: 16666: 16660: 16650: 16628:. Here the 16626:gauge theory 16618: 16613: 16576: 16570:denotes the 16549: 16450: 16444: 16405: 16399: 16392: 16388: 16381: 16377: 16371: 16368: 16239: 16237: 16188: 16164: 16157: 16153: 16146: 16140: 16135: 16131: 16124: 16059: 16055: 16052: 15956: 15950: 15939: 15933: 15927: 15920: 15917:distribution 15914: 15903: 15901:-forms. The 15897: 15891: 15885: 15879: 15869: 15866: 15860: 15854: 15848: 15842: 15840:of a set of 15832: 15826: 15820: 15816: 15810: 15807: 15797: 15793:volume forms 15787: 15781: 15778: 15774:Folland 1999 15768:-forms with 15764: 15754: 15749: 15747: 15739: 15729: 15717: 15710: 15704: 15700: 15692: 15685: 15680: 15671: 15651: 15645: 15517:orientation: 15516: 15503: 15493: 15489: 15487: 15465: 15442: 15438: 15434: 15430: 15424: 15418: 15412: 15406: 15400: 15396: 15393: 15280: 15273: 15266: 15262: 15256: 15250: 15244: 15238: 15236:is a closed 15232: 15229: 15161: 15155:denotes the 15151: 15145: 15138: 15132: 15125: 15034: 15028: 15022: 15013: 15011: 15004: 14998: 14996:integral of 14995: 14990: 14980: 14977: 14880: 14874: 14872:. Then the 14868: 14862: 14859: 14684: 14680: 14674: 14667: 14663: 14656: 14652: 14645: 14642: 14536: 14529: 14525: 14518: 14512: 14506: 14499: 14495: 14491: 14485: 14479: 14476: 14422: 14328: 14324: 14318: 14312: 14306: 14300: 14293: 14289: 14283: 14277: 14271: 14265: 14259: 14255: 14249: 14247:. The form 14243: 14237: 14231: 14225: 14219: 14213: 14206: 14202: 14198: 14191: 14188: 14074: 13990: 13883: 13877: 13870: 13866: 13860: 13856: 13849: 13845: 13841: 13835: 13831: 13825: 13819: 13813: 13807: 13801: 13795: 13789: 13783: 13777: 13771: 13765: 13761: 13757: 13751: 13745: 13739: 13733: 13730: 13724: 13718: 13712: 13705: 13701: 13695: 13689: 13682: 13678: 13674: 13671: 13603: 13599: 13595: 13588: 13584: 13578: 13571: 13567: 13559: 13555: 13549: 13543: 13537: 13534: 13464: 13457: 13453: 13447: 13444: 13437: 13433: 13428: 13424: 13417: 13413: 13410: 13344: 13340: 13336: 13259: 13132: 13128: 13122: 13118: 13114: 13110: 13103: 13099: 13092: 13088: 13085: 12978: 12974: 12971: 12828: 12824: 12820: 12814: 12810: 12804: 12798: 12791: 12787: 12779: 12775: 12769: 12765: 12761: 12755: 12749: 12743: 12737: 12733: 12726: 12708: 12704: 12698: 12691: 12687: 12677: 12676:) : → 12673: 12669: 12663: 12657: 12654: 12648: 12642: 12640:as a sum of 12636: 12630: 12624: 12618: 12612: 12606: 12600: 12594: 12588: 12582: 12575: 12564: 12560:triangulated 12554: 12551: 12447: 12441: 12435: 12429: 12426: 12350: 12344: 12338: 12334: 12329: 12324: 12318: 12312: 12306: 12300: 12296: 12290: 12284: 12278: 12275: 12269: 12262: 12141: 11867: 11758: 11755: 11585: 11581: 11575: 11569: 11563: 11557: 11554: 11548: 11542: 11532: 11526: 11520: 11516: 11513: 11472: 11466: 11460: 11454: 11448: 11442: 11439: 11428: 11424: 11418: 11414: 11411: 11298: 11292: 11286: 11282: 11278: 11275: 11195: 11189: 11183: 11177: 11171: 11165: 11159: 11156: 11143: 11136: 11130: 11124: 11118: 11114: 11108: 11102: 11096: 11090: 11087: 10847: 10522: 10516: 10510: 10503: 10499: 10496: 10323: 10317: 10311: 10303: 10299: 10292: 10288: 10281: 10277: 10268: 10265: 10114: 10108: 10102: 10095: 10091: 10086: 10082: 10078: 10072: 10066: 10060: 10054: 10048: 10042: 10039: 9757: 9751: 9745: 9742: 9736: 9733: 9676: 9672: 9666: 9663: 9527: 9521: 9517: 9514: 9429: 9423: 9417: 9414: 9231: 9225: 9219: 9167: 9157: 9154: 9011: 9005: 9002: 8998: 8995: 8991: 8984: 8978: 8972: 8969: 8963: 8953: 8950: 8783: 8777: 8771: 8764: 8760: 8751: 8745: 8739: 8733: 8727: 8721: 8716: 8711: 8705: 8702: 8696: 8690: 8688:be a smooth 8684: 8678: 8674: 8670: 8667: 8661: 8655: 8649: 8645: 8641: 8635: 8632: 8626: 8620: 8611: 8605: 8601: 8595: 8589: 8585: 8581: 8575: 8571: 8565: 8559: 8554: 8550: 8546: 8539: 8532: 8526: 8522: 8518: 8514: 8508: 8504: 8499: 8491: 8485: 8479: 8473: 8469: 8465: 8459: 8453: 8449: 8445: 8442: 8424: 8412: 8402: 8391: 8383: 8368: 8357: 8120: 8117: 8107: 8104:Weyl algebra 8097: 8083: 8073: 8066: 8055: 7871: 7777: 7769: 7701:-form, then 7697: 7691: 7685: 7679: 7670: 7666: 7664: 7524: 7518: 7512: 7506: 7503: 7497: 7493: 7488: 7484: 7481: 7332: 7322: 7318: 7311: 7307: 7304: 7075: 7013: 7009: 7003: 6999: 6996: 6990: 6984: 6978: 6976:, the forms 6972: 6966: 6960: 6956: 6950: 6946: 6940: 6934: 6928: 6922: 6919: 6890: 6879: 6873: 6869:tensor field 6857: 6854: 6764: 6753: 6749: 6746: 6541: 6518: 6433: 6418: 6414: 6400: 6396: 6390: 6380: 6376: 6372: 6362: 6358: 6354: 6347: 6343: 6334: 6330: 6324: 6314: 6308: 6302: 6296: 6293: 6205: 6096: 6090: 6019: 6013: 6003: 5997: 5981: 5977: 5973: 5967: 5961: 5951: 5947: 5943: 5940: 5866: 5860: 5854: 5850: 5847: 5840: 5835:vector space 5829: 5823: 5817: 5803: 5793: 5783: 5780: 5739: 5729: 5722: 5710: 5703: 5699: 5693: 5689: 5682: 5675: 5663: 5659: 5652: 