Knowledge

Integer factorization

Source 📝

3752: 226: 704: 202:), even the fastest prime factorization algorithms on the fastest computers can take enough time to make the search impractical; that is, as the number of digits of the integer being factored increases, the number of operations required to perform the factorization on any computer increases drastically. 1956: 274:
by repeated application of this algorithm. The situation is more complicated with special-purpose factorization algorithms, whose benefits may not be realized as well or even at all with the factors produced during decomposition. For example, if
2222:
Kleinjung, Thorsten; Aoki, Kazumaro; Franke, Jens; Lenstra, Arjen K.; Thomé, Emmanuel; Bos, Joppe W.; Gaudry, Pierrick; Kruppa, Alexander; Montgomery, Peter L.; Osvik, Dag Arne; te Riele, Herman J. J.; Timofeev, Andrey; Zimmermann, Paul (2010).
548: 990:
A special-purpose factoring algorithm's running time depends on the properties of the number to be factored or on one of its unknown factors: size, special form, etc. The parameters which determine the running time vary among algorithms.
1002:
algorithms, whose running time depends on the size of smallest prime factor. Given an integer of unknown form, these methods are usually applied before general-purpose methods to remove small factors. For example, naive
1316: 3623: 2770:
Chapter 5: Exponential Factoring Algorithms, pp. 191–226. Chapter 6: Subexponential Factoring Algorithms, pp. 227–284. Section 7.4: Elliptic curve method, pp. 301–313.
1829: 136:. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves 393:. While these are easily recognized as composite and prime respectively, Fermat's method will take much longer to factor the composite number because the starting value of 2920: 93:
is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example
699:{\displaystyle \exp \left(\left(\left({\tfrac {8}{3}}\right)^{\frac {2}{3}}+o(1)\right)\left(\log n\right)^{\frac {1}{3}}\left(\log \log n\right)^{\frac {2}{3}}\right).} 3627: 2204: 816: 796: 3135: 445:) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit RSA modulus would take about 500 times as long. 441:
In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number (
2913: 2401:
Vandersypen, Lieven M. K.; et al. (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance".
3168: 2074: 842:, meaning that both "yes" and "no" answers can be verified in polynomial time. An answer of "yes" can be certified by exhibiting a factorization 2073:
To obtain an algorithm for factoring any positive integer, it is necessary to add a few steps to this algorithm such as trial division, and the
4113: 2118: 452:, an 829-bit number with 250 decimal digits, in February 2020. The total computation time was roughly 2700 core-years of computing using Intel 47: 17: 1177: 456:
6130 at 2.1 GHz. Like all recent factorization records, this factorization was completed with a highly optimized implementation of the
1105:
algorithm, has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor
190:
Not all numbers of a given length are equally hard to factor. The hardest instances of these problems (for currently known techniques) are
4108: 3004: 2968: 2906: 2700: 909:
guarantees that there is only one possible string of increasing primes that will be accepted, which shows that the problem is in both
4103: 3695: 3492: 3128: 1353:
The Schnorr–Seysen–Lenstra probabilistic algorithm has been rigorously proven by Lenstra and Pomerance to have expected running time
205:
Many cryptographic protocols are based on the difficulty of factoring large composite integers or a related problem—for example, the
505:. Neither the existence nor non-existence of such algorithms has been proved, but it is generally suspected that they do not exist. 453: 2999: 1031: 969:
that can test primality very quickly in practice if one is willing to accept a vanishingly small possibility of error. The ease of
2232:
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings
3360: 1143: 2841: 2812: 2579: 2562: 2507: 2378: 2320: 2275: 2183: 3302: 3121: 1057: 3231: 3408: 31: 3741: 2929: 2791: 2763: 2208: 906: 244: 152: 198:
long, randomly chosen, and about the same size (but not too close, for example, to avoid efficient factorization by
3938: 3355: 3317: 3292: 3206: 1371: 1122: 1062: 1035: 199: 3497: 3388: 3307: 3297: 3236: 3199: 2778: 1117: 1067: 3751: 3325: 3173: 3076: 3046: 1342: 438:
whose factors are of similar size. For this reason, these are the integers used in cryptographic applications.
3056: 3688: 3578: 2963: 2351:
Buhler, J. P.; Lenstra, H. W. Jr.; Pomerance, Carl (1993). "Factoring integers with the number field sieve".
1951:{\displaystyle \left(\prod _{x\in X_{}}x^{r(x)}\right).\left(\prod _{q\in P_{\Delta }}f_{q}^{t(q)}\right)=1.} 1046: 423: 2465: 3573: 3540: 3502: 3403: 3454: 3092: 2107: 1427:
is an odd positive integer greater than a certain constant. In this factoring algorithm the discriminant
164: 102: 3892: 3928: 3619: 3609: 3568: 3344: 3338: 3312: 3183: 3030: 2994: 2973: 1138: 1072: 1021: 750: 527: 457: 523: 270:
Given a general algorithm for integer factorization, any integer can be factored into its constituent
3913: 3604: 3545: 3071: 1516: 1077: 2989: 2877: 3681: 3507: 3380: 3226: 3178: 2128: 267:. If composite, however, the polynomial time tests give no insight into how to obtain the factors. 4057: 194:, the product of two prime numbers. When they are both large, for instance more than two thousand 4067: 3933: 3857: 3522: 3097: 2834: 2086: 1638: 180: 3413: 2554: 2547: 1602:
The relation that will be used is a relation between the product of powers that is equal to the
69:
of integers. Every positive integer greater than 1 is either the product of two or more integer
4118: 3918: 3877: 3633: 3583: 3563: 2798: 1168:
In number theory, there are many integer factoring algorithms that heuristically have expected
920:
The problem is suspected to be outside all three of the complexity classes P, NP-complete, and
