Knowledge

Integrable system

Source đź“ť

685:
some "known" functions available, in terms of which the solutions may be expressed. This notion has no intrinsic meaning, since what is meant by "known" functions very often is defined precisely by the fact that they satisfy certain given equations, and the list of such "known functions" is constantly growing. Although such a characterization of "integrability" has no intrinsic validity, it often implies the sort of regularity that is to be expected in integrable systems.
455:. In classical terminology, this is described as determining a transformation to a canonical set of coordinates consisting of completely ignorable variables; i.e., those in which there is no dependence of the Hamiltonian on a complete set of canonical "position" coordinates, and hence the corresponding canonically conjugate momenta are all conserved quantities. In the case of compact energy level sets, this is the first step towards determining the 511:. This provides, in certain cases, enough invariants, or "integrals of motion" to make the system completely integrable. In the case of systems having an infinite number of degrees of freedom, such as the KdV equation, this is not sufficient to make precise the property of Liouville integrability. However, for suitably defined boundary conditions, the spectral transform can, in fact, be interpreted as a transformation to 479:, in which the separation constants provide the complete set of integration constants that are required. Only when these constants can be reinterpreted, within the full phase space setting, as the values of a complete set of Poisson commuting functions restricted to the leaves of a Lagrangian foliation, can the system be regarded as completely integrable in the Liouville sense. 515:, in which the conserved quantities form half of a doubly infinite set of canonical coordinates, and the flow linearizes in these. In some cases, this may even be seen as a transformation to action-angle variables, although typically only a finite number of the "position" variables are actually angle coordinates, and the rest are noncompact. 684:
An imprecise notion of "exact solvability" as meaning: "The solutions can be expressed explicitly in terms of some previously known functions" is also sometimes used, as though this were an intrinsic property of the system itself, rather than the purely calculational feature that we happen to have
434:
variables. These thus provide a complete set of invariants of the Hamiltonian flow (constants of motion), and the angle variables are the natural periodic coordinates on the tori. The motion on the invariant tori, expressed in terms of these canonical coordinates, is linear in the angle variables.
356:
Hamiltonian systems (i.e. those for which the Hamiltonian and Poisson brackets are not explicitly time-dependent) have at least one invariant; namely, the Hamiltonian itself, whose value along the flow is the energy. If the energy level sets are compact, the leaves of the Lagrangian foliation are
400:
and maximal superintegrability. Essentially, these distinctions correspond to the dimensions of the leaves of the foliation. When the number of independent Poisson commuting invariants is less than maximal (but, in the case of autonomous systems, more than one), we say the system is partially
278:
means that there exists a regular foliation of the phase space by invariant manifolds such that the Hamiltonian vector fields associated with the invariants of the foliation span the tangent distribution. Another way to state this is that there exists a maximal set of functionally independent
506:
The basic idea of this method is to introduce a linear operator that is determined by the position in phase space and which evolves under the dynamics of the system in question in such a way that its "spectrum" (in a suitably generalized sense) is invariant under the evolution, cf.
495:(which describes 1-dimensional non-dissipative fluid dynamics in shallow basins), could be understood by viewing these equations as infinite-dimensional integrable Hamiltonian systems. Their study leads to a very fruitful approach for "integrating" such systems, the 665:
In physics, completely integrable systems, especially in the infinite-dimensional setting, are often referred to as exactly solvable models. This obscures the distinction between integrability, in the Hamiltonian sense, and the more general dynamical systems sense.
99:
sense, the key example being multi-dimensional harmonic oscillators. Another standard example is planetary motion about either one fixed center (e.g., the sun) or two. Other elementary examples include the motion of a rigid body about its center of mass (the
92:. The latter generally have no conserved quantities, and are asymptotically intractable, since an arbitrarily small perturbation in initial conditions may lead to arbitrarily large deviations in their trajectories over a sufficiently large time. 401:
integrable. When there exist further functionally independent invariants, beyond the maximal number that can be Poisson commuting, and hence the dimension of the leaves of the invariant foliation is less than n, we say the system is
632:
To explain quantum integrability, it is helpful to consider the free particle setting. Here all dynamics are one-body reducible. A quantum system is said to be integrable if the dynamics are two-body reducible. The
150:
In the special case of Hamiltonian systems, if there are enough independent Poisson commuting first integrals for the flow parameters to be able to serve as a coordinate system on the invariant level sets (the
413:
When a finite-dimensional Hamiltonian system is completely integrable in the Liouville sense, and the energy level sets are compact, the flows are complete, and the leaves of the invariant foliation are
239:
An extension of the notion of integrability is also applicable to discrete systems such as lattices. This definition can be adapted to describe evolution equations that either are systems of
527:, which involved replacing the original nonlinear dynamical system with a bilinear system of constant coefficient equations for an auxiliary quantity, which later came to be known as the 669:
There are also exactly solvable models in statistical mechanics, which are more closely related to quantum integrable systems than classical ones. Two closely related methods: the
225:. There is thus a variable notion of the degree of integrability, depending on the dimension of the leaves of the invariant foliation. This concept has a refinement in the case of 637:
is a consequence of this reducibility and leads to trace identities which provide an infinite set of conserved quantities. All of these ideas are incorporated into the
322: 471:
is the dimension of the configuration space), exists in very general cases, but only in the local sense. Therefore, the existence of a complete solution of the
379: 342: 822: 2454: 789: 706: 475:
is by no means a characterization of complete integrability in the Liouville sense. Most cases that can be "explicitly integrated" involve a complete
681:, provide quantum analogs of the inverse spectral methods. These are equally important in the study of solvable models in statistical mechanics. 503:), which generalize local linear methods like Fourier analysis to nonlocal linearization, through the solution of associated integral equations. 657:. Some other types of quantum integrability are known in explicitly time-dependent quantum problems, such as the driven Tavis-Cummings model. 2406: 2093: 1628:
Sonnad, Kiran G.; Cary, John R. (2004). "Finding a nonlinear lattice with improved integrability using Lie transform perturbation theory".