5646: 5642: 5639: 5438:-forms, and 5429: 5423: 5419: 5408: 5405: 5223: 5219: 5215: 5208: 5200: 5194: 5180: 5086: 4960:-forms, the 4939: 4928: 4824: 4691: 4684: 4680: 4670: 4666: 4655: 4651: 4628: 4617: 4613: 4610: 4520: 4511: 4507: 4504: 4409: 4405: 4401: 4397: 4393: 4388: 4373: 4369: 4362: 4358: 4355: 4348: 4322: 4318: 4315: 4182: 4171: 4062: 4058: 4054: 4050: 4043: 4039: 4033: 4027: 4021: 4007: 4001: 3995: 3985: 3971: 3967: 3961: 3953: 3949: 3944: 3940: 3934: 3923: 3919: 3916: 3906: 3903: 3889: 3885: 3867: 3860: 3856: 3852: 3847: 3842: 3838: 3826:differential 3815: 3811: 3805: 3799: 3790: 3781: 3775: 3772: 3553: 3542: 3538: 3534: 3529: 3388: 3382: 3376: 3366: 3360: 3354: 3348: 3344: 3325: 3321: 3304: 3300: 3296: 3293: 3283: 3275:vector field 3269: 3266: 3144: 3130: 3126: 3116: 3112: 3101: 3095: 3089: 3082: 3078: 3057: 3046: 3010: 2988: 2985: 2688: 2571: 2564: 2558:is a simple 2554: 2551: 2547: 2536: 2532: 2528: 2524: 2514: 2507: 2355: 2351: 1855: 1835: 1831: 1822: 1815: 1811: 1804: 1800: 1790: 1786: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1748: 1744: 1738: 1734: 1728: 1722: 1716: 1710: 1707: 1605: 1501: 1495: 1485: 1481: 1475: 1471: 1468: 1457: 1453: 1448: 1444: 1439: 1435: 1432: 1334: 1328: 1321: 1218: 1140: 1113: 1107: 1101: 1097: 1089: 989: 929: 925: 921: 911: 907: 901: 897: 887: 864: 848: 838: 823: 786: 667: 640: 633: 531: 524: 519: 513: 446: 442: 438: 434: 430: 426: 422: 415: 411: 406:denotes the 401: 230: 219: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 143: 80: 63: 59: 55: 52: 35: 29: 18774:Élie Cartan 18722:Spin tensor 18696:Weyl tensor 18654:Mathematics 18618:Multivector 18409:definitions 18307:Engineering 18246:Mathematics 18045:Levi-Civita 18035:Generalized 18007:Connections 17957:Lie algebra 17889:Volume form 17790:Vector flow 17763:Pushforward 17758:Lie bracket 17657:Lie algebra 17622:G-structure 17411:Pushforward 17391:Submanifold 16861:: 239–332, 16656:Lie algebra 16608:, which is 16403:instead of 16386:instead of 15803:pseudoforms 15750:orientation 15474:of chains. 15167:orientation 14984:is smooth ( 14689:defined by 13887:defined by 13839:, the form 11122:, then the 11084:Integration 9217:denote the 8500:pushforward 7340:defined by 7188:instead of 6539:at a point 6407:represented 6208:alternating 6017:. That is, 4191:", so that 3809:is denoted 3148:direction: 2992:, with the 1092:conventions 855:coordinates 827:Élie Cartan 629:orientation 526:volume form 464:homogeneous 402:The symbol 48:Élie Cartan 32:mathematics 18849:Categories 18603:Linear map 18471:Operations 18168:Stratifold 18126:Diffeology 17922:Associated 17723:Symplectic 17708:Riemannian 17637:Hyperbolic 17564:Submersion 17472:Hopf–Rinow 17406:Submersion 17401:Smooth map 16926:References 16572:Hodge star 16053:where the 15242:-form and 13805:, and let 11538:Rudin 1976 10530:matrices: 8437:See also: 8380:except at 8372:. By the 8360:cohomology 7689:-form and 6944:, denoted 6887:Operations 5987:dual space 5775:See also: 4700:satisfies 4649:such that 3930:components 3822:derivative 3795:linear map 3006:divergence 2124:, denoted 1999:we define 1433:where the 466:of degree 76:integrated 40:integrands 18742:EM tensor 18578:Dimension 18529:Transpose 18050:Principal 18025:Ehresmann 17982:Subbundle 17972:Principal 17947:Fibration 17927:Cotangent 17799:Covectors 17652:Lie group 17632:Hermitian 17575:manifolds 17544:Immersion 17539:Foliation 17477:Noether's 17462:Frobenius 17457:De Rham's 17452:Darboux's 17343:Manifolds 17246:MathWorld 17076:(1989) , 16983:, Dover, 16901:682907530 16705:∧ 16630:Lie group 16590:⋆ 16558:⋆ 16506:⋆ 16427:→ 16337:∧ 16321:∧ 16289:ε 16107:→ 16078:→ 16021:∧ 15627:− 15604:∫ 15600:− 15577:∫ 15529:∫ 15449:homotopic 15363:∫ 15356:ω 15344:∫ 15320:ω 15311:∫ 15304:ω 15295:∫ 15212:ω 15204:∂ 15200:∫ 15193:ω 15181:∫ 15095:♭ 15087:λ 15082:∗ 15074:∧ 15071:α 15062:λ 15059:∧ 15054:♭ 15050:α 15032:-form on 14952:β 14932:− 14923:∫ 14916:⟩ 14899:γ 14895:⟨ 14837:∗ 14819:− 14810:⋀ 14804:∈ 14795:ζ 14770:ζ 14765:⌟ 14751:∗ 14743:∧ 14734:α 14704:β 14620:∗ 14602:− 14593:⋀ 14587:∈ 14575:ζ 14570:⌟ 14556:∗ 14504:, then a 14453:ζ 14448:⌟ 14439:↦ 14403:∗ 14385:− 14376:⋀ 14370:→ 14346:⋀ 14211:-form on 14171:η 14160:η 14152:ω 14133:− 14124:∫ 14107:∫ 14100:ω 14091:∫ 14057:η 14046:η 14038:ω 14019:− 14010:∫ 13967:η 13949:η 13940:ω 13921:− 13912:∫ 13901:↦ 13881:-form on 13817:-form on 13799:-form on 13648:η 13633:ω 13620:σ 13547:-form on 13515:∗ 13507:→ 13490:− 13482:: 13479:ω 13411:The form 13384:σ 13378:∗ 13361:σ 13317:∗ 13299:− 13290:⋀ 13284:∈ 13272:σ 13237:∗ 13216:⋀ 13210:∈ 13198:σ 13194:∧ 13175:η 13169:∗ 13149:ω 13054:− 13041:∗ 13023:− 13014:⋀ 13008:∈ 12999:σ 12972:and that 12945:∗ 12924:⋀ 12918:∈ 12905:η 12889:∗ 12868:⋀ 12862:∈ 12849:ω 12534:ω 12529:∗ 12520:φ 12510:∫ 12479:∑ 12472:ω 