30:"Prime decomposition" redirects here. For the prime decomposition theorem for 3-manifolds, see 2876:, Neeraj Kayal, Nitin Saxena, "PRIMES is in P." Annals of Mathematics 160(2): 781–793 (2004). 2522: 2302: 2257: 151:
is known. However, it has not been proven that such an algorithm does not exist. The presumed
3847: 3643: 3259: 3188: 2958: 2948: 2663: 1330: 1110: 66: 4021: 3923: 3638: 3530: 3512: 3487: 3449: 3193: 3066: 2729: 2648: 2603: 2517: 2422: 2330: 2285: 966: 749:-bit number inputs. In 2001, Shor's algorithm was implemented for the first time, by using 434:-bit numbers, the most difficult to factor in practice using existing algorithms are those 8: 4082: 4077: 3872: 3867: 3852: 3791: 3648: 3614: 3535: 3439: 3398: 3393: 3370: 3274: 2825: 2163: 2112: 1603: 1156: 1016: 724: 3060: 3050: 2883: 2863:
Richard P. Brent, "Recent Progress and Prospects for Integer Factorisation Algorithms",
2426: 4006: 4001: 3962: 3882: 3862: 3479: 3426: 3423: 3264: 3213: 3163: 2623:"A probabilistic factorization algorithm with quadratic forms of negative discriminant" 2446: 2412: 2334: 1341:
proposed by Schnorr, Seysen, and Lenstra, which they proved only assuming the unproved
962: 896: 801: 781: 264: 160: 3673: 3220: 2720: 2682: 2639: 2622: 943:
a prime number?") appears to be much easier than the problem of specifying factors of
4042: 3982: 3599: 3555: 3269: 3246: 2898: 2837: 2808: 2787: 2759: 2595: 2558: 2503: 2491: 2438: 2374: 2338: 2316: 2271: 2179: 2141: 1363: 1097: 716: 2860:– SIQS and NFS – has helped complete some of the largest public factorizations known 2049:
is found. In order to prevent useless ambiguous forms from generating, build up the
1991:
of order dividing 2 to obtain a coprime factorization of the largest odd divisor of
1362:
by replacing the GRH assumption with the use of multipliers. The algorithm uses the
4072: 4047: 3967: 3953: 3887: 3771: 3731: 3444: 3025: 2873: 2747: 2715: 2678: 2634: 2591: 2450: 2430: 2403: 2366: 2358: 2308: 2263: 2253: 2235: 2171: 2133: 1484: 761: 757: 184: 172: 144: 74: 62: 2607: 2175: 526:. As of 2022, the algorithm with best theoretical asymptotic running time is the 4052: 3977: 3971: 3908: 3806: 3796: 3726: 3434: 3333: 2725: 2644: 2599: 2513: 2326: 2281: 2239: 2234:. Lecture Notes in Computer Science. Vol. 6223. Springer. pp. 333–350. 1334: 1169: 1128: 1025: 974: 925: 910: 835: 473: 449: 260: 210: 4062: 4016: 3842: 3826: 3816: 3786: 3464: 3365: 3350: 3254: 3155: 3102: 3020: 2830: 2751: 2538: 2487: 2479: 2050: 1367: 1322: 1133: 1011: 1004: 970: 921: 490: 300: 256: 176: 137: 113: 44:
Can integer factorization be solved in polynomial time on a classical computer?
3113: 2267: 949:. The composite/prime problem can be solved in polynomial time (in the number 4097: 4011: 3811: 3801: 3781: 3459: 3144: 2483: 2312: 2298: 2123: 1451: 252: 2045:
then stop, otherwise find another ambiguous form until the factorization of
225: 36: 4026: 3943: 3821: 3766: 3736: 3469: 2773: 2442: 271: 248: 156: 78: 2868: 2857: 2664:"Fast and rigorous factorization under the generalized Riemann hypothesis" 2357:. Lecture Notes in Mathematics. Vol. 1554. Springer. pp. 50–94. 1615:. These relations will be used to construct a so-called ambiguous form of 209:. An algorithm that efficiently factors an arbitrary integer would render 2953: 2495: 2417: 977:
algorithm, as it is necessary to find large prime numbers to start with.
206: 168: 129: 54: 2802: 2466:"Computational Complexity Blog: Complexity Class of the Week: Factoring" 883:. An answer of "no" can be certified by exhibiting the factorization of 2892: 2542: 2502:, Princeton, New Jersey: Princeton University Press, pp. 575–604, 2362: 2224: 1633:
of order dividing 2. By calculating the corresponding factorization of
1326: 1106: 720: 435: 214: 2259:
The Proof is in the Pudding: The Changing Nature of Mathematical Proof
2205:"[Cado-nfs-discuss] 795-bit factoring and discrete logarithms" 1311:{\displaystyle L_{n}\left=e^{(1+o(1)){\sqrt {(\log n)(\log \log n)}}}} 709:
For current computers, GNFS is the best published algorithm for large
3776: 3147: 2370: 2352: 1467:
can be restricted to a small set to guarantee the smoothness result.
994:
An important subclass of special-purpose factoring algorithms is the
469: 191: 148: 2434: 101:; the result is always unique up to the order of the factors by the 2746: 1641:, this ambiguous form provides the complete prime factorization of 723:
discovered an algorithm in 1994 that solves it in polynomial time.
3721: 2089:
as it makes random choices. Its expected running time is at most
442: 112:
using mental or pen-and-paper arithmetic, the simplest method is
70: 2580:"Refined analysis and improvements on some factoring algorithms" 1446:
is some positive multiplier. The algorithm expects that for one
309:
divisions to find the next factor. As a contrasting example, if
97:. Continuing this process until every factor is prime is called 3992: 2537: 1109:. Most general-purpose factoring algorithms are based on the 839: 95:
60 = 3 · 20 = 3 · (5 · 4)
760:
such as P, NP, and co-NP, the problem has to be stated as a
2221: 2144:– a way of writing a number as a sum of positive integers. 1561:
a sequence of relations between the set of generators and
2794:. Section 4.5.4: Factoring into Primes, pp. 379–417. 914: 195: 303:
will quickly produce the factors 3 and 19 but will take
155:
of this problem is important for the algorithms used in
3703: 3664:
indicate that algorithm is for numbers of special forms
2115:
for generating random numbers with their factorizations
1088:
A general-purpose factoring algorithm, also known as a
116:: checking if the number is divisible by prime numbers 2928: 2797: 2350: 2307:, Cambridge: Cambridge University Press, p. 230, 2166:, in van Tilborg, Henk C. A.; Jajodia, Sushil (eds.), 1197: 574: 143:
When the numbers are sufficiently large, no efficient
2533: 2531: 1832: 1180: 804: 784: 551: 2694: 2692: 1676:
is the negative discriminant of some quadratic form.