617:, and the notion of Poisson commuting functions replaced by commuting operators. The notion of conservation laws must be specialized to 190:, is a global property, not a local one, since it requires that the foliation be a regular one, with the leaves embedded submanifolds. 539:
approach, or the Hamiltonian structure, this nevertheless gave a very direct method from which important classes of solutions such as
76:
the explicit determination of solutions in an explicit functional form (not an intrinsic property, but something often referred to as
175: 2442: 2743: 2371: 725: 558:
approach, in which, typically, the commuting dynamics were viewed simply as determined by a fixed (finite or infinite) abelian
2173: 2059: 1933: 1721: 1618: 1563: 1541: 1488: 1462: 1321: 1299: 1277: 1251: 1228: 1149: 250:
The distinction between integrable and nonintegrable dynamical systems has the qualitative implication of regular motion vs.
523:
Another viewpoint that arose in the modern theory of integrable systems originated in a calculational approach pioneered by
1601:; Markman, E. (1996). "Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles". 193:
Integrability does not necessarily imply that generic solutions can be explicitly expressed in terms of some known set of
2311: 869: 551: 254:
and hence is an intrinsic property, not just a matter of whether a system can be explicitly integrated in an exact form.
2226: 1175: 402: 397: 590:, characterizing the PlĂĽcker embedding of the Grassmannian in the projectivization of a suitably defined (infinite) 2548: 1806:
Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. (1981). "Operator approach to the Kadomtsev-Petviashvili equation III".
1518: 1411: 1377: 1343: 1206: 779: 678: 638: 528: 2296: 827: 124: 2086: 1773: 405:. If there is a regular foliation with one-dimensional leaves (curves), this is called maximally superintegrable. 887: 794: 622: 115:
systems in physics having an infinite number of degrees of freedom, such as some models of shallow water waves (
2738: 1022: 817: 492: 451:, in which solutions to Hamilton's equations are sought by first finding a complete solution of the associated 116: 2256: 171:
systems, the energy is generally the only one, and on the energy level sets, the flows are typically chaotic.
1682: 1369: 859: 809: 460: 448: 2401: 2355: 2216: 2128: 874: 536: 496: 472: 452: 271: 144: 1834: 487:
A resurgence of interest in classical integrable systems came with the discovery, in the late 1960s, that
197:; it is an intrinsic property of the geometry and topology of the system, and the nature of the dynamics. 2728: 2246: 2079: 1867: 1677: 500: 324:
and the maximal number of independent Poisson commuting invariants (including the Hamiltonian itself) is
361:, and the natural linear coordinates on these are called "angle" variables. The cycles of the canonical 2733: 1672: 1587: 1480: 1438: 1395: 1190: 1167: 654: 2327: 1949:
Sinitsyn, N.A.; Li, F. (2016). "Solvable multistate model of Landau-Zener transitions in cavity QED".
2590: 2448: 2195: 804: 784: 774: 2553: 2521: 942: 837: 674: 634: 444: 160: 535:. Although originally appearing just as a calculational device, without any clear relation to the 298:(i.e., the center of the Poisson algebra consists only of constants), it must have even dimension 2667: 2116: 1533: 1243: 891: 476: 263: 39:, that its motion is confined to a submanifold of much smaller dimensionality than that of its 2615: 104:) and the motion of an axially symmetric rigid body about a point in its axis of symmetry (the 2426: 2411: 2376: 2221: 976: 832: 646: 610: 456: 427: 382: 349: 345: 240: 164: 2605: 2301: 1551: 981: 895: 736: 618: 419: 226: 491:, which are strongly stable, localized solutions of partial differential equations like the 2672: 2641: 2291: 2020: 1970: 1891: 1879: 1746: 1637: 1498: 1442: 1119: 986: 966: 899: 554:
hierarchy, but then for much more general classes of integrable hierarchies, as a sort of
218: 156: 1692:, a conference devoted to the study of integrable difference equations and related topics. 587: 381:-form are called the action variables, and the resulting canonical coordinates are called 8: 2631: 2348: 2151: 1580: 1530:
Statistical Field Theory. An Introduction to Exactly Solved Models of Statistical Physics
1088: 847: 717: 571: 301: 295: 167:. General dynamical systems have no such conserved quantities; in the case of autonomous 2024: 1974: 1883: 1750: 1641: 1446: 645:
can be used to obtain explicit solutions. Examples of quantum integrable models are the
550:
and his students, at first for the case of integrable hierarchies of PDEs, such as the
2600: 2498: 2493: 2488: 2338: 2004: 1986: 1960: 1903: 1417: 1138: 1037: 907: 364: 327: 222: 168: 159:), and if the flows are complete and the energy level set is compact, this implies the 96: 66: 32: 131:. The modern theory of integrable systems was revived with the numerical discovery of 2421: 2055: 1990: 1929: 1907: 1895: 1758: 1717: 1653: 1614: 1584: 1559: 1537: 1514: 1484: 1458: 1421: 1407: 1373: 1339: 1331: 1317: 1295: 1273: 1247: 1224: 1202: 1171: 1145: 1017: 864: 348:
with respect to the symplectic form and such a maximal isotropic foliation is called
244: 206: 194: 187: 1774:"Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds" 84:
Integrable systems may be seen as very different in qualitative character from more
2610: 2183: 2166: 2028: 1978: 1921: 1887: 1846: 1815: 1788: 1754: 1645: 1606: 1506: 1472: 1450: 1399: 1357: 1194: 1032: 757: 591: 431: 267: 24: 1159: 2698: 2580: 2381: 2049: 1711: 1502: 1309: 1287: 1133: 1106: 1096: 284: 280: 95:
Many systems studied in physics are completely integrable, in particular, in the
2703: 2693: 2636: 2585: 2483: 2469: 2416: 2306: 2200: 2161: 1982: 1851: 1649: 1361: 1265: 1261: 1083: 1057: 1052: 1027: 954: 936: 920: 842: 251: 140: 136: 36: 27:. While there are several distinct formal definitions, informally speaking, an 2033: 2008: 625:
has an infinite set of conserved quantities given by projectors to its energy
2722: 2688: 2595: 2284: 2251: 2156: 1899: 1454: 1216: 1198: 1042: 1004: 999: 702: 650: 614: 2651: 2543: 2526: 2279: 2188: 1951: 1657: 1430: 1111: 1078: 1073: 1047: 925: 799: 752: 730: 670: 642: 563: 559: 236:(see below), which is what is most frequently referred to in this context. 128: 105: 89: 46:
Three features are often referred to as characterizing integrable systems:
2054:. London Mathematical Society. Vol. 255. Cambridge University Press. 1866:
Calabrese, Pasquale; Essler, Fabian H L; Mussardo, Giuseppe (2016-06-27).