12463:∫ 12403:φ 12372:∑ 12229:… 12210:∂ 12182:… 12156:∂ 12111:⋯ 12075:… 12056:∂ 12028:… 12002:∂ 11980:φ 11959:… 11923:⋯ 11906:∑ 11896:∫ 11889:ω 11880:∫ 11821:… 11773:φ 11718:∧ 11715:⋯ 11712:∧ 11660:… 11624:⋯ 11607:∑ 11600:ω 11536:. Then ( 11496:→ 11490:: 11487:φ 11464:-form on 11381:⋯ 11346:∫ 11323:ω 11314:∫ 11248:∧ 11245:⋯ 11242:∧ 11210:ω 11065:≤ 11053:≤ 11010:∂ 10988:∂ 10939:… 10913:∂ 10885:… 10859:∂ 10810:∧ 10807:⋯ 10804:∧ 10754:… 10728:∂ 10700:… 10674:∂ 10662:∘ 10647:⋯ 10633:ω 10611:⋯ 10594:∑ 10575:⋯ 10558:∑ 10551:ω 10546:∗ 10459:∧ 10456:⋯ 10453:∧ 10423:∘ 10408:⋯ 10394:ω 10372:⋯ 10355:∑ 10348:ω 10343:∗ 10228:∧ 10225:⋯ 10222:∧ 10186:⋯ 10172:ω 10153:⋯ 10136:∑ 10129:ω 10015:ω 10010:∗ 9986:ω 9975:∗ 9960:η 9955:∗ 9947:∧ 9944:ω 9939:∗ 9921:η 9918:∧ 9915:ω 9907:∗ 9892:η 9887:∗ 9876:ω 9871:∗ 9853:η 9847:ω 9839:∗ 9821:ω 9816:∗ 9792:ω 9781:∗ 9714:× 9708:→ 9691:⋀ 9644:× 9631:ω 9626:→ 9602:⋀ 9576:⋀ 9569:⟶ 9545:⋀ 9492:× 9479:ω 9474:→ 9450:⋀ 9392:∗ 9376:⋀ 9361:∗ 9337:⋀ 9330:⟶ 9315:∗ 9299:⋀ 9286:ω 9281:→ 9256:→ 9203:∗ 9180:⋀ 9165:-form on 9132:∗ 9115:∗ 9096:⟶ 9081:∗ 9066:ω 9061:→ 9036:→ 8994:) : 8961:-form on 8918:∗ 8907:… 8889:∗ 8863:ω 8840:… 8811:ω 8806:∗ 8694:-form on 8609:at which 8337:→ 8316:Ω 8309:→ 8303:⋯ 8297:→ 8276:Ω 8260:→ 8235:Ω 8219:→ 8194:Ω 8178:→ 8153:Ω 8146:→ 8108:symmetric 8086:from the 8019:− 8012:Ω 8008:→ 7990:Ω 7986:: 7983:δ 7946:− 7939:Ω 7928:∼ 7923:→ 7898:Ω 7894:: 7891:⋆ 7849:β 7843:∧ 7840:α 7824:− 7815:β 7812:∧ 7809:α 7797:β 7794:∧ 7791:α 7752:α 7749:∧ 7746:β 7741:ℓ 7727:− 7718:β 7715:∧ 7712:α 7644:β 7641:∧ 7638:α 7632:⋅ 7620:β 7617:⋅ 7608:∧ 7605:α 7581:γ 7578:∧ 7575:α 7569:β 7566:∧ 7563:α 7554:γ 7548:β 7542:∧ 7539:α 7452:β 7433:α 7429:− 7411:β 7392:α 7360:β 7357:∧ 7354:α 7284:β 7281:⊗ 7278:α 7272:⁡ 7260:ℓ 7243:ℓ 7225:β 7222:∧ 7219:α 7145:∗ 7130:⨂ 7103:∗ 7087:⋀ 7055:β 7052:⊗ 7049:α 7043:⁡ 7034:β 7031:∧ 7028:α 6866:covariant 6832:∗ 6817:⨂ 6812:→ 6804:∗ 6788:⋀ 6782:: 6715:σ 6704:… 6687:σ 6670:τ 6663:σ 6657:⁡ 6639:∈ 6636:σ 6632:∑ 6594:… 6566:τ 6559:⁡ 6527:τ 6496:∗ 6481:⨂ 6476:→ 6468:∗ 6453:⨂ 6448:: 6271:→ 6238:⨁ 6234:: 6225:β 6189:∗ 6156:⋀ 6143:≅ 6135:∗ 6114:⋀ 6071:→ 6047:⋀ 6041:: 6032:β 5918:∗ 5897:⋀ 5891:∈ 5882:β 5759:-form on 5605:∧ 5602:⋯ 5599:∧ 5576:∧ 5540:… 5489:… 5462:∑ 5375:∧ 5345:∂ 5330:∂ 5301:∑ 5281:∧ 5248:∑ 5241:α 5150:∧ 5134:− 5115:∧ 5050:∧ 5020:∂ 5005:∂ 4976:∑ 4895:∂ 4880:∂ 4874:− 4858:∂ 4843:∂ 4794:∂ 4780:∂ 4766:∂ 4743:∂ 4729:∂ 4715:∂ 4555:∑ 4548:α 4505:for each 4439:∑ 4426:α 4250:∂ 4242:∂ 4219:∑ 4189:pointwise 4125:∂ 4117:∂ 4094:∑ 3965:and each 3959:for each 3731:∂ 3688:∂ 3654:∂ 3621:∂ 3576:∂ 3499:∂ 3491:∂ 3472:∂ 3457:∂ 3434:∑ 3414:∂ 3406:∂ 3163:∂ 3029:manifolds 2950:Ω 2946:∈ 2930:∧ 2895:∂ 2880:∂ 2857:∑ 2826:∈ 2819:∑ 2812:τ 2769:Ω 2765:∈ 2716:∈ 2709:∑ 2702:τ 2658:∧ 2628:∂ 2620:∂ 2597:∑ 2590:ω 2512:operator 2303:∈ 2251:≤ 2235:⋯ 2206:≤ 2181:… 2084:∈ 2077:⋀ 2050:∧ 2047:⋯ 2044:∧ 1982:≤ 1966:⋯ 1937:≤ 1912:… 1848:is zero. 1680:∧ 1664:− 1645:∧ 1576:∧ 1538:≤ 1526:≤ 1519:∑ 1388:⋯ 1299:μ 1271:∫ 1264:μ 1248:∫ 1200:ω 1186:∫ 1182:− 1176:ω 1167:∫ 1042:∫ 1038:− 1002:∫ 945:∫ 893:manifolds 683:φ 652:φ 603:∧ 571:∧ 562:− 550:∧ 496:… 375:∧ 332:∧ 289:∧ 246:∫ 96:∫ 44:manifolds 18608:Manifold 18593:Geodesic 18351:Notation 18146:Orbifold 18141:K-theory 18131:Diffiety 17855:Pullback 17669:Oriented 17647:Kenmotsu 17627:Hadamard 17573:Types of 17522:Geodesic 17347:Glossary 17211:(2004), 17182:(2008), 17157:(1965), 17136:(1976), 17053:(1999), 17024:(1994), 17005:(1972), 16979:(2006), 16787:See also 16240:current 16122:; e.g., 15911:Currents 15877:for any 15566:, while 15513:−1 15472:homology 15470:and the 15284:), then 15157:boundary 14655:− 14528:− 14510:-vector 14275:-vector 14201:− 13864:form on 13859:− 13760: : 13570:− 13392:′ 13343:− 13280:′ 13206:′ 13113: : 12818:and set 12790:− 12764: : 12265:Jacobian 11589:. Then 11524:. Give 11281: : 11169:. Give 10528:Jacobian 10100:for all 8717:pullback 8673: : 8644: : 8604:∈ 8517:∈ 8468: : 8448: : 8433:Pullback 8084:distinct 7972:and the 6954:, is a ( 6871:of rank 5434:-forms, 4929:for all 4339:. Since 4047:. Since 3352:, where 3053:open set 2998:gradient 1864:: in an 1814:∧ ⋅⋅⋅ ∧ 1479:, where 1456:, ... , 1344:covector 1194:′ 890:oriented 871:manifold 809:pullback 736:′ 18705:Physics 18539:Related 18302:Physics 18220:Tensors 18090:History 18073:Related 17987:Tangent 17965:)  17945:)  17912:Adjoint 17904:Bundles 17882:density 17780:Torsion 17746:Vectors 17738:Tensors 17721:)  17706:)  17702:,  17700:Pseudo− 17679:Poisson 17612:Finsler 17607:Fibered 17602:Contact 17600:)  17592:Complex 17590:)  17559:Section 17289:Bibcode 17119:, AMS, 17015:0350769 16966:Bibcode 16642:abelian 16169:on the 15922:current 15646:measure 15490:general 15278:-chain 15169:, then 15136:is an ( 15038:, then 15026:is any 15020:). If 13337:is any 12696:  