508:
There are published algorithms that are faster than
175:
have been brought to bear on the problem, including
38: 1414: 753:techniques on molecules that provide seven qubits. 472:has been published that can factor all integers in 2546: 2528: 2478: 2041:If the ambiguous form provides a factorization of 1950: 1310: 810: 790: 698: 2807:. Providence, RI: American Mathematical Society. 2689: 4095: 2698: 1463:. Lenstra and Pomerance show that the choice of 331:, Fermat's factorization method will begin with 3143: 2893:Dario Alpern's Integer factorization calculator 2701:"A Rigorous Time Bound for Factoring Integers" 2119:Canonical representation of a positive integer 530:(GNFS), first published in 1993, running on a 3689: 3129: 2914: 2699:Lenstra, H. W.; Pomerance, Carl (July 1992). 2486:(2008), "IV.20 Computational Complexity", in 2463: 2170:, Boston, MA: Springer US, pp. 611–618, 77:, or it is not, in which case it is called a 73:greater than 1, in which case it is called a 2708:Journal of the American Mathematical Society 2655: 2571: 2553:. Key College Publishing/Springer. pp.  1796:Collect a sequence of relations between set 1411:in which those integers are relative prime. 1329:. Some examples of those algorithms are the 448:The largest such semiprime yet factored was 259:whether the integer is prime can be done in 48:(more unsolved problems in computer science) 2614: 2400: 1150: 937:a composite number?" (or equivalently: "Is 895:; one can verify their primality using the 417: 3696: 3682: 3136: 3122: 2921: 2907: 2756:Prime Numbers: A Computational Perspective 2297: 2719: 2638: 2416: 2354:The development of the number field sieve 2168:Encyclopedia of Cryptography and Security 1163: 2895:– A web app for factoring large integers 2225:"Factorization of a 768-Bit RSA Modulus" 2080: 1348: 1032:Algebraic-group factorization algorithms 224: 27:Decomposition of a number into a product 2786:, Third Edition. Addison-Wesley, 1997. 2661: 2577: 2549:A Course in Computational Number Theory 2161: 1645:. This algorithm has these main steps: 980: 14: 4096: 2822: 2620: 2500:The Princeton Companion to Mathematics 2252: 931:In contrast, the decision problem "Is 924:. It is therefore a candidate for the 889:into distinct primes, all larger than 247:, every positive integer has a unique 220: 4114:Unsolved problems in computer science 3677: 3117: 2902: 2215: 1058:Lenstra elliptic curve factorization 138:testing whether each factor is prime 39:Unsolved problem in computer science 3704:Divisibility-based sets of integers 2262:, New York: Springer, p. 203, 1144:Shanks's square forms factorization 899:, and then multiply them to obtain 24: 4109:Computational hardness assumptions 2930:Computational hardness assumptions 1906: 1395:is the set of triples of integers 1083: 1024:, which has two common flavors to 985: 715:(more than about 400 bits). For a 463: 32:Prime decomposition of 3-manifolds 25: 4130: 3742:Fundamental theorem of arithmetic 3345:Special number field sieve (SNFS) 3339:General number field sieve (GNFS) 2851: 2721:10.1090/S0894-0347-1992-1137100-0 2640:10.1090/S0025-5718-1987-0878705-X 965:. In addition, there are several 907:fundamental theorem of arithmetic 245:fundamental theorem of arithmetic 4104:Integer factorization algorithms 3750: 2969:Decisional composite residuosity 1415:Schnorr–Seysen–Lenstra algorithm 1337:. Another such algorithm is the 1123:Continued fraction factorization 1028:: one by Floyd and one by Brent. 913:and co-UP. It is known to be in 2779:The Art of Computer Programming 2472: 2457: 2394: 2344: 2291: 2246: 2197: 2155: 1932: 1926: 1872: 1866: 1652:be the number to be factored. 1343:generalized Riemann hypothesis 1301: 1283: 1280: 1268: 1263: 1260: 1254: 1242: 1226: 1220: 612: 606: 85:is a composite number because 13: 1: 2823:Warren, Henry S. Jr. (2013). 2740: 2683:10.1016/S1385-7258(88)80022-2 2176:10.1007/978-1-4419-5906-5_455 2085:The algorithm as stated is a 1423:that will be factored, where 1063:Fermat's factorization method 917:because of Shor's algorithm. 476:, that is, that can factor a 460:run on hundreds of machines. 424:Integer factorization records 329:13729 × 1372933 = 18848997157 315:is the product of the primes 200:Fermat's factorization method 140:each time a factor is found. 108:To factorize a small integer 18:Integer factorization problem 3303:Lenstra elliptic curve (ECM) 3005:Computational Diffie–Hellman 2865:Computing and Combinatorics" 2596:10.1016/0196-6774(82)90012-8 2464:Lance Fortnow (2002-09-13). 2240:10.1007/978-3-642-14623-7_18 1962:Construct an ambiguous form 1339:class group relations method 1118:Dixon's factorization method 1068:Euler's factorization method 7: 3093:Exponential time hypothesis 2108:Aurifeuillean factorization 2101: 1661:be a negative integer with 1515:. By constructing a set of 1431:is chosen as a multiple of 1007:is a Category 1 algorithm. 824:have a factor smaller than 251:. (By convention, 1 is the 103:prime factorization theorem 10: 4135: 3610:Exponentiation by squaring 3293:Continued fraction (CFRAC) 2627:Mathematics of Computation 2578:Schnorr, Claus P. (1982). 