1605:. Lecture Notes in Mathematics. Vol. 1620. Springer. pp. 1–119. 1497: 1403: 2477: 1819: 1387: 1353: 1009: 930: 903: 769: 712: 626: 575: 567: 423: 291: 182:(i.e., is generated by an integrable distribution) if, locally, it has a 120: 40: 1868:"Introduction to 'Quantum Integrability in Out of Equilibrium Systems'" 1792: 1610: 1598: 1101: 595: 547: 1737:
Hirota, R. (1986). "Reduction of soliton equations in bilinear form".
2646: 2332: 2178: 2121: 2071: 1062: 609:
In the quantum setting, functions on phase space must be replaced by
393: 232: 214: 183: 101: 1588:"Quantization of Hitchin's integrable system and Hecke eigensheaves" 1965: 1689: 540: 508: 132: 1314:
Integrable Hamiltonian Systems: Geometry, Topology, Classification
287:
with the Hamiltonian of the system, and with each other, vanish).
257: 186:
by maximal integral manifolds. But integrability, in the sense of
2343: 971: 488: 283:
invariants (i.e., independent functions on the phase space whose
221:
of the smallest possible dimension that are invariant under the
629:. However, this does not imply any special dynamical structure. 1713:
Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces
430:, such that the invariant tori are the joint level sets of the 499:
and more general inverse spectral methods (often reducible to
1690:"SIDE - Symmetries and Integrability of Difference Equations" 688: 459:. In the general theory of partial differential equations of 415: 358: 174:
A key ingredient in characterizing integrable systems is the
518: 54:
set of conserved quantities (the usual defining property of
1926:
Quantum Inverse Scattering Method and Correlation Functions
1477:
Quantum Inverse Scattering Method and Correlation Functions
1166:. Cambridge Studies in Advanced Mathematics. Vol. 51. 396:
sense, and partial integrability, as well as a notion of
1352: 1920: 1471: 482: 418:. There then exist, as mentioned above, special sets of 127:, and certain integrable many-body systems, such as the 1872:
Journal of Statistical Mechanics: Theory and Experiment
1865: 1805: 1428: 606:
There is also a notion of quantum integrable systems.
992: 367: 330: 304: 2051:
Symmetries and Integrability of Difference Equations
463:
type, a complete solution (i.e. one that depends on
2266:
Integrable PDEs/Classical integrable field theories
1184: 790:
Classical Heisenberg ferromagnet model (spin chain)
707:
exact solutions of classical central-force problems
1137: 373: 336: 316: 111:In the late 1960s, it was realized that there are 2720: 1835:"Solitons and infinite-dimensional Lie algebras" 1710:Hitchin, N.J.; Segal, G.B.; Ward, R.S. (2013) . 1709: 1394:. Cambridge Monographs on Mathematical Physics. 1260: 823:Landau–Lifshitz equation (continuous spin field) 722:Integrable Clebsch and Steklov systems in fluids 2455:Six-dimensional holomorphic Chern–Simons theory 2047: 1308: 438: 258:Hamiltonian systems and Liouville integrability 213:refers to the existence of invariant, regular 2435: 2048:Clarkson, Peter A.; Nijhoff, Frank W. (1999). 1942: 1221:Exactly solved models in statistical mechanics 2087: 1597: 1579: 1550: 1366:Integrable Systems: From Classical to Quantum 1292:Symplectic Geometry. Methods and Applications 1270:Hamiltonian Methods in the Theory of Solitons 1164:Spinning Tops: A Course on Integrable Systems 601: 266:, we have the notion of integrability in the 31:is a dynamical system with sufficiently many 1386: 1187:Introduction to classical integrable systems 1185:Babelon, O.; Bernard, D.; Talon, M. (2003). 673:approach, in its modern sense, based on the 467:independent constants of integration, where 200: 88:dynamical systems, which are more typically 1140:Mathematical Methods of Classical Mechanics 915:Exactly solvable statistical lattice models 2682:Classical and quantum statistical lattices 2094: 2080: 1948: 1924:; Bogoliubov, N.M.; Izergin, A.G. (1997). 1627: 1556:Handbook of Integrable Hamiltonian Systems 1475:; Bogoliubov, N.M.; Izergin, A.G. (1997). 