11584:, ..., 10514:, ..., 10315:, ..., 10275:, ..., 10094:, ..., 10064:, ..., 10058:, that 10046:, ..., 8758:, ..., 8051:adjoint 8049:and is 7336:is the 7326:is the 7316:, then 6932:and an 6758:is the 6405:may be 5985:is its 5955:is the 5811:of the 5801:of the 4829:unless 4031:, ..., 4019:-forms 4005:, ..., 3983:. Thus 3928:of its 3836:. Thus 3793:, this 3386:, ..., 3364:, ..., 3329:is the 3309:is the 3142:in the 3099:, then 1829:, ..., 1742:, with 1332:, ..., 845:Concept 820:History 227:surface 18633:Vector 18628:Spinor 18613:Matrix 18407:Tensor 18055:Vector 18040:Koszul 18020:Cartan 18015:Affine 17997:Vector 17992:Tensor 17977:Spinor 17967:Normal 17963:Stable 17917:Affine 17821:bundle 17773:bundle 17719:Almost 17642:Kähler 17598:Almost 17588:Almost 17582:Closed 17482:Sard's 17438:(list) 17219:  17198:  17167:  17144:  17123:  17084:  17061:  17040:  17013:  16998:(1967) 16987:  16940:  16899:  16889:  16581:-form 16550:where 16369:where 15955:, the 15743:| 15737:| 15733:| 15727:| 15696:| 15690:| 15655:| 15649:| 15501:-form 15494:cannot 14878:-form 14678:along 14661:-form 14263:, how 14223:-form 14075:Then ( 13811:be an 13793:be an 13755:, and 13693:is an 13576:-form 13553:along 13260:where 12604:on an 12598:-form 12433:-form 12142:where 11514:where 11446:be an 11326:  11187:-form 10848:Here, 9638:  9619:  9596:  9562:  9515:where 9486:  9467:  9421:-form 9370:  9323:  9293:  9274:  9268:  9249:  9229:-form 9124:  9089:  9073:  9054:  9048:  9029:  8340:  8334:  8312:  8306:  8300:  8294:  8272:  8253:  8231:  8212:  8190:  8171:  8149:  8143:  8080:metric 7935:  7916:  7695:is an 7665:It is 7516:, and 6938:-form 6926:-form 6747:where 6322:-form 5941:where 5864:-form 5727:-form 5715:-form 5087:where 4694:> 1 4689:. For 4633:-form 4529:-form 4386:-form 4067:, the 4037:. Let 3105:has a 3051:be an 3004:, and 2535:) = Ω( 1151:is an 919:-form 776:, and 768:, the 672:-form 644:-form 511:On an 18553:Basis 18238:Scope 18163:Sheaf 17937:Fiber 17713:Rizza 17684:Prime 17515:Local 17505:Curve 17367:Atlas 17279:arXiv 17262:(PDF) 16956:arXiv 16836:Notes 16244:-form 15963:, is 15959:, or 15819:< 15488:On a 15130:: If 14489:. If 12439:over 12330:chain 12299:< 11561:over 11546:over 11117:> 8957:is a 8593:. If 8408:sheaf 8378:exact 7872:On a 7683:is a 7120:into 6861:as a 5833:is a 5797:is a 5787:be a 5751:with 5698:< 5681:< 5417:with 3910:is a 3899:-form 3850:) = ∂ 3797:from 3547:is a 3317:then 3273:is a 3138:) of 3087:. If 2568:is a 1777:) = ( 1747:< 1612:wedge 1484:< 1317:below 1223:. In 1221:chain 1100:< 910:< 900:< 795:on a 419:-form 223:-form 218:is a 72:-form 18030:Form 17932:Dual 17865:flow 17728:Tame 17704:Sub− 17617:Flat 17497:Maps 17217:ISBN 17196:ISBN 17165:ISBN 17142:ISBN 17121:ISBN 17082:ISBN 17059:ISBN 17038:ISBN 16985:ISBN 16938:ISBN 16897:OCLC 16887:ISBN 16745:and 16634:U(1) 16622:U(1) 16610:dual 16577:The 16238:The 16172:U(1) 16093:and 15437:) − 15276:+ 1) 15254:are 15248:and 15149:and 14978:and 14316:and 13775:and 13749:and 13737:and 13716:and 13121:) → 12753:and 12741:and 11926:< 11920:< 11627:< 11621:< 11440:Let 11157:Let 10614:< 10608:< 10578:< 10572:< 10375:< 10369:< 10156:< 10150:< 9749:and 8483:and 7482:for 6982:and 5971:and 5858:, a 5781:Let 5725:+ 1) 4948:and 4940:The 4933:and 4367:and 4343:and 3047:Let 3002:curl 2574:+ 1) 2238:< 2232:< 2219:< 1969:< 1963:< 1950:< 1765:) + 1532:< 634:The 589:and 17952:Jet 17188:doi 17030:doi 16863:doi 16779:in 16737:= 0 16632:is 16459:as 16246:is 16152:= − 15703:↦ − 15511:or 15422:to 15159:of 15141:− 1 14672:on 14516:at 14281:at 14229:on 13582:on 12784:is 12316:in 11573:in 11458:an 11338:def 11193:on 11139:= 0 10298:⋅⋅⋅ 8988:is 8976:of 8775:at 8769:to 8743:of 8719:of 8709:on 8544:in 8421:of 8400:on 8366:of 8123:= 0 7491:∈ T 7314:= 1 7269:Alt 7196:Alt 7176:Alt 7040:Alt 6779:Alt 6762:on 6654:sgn 6556:Alt 6445:Alt 6394:), 6388:on 6370:on 6352:on 6312:of 6011:of 5965:at 5959:to 5815:of 5807:th 5658:⋅⋅⋅ 5411:= 0 5203:= Σ 5198:of 4669:/ ∂ 4645:on 4637:on 4622:on 4533:on 4522:(*) 4391:= Σ 4378:on 4350:(*) 4335:at 4053:/ ∂ 3979:on 3832:at 3828:of 3824:or 3803:to 3551:of 3347:/ ∂ 3333:of 3313:th 3277:on 3072:on 3055:in 2986:In 1818:= 0 1807:= 0 670:+1) 30:In 18851:: 17943:Co 17302:. 17287:, 17277:, 17243:. 17194:, 17036:, 17011:MR 16964:, 16954:, 16895:. 16859:16 16857:, 16853:, 16783:. 16733:∧ 16616:. 16393:ab 16382:ab 16150:23 16144:, 16130:= 16128:12 16060:ab 15805:. 15740:dx 15730:dx 15718:dx 15711:dx 15652:dx 15504:dx 15463:. 15401:df 15399:= 15391:. 15265:− 15152:∂M 14494:∈ 14327:∈ 14304:, 14258:∈ 14205:+ 13844:/ 13834:∈ 13764:→ 13728:. 13677:/ 13608:, 13598:∈ 13451:, 13442:. 13432:/ 12823:= 12813:∈ 12768:→ 12699:dt 12451:: 12337:→ 11519:⊆ 11429:dx 11427:∧ 11425:dx 11419:dx 11417:∧ 11415:dx 11302:: 11285:→ 11080:. 