2162:Lenstra, Arjen K. (2011), 1739:be a random prime form of 1572:are produced. The size of 1139:General number field sieve 1073:Special number field sieve 834:It is known to be in both 778:For every natural numbers 528:general number field sieve 458:general number field sieve 421: 61:is the decomposition of a 29: 4035: 3991: 3952: 3939:Superior highly composite 3901: 3835: 3759: 3748: 3709: 3657: 3592: 3554: 3521: 3478: 3422: 3379: 3283: 3245: 3154: 3103:Planted clique conjecture 3085: 3072:Ring learning with errors 3039: 3013: 3000:Decisional Diffie–Hellman 2982: 2936: 2671:Indagationes Mathematicae 2662:Lenstra, Arjen K (1988). 2268:10.1007/978-0-387-48744-1 1624:, which is an element of 1078:Difference of two squares 973:is a crucial part of the 344:which immediately yields 161:RSA public-key encryption 3836:Constrained divisor sums 2784:Seminumerical Algorithms 2313:10.1017/CBO9780511804090 2304:Computational complexity 2148: 2129:Multiplicative partition 1151:Other notable algorithms 967:probabilistic algorithms 418:Current state of the art 3523:Greatest common divisor 3098:Unique games conjecture 3047:Shortest vector problem 3021:External Diffie–Hellman 2886:MathWorld Headline News 2878:August 2005 version PDF 2867:, 2000, pp. 3–22. 2835:Pearson Education, Inc. 2621:Seysen, Martin (1987). 2230:. In Rabin, Tal (ed.). 2087:probabilistic algorithm 1159:, for quantum computers 1022:Pollard's rho algorithm 773:(Integer factorization) 756:In order to talk about 410:is a factor of 10 from 299:are very large primes, 229:Prime decomposition of 217:cryptography insecure. 181:algebraic number theory 128:, and so on, up to the 3634:Modular exponentiation 3077:Short integer solution 3057:Closest vector problem 2799:Samuel S. Wagstaff Jr. 2610:on September 24, 2017. 2301:; Barak, Boaz (2009), 1952: 1780:Find a generating set 1479:the set of all primes 1312: 1164:Heuristic running time 812: 792: 700: 371:and hence the factors 263:, for example, by the 240: 147:integer factorization 87:15 = 3 · 5 3717:Integer factorization 3361:Shanks's square forms 3285:Integer factorization 3260:Sieve of Eratosthenes 2964:Quadratic residuosity 2944:Integer factorization 2584:Journal of Algorithms 2081:Expected running time 1953: 1349:Rigorous running time 1331:elliptic curve method 1313: 1111:congruence of squares 1026:identify group cycles 813: 793: 701: 228: 165:RSA digital signature 59:integer factorization 3639:Montgomery reduction 3513:Function field sieve 3488:Baby-step giant-step 3334:Quadratic sieve (QS) 3067:Learning with errors 2804:The Joy of Factoring 2521:. See in particular 1830: 1672:is a multiplier and 1178: 981:Factoring algorithms 802: 782: 549: 3929:Colossally abundant 3760:Factorization forms 3649:Trachtenberg system 3615:Integer square root 3556:Modular square root 3275:Wheel factorization 3227:Quadratic Frobenius 3207:Lucas–Lehmer–Riesel 2884:“RSA-640 Factored” 2882:Eric W. Weisstein, 2427:2001Natur.414..883V 2164:"Integer Factoring" 1978:that is an element 1936: 1450:there exist enough 1366:of positive binary 1017:Wheel factorization 776: —  249:prime factorization 221:Prime decomposition 99:prime factorization 3914:Primitive abundant 3902:With many divisors 3541:Extended Euclidean 3480:Discrete logarithm 3409:Schönhage–Strassen 3265:Sieve of Pritchard 2990:Discrete logarithm 2974:Higher residuosity 2888:, November 8, 2005 2492:Barrow-Green, June 2363:10.1007/BFb0091539 1948: 1913: 1912: 1857: 1590:for some constant 1576:can be bounded by 1308: 1206: 1034:, among which are 963:AKS primality test 928:complexity class. 897:AKS primality test 808: 788: 770: 758:complexity classes 696: 583: 499:for some constant 265:AKS primality test 241: 4091: 4090: 3671: 3670: 3270:Sieve of Sundaram 3111: 3110: 3086:Non-cryptographic 2843:978-0-321-84268-8 2814:978-1-4704-1048-3 2564:978-1-930190-10-8 2509:978-0-691-11880-2 2411:(6866): 883–887. 2380:978-3-540-57013-4 2322:978-0-521-42426-4 2277:978-0-387-48908-7 2254:Krantz, Steven G. 2185:978-1-4419-5905-8 2142:Integer partition 1890: 1838: 1419:Given an integer 1304: 1205: 971:primality testing 811:{\displaystyle k} 791:{\displaystyle n} 768: 685: 648: 597: 582: 516:for all positive 510:O((1 +  185:quantum computing 16:(Redirected from 4126: 4068:Harmonic divisor 3954:Aliquot sequence 3934:Highly composite 3858:Multiply perfect 3754: 3732:Divisor function 3698: 3691: 3684: 3675: 3674: 3620:Integer relation 3593:Other algorithms 3498:Pollard kangaroo 3389:Ancient Egyptian 3247:Prime-generating 3232:Solovay–Strassen 3145:Number-theoretic 3138: 3131: 3124: 3115: 3114: 3026:Sub-group hiding 2937:Number theoretic 2923: 2916: 2909: 2900: 2899: 2874:Manindra Agrawal 2847: 2826:Hacker's Delight 2818: 2769: 2748:Richard Crandall 2734: 2733: 2723: 2705: 2696: 2687: 2686: 2668: 2659: 2653: 2652: 2642: 2633:(178): 757–780. 