689:List of some well-known integrable systems 660: 519:Hirota bilinear equations and Ď„-functions 2032: 1964: 1850: 1832: 1330: 408: 2003: 1808:Journal of the Physical Society of Japan 1527: 1237: 1286: 231:complete integrability in the sense of 2721: 2101: 1736: 1215: 1132: 764:Integrable systems in 1 + 1 dimensions 726:Lagrange, Euler, and Kovalevskaya tops 546:Subsequently, this was interpreted by 2075: 1603:Integrable systems and quantum groups 1158: 566:. The Ď„-function was viewed as the 483:Solitons and inverse spectral methods 16:Property of certain dynamical systems 2508:Exactly solvable quantum spin chains 2443:Four-dimensional Chern–Simons theory 1826: 1799: 1771: 1392:Tau functions and Their Applications 388:There is also a distinction between 123:in optical fibres, described by the 2372:Anti-self-dual Yang–Mills equations 1765: 1294:(2nd ed.). Gordon and Breach. 881:Integrable PDEs in 3 + 1 dimensions 854:Integrable PDEs in 2 + 1 dimensions 531:. These are now referred to as the 13: 2227:Superintegrable Hamiltonian system 1573: 1435:Discrete systems and integrability 993:Some key contributors (since 1965) 439:The Hamilton–Jacobi approach 344:. The leaves of the foliation are 14: 2755: 2549:Quantum inverse scattering method 2395:Integrable Quantum Field theories 1781:Kokyuroku, RIMS, Kyoto University 1665: 1240:Solitons, Instantons and Twistors 780:Boussinesq equation (water waves) 679:quantum inverse scattering method 639:quantum inverse scattering method 582:within the Grassmannian, and the 205:In the context of differentiable 2574:Classical mechanics and geometry 1892:10.1088/1742-5468/2016/06/064001 1338:(2nd ed.). Addison-Wesley. 960: 513:completely ignorable coordinates 178:, which states that a system is 2312:Kadomtsev–Petviashvili equation 2041: 894:; general solutions are termed 870:Kadomtsev–Petviashvili equation 699:Calogero–Moser–Sutherland model 217:; i.e., ones whose leaves are 69:(a property known sometimes as 2744:Partial differential equations 2297:Nonlinear Schrödinger equation 1997: 1928:. Cambridge University Press. 1914: 1859: 1739:Physica D: Nonlinear Phenomena 1730: 1703: 828:Nonlinear Schrödinger equation 653:and several variations on the 473:Hamilton–Jacobi equation 453:Hamilton–Jacobi equation 125:nonlinear Schrödinger equation 65:invariants, having a basis in 1: 2468:Exactly solvable statistical 1878:(6). IOP Publishing: 064001. 1370:American Mathematical Society 1126: 890:generates a Lax pair for the 713:Geodesic motion on ellipsoids 290:In finite dimensions, if the 2356:Inverse scattering transform 1833:Jimbo, M.; Miwa, T. (1983). 1759:10.1016/0167-2789(86)90173-9 694:Classical mechanical systems 497:inverse scattering transform 449:Hamilton–Jacobi method 145:inverse scattering transform 7: 2247:Quantum harmonic oscillator 1716:. Oxford University Press. 1678:Encyclopedia of Mathematics 1528:Mussardo, Giuseppe (2010). 948: 888:Belinski–Zakharov transform 795:Degasperis–Procesi equation 262:In the special setting of 245:finite difference equations 10: 2760: 2480:in one- and two-dimensions 1983:10.1103/PhysRevA.93.063859 1839:Publ. Res. Inst. Math. Sci 1650:10.1103/PhysRevE.69.056501 1481:Cambridge University Press 1439:Cambridge University Press 1396:Cambridge University Press 1191:Cambridge University Press 1168:Cambridge University Press 1144:(2nd ed.). Springer. 818:Korteweg–de Vries equation 814:Krichever–Novikov equation 602:Quantum integrable systems 562:on a (finite or infinite) 493:Korteweg–de Vries equation 163:; i.e., the existence of 143:in 1965, which led to the 117:Korteweg–de Vries equation 2681: 2660: 2624: 2591:Ferdinand Georg Frobenius 2573: 2566: 2535: 2514: 2507: 2467: 2394: 2364: 2320: 2272: 2265: 2239: 2209: 2196:Garnier integrable system 2144: 2137: 2109: 2034:10.4249/scholarpedia.7216 1312:; Bolsinov, A.V. (2003). 860:Davey–Stewartson equation 810:Kaup–Kupershmidt equation 805:Garnier integrable system 744:Integrable lattice models 621:conservation laws. Every 201:General dynamical systems 23:is a property of certain 2522:Quantum Heisenberg model 2365:ASDYM as a master theory 2217:Liouville–Arnold theorem 1852:10.2977/prims/1195182017 1696: 1455:10.1017/CBO9781107337411 1199:10.1017/CBO9780511535024 943:Quantum Heisenberg model 892:Einstein field equations 875:Novikov–Veselov equation 501:Riemann–Hilbert problems 445:canonical transformation 272:Liouville–Arnold theorem 161:Liouville-Arnold theorem 2668:Alexander Zamolodchikov 2328:Bäcklund transformation 2257:Pöschl–Teller potential 2129:Liouville integrability 2117:Frobenius integrability 2110:Geometric integrability 2009:"Calogero-Moser system" 1534:Oxford University Press 1244:Oxford University Press 910:solutions are examples. 