11042:, 10517:dx 10511:dx 10500:df 10286:, 10112:, 10081:= 9740:. 9675:× 9520:× 9001:→ 8992:df 8677:→ 8650:TN 8648:→ 8646:TM 8642:df 8574:∈ 8507:∈ 8474:TN 8472:→ 8470:TM 8466:df 8452:→ 8429:. 8390:Ω( 8382:Ω( 8343:0. 8129:: 8095:. 8059:. 8047:−1 7510:, 7501:. 7487:, 7321:∧ 7310:= 7012:⊗ 7002:∧ 6959:+ 6949:∧ 6545:, 6338:a 6333:∈ 6213:: 5853:∈ 5845:. 5839:Ω( 5737:. 5730:dα 5708:. 5696:−1 5427:. 5424:df 5422:= 5409:dα 5224:dx 5211:=1 5195:dα 4937:. 4656:df 4654:= 4626:. 4510:∈ 4406:dh 4353:. 4063:ij 4057:= 4042:= 4034:dx 4028:dx 4025:, 4022:dx 3999:, 3986:df 3970:∈ 3941:df 3935:df 3932:, 3915:Σ 3901:. 3886:df 3868:df 3839:df 3812:df 3779:, 3557:: 3380:, 3358:, 3299:= 3129:∈ 3015:, 3000:, 2565:dω 2555:dx 2550:= 2527:∈ 2425:: 2153::= 2021::= 1816:dx 1812:dx 1805:dx 1803:∧ 1801:dx 1791:dx 1789:∧ 1787:dx 1785:) 1781:− 1775:dx 1773:∧ 1771:dx 1763:dx 1761:∧ 1759:dx 1739:dx 1737:∧ 1735:dx 1729:dx 1723:dx 1717:dx 1711:dx 1476:dx 1474:∧ 1472:dx 1443:= 1335:dx 1329:dx 1108:dx 930:dx 928:) 857:. 841:. 784:. 772:, 615:0. 529:. 447:dz 445:∧ 443:dy 441:∧ 439:dx 437:) 433:, 429:, 234:: 215:dz 213:∧ 211:dy 209:) 205:, 201:, 193:+ 191:dx 189:∧ 187:dz 185:) 181:, 177:, 169:+ 167:dy 165:∧ 163:dx 161:) 157:, 153:, 84:: 64:dx 62:) 34:, 18212:e 18205:t 18198:v 17961:( 17941:( 17717:( 17698:( 17596:( 17586:( 17349:) 17345:( 17335:e 17328:t 17321:v 17291:: 17281:: 17269:. 17249:. 17190:: 17173:, 17067:, 17032:: 16968:: 16958:: 16917:. 16903:. 16865:: 16748:F 16742:A 16735:A 16731:A 16713:. 16709:A 16701:A 16697:+ 16693:A 16689:d 16686:= 16682:F 16667:F 16661:A 16651:F 16595:F 16579:2 16531:, 16526:J 16521:= 16511:F 16502:d 16493:0 16488:= 16479:F 16474:d 16445:J 16424:J 16406:j 16400:J 16389:f 16378:F 16372:j 16354:, 16348:d 16344:x 16340:d 16332:c 16328:x 16324:d 16316:b 16312:x 16308:d 16302:d 16299:c 16296:b 16293:a 16282:a 16278:j 16272:6 16269:1 16264:= 16259:J 16242:3 16223:. 16218:A 16213:d 16210:= 16205:F 16189:A 16158:z 16154:B 16147:f 16141:c 16139:/ 16136:z 16132:E 16125:f 16104:B 16075:E 16056:f 16038:, 16032:b 16028:x 16024:d 16016:a 16012:x 16008:d 16002:b 15999:a 15995:f 15989:2 15986:1 15981:= 15976:F 15940:k 15934:M 15928:k 15904:n 15898:k 15892:k 15886:k 15880:k 15870:k 15861:k 15855:n 15849:n 15843:k 15833:k 15827:k 15821:n 15817:k 15811:k 15798:n 15788:n 15782:n 15765:n 15755:n 15716:− 15705:x 15701:x 15693:J 15681:J 15672:n 15667:1 15663:1 15659:1 15630:1 15624:= 15621:x 15618:d 15613:1 15608:0 15597:= 15594:x 15591:d 15586:0 15581:1 15552:1 15549:= 15546:x 15543:d 15538:1 15533:0 15509:1 15499:1 15445:) 15443:a 15441:( 15439:f 15435:b 15433:( 15431:f 15425:b 15419:a 15413:ω 15407:R 15397:ω 15378:0 15375:= 15372:0 15367:W 15359:= 15353:d 15348:W 15315:N 15307:= 15299:M 15281:W 15274:k 15272:( 15267:N 15263:M 15257:k 15251:N 15245:M 15239:k 15233:ω 15215:. 15207:M 15196:= 15190:d 15185:M 15162:M 15146:M 15139:n 15133:ω 15100:. 15091:) 15078:f 15068:( 15065:= 15035:N 15029:ℓ 15023:λ 15016:( 15005:f 14999:α 14991:α 14981:γ 14963:, 14957:v 14946:) 14943:y 14940:( 14935:1 14928:f 14919:= 14912:v 14908:, 14903:y 14881:γ 14875:k 14869:ζ 14863:N 14845:. 14842:M 14832:x 14828:T 14822:n 14816:m 14799:y 14789:/ 14783:) 14779:) 14774:y 14760:v 14756:( 14747:f 14738:x 14729:( 14725:= 14720:x 14716:) 14709:v 14700:( 14687:) 14685:y 14683:( 14681:f 14675:M 14668:v 14664:β 14659:) 14657:n 14653:m 14651:( 14646:α 14628:. 14625:M 14615:x 14611:T 14605:k 14599:n 14584:) 14579:y 14565:v 14561:( 14552:f 14537:x 14532:) 14530:k 14526:n 14524:( 14519:y 14513:v 14507:k 14502:) 14500:y 14498:( 14496:f 14492:x 14486:N 14480:ζ 14462:, 14457:y 14443:v 14435:v 14408:N 14398:y 14394:T 14388:k 14382:n 14367:N 14362:y 14358:T 14352:k 14329:N 14325:y 14319:N 14313:M 14307:v 14301:α 14296:) 14294:y 14292:( 14290:f 14284:y 14278:v 14272:k 14266:γ 14260:N 14256:y 14250:α 14244:f 14238:α 14232:N 14226:γ 14220:k 14214:M 14209:) 14207:k 14203:n 14199:m 14197:( 14192:α 14174:. 14165:) 14156:/ 14147:) 14144:y 14141:( 14136:1 14129:f 14118:( 14111:N 14103:= 14095:M 14060:. 14051:) 14042:/ 14033:) 14030:y 14027:( 14022:1 14015:f 14004:( 13976:. 13971:y 13960:) 13953:y 13944:/ 13935:) 13932:y 13929:( 13924:1 13917:f 13906:( 13898:y 13884:N 13878:n 13873:) 13871:y 13869:( 13867:f 13861:n 13857:m 13850:y 13846:η 13842:ω 13836:N 13832:y 13826:N 13820:N 13814:n 13808:η 13802:M 13796:m 13790:ω 13784:f 13778:N 13772:M 13766:N 13762:M 13758:f 13752:n 13746:m 13740:N 13734:M 13725:f 13719:N 13713:M 13708:) 13706:y 13704:( 13702:f 13696:m 13690:ω 13683:y 13679:η 13675:ω 13657:. 13652:y 13643:/ 13637:x 13629:= 13624:x 13606:) 13604:y 13602:( 13600:f 13596:x 13591:) 13589:y 13587:( 13585:f 13579:σ 13574:) 13572:n 13568:m 13566:( 13562:) 13560:y 13558:( 13556:f 13550:M 13544:m 13538:ω 13520:M 13511:T 13504:) 13501:y 13498:( 13493:1 13486:f 13465:x 13458:x 13454:σ 13448:y 13438:y 13434:η 13429:x 13425:ω 13418:x 13414:σ 13396:. 