2618: 2612: 2611: 2606:. Archived from 2575: 2569: 2568: 2552: 2535: 2526: 2520: 2476: 2470: 2469: 2461: 2455: 2454: 2420: 2418:quant-ph/0112176 2398: 2392: 2391: 2389: 2387: 2348: 2342: 2341: 2295: 2289: 2288: 2250: 2244: 2243: 2229: 2219: 2213: 2212: 2207:. Archived from 2201: 2195: 2194: 2193: 2192: 2159: 2136: 2113:Bach's algorithm 2097: 2067: 2060: 2048: 2044: 2037: 2017: 2001: 1994: 1990: 1977: 1957: 1955: 1954: 1949: 1941: 1937: 1935: 1921: 1911: 1910: 1909: 1881: 1877: 1876: 1875: 1856: 1855: 1854: 1823: 1799: 1792: 1783: 1776: 1774: 1771: 1770: 1768: 1767: 1762: 1759: 1752: 1747: 1738: 1724: 1714: 1682: 1675: 1671: 1667: 1660: 1651: 1644: 1637:and by taking a 1636: 1632: 1623: 1614: 1598: 1589: 1587: 1575: 1571: 1560: 1551: 1547: 1538: 1528:and prime forms 1527: 1514: 1512: 1509: 1508: 1506: 1505: 1500: 1497: 1490: 1485:Kronecker symbol 1482: 1478: 1466: 1462: 1449: 1445: 1441: 1434: 1430: 1426: 1422: 1410: 1394: 1385: 1376: 1361: 1317: 1315: 1314: 1309: 1307: 1306: 1305: 1267: 1233: 1229: 1207: 1198: 1190: 1189: 1157:Shor's algorithm 1053: 1042: 960: 954: 948: 942: 936: 904: 894: 888: 882: 872: 870: 868: 867: 862: 859: 829: 823: 817: 815: 814: 809: 797: 795: 794: 789: 777: 774: 769:Decision problem 762:decision problem 748: 742: 734: 725:Shor's algorithm 717:quantum computer 714: 705: 703: 702: 697: 692: 688: 687: 686: 678: 676: 672: 650: 649: 641: 639: 635: 619: 615: 599: 598: 590: 588: 584: 575: 541: 535: 521: 515: 504: 498: 487: 481: 433: 413: 409: 403: 401: 400: 392: 381: 370: 368: 367: 361: 360: 343: 341: 340: 330: 326: 322: 318: 314: 308: 298: 288: 239: 235: 173:computer science 167:. Many areas of 135: 127: 123: 119: 111: 96: 92: 88: 84: 75:composite number 63:positive integer 40: 21: 4134: 4133: 4129: 4128: 4127: 4125: 4124: 4123: 4094: 4093: 4092: 4087: 4031: 3987: 3948: 3919:Highly abundant 3897: 3878:Unitary perfect 3831: 3755: 3746: 3727:Unitary divisor 3705: 3702: 3672: 3667: 3653: 3588: 3550: 3517: 3474: 3418: 3375: 3279: 3241: 3214:Proth's theorem 3156:Primality tests 3150: 3142: 3112: 3107: 3081: 3035: 3031:Decision linear 3009: 2983:Group theoretic 2978: 2932: 2927: 2854: 2844: 2815: 2766: 2743: 2738: 2737: 2703: 2697: 2690: 2666: 2660: 2656: 2619: 2615: 2576: 2572: 2565: 2536: 2529: 2510: 2488:Gowers, Timothy 2480:Goldreich, Oded 2477: 2473: 2462: 2458: 2435:10.1038/414883a 2399: 2395: 2385: 2383: 2381: 2349: 2345: 2323: 2296: 2292: 2278: 2251: 2247: 2227: 2220: 2216: 2203: 2202: 2198: 2190: 2188: 2186: 2160: 2156: 2151: 2137:-adic valuation 2134: 2104: 2095: 2090: 2083: 2075:Jacobi sum test 2071: 2062: 2058: 2054: 2046: 2042: 2019: 2003: 1996: 1992: 1989: 1979: 1963: 1922: 1917: 1905: 1901: 1894: 1889: 1885: 1862: 1858: 1853: 1849: 1842: 1837: 1833: 1831: 1828: 1827: 1821: 1810: 1801: 1797: 1791: 1785: 1781: 1772: 1763: 1760: 1757: 1756: 1754: 1753: 1750: 1749: 1746: 1740: 1737: 1729: 1716: 1713: 1704: 1697: 1690: 1684: 1680: 1673: 1669: 1662: 1658: 1649: 1642: 1634: 1631: 1625: 1622: 1616: 1613: 1607: 1604:neutral element 1597: 1591: 1585: 1583: 1577: 1573: 1570: 1562: 1559: 1553: 1549: 1546: 1540: 1537: 1529: 1526: 1520: 1510: 1501: 1498: 1495: 1494: 1492: 1491: 1488: 1487: 1480: 1477: 1471: 1464: 1461: 1455: 1447: 1443: 1436: 1432: 1428: 1424: 1420: 1417: 1396: 1393: 1387: 1384: 1378: 1374: 1368:quadratic forms 1359: 1354: 1351: 1335:quadratic sieve 1266: 1241: 1237: 1196: 1195: 1191: 1185: 1181: 1179: 1176: 1175: 1166: 1153: 1129:Quadratic sieve 1094:Second Category 1086: 1084:General-purpose 1048: 1037: 988: 986:Special-purpose 983: 956: 950: 944: 938: 932: 926:NP-intermediate 900: 890: 884: 874: 863: 860: 855: 854: 852: 843: 832: 825: 819: 803: 800: 799: 783: 780: 779: 775: 772: 744: 736: 728: 710: 677: 656: 652: 651: 640: 625: 621: 620: 589: 573: 569: 568: 567: 563: 562: 558: 550: 547: 546: 537: 531: 524:sub-exponential 517: 509: 500: 489: 483: 477: 474:polynomial time 466: 464:Time complexity 429: 426: 420: 411: 405: 398: 396: 394: 383: 372: 365: 363: 352: 350: 345: 342:⌉ = 18848997159 336: 334: 332: 328: 324: 320: 316: 310: 304: 290: 276: 261:polynomial time 237: 230: 223: 177:elliptic curves 133: 125: 121: 117: 109: 94: 90: 86: 82: 81:. For example, 51: 50: 45: 42: 35: 28: 23: 22: 15: 12: 11: 5: 4132: 4122: 4121: 4116: 4111: 4106: 4089: 4088: 4086: 4085: 4080: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4039: 4037: 4033: 4032: 4030: 4029: 4024: 4019: 4014: 4009: 4004: 3998: 3996: 3989: 3988: 3986: 3985: 3980: 3975: 3965: 3959: 3957: 3950: 3949: 3947: 3946: 3941: 3936: 3931: 3926: 3921: 3916: 3911: 3905: 3903: 3899: 3898: 3896: 3895: 3890: 3885: 3880: 3875: 3870: 3865: 3860: 3855: 3850: 3848:Almost perfect 3845: 3839: 3837: 3833: 3832: 3830: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3794: 3789: 3784: 3779: 3774: 3769: 3763: 3761: 3757: 3756: 3749: 3747: 3745: 3744: 3739: 3734: 3729: 3724: 3719: 3713: 3711: 3707: 3706: 3701: 3700: 3693: 3686: 3678: 3669: 3668: 3666: 3665: 3658: 3655: 3654: 3652: 3651: 3646: 3641: 3636: 3631: 3617: 3612: 3607: 3602: 3596: 3594: 3590: 3589: 3587: 3586: 3581: 3576: 3574:Tonelli–Shanks 3571: 3566: 3560: 3558: 3552: 3551: 3549: 3548: 3543: 3538: 3533: 3527: 3525: 3519: 3518: 3516: 3515: 3510: 3508:Index calculus 3505: 3503:Pohlig–Hellman 3500: 3495: 3490: 3484: 3482: 3476: 3475: 3473: 3472: 