737:Newtonian gravitational 661:Exactly solvable models 477:separation of variables 276:Liouville integrability 71:algebraic integrability 2427:Principal chiral model 2377:Twistor correspondence 2222:Action-angle variables 2138:In classical mechanics 1433:; Nijhoff, F. (2016). 1316:. Taylor and Francis. 977:Painleve transcendents 933:in 1- and 2-dimensions 896:gravitational solitons 833:Nonlinear sigma models 749:Ablowitz–Ladik lattice 611:self-adjoint operators 552:Kadomtsev–Petviashvili 457:action-angle variables 428:action-angle variables 409:Action-angle variables 390:complete integrability 383:action-angle variables 375: 338: 318: 241:differential equations 165:action-angle variables 56:complete integrability 2739:Hamiltonian mechanics 2606:Joseph-Louis Lagrange 2157:Central force systems 1404:10.1017/9781108610902 1390:; Balogh, F. (2021). 1238:Dunajski, M. (2009). 982:Statistical mechanics 785:Camassa–Holm equation 775:Benjamin–Ono equation 675:Yang–Baxter equations 574:from elements of the 556:universal phase space 461:Hamilton–Jacobi 447:theory, there is the 420:canonical coordinates 376: 339: 319: 219:embedded submanifolds 113:completely integrable 2673:Alexei Zamolodchikov 2642:Martin David Kruskal 2616:SimĂ©on Denis Poisson 2554:Yang–Baxter equation 2449:Affine Gaudin models 2292:Sine-Gordon equation 2240:In quantum mechanics 1820:10.1143/JPSJ.50.3806 1120:Vladimir E. Zakharov 987:Integrable algorithm 967:Mathematical physics 900:Schwarzschild metric 838:Sine–Gordon equation 641:where the algebraic 635:Yang–Baxter equation 596:fermionic Fock space 365: 328: 302: 180:Frobenius integrable 157:Lagrangian foliation 33:conserved quantities 2632:Clifford S. Gardner 2402:Quantum Sine-Gordon 2349:Topological soliton 2339:integrals of motion 2152:Harmonic oscillator 2025:2008SchpJ...3.7216C 1975:2016PhRvA..93f3859S 1884:2016JSMTE..06.4001C 1751:1986PhyD...18..161H 1673:"Integrable system" 1642:2004PhRvE..69e6501S 1511:Dynamical Systems V 1509:; Shil'nikov, L.P. 1507:Il'yashenko, Yu. S. 1447:2016dsi..book.....H 1336:Classical Mechanics 1089:Nicolai Reshetikhin 848:Three-wave equation 718:Harmonic oscillator 572:projection operator 317:{\displaystyle 2n,} 264:Hamiltonian systems 227:Hamiltonian systems 50:the existence of a 2729:Integrable systems 2601:Sofia Kovalevskaya 2499:Chiral Potts model 2494:Hard hexagon model 2489:Eight-vertex model 2103:Integrable systems 1611:10.1007/BFb0094792 1272:. Addison-Wesley. 1223:. Academic Press. 908:gravitational wave 731:Neumann oscillator 647:Lieb–Liniger model 586:as expressing the 564:Grassmann manifold 543:could be derived. 537:inverse scattering 398:superintegrability 371: 334: 314: 67:algebraic geometry 2734:Dynamical systems 2716: 2715: 2712: 2711: 2562: 2561: 2463: 2462: 2422:Toda field theory 2412:Quantum Liouville 2390: 2389: 2344:Soliton solutions 2302:Gross–Neveu model 2235: 2234: 2061:978-0-521-59699-2 1935:978-0-521-58646-7 1772:Sato, M. (1981). 1723:978-0-19-967677-4 1630:Physical Review E 1620:978-3-540-60542-3 1565:978-5-396-00687-4 1552:Sardanashvily, G. 1543:978-0-19-954758-6 1499:Afrajmovich, V.S. 1490:978-0-521-58646-7 1464:978-1-107-04272-8 1323:978-0-415-29805-6 1301:978-2-88124-901-3 1279:978-0-387-15579-1 1253:978-0-19-857063-9 1230:978-0-12-083180-7 1151:978-0-387-96890-2 1053:Igor M. Krichever 1018:Vladimir Drinfeld 865:Ishimori equation 588:PlĂĽcker relations 374:{\displaystyle 1} 346:totally isotropic 337:{\displaystyle n} 281:Poisson commuting 207:dynamical systems 195:special functions 188:dynamical systems 176:Frobenius theorem 147:method in 1967. 61:the existence of 29:integrable system 25:dynamical systems 2751: 2611:Joseph Liouville 2571: 2570: 2512: 2511: 2484:Square ice model 2433: 2432: 2337:Infinitely many 2270: 2269: 2167:Two body problem 2142: 2141: 2096: 2089: 2082: 2073: 2072: 2066: 2065: 2045: 2039: 2038: 2036: 2001: 1995: 1994: 1968: 1946: 1940: 1939: 1918: 1912: 1911: 1863: 1857: 1856: 1854: 1830: 1824: 1823: 1803: 1797: 1796: 1778: 1769: 1763: 1762: 1745:(1–3): 161–170. 