13388:x 13374:j 13370:= 13365:x 13347:) 13345:n 13341:m 13339:( 13322:M 13312:x 13308:T 13302:n 13296:m 13276:x 13245:, 13242:M 13232:x 13228:T 13222:m 13202:x 13189:x 13185:) 13179:y 13165:f 13161:( 13158:= 13153:x 13133:x 13129:σ 13123:M 13119:y 13117:( 13115:f 13111:j 13104:y 13100:η 13093:x 13089:ω 13071:) 13068:) 13065:y 13062:( 13057:1 13050:f 13046:( 13036:x 13032:T 13026:n 13020:m 13003:x 12979:y 12975:η 12953:, 12950:N 12940:y 12936:T 12930:n 12909:y 12897:, 12894:M 12884:x 12880:T 12874:m 12853:x 12831:) 12829:x 12827:( 12825:f 12821:y 12815:M 12811:x 12805:f 12799:M 12794:) 12792:n 12788:m 12786:( 12782:) 12780:y 12778:( 12776:f 12770:N 12766:M 12762:f 12756:n 12750:m 12744:N 12738:M 12711:) 12709:t 12707:( 12705:f 12694:) 12692:t 12690:( 12688:f 12683:1 12678:R 12674:t 12672:( 12670:γ 12664:k 12658:k 12649:ω 12643:n 12637:ω 12631:ω 12625:R 12619:n 12613:ω 12607:n 12601:ω 12595:n 12589:M 12583:M 12565:M 12555:M 12537:. 12524:i 12514:D 12504:i 12500:m 12494:r 12489:1 12486:= 12483:i 12475:= 12467:c 12448:c 12442:c 12436:ω 12430:k 12412:, 12407:i 12397:i 12393:m 12387:r 12382:1 12379:= 12376:i 12368:= 12365:c 12351:M 12345:k 12339:M 12335:D 12328:- 12325:k 12319:R 12313:D 12307:k 12301:n 12297:k 12291:k 12285:R 12279:n 12270:φ 12245:) 12240:n 12236:u 12232:, 12226:, 12221:1 12217:u 12213:( 12205:) 12198:n 12194:i 12189:x 12185:, 12179:, 12172:1 12168:i 12163:x 12159:( 12127:, 12122:n 12118:u 12114:d 12106:1 12102:u 12098:d 12091:) 12086:n 12082:u 12078:, 12072:, 12067:1 12063:u 12059:( 12051:) 12044:n 12040:i 12035:x 12031:, 12025:, 12018:1 12014:i 12009:x 12005:( 11996:) 11993:) 11988:u 11983:( 11977:( 11970:n 11966:i 11962:, 11956:, 11951:1 11947:i 11942:a 11934:n 11930:i 11915:1 11911:i 11900:D 11892:= 11884:M 11853:. 11850:) 11847:) 11842:u 11837:( 11832:I 11828:x 11824:, 11818:, 11815:) 11810:u 11805:( 11800:1 11796:x 11792:( 11789:= 11786:) 11781:u 11776:( 11759:φ 11741:. 11734:n 11730:i 11725:x 11721:d 11705:1 11701:i 11696:x 11692:d 11688:) 11683:x 11678:( 11671:n 11667:i 11663:, 11657:, 11652:1 11648:i 11643:a 11635:n 11631:i 11616:1 11612:i 11603:= 11586:x 11582:x 11576:R 11570:M 11564:D 11558:ω 11555:φ 11549:M 11543:ω 11533:φ 11527:M 11521:R 11517:D 11499:M 11493:D 11473:M 11467:M 11461:n 11455:ω 11449:n 11443:M 11397:. 11392:n 11388:x 11384:d 11376:1 11372:x 11368:d 11364:) 11361:x 11358:( 11355:f 11350:U 11333:= 11318:U 11299:f 11293:ω 11287:R 11283:R 11279:f 11259:n 11255:x 11251:d 11237:1 11233:x 11229:d 11225:) 11222:x 11219:( 11216:f 11213:= 11196:U 11190:ω 11184:n 11178:U 11172:R 11166:R 11160:U 11144:k 11137:k 11131:k 11125:k 11119:k 11115:n 11109:n 11103:k 11097:k 11091:k 11068:k 11062:n 11059:, 11056:m 11050:1 11023:n 11019:j 11014:x 11001:m 10997:i 10992:f 10962:) 10955:k 10951:j 10946:x 10942:, 10936:, 10929:1 10925:j 10920:x 10916:( 10908:) 10901:k 10897:i 10892:f 10888:, 10882:, 10875:1 10871:i 10866:f 10862:( 10833:. 10826:k 10822:j 10817:x 10813:d 10797:1 10793:j 10788:x 10784:d 10777:) 10770:k 10766:j 10761:x 10757:, 10751:, 10744:1 10740:j 10735:x 10731:( 10723:) 10716:k 10712:i 10707:f 10703:, 10697:, 10690:1 10686:i 10681:f 10677:( 10668:) 10665:f 10655:k 10651:i 10642:1 10638:i 10629:( 10622:k 10618:j 10603:1 10599:j 10586:k 10582:i 10567:1 10563:i 10554:= 10542:f 10523:k 10504:i 10482:. 10475:k 10471:i 10466:f 10462:d 10446:1 10442:i 10437:f 10433:d 10429:) 10426:f 10416:k 10412:i 10403:1 10399:i 10390:( 10383:k 10379:i 10364:1 10360:i 10351:= 10339:f 10324:ω 10318:y 10312:y 10304:k 10300:i 10296:1 10293:i 10289:ω 10282:k 10278:i 10272:1 10269:i 10251:, 10244:k 10240:i 10235:y 10231:d 10215:1 10211:i 10206:y 10202:d 10194:k 10190:i 10181:1 10177:i 10164:k 10160:i 10145:1 10141:i 10132:= 10115:ω 10109:N 10103:i 10098:) 10096:x 10092:x 10090:( 10087:i 10083:f 10079:y 10073:N 10067:y 10061:y 10055:M 10049:x 10043:x 10021:. 10018:) 10006:f 10002:( 9999:d 9996:= 9989:) 9983:d 9980:( 9971:f 9963:, 9951:f 9935:f 9931:= 9924:) 9912:( 9903:f 9895:, 9883:f 9879:+ 9867:f 9863:= 9856:) 9850:+ 9844:( 9835:f 9827:, 9824:) 9812:f 9808:( 9805:c 9802:= 9795:) 9789:c 9786:( 9777:f 9758:c 9752:η 9746:ω 9737:ω 9734:f 9718:R 9711:M 9705:M 9702:T 9697:k 9677:R 9673:M 9667:M 9648:R 9641:N 9616:N 9613:T 9608:k 9589:f 9586:d 9581:k 9559:M 9556:T 9551:k 9528:N 9522:R 9518:N 9500:, 9496:R 9489:N 9464:N 9461:T 9456:k 9430:ω 9424:ω 9418:k 9400:. 9397:M 9388:T 9382:k 9357:) 9353:f 9350:d 9347:( 9342:k 9320:N 9311:T 9305:k 9271:N 9261:f 9246:M 9232:ω 9226:k 9220:k 9199:) 9195:f 9192:d 9189:( 9184:k 9168:M 9163:1 9158:M 9140:. 9137:M 9128:T 9111:) 9107:f 9104:d 9101:( 9086:N 9077:T 9051:N 9041:f 9026:M 9012:ω 9006:M 9003:T 8999:N 8996:T 8990:( 8985:f 8979:N 8973:N 8970:T 8964:N 8959:1 8954:ω 8936:. 