3467: 3462: 3457: 3455:Newton-Raphson 3452: 3447: 3442: 3437: 3431: 3429: 3420: 3419: 3417: 3416: 3411: 3406: 3401: 3396: 3391: 3385: 3383: 3381:Multiplication 3377: 3376: 3374: 3373: 3368: 3366:Trial division 3363: 3358: 3353: 3351:Rational sieve 3348: 3341: 3336: 3331: 3323: 3315: 3310: 3305: 3300: 3295: 3289: 3287: 3281: 3280: 3278: 3277: 3272: 3267: 3262: 3257: 3255:Sieve of Atkin 3251: 3249: 3243: 3242: 3240: 3239: 3234: 3229: 3224: 3217: 3210: 3203: 3196: 3191: 3186: 3181: 3179:Elliptic curve 3176: 3171: 3166: 3160: 3158: 3152: 3151: 3141: 3140: 3133: 3126: 3118: 3109: 3108: 3106: 3105: 3100: 3095: 3089: 3087: 3083: 3082: 3080: 3079: 3074: 3069: 3064: 3054: 3043: 3041: 3037: 3036: 3034: 3033: 3028: 3023: 3017: 3015: 3011: 3010: 3008: 3007: 3002: 2997: 2995:Diffie-Hellman 2992: 2986: 2984: 2980: 2979: 2977: 2976: 2971: 2966: 2961: 2956: 2951: 2946: 2940: 2938: 2934: 2933: 2926: 2925: 2918: 2911: 2903: 2897: 2896: 2890: 2880: 2871: 2861: 2853: 2852:External links 2850: 2849: 2848: 2842: 2831:Addison Wesley 2829:(2 ed.). 2820: 2813: 2795: 2771: 2764: 2752:Carl Pomerance 2742: 2739: 2736: 2735: 2714:(3): 483–516. 2688: 2677:(4): 443–454. 2654: 2613: 2590:(2): 101–127. 2570: 2563: 2539:David Bressoud 2527: 2508: 2484:Wigderson, Avi 2471: 2456: 2393: 2379: 2343: 2321: 2299:Arora, Sanjeev 2290: 2276: 2245: 2214: 2211:on 2019-12-02. 2196: 2184: 2153: 2152: 2150: 2147: 2146: 2145: 2139: 2131: 2126: 2121: 2116: 2110: 2103: 2100: 2093: 2082: 2079: 2070: 2069: 2056: 2039: 1987: 1960: 1959: 1958: 1947: 1944: 1940: 1934: 1931: 1928: 1925: 1920: 1916: 1908: 1904: 1900: 1897: 1893: 1888: 1884: 1880: 1874: 1871: 1868: 1865: 1861: 1852: 1848: 1845: 1841: 1836: 1819: 1806: 1794: 1789: 1778: 1744: 1733: 1726: 1709: 1702: 1695: 1688: 1677: 1654: 1629: 1620: 1611: 1595: 1581: 1566: 1557: 1544: 1533: 1524: 1475: 1459: 1416: 1413: 1391: 1382: 1357: 1350: 1347: 1319: 1318: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1244: 1240: 1236: 1232: 1228: 1225: 1222: 1219: 1216: 1213: 1210: 1204: 1201: 1194: 1188: 1184: 1165: 1162: 1161: 1160: 1152: 1149: 1148: 1147: 1141: 1136: 1134:Rational sieve 1131: 1126: 1120: 1085: 1082: 1081: 1080: 1075: 1070: 1065: 1060: 1029: 1019: 1014: 1012:Trial division 1005:trial division 1000:First Category 987: 984: 982: 979: 922:co-NP-complete 807: 787: 766: 707: 706: 695: 691: 684: 681: 675: 671: 668: 665: 662: 659: 655: 647: 644: 638: 634: 631: 628: 624: 618: 614: 611: 608: 605: 602: 596: 593: 587: 581: 578: 572: 566: 561: 557: 554: 465: 462: 419: 416: 301:trial division 222: 219: 114:trial division 46: 43: 37: 26: 9: 6: 4: 3: 2: 4131: 4120: 4119:Factorization 4117: 4115: 4112: 4110: 4107: 4105: 4102: 4101: 4099: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4040: 4038: 4034: 4028: 4025: 4023: 4022:Polydivisible 4020: 4018: 4015: 4013: 4010: 4008: 4005: 4003: 4000: 3999: 3997: 3994: 3990: 3984: 3981: 3979: 3976: 3973: 3969: 3966: 3964: 3961: 3960: 3958: 3955: 3951: 3945: 3942: 3940: 3937: 3935: 3932: 3930: 3927: 3925: 3924:Superabundant 3922: 3920: 3917: 3915: 3912: 3910: 3907: 3906: 3904: 3900: 3894: 3893:ErdƑs–Nicolas 3891: 3889: 3886: 3884: 3881: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3841: 3840: 3838: 3834: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3802:Perfect power 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3764: 3762: 3758: 3753: 3743: 3740: 3738: 3735: 3733: 3730: 3728: 3725: 3723: 3720: 3718: 3715: 3714: 3712: 3708: 3699: 3694: 3692: 3687: 3685: 3680: 3679: 3676: 3663: 3660: 3659: 3656: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3629: 3625: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3597: 3595: 3591: 3585: 3582: 3580: 3577: 3575: 3572: 3570: 3569:Pocklington's 3567: 3565: 3562: 3561: 3559: 3557: 3553: 3547: 3544: 3542: 3539: 3537: 3534: 3532: 3529: 3528: 3526: 3524: 3520: 3514: 3511: 3509: 3506: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3486: 3485: 3483: 3481: 3477: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3432: 3430: 3428: 3425: 3421: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3386: 3384: 3382: 3378: 3372: 3369: 3367: 3364: 3362: 3359: 3357: 3354: 3352: 3349: 3347: 3346: 3342: 3340: 3337: 3335: 3332: 3330: 3328: 3324: 3322: 3320: 3316: 3314: 3313:Pollard's rho 3311: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3290: 3288: 3286: 3282: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3252: 3250: 3248: 3244: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3222: 3218: 3216: 3215: 3211: 3209: 3208: 3204: 3202: 3201: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3175: 3172: 3170: 3167: 3165: 3162: 3161: 3159: 3157: 3153: 3149: 3146: 3139: 3134: 3132: 3127: 3125: 3120: 3119: 3116: 3104: 3101: 3099: 3096: 3094: 3091: 3090: 3088: 3084: 3078: 3075: 3073: 3070: 3068: 3065: 3062: 3058: 3055: 3052: 3048: 3045: 3044: 3042: 3038: 3032: 3029: 3027: 3024: 3022: 3019: 3018: 3016: 3012: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2987: 2985: 2981: 2975: 2972: 2970: 2967: 2965: 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2941: 2939: 2935: 2931: 2924: 2919: 