1734: 1728: 1727: 1707: 1686: 1661: 1624: 1594: 1592: 1569: 1547: 1524: 1494: 1468: 1429:Hietarinta, J.; 1425: 1383: 1349: 1327: 1305: 1283: 1257: 1234: 1212: 1181: 1155: 1143: 1067:Vladimir Matveev 1033:Hermann Flaschka 758:Volterra lattice 655:Heisenberg model 584:Hirota equations 533:Hirota equations 380: 378: 377: 372: 343: 341: 340: 335: 323: 321: 320: 315: 285:Poisson brackets 270:sense. (See the 209:, the notion of 19:In mathematics, 2759: 2758: 2754: 2753: 2752: 2750: 2749: 2748: 2719: 2718: 2717: 2708: 2699:Elliott H. Lieb 2677: 2656: 2620: 2581:Vladimir Arnold 2558: 2531: 2503: 2459: 2436:Master theories 2431: 2386: 2382:Ward conjecture 2360: 2316: 2261: 2231: 2205: 2174:Integrable tops 2133: 2105: 2100: 2070: 2069: 2062: 2046: 2042: 2002: 1998: 1947: 1943: 1936: 1919: 1915: 1864: 1860: 1845:(3): 943–1001. 1831: 1827: 1814:(11): 3806–12. 1804: 1800: 1776: 1770: 1766: 1735: 1731: 1724: 1708: 1704: 1699: 1671: 1668: 1621: 1590: 1576: 1574:Further reading 1566: 1544: 1521: 1491: 1465: 1414: 1380: 1364:, eds. (2000). 1346: 1324: 1302: 1280: 1266:Takhtajan, L.A. 1254: 1231: 1209: 1178: 1152: 1129: 1124: 1107:Elliott H. Lieb 1097:Evgeny Sklyanin 1038:Israel Gel'fand 995: 963: 951: 898:, of which the 691: 663: 604: 521: 485: 441: 411: 403:superintegrable 366: 363: 362: 329: 326: 325: 303: 300: 299: 260: 203: 90:chaotic systems 37:first integrals 17: 12: 11: 5: 2757: 2747: 2746: 2741: 2736: 2731: 2714: 2713: 2710: 2709: 2707: 2706: 2704:Yang Chen-Ning 2701: 2696: 2694:Ludvig Faddeev 2691: 2685: 2683: 2679: 2678: 2676: 2675: 2670: 2664: 2662: 2658: 2657: 2655: 2654: 2649: 2644: 2639: 2637:John M. Greene 2634: 2628: 2626: 2622: 2621: 2619: 2618: 2613: 2608: 2603: 2598: 2593: 2588: 2586:Leonhard Euler 2583: 2577: 2575: 2568: 2564: 2563: 2560: 2559: 2557: 2556: 2551: 2546: 2539: 2537: 2533: 2532: 2530: 2529: 2524: 2518: 2516: 2509: 2505: 2504: 2502: 2501: 2496: 2491: 2486: 2481: 2474: 2472: 2470:lattice models 2465: 2464: 2461: 2460: 2458: 2457: 2452: 2446: 2439: 2437: 2430: 2429: 2424: 2419: 2417:Thirring model 2414: 2409: 2404: 2398: 2396: 2392: 2391: 2388: 2387: 2385: 2384: 2379: 2374: 2368: 2366: 2362: 2361: 2359: 2358: 2353: 2352: 2351: 2341: 2335: 2330: 2324: 2322: 2318: 2317: 2315: 2314: 2309: 2307:Thirring model 2304: 2299: 2294: 2289: 2288: 2287: 2276: 2274: 2267: 2263: 2262: 2260: 2259: 2254: 2249: 2243: 2241: 2237: 2236: 2233: 2232: 2230: 2229: 2224: 2219: 2213: 2211: 2207: 2206: 2204: 2203: 2201:Hitchin system 2198: 2193: 2192: 2191: 2186: 2181: 2171: 2170: 2169: 2164: 2154: 2148: 2146: 2139: 2135: 2134: 2132: 2131: 2126: 2125: 2124: 2113: 2111: 2107: 2106: 2099: 2098: 2091: 2084: 2076: 2068: 2067: 2060: 2040: 1996: 1941: 1934: 1913: 1858: 1825: 1798: 1764: 1729: 1722: 1701: 1700: 1698: 1695: 1694: 1693: 1687: 1667: 1666:External links 1664: 1663: 1662: 1625: 1619: 1595: 1575: 1572: 1571: 1570: 1564: 1548: 1542: 1525: 1519: 1495: 1489: 1473:Korepin, V. E. 1469: 1463: 1426: 1412: 1384: 1378: 1358:Winternitz, P. 1350: 1344: 1328: 1322: 1306: 1300: 1284: 1278: 1258: 1252: 1235: 1229: 1213: 1207: 1182: 1177:978-0521779197 1176: 1156: 1150: 1128: 1125: 1123: 1122: 1117: 1114: 1109: 1104: 1099: 1094: 1093:Aleksei Shabat 1091: 1086: 1081: 1076: 1071: 1068: 1065: 1060: 1058:Martin Kruskal 1055: 1050: 1045: 1040: 1035: 1030: 1028:Ludvig Faddeev 1025: 1023:Boris Dubrovin 1020: 1015: 1012: 1007: 1002: 996: 994: 991: 990: 989: 984: 979: 974: 969: 962: 959: 958: 957: 955:Hitchin system 950: 947: 946: 945: 940: 937:Ice-type model 934: 928: 923: 921:8-vertex model 917: 916: 912: 911: 883: 882: 878: 877: 872: 867: 862: 856: 855: 851: 850: 845: 843:Thirring model 840: 835: 830: 825: 820: 815: 812: 807: 802: 797: 792: 787: 782: 777: 772: 766: 765: 761: 760: 755: 750: 746: 745: 741: 740: 733: 728: 723: 720: 715: 710: 700: 696: 695: 690: 687: 662: 659: 603: 600: 594:, viewed as a 592:exterior space 520: 517: 484: 481: 440: 437: 410: 407: 370: 333: 313: 310: 307: 259: 256: 252:chaotic motion 202: 199: 141:Norman Zabusky 137:Martin Kruskal 82: 81: 74: 59: 15: 9: 6: 4: 3: 2: 2756: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2726: 2724: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2689:Rodney Baxter 2687: 2686: 2684: 2680: 2674: 2671: 2669: 2666: 2665: 2663: 2659: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2635: 2633: 2630: 2629: 2627: 2623: 2617: 2614: 2612: 2609: 2607: 2604: 2602: 2599: 2597: 2596:Nigel Hitchin 2594: 2592: 2589: 2587: 2584: 2582: 2579: 2578: 2576: 2572: 2569: 2565: 2555: 2552: 2550: 2547: 2545: 2541: 2540: 2538: 2534: 2528: 2525: 2523: 2520: 2519: 