8933:) 8928:k 8924:v 8914:f 8910:, 8904:, 8899:1 8895:v 8885:f 8881:( 8876:) 8873:p 8870:( 8867:f 8859:= 8856:) 8851:k 8847:v 8843:, 8837:, 8832:1 8828:v 8824:( 8819:p 8815:) 8802:f 8798:( 8784:ω 8778:p 8772:M 8765:k 8761:v 8755:1 8752:v 8746:M 8740:p 8734:f 8728:ω 8722:ω 8712:M 8706:ω 8703:f 8697:N 8691:k 8685:ω 8679:N 8675:M 8671:f 8662:M 8656:M 8636:N 8627:N 8621:N 8615:∗ 8612:f 8606:N 8602:q 8596:f 8590:N 8586:q 8582:T 8576:N 8572:q 8566:f 8560:N 8557:) 8555:p 8553:( 8551:f 8547:T 8542:) 8540:v 8538:( 8536:∗ 8533:f 8527:M 8523:p 8519:T 8515:v 8509:M 8505:p 8495:∗ 8492:f 8486:N 8480:M 8460:f 8454:N 8450:M 8446:f 8425:R 8413:R 8403:M 8394:) 8392:M 8386:) 8384:M 8369:M 8331:) 8328:M 8325:( 8320:n 8291:) 8288:M 8285:( 8280:3 8265:d 8250:) 8247:M 8244:( 8239:2 8224:d 8209:) 8206:M 8203:( 8198:1 8183:d 8168:) 8165:M 8162:( 8157:0 8140:0 8121:d 8069:1 8056:d 8033:) 8030:M 8027:( 8022:1 8016:k 8005:) 8002:M 7999:( 7994:k 7960:) 7957:M 7954:( 7949:k 7943:n 7913:) 7910:M 7907:( 7902:k 7852:. 7846:d 7835:k 7831:) 7827:1 7821:( 7818:+ 7806:d 7803:= 7800:) 7788:( 7785:d 7774:: 7755:. 7738:k 7734:) 7730:1 7724:( 7721:= 7698:ℓ 7692:β 7686:k 7680:α 7650:. 7647:) 7635:( 7629:f 7626:= 7623:) 7614:f 7611:( 7584:, 7572:+ 7560:= 7557:) 7551:+ 7545:( 7525:f 7519:γ 7513:β 7507:α 7498:M 7494:p 7489:w 7485:v 7467:) 7464:v 7461:( 7456:p 7448:) 7445:w 7442:( 7437:p 7426:) 7423:w 7420:( 7415:p 7407:) 7404:v 7401:( 7396:p 7388:= 7385:) 7382:w 7379:, 7376:v 7373:( 7368:p 7364:) 7351:( 7333:p 7328:2 7323:β 7319:α 7312:ℓ 7308:k 7290:. 7287:) 7275:( 7263:! 7257:! 7254:k 7249:! 7246:) 7240:+ 7237:k 7234:( 7228:= 7173:! 7170:n 7150:M 7141:T 7135:n 7108:M 7099:T 7093:n 7061:. 7058:) 7046:( 7037:= 7014:β 7010:α 7004:β 7000:α 6991:p 6985:β 6979:α 6973:M 6967:p 6961:ℓ 6957:k 6951:β 6947:α 6941:β 6935:ℓ 6929:α 6923:k 6880:M 6874:k 6858:β 6840:. 6837:M 6828:T 6822:k 6809:M 6800:T 6794:k 6765:k 6754:k 6750:S 6732:, 6729:) 6724:) 6721:k 6718:( 6711:x 6707:, 6701:, 6696:) 6693:1 6690:( 6683:x 6679:( 6674:p 6666:) 6660:( 6647:k 6643:S 6625:! 6622:k 6618:1 6613:= 6610:) 6605:k 6601:x 6597:, 6591:, 6586:1 6582:x 6578:( 6575:) 6570:p 6562:( 6542:p 6504:. 6501:M 6492:T 6486:k 6473:M 6464:T 6458:k 6425:1 6419:p 6415:X 6401:p 6397:α 6391:M 6381:M 6377:p 6373:T 6363:M 6359:p 6355:T 6348:p 6344:α 6335:M 6331:p 6325:α 6320:1 6315:M 6309:p 6303:k 6297:k 6279:. 6275:R 6268:M 6263:p 6259:T 6253:k 6248:1 6245:= 6242:n 6229:p 6183:) 6177:M 6172:p 6168:T 6162:k 6148:( 6140:M 6130:p 6126:T 6120:k 6097:k 6091:k 6075:R 6068:M 6063:p 6059:T 6053:k 6036:p 6020:β 6014:M 6004:k 5998:p 5982:M 5978:p 5974:T 5968:p 5962:M 5952:M 5948:p 5944:T 5926:, 5923:M 5913:p 5909:T 5903:k 5886:p 5867:β 5861:k 5855:M 5851:p 5843:) 5841:M 5830:M 5824:k 5818:M 5804:k 5794:k 5784:M 5765:k 5761:M 5757:k 5749:M 5745:M 5735:α 5723:k 5721:( 5717:α 5713:k 5704:k 5700:i 5694:k 5690:i 5686:2 5683:i 5679:1 5676:i 5671:2 5664:k 5660:i 5656:2 5653:i 5650:1 5647:i 5643:f 5621:k 5617:i 5612:x 5608:d 5592:2 5588:i 5583:x 5579:d 5569:1 5565:i 5560:x 5556:d 5548:k 5544:i 5535:2 5531:i 5525:1 5521:i 5516:f 5510:n 5505:1 5502:= 5497:k 5493:i 5484:2 5480:i 5476:, 5471:1 5467:i 5448:k 5444:k 5440:2 5436:1 5432:0 5420:α 5415:f 5391:. 5386:j 5382:x 5378:d 5370:i 5366:x 5362:d 5353:i 5349:x 5338:j 5334:f 5322:n 5317:1 5314:= 5311:j 5308:, 5305:i 5297:= 5292:j 5288:x 5284:d 5276:j 5272:f 5268:d 5263:n 5258:1 5255:= 5252:j 5244:= 5238:d 5220:j 5216:f 5209:j 5201:α 5187:2 5183:2 5166:. 5161:i 5157:x 5153:d 5145:j 5141:x 5137:d 5131:= 5126:j 5122:x 5118:d 5110:i 5106:x 5102:d 5089:∧ 5072:, 5069:0 5066:= 5061:j 5057:x 5053:d 5045:i 5041:x 5037:d 5028:i 5024:x 5013:j 5009:f 4997:n 4992:1 4989:= 4986:j 4983:, 4980:i 4958:1 4954:∧ 4950:j 4946:i 4935:j 4931:i 4914:0 4911:= 4903:j 4899:x 4888:i 4884:f 4866:i 4862:x 4851:j 4847:f 4827:f 4810:, 4802:i 4798:x 4788:j 4784:x 4775:f 4770:2 4759:= 4751:j 4747:x 4737:i 4733:x 4724:f 4719:2 4698:f 4692:n 4685:i 4681:f 4676:n 4671:x 4667:f 4665:∂ 4661:f 4652:α 4647:U 4643:f 4639:U 4635:α 4631:1 4624:U 4618:i 4614:f 4594:i 4590:x 4586:d 4580:i 4576:f 4570:n 4565:1 4562:= 4559:i 4551:= 4535:U 4531:α 4527:1 4517:1 4512:U 4508:p 4488:p 4484:) 4478:i 4474:h 4470:d 4467:( 4464:) 4461:p 4458:( 4453:i 4449:g 4443:i 4435:= 4430:p 4410:i 4402:i 4398:g 4394:i 4389:α 4384:1 4380:U 4374:i 4370:h 4363:i 4359:g 4345:j 4341:p 4337:p 4333:f 4329:j 4323:j 4319:e 4301:. 4296:p 4292:) 4286:i 4282:x 4278:d 4275:( 4272:) 4269:p 4266:( 4258:i 4254:x 4245:f 4234:n 4229:1 4226:= 4223:i 4215:= 4210:p 4206:f 4202:d 4185:p 4176:) 4174:* 4172:( 4155:. 