2917: 2912: 2910: 2905: 2904: 2901: 2894: 2891: 2889: 2887: 2881: 2879: 2875: 2872: 2870: 2866: 2862: 2859: 2856: 2855: 2845: 2839: 2836: 2832: 2828: 2827: 2821: 2816: 2810: 2806: 2805: 2800: 2796: 2793: 2792:0-201-89684-2 2789: 2785: 2781: 2780: 2775: 2772: 2767: 2765:0-387-94777-9 2761: 2757: 2753: 2749: 2745: 2744: 2731: 2727: 2722: 2717: 2713: 2709: 2702: 2695: 2693: 2684: 2680: 2676: 2672: 2665: 2658: 2650: 2646: 2641: 2636: 2632: 2628: 2624: 2617: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2581: 2574: 2566: 2560: 2556: 2551: 2550: 2544: 2540: 2534: 2532: 2524: 2519: 2515: 2511: 2505: 2501: 2497: 2493: 2489: 2485: 2481: 2475: 2467: 2460: 2452: 2448: 2444: 2440: 2436: 2432: 2428: 2424: 2419: 2414: 2410: 2406: 2405: 2397: 2382: 2376: 2372: 2368: 2364: 2360: 2356: 2355: 2347: 2340: 2336: 2332: 2328: 2324: 2318: 2314: 2310: 2306: 2305: 2300: 2294: 2287: 2283: 2279: 2273: 2269: 2265: 2261: 2260: 2255: 2249: 2241: 2237: 2233: 2226: 2218: 2210: 2206: 2200: 2187: 2181: 2177: 2173: 2169: 2165: 2158: 2154: 2143: 2140: 2138: 2132: 2130: 2127: 2125: 2124:Factorization 2122: 2120: 2117: 2114: 2111: 2109: 2106: 2105: 2099: 2096: 2088: 2078: 2076: 2065: 2052: 2040: 2035: 2031: 2027: 2023: 2015: 2011: 2007: 2000: 1986: 1982: 1975: 1971: 1967: 1961: 1945: 1942: 1938: 1929: 1923: 1918: 1914: 1902: 1898: 1895: 1891: 1886: 1882: 1878: 1869: 1863: 1859: 1850: 1846: 1843: 1839: 1834: 1826: 1825: 1818: 1814: 1809: 1805: 1795: 1788: 1779: 1766: 1743: 1736: 1732: 1727: 1723: 1719: 1712: 1708: 1701: 1694: 1687: 1683:first primes 1678: 1666: 1656: 1655: 1653: 1646: 1640: 1628: 1619: 1610: 1605: 1600: 1594: 1580: 1569: 1565: 1556: 1543: 1536: 1532: 1523: 1518: 1504: 1486: 1474: 1468: 1458: 1453: 1440: 1412: 1408: 1404: 1400: 1390: 1381: 1373: 1369: 1365: 1360: 1346: 1344: 1340: 1336: 1332: 1328: 1324: 1298: 1295: 1292: 1289: 1286: 1277: 1274: 1271: 1257: 1251: 1248: 1245: 1238: 1234: 1230: 1223: 1217: 1214: 1211: 1208: 1202: 1199: 1192: 1186: 1182: 1174: 1173: 1172: 1171: 1158: 1155: 1154: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1124: 1121: 1119: 1116: 1115: 1114: 1112: 1108: 1104: 1101: 1100: 1095: 1091: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1055: 1051: 1044: 1040: 1033: 1030: 1027: 1023: 1020: 1018: 1015: 1013: 1010: 1009: 1008: 1006: 1001: 997: 992: 978: 976: 972: 968: 964: 959: 955:of digits of 953: 947: 941: 935: 929: 927: 923: 918: 916: 912: 908: 903: 898: 893: 887: 881: 877: 866: 858: 850: 846: 841: 837: 831: 828: 822: 805: 785: 765: 763: 759: 754: 752: 747: 740: 732: 726: 722: 718: 713: 693: 689: 682: 679: 673: 669: 666: 663: 660: 657: 653: 645: 642: 636: 632: 629: 626: 622: 616: 609: 603: 600: 594: 591: 585: 579: 576: 570: 564: 559: 555: 552: 545: 544: 543: 540: 534: 529: 525: 520: 513: 506: 503: 496: 492: 486: 480: 475: 471: 461: 459: 455: 451: 446: 444: 439: 437: 432: 425: 415: 408: 391:= 18848997161 390: 386: 380:= 18848997157 379: 375: 359: 355: 348: 339: 313: 307: 302: 297: 293: 287: 283: 279: 273: 272:prime factors 268: 266: 262: 258: 254: 253:empty product 250: 246: 233: 227: 218: 216: 212: 208: 203: 201: 197: 193: 188: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 141: 139: 131: 115: 106: 104: 100: 80: 76: 72: 68: 64: 60: 56: 49: 33: 19: 4083:Superperfect 4078:Refactorable 3873:Superperfect 3868:Hyperperfect 3853:Quasiperfect 3737:Prime factor 3716: 3661: 3343: 3326: 3318: 3284: 3237:Miller–Rabin 3219: 3212: 3205: 3200:Lucas–Lehmer 3198: 2943: 2885: 2864: 2824: 2803: 2783: 2782:, Volume 2: 2777: 2774:Donald Knuth 2758:. Springer. 2755: 2711: 2707: 2674: 2670: 2657: 2630: 2626: 2616: 2608:the original 2587: 2583: 2573: 2548: 2499: 2496:Leader, Imre 2474: 2459: 2408: 2402: 2396: 2384:. Retrieved 2353: 2346: 2303: 2293: 2258: 2248: 2231: 2217: 2209:the original 2199: 2189:, retrieved 2167: 2157: 2091: 2084: 2072: 2063: 2033: 2029: 2025: 2021: 2013: 2009: 2005: 1998: 1984: 1980: 1973: 1969: 1965: 1824:satisfying: 1816: 1812: 1807: 1803: 1786: 1764: 1741: 1734: 1730: 1721: 1717: 1710: 1706: 1699: 1692: 1685: 1664: 1647: 1626: 1617: 1608: 1601: 1592: 1578: 1567: 1563: 1554: 1541: 1534: 1530: 1521: 1502: 1472: 1469: 1456: 1438: 1418: 1406: 1402: 1398: 1388: 1379: 1372:discriminant 1355: 1352: 1338: 1320: 1170:running time 1167: 1102: 1098: 1093: 1089: 1087: 1049: 1038: 999: 995: 993: 989: 957: 951: 945: 939: 933: 930: 919: 901: 891: 885: 879: 875: 864: 856: 848: 844: 833: 826: 820: 767: 755: 745: 738: 730: 711: 708: 538: 536:-bit number 532: 518: 511: 507: 501: 494: 484: 482:-bit number 478: 467: 447: 440: 430: 427: 406: 388: 384: 377: 373: 357: 353: 346: 337: 311: 305: 295: 291: 285: 281: 277: 269: 242: 231: 204: 189: 157:cryptography 142: 107: 98: 79:prime number 58: 52: 4007:Extravagant 4002:Equidigital 3963:Untouchable 3883:Semiperfect 3863:Hemiperfect 3792:Square-free 3493:Pollard rho 3450:Goldschmidt 3184:Pocklington 3174:Baillie–PSW 2954:RSA problem 2523:p. 583 1715:, for some 1377:denoted by 1364:class group 1107:RSA numbers 961:) with the 830:besides 1? 