2517: 2513: 2510: 2506: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2479: 2476: 2475: 2473: 2471: 2466: 2456: 2453: 2451:(Hamiltonian) 2450: 2447: 2444: 2441: 2440: 2438: 2434: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2399: 2397: 2393: 2383: 2380: 2378: 2375: 2373: 2370: 2369: 2367: 2363: 2357: 2354: 2350: 2347: 2346: 2345: 2342: 2340: 2336: 2334: 2331: 2329: 2326: 2325: 2323: 2319: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2286: 2285:KdV hierarchy 2283: 2282: 2281: 2278: 2277: 2275: 2271: 2268: 2264: 2258: 2255: 2253: 2252:Hydrogen atom 2250: 2248: 2245: 2244: 2242: 2238: 2228: 2225: 2223: 2220: 2218: 2215: 2214: 2212: 2208: 2202: 2199: 2197: 2194: 2190: 2187: 2185: 2182: 2180: 2177: 2176: 2175: 2172: 2168: 2165: 2163: 2162:Kepler system 2160: 2159: 2158: 2155: 2153: 2150: 2149: 2147: 2143: 2140: 2136: 2130: 2127: 2123: 2120: 2119: 2118: 2115: 2114: 2112: 2108: 2104: 2097: 2092: 2090: 2085: 2083: 2078: 2077: 2074: 2063: 2057: 2053: 2052: 2044: 2035: 2030: 2026: 2022: 2018: 2014: 2010: 2006: 2000: 1992: 1988: 1984: 1980: 1976: 1972: 1967: 1962: 1959:(6): 063859. 1958: 1954: 1953: 1945: 1937: 1931: 1927: 1923: 1922:Korepin, V.E. 1917: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1862: 1853: 1848: 1844: 1840: 1836: 1829: 1821: 1817: 1813: 1809: 1802: 1794: 1790: 1786: 1782: 1775: 1768: 1760: 1756: 1752: 1748: 1744: 1740: 1733: 1725: 1719: 1715: 1714: 1706: 1702: 1691: 1688: 1684: 1680: 1679: 1674: 1670: 1669: 1659: 1655: 1651: 1647: 1643: 1639: 1636:(5): 056501. 1635: 1631: 1626: 1622: 1616: 1612: 1608: 1604: 1600: 1596: 1589: 1586: 1582: 1581:Beilinson, A. 1578: 1577: 1567: 1561: 1557: 1553: 1549: 1545: 1539: 1535: 1531: 1526: 1522: 1520:3-540-18173-3 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1486: 1482: 1478: 1474: 1470: 1466: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1427: 1423: 1419: 1415: 1413:9781108492683 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1379:0-8218-2093-1 1375: 1371: 1367: 1363: 1362:Sabidussi, G. 1359: 1355: 1351: 1347: 1345:0-201-02918-9 1341: 1337: 1333: 1332:Goldstein, H. 1329: 1325: 1319: 1315: 1311: 1310:Fomenko, A.T. 1307: 1303: 1297: 1293: 1289: 1288:Fomenko, A.T. 1285: 1281: 1275: 1271: 1267: 1263: 1262:Faddeev, L.D. 1259: 1255: 1249: 1245: 1241: 1236: 1232: 1226: 1222: 1218: 1214: 1210: 1208:0-521-82267-X 1204: 1200: 1196: 1192: 1188: 1183: 1179: 1173: 1169: 1165: 1161: 1157: 1153: 1147: 1142: 1141: 1135: 1131: 1130: 1121: 1118: 1116:George Wilson 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1043:Alexander Its 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014:Leonid Dickey 1013: 1011: 1008: 1006: 1005:Rodney Baxter 1003: 1001: 1000:Mark Ablowitz 998: 997: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 964: 961:Related areas 956: 953: 952: 944: 941: 938: 935: 932: 929: 927: 924: 922: 919: 918: 914: 913: 909: 905: 901: 897: 893: 889: 885: 884: 880: 879: 876: 873: 871: 868: 866: 863: 861: 858: 857: 853: 852: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 767: 763: 762: 759: 756: 754: 751: 748: 747: 743: 742: 738: 734: 732: 729: 727: 724: 721: 719: 716: 714: 711: 708: 704: 703:Central force 701: 698: 697: 693: 692: 686: 682: 680: 676: 672: 667: 658: 656: 652: 651:Hubbard model 648: 644: 640: 636: 630: 628: 624: 620: 616: 615:Hilbert space 612: 607: 599: 597: 593: 589: 585: 581: 577: 573: 569: 565: 561: 557: 553: 549: 544: 542: 538: 534: 530: 526: 516: 514: 510: 504: 502: 498: 494: 490: 480: 478: 474: 470: 466: 462: 458: 454: 450: 446: 436: 433: 429: 425: 421: 417: 406: 404: 399: 395: 391: 386: 385:(see below). 384: 368: 360: 355: 351: 347: 331: 311: 308: 305: 297: 293: 288: 286: 282: 277: 273: 269: 265: 255: 253: 248: 246: 242: 237: 235: 234: 228: 224: 220: 216: 212: 211:integrability 208: 198: 196: 191: 189: 185: 181: 177: 172: 170: 166: 162: 158: 154: 148: 146: 142: 138: 134: 130: 126: 122: 118: 114: 109: 107: 103: 98: 93: 91: 87: 79: 75: 72: 68: 64: 60: 57: 53: 49: 48: 47: 44: 42: 38: 34: 30: 26: 22: 21:integrability 2652:Robert Miura 2567:Contributors 2544:Bethe ansatz 2527:Gaudin model 2445:(Lagrangian) 2280:KdV equation 2184:Kovalevskaya 2102: 2050: 2043: 2016: 2013:Scholarpedia 2012: 2005:Calogero, F. 1999: 1956: 1952:Phys. Rev. A 1950: 1944: 1925: 1916: 1875: 1871: 1861: 1842: 1838: 1828: 1811: 1807: 1801: 1784: 1780: 1767: 1742: 1738: 1732: 1712: 1705: 1676: 1633: 1629: 1602: 1585:Drinfeld, V. 1555: 1529: 1513:. Springer. 