4150:i 4146:x 4142:d 4133:i 4129:x 4120:f 4109:n 4104:1 4101:= 4098:i 4090:= 4087:f 4084:d 4059:δ 4055:x 4051:x 4049:∂ 4044:x 4040:f 4017:1 4013:U 4008:x 4002:x 3996:x 3991:f 3981:U 3977:f 3972:U 3968:p 3962:j 3957:) 3954:j 3950:e 3948:( 3945:p 3924:j 3920:e 3917:v 3907:v 3897:1 3890:p 3881:p 3877:f 3873:U 3863:) 3861:p 3859:( 3857:f 3853:v 3848:v 3846:( 3843:p 3834:p 3830:f 3816:p 3806:R 3800:R 3791:p 3787:c 3782:w 3776:v 3754:) 3751:p 3748:( 3745:) 3742:f 3736:v 3727:( 3724:c 3721:= 3714:) 3711:p 3708:( 3705:) 3702:f 3696:v 3692:c 3684:( 3677:) 3674:p 3671:( 3668:) 3665:f 3659:w 3650:( 3647:+ 3644:) 3641:p 3638:( 3635:) 3632:f 3626:v 3617:( 3614:= 3607:) 3604:p 3601:( 3598:) 3595:f 3589:w 3585:+ 3581:v 3572:( 3554:v 3545:) 3543:p 3541:( 3539:f 3535:v 3532:∂ 3515:. 3507:i 3503:y 3494:f 3480:j 3476:x 3465:i 3461:y 3449:n 3444:1 3441:= 3438:i 3430:= 3422:j 3418:x 3409:f 3389:y 3383:y 3377:y 3372:U 3367:x 3361:x 3355:x 3349:x 3345:f 3343:∂ 3339:j 3335:f 3326:f 3322:v 3319:∂ 3311:j 3305:j 3301:e 3297:v 3289:p 3284:v 3279:U 3270:v 3252:. 3247:0 3244:= 3241:t 3236:| 3232:) 3228:v 3224:t 3221:+ 3218:p 3215:( 3212:f 3206:t 3203:d 3199:d 3189:= 3186:) 3183:p 3180:( 3177:) 3174:f 3168:v 3159:( 3145:v 3140:f 3136:p 3131:U 3127:p 3122:U 3117:f 3113:v 3110:∂ 3102:f 3096:R 3090:v 3085:) 3083:U 3081:( 3079:C 3074:U 3070:f 3063:0 3058:R 3049:U 2989:R 2971:) 2968:M 2965:( 2960:1 2957:+ 2954:k 2941:I 2937:x 2933:d 2926:) 2920:j 2916:x 2912:d 2903:j 2899:x 2888:I 2884:a 2872:n 2867:1 2864:= 2861:j 2852:( 2844:n 2841:, 2838:k 2832:J 2823:I 2815:= 2809:d 2796:, 2784:) 2781:M 2778:( 2773:k 2760:I 2756:x 2752:d 2746:I 2742:a 2734:n 2731:, 2728:k 2722:J 2713:I 2705:= 2691:k 2674:. 2669:I 2665:x 2661:d 2653:i 2649:x 2645:d 2636:i 2632:x 2623:f 2612:n 2607:1 2604:= 2601:i 2593:= 2587:d 2572:k 2570:( 2560:k 2552:f 2548:ω 2543:f 2539:) 2537:M 2533:M 2531:( 2529:C 2525:f 2515:d 2498:. 2483:) 2478:k 2475:n 2470:( 2464:= 2460:| 2454:n 2451:, 2448:k 2442:J 2435:| 2423:k 2419:n 2415:n 2411:k 2407:n 2403:k 2387:n 2384:, 2381:k 2375:J 2362:M 2358:) 2356:M 2354:( 2352:C 2347:n 2343:M 2339:k 2321:n 2318:, 2315:k 2309:J 2300:I 2296:} 2290:I 2286:x 2282:d 2279:{ 2269:. 2257:} 2254:n 2246:k 2242:i 2227:2 2223:i 2214:1 2210:i 2203:1 2200:: 2197:) 2192:k 2188:i 2184:, 2178:, 2173:1 2169:i 2165:( 2162:= 2159:I 2156:{ 2148:n 2145:, 2142:k 2136:J 2122:n 2118:k 2114:. 2100:i 2096:x 2092:d 2087:I 2081:i 2073:= 2066:k 2062:i 2057:x 2053:d 2037:1 2033:i 2028:x 2024:d 2016:I 2012:x 2008:d 1997:, 1985:n 1977:k 1973:i 1958:2 1954:i 1945:1 1941:i 1934:1 1931:, 1928:) 1923:k 1919:i 1915:, 1909:, 1904:2 1900:i 1896:, 1891:1 1887:i 1883:( 1880:= 1877:I 1866:n 1858:k 1836:m 1832:i 1826:1 1823:i 1783:b 1779:a 1769:( 1767:b 1757:( 1755:a 1749:j 1745:i 1691:1 1687:x 1683:d 1675:2 1671:x 1667:d 1661:= 1656:2 1652:x 1648:d 1640:1 1636:x 1632:d 1615:∧ 1601:, 1587:j 1583:x 1579:d 1571:i 1567:x 1563:d 1557:j 1554:, 1551:i 1547:f 1541:n 1535:j 1529:i 1523:1 1507:2 1502:x 1499:– 1496:x 1491:2 1486:j 1482:i 1464:1 1460:) 1458:x 1454:x 1452:( 1449:k 1445:f 1440:k 1436:f 1418:, 1413:n 1409:x 1405:d 1399:n 1395:f 1391:+ 1385:+ 1380:1 1376:x 1372:d 1366:1 1362:f 1348:1 1340:1 1313:A 1296:d 1292:f 1287:] 1284:b 1281:, 1278:a 1275:[ 1267:= 1261:d 1257:f 1252:A 1237:A 1233:μ 1229:f 1204:. 1191:M 1179:= 1171:M 1153:m 1149:ω 1144:′ 1141:M 1136:m 1132:M 1128:2 1124:1 1120:m 1116:m 1102:a 1098:b 1095:( 1075:. 1072:x 1069:d 1065:) 1062:x 1059:( 1056:f 1051:b 1046:a 1035:= 1032:x 1029:d 1025:) 1022:x 1019:( 1016:f 1011:a 1006:b 975:x 972:d 968:) 965:x 962:( 959:f 954:b 949:a 926:x 924:( 922:f 917:1 912:b 908:a 902:b 898:a 883:2 879:1 875:k 867:k 801:1 789:1 752:x 749:d 746:) 743:x 740:( 733:f 729:= 726:) 723:x 720:( 717:f 714:d 704:0 686:. 680:d 668:k 666:( 641:k 612:= 609:x 606:d 600:x 597:d 577:y 574:d 568:x 565:d 559:= 556:x 553:d 547:y 544:d 520:n 514:n 499:. 493:, 490:y 487:d 484:, 481:x 478:d 468:k 460:k 456:k 435:z 431:y 427:x 425:( 423:f 417:3 404:∧ 387:. 384:) 381:z 378:d 372:y 369:d 365:) 362:z 359:, 356:y 353:, 350:x 347:( 344:h 341:+ 338:x 335:d 329:z 326:d 322:) 319:z 316:, 313:y 310:, 307:x 304:( 301:g 298:+ 295:y 292:d 286:x 283:d 279:) 276:z 273:, 270:y 267:, 264:x 261:( 258:f 255:( 250:S 231:S 221:2 207:z 203:y 199:x 197:( 195:h 183:z 179:y 175:x 173:( 171:g 159:z 155:y 151:x 149:( 147:f 129:. 126:x 123:d 119:) 116:x 113:( 110:f 105:b 100:a 81:f 70:1 60:x 58:( 56:f 20:)

Index

Integration of a differential form
mathematics
integrands
manifolds
Élie Cartan
1-form
integrated
surface
exterior product
volume element
homogeneous
volume form
alternating algebra
orientation
exterior derivative
differential of a function
fundamental theorem of calculus
divergence theorem
Green's theorem
Stokes' theorem
generalized Stokes theorem
vector fields
differentiable manifold
interior product
pullback
change of variables formula
Élie Cartan
exterior algebra
Hermann Grassmann
multivariable calculus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.