1510: 1503:Arnold, V.I. 1476: 1434: 1391: 1365: 1335: 1313: 1291: 1269: 1239: 1220: 1217:Baxter, R.J. 1186: 1163: 1139: 1134:Arnold, V.I. 1112:Graeme Segal 1079:Tetsuji Miwa 1074:Robert Miura 1070:Henry McKean 1048:Michio Jimbo 926:Gaudin model 800:Dym equation 753:Toda lattice 683: 671:Bethe ansatz 668: 664: 643:Bethe ansatz 631: 608: 605: 583: 579: 560:group action 555: 545: 532: 525:Ryogo Hirota 524: 522: 512: 505: 486: 468: 464: 442: 412: 389: 387: 353: 289: 275: 261: 249: 238: 230: 210: 204: 192: 179: 173: 152: 149: 129:Toda lattice 112: 110: 106:Lagrange top 94: 85: 83: 77: 70: 62: 55: 51: 45: 28: 20: 18: 2478:Ising model 2407:Quantum KdV 2019:(8): 7216. 1793:2433/102800 1084:Alan Newell 1010:Percy Deift 931:Ising model 904:Kerr metric 770:AKNS system 735:Two center 627:eigenstates 623:Hamiltonian 576:group orbit 568:determinant 424:phase space 292:phase space 229:, known as 169:Hamiltonian 121:Kerr effect 97:Hamiltonian 78:solvability 41:phase space 2723:Categories 2542:Algebraic 1966:1602.03136 1599:Donagi, R. 1388:Harnad, J. 1354:Harnad, J. 1127:References 1102:Mikio Sato 548:Mikio Sato 529:Ď„-function 354:autonomous 350:Lagrangian 296:symplectic 215:foliations 2647:Peter Lax 2333:Lax pairs 2122:Foliation 1991:119331736 1908:124170507 1900:1742-5468 1787:: 30–46. 1683:EMS Press 1431:Joshi, N. 1422:222379146 1160:Audin, M. 1063:Peter Lax 906:and some 426:known as 394:Liouville 392:, in the 268:Liouville 233:Liouville 184:foliation 102:Euler top 63:algebraic 2515:Examples 2273:Examples 2189:Lagrange 2145:Examples 2007:(2008). 1658:15244955 1558:. URSS. 1554:(2015). 1334:(1980). 1290:(1995). 1268:(1987). 1219:(1982). 1162:(1996). 1136:(1997). 949:See also 705:motion ( 677:and the 578:to some 541:solitons 509:Lax pair 489:solitons 133:solitons 2021:Bibcode 1971:Bibcode 1880:Bibcode 1747:Bibcode 1685:, 2001 1638:Bibcode 1443:Bibcode 972:Soliton 939:of Lieb 422:on the 155:of the 119:), the 86:generic 52:maximal 2536:Theory 2321:Theory 2210:Theory 2058:  1989:  1932:  1906:  1898:  1720:  1656:  1617:  1562:  1540:  1517:  1487:  1461:  1420:  1410:  1376:  1342:  1320:  1298:  1276:  1250:  1227:  1205:  1174:  1148:  902:, the 739:motion 649:, the 580:origin 432:action 352:. All 153:leaves 2661:IQFTs 2179:Euler 1987:S2CID 1961:arXiv 1904:S2CID 1777:(PDF) 1697:Notes 1591:(PDF) 1418:S2CID 619:local 613:on a 570:of a 35:, or 2625:PDEs 2056:ISBN 1930:ISBN 1896:ISSN 1876:2016 1718:ISBN 1654:PMID 1615:ISBN 1560:ISBN 1538:ISBN 1515:ISBN 1485:ISBN 1459:ISBN 1408:ISBN 1374:ISBN 1340:ISBN 1318:ISBN 1296:ISBN 1274:ISBN 1248:ISBN 1225:ISBN 1203:ISBN 1172:ISBN 1146:ISBN 886:The 416:tori 359:tori 223:flow 139:and 2029:doi 1979:doi 1888:doi 1847:doi 1816:doi 1789:hdl 1785:439 1755:doi 1646:doi 1607:doi 1451:doi 1400:doi 1195:doi 443:In 294:is 274:.) 243:or 135:by 108:). 2725:: 2027:. 2015:. 2011:. 1985:. 1977:. 1969:. 1957:93 1955:. 1902:. 1894:. 1886:. 1874:. 1870:. 1843:19 1841:. 1837:. 1812:50 1810:. 1783:. 1779:. 1753:. 1743:18 1741:. 1681:, 1675:, 1652:. 1644:. 1634:69 1632:. 1613:. 1583:; 1536:. 1532:. 1505:; 1501:; 1483:. 1479:. 1457:. 1449:. 1441:. 1437:. 1416:. 1406:. 1398:. 1372:. 1368:. 1360:; 1356:; 1264:; 1246:. 1242:. 1201:. 1193:. 1189:. 1170:. 598:. 247:. 43:. 2095:e 2088:t 2081:v 2064:. 2037:. 2031:: 2023:: 2017:3 1993:. 1981:: 1973:: 1963:: 1938:. 1910:. 1890:: 1882:: 1855:. 1849:: 1822:. 1818:: 1795:. 1791:: 1761:. 1757:: 1749:: 1726:. 1660:. 1648:: 1640:: 1623:. 1609:: 1593:. 1568:. 1546:. 1523:. 1493:. 1467:. 1453:: 1445:: 1424:. 1402:: 1382:. 1348:. 1326:. 1304:. 1282:. 1256:. 1233:. 1211:. 1197:: 1180:. 1154:. 709:) 469:n 465:n 369:1 332:n 312:, 309:n 306:2 80:) 73:) 58:)

Index

dynamical systems
conserved quantities
first integrals
phase space
algebraic geometry
chaotic systems
Hamiltonian
Euler top
Lagrange top
Korteweg–de Vries equation
Kerr effect
nonlinear Schrödinger equation
Toda lattice
solitons
Martin Kruskal
Norman Zabusky
inverse scattering transform
Lagrangian foliation
Liouville-Arnold theorem
action-angle variables
Hamiltonian
Frobenius theorem
foliation
dynamical systems
special functions
dynamical systems
foliations
embedded submanifolds
flow
Hamiltonian systems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