727:takes only 719:, however, 522:, that is, 399:18848997157 325:18848997161 207:RSA problem 169:mathematics 145:non-quantum 130:square root 55:mathematics 4098:Categories 4043:Arithmetic 4036:Other sets 3995:-dependent 3605:Cornacchia 3600:Chakravala 3148:algorithms 2959:Strong RSA 2949:Phi-hiding 2741:References 2543:Stan Wagon 2191:2022-06-22 1705:= 5, ..., 1584:(log| 1517:generators 1470:Denote by 1327:L-notation 1090:Category 2 1047:Williams' 1036:Pollard's 996:Category 1 721:Peter Shor 436:semiprimes 428:Among the 422:See also: 402:⌉ = 137292 215:public-key 192:semiprimes 153:difficulty 4073:Descartes 4048:Deficient 3983:Betrothed 3888:Practical 3777:Semiprime 3772:Composite 3579:Berlekamp 3536:Euclidean 3424:Euclidean 3404:Toom–Cook 3399:Karatsuba 2371:1887/2149 2339:215746906 1995:in which 1907:Δ 1899:∈ 1892:∏ 1847:∈ 1840:∏ 1679:Take the 1454:forms in 1296:⁡ 1290:⁡ 1275:⁡ 1099:Kraitchik 1054:algorithm 1043:algorithm 743:space on 735:time and 667:⁡ 661:⁡ 630:⁡ 556:⁡ 542:in time: 470:algorithm 454:Xeon Gold 149:algorithm 4058:Solitary 4053:Friendly 3978:Sociable 3968:Amicable 3956:-related 3909:Abundant 3807:Achilles 3797:Powerful 3710:Overview 3546:Lehmer's 3440:Chunking 3427:division 3356:Fermat's 3040:Lattices 3014:Pairings 2869:download 2801:(2013). 2754:(2001). 2545:(2000). 2498:(eds.), 2443:11780055 2386:12 March 2256:(2011), 2102:See also 1811: : 1668:, where 1442:, where 1333:and the 1323:little-o 1146:(SQUFOF) 1113:method. 488:in time 327:, where 280:= 171 × 163:and the 159:such as 4063:Sublime 4017:Harshad 3843:Perfect 3827:Unusual 3817:Regular 3787:Sphenic 3722:Divisor 3662:Italics 3584:Kunerth 3564:Cipolla 3445:Fourier 3414:FĂŒrer's 3308:Euler's 3298:Dixon's 3221:PĂ©pin's 2730:1137100 2649:0878705 2604:0657269 2518:2467561 2451:4400832 2423:Bibcode 2331:2500087 2286:2789493 2051:2-Sylow 1769:⁠ 1755:⁠ 1588:|) 1507:⁠ 1493:⁠ 1125:(CFRAC) 869:⁠ 853:⁠ 818:, does 450:RSA-250 443:RSA-240 412:1372933 397:√ 364:√ 351:√ 335:√ 321:1372933 257:Testing 243:By the 213:-based 71:factors 67:product 65:into a 4012:Frugal 3972:Triple 3812:Smooth 3782:Pronic 3644:Schoof 3531:Binary 3435:Binary 3371:Shor's 3189:Fermat 2858:msieve 2840:  2811:  2790:  2762:  2728:  2647:  2602:  2561:  2555:168–69 2516:  2506:  2449:  2441:  2404:Nature 2377:  2337:  2329:  2319:  2284:  2274:  2182:  2053:group 1997:Δ = −4 1452:smooth 1103:family 1056:, and 905:. The 771:  323:, and 289:where 183:, and 89:, but 4027:Smith 3944:Weird 3822:Rough 3767:Prime 3465:Short 3194:Lucas 2704:(PDF) 2667:(PDF) 2447:S2CID 2413:arXiv 2335:S2CID 2228:(PDF) 2149:Notes 2020:Δ = ( 1748:with 1698:= 3, 1691:= 2, 1663:Δ = − 1548:with 1483:with 1437:Δ = − 1096:, or 873:with 840:co-NP 317:13729 294:< 238:2 × 3 234:= 864 3993:Base 3460:Long 3394:Long 2838:ISBN 2809:ISBN 2788:ISBN 2760:ISBN 2750:and 2559:ISBN 2541:and 2504:ISBN 2439:PMID 2388:2021 2375:ISBN 2317:ISBN 2272:ISBN 2180:ISBN 2004:Δ = 1800:and 1728:Let 1657:Let 1648:Let 1325:and 838:and 798:and 404:for 382:and 196:bits 171:and 3624:LLL 3470:SRT 3329:+ 1 3321:− 1 3169:APR 3164:AKS 3061:gap 3051:gap 2716:doi 2679:doi 2635:doi 2592:doi 2431:doi 2409:414 2367:hdl 2359:doi 2309:doi 2264:doi 2236:doi 2172:doi 2066:(Δ) 2061:of 2059:(Δ) 2055:Sll 2032:+ 2 2024:− 2 2018:or 2012:− 4 2002:or 1784:of 1775:= 1 1639:gcd 1606:of 1552:in 1539:of 1519:of 1513:= 1 1370:of 1321:in 1293:log 1287:log 1272:log 1052:+ 1 1041:− 1 998:or 975:RSA 915:BQP 751:NMR 664:log 658:log 627:log 553:exp 468:No 369:= 2 255:.) 236:as 211:RSA 132:of 53:In 4100:: 3628:KZ 3626:; 2833:- 2776:. 2726:MR 2724:. 2710:. 2706:. 2691:^ 2675:50 2673:. 2669:. 2645:MR 2643:. 2631:48 2629:. 2625:. 2600:MR 2598:. 2586:. 2582:. 2557:. 2530:^ 2514:MR 2512:, 2494:; 2490:; 2482:; 2445:. 2437:. 2429:. 2421:. 2407:. 2373:. 2365:. 2333:, 2327:MR 2325:, 2315:, 2282:MR 2280:, 2270:, 2178:, 2098:. 2077:. 2028:)( 1999:ac 1983:∈ 1972:, 1968:, 1946:1. 1815:∈ 1720:∈ 1665:dn 1599:. 1439:dn 1435:, 1405:, 1401:, 1386:. 1345:. 1092:, 1045:, 911:UP 878:≀ 847:= 836:NP 764:. 737:O( 729:O( 514:)) 414:. 387:+ 376:− 362:= 356:− 349:= 319:, 284:× 187:. 179:, 124:, 120:, 105:. 83:15 57:, 3974:) 3970:( 3697:e 3690:t 3683:v 3630:) 3622:( 3327:p 3319:p 3137:e 3130:t 3123:v 3063:) 3059:( 3053:) 3049:( 2922:e 2915:t 2908:v 2846:. 2819:. 2817:. 2768:. 2732:. 2718:: 2712:5 2685:. 2681:: 2651:. 2637:: 2594:: 2588:3 2567:. 2525:. 2468:. 2453:. 2433:: 2425:: 2415:: 2390:. 2369:: 2361:: 2311:: 2266:: 2242:. 2238:: 2174:: 2135:p 2094:n 2092:L 2068:. 2064:G 2057:2 2047:n 2043:n 2038:. 2036:) 2034:a 2030:b 2026:a 2022:b 2016:) 2014:c 2010:a 2008:( 2006:a 1993:Δ 1988:Δ 1985:G 1981:f 1976:) 1974:c 1970:b 1966:a 1964:( 1943:= 1939:) 1933:) 1930:q 1927:( 1924:t 1919:q 1915:f 1903:P 1896:q 1887:( 1883:. 1879:) 1873:) 1870:x 1867:( 1864:r 1860:x 1851:X 1844:x 1835:( 1822:} 1820:Δ 1817:P 1813:q 1808:q 1804:f 1802:{ 1798:X 1793:. 1790:Δ 1787:G 1782:X 1777:. 1773:) 1765:q 1761:/ 1758:Δ 1751:( 1745:Δ 1742:G 1735:q 1731:f 1725:. 1722:N 1718:t 1711:t 1707:p 1703:3 1700:p 1696:2 1693:p 1689:1 1686:p 1681:t 1674:Δ 1670:d 1659:Δ 1650:n 1643:n 1635:Δ 1630:Δ 1627:G 1621:Δ 1618:G 1612:Δ 1609:G 1596:0 1593:c 1586:Δ 1582:0 1579:c 1574:q 1568:q 1564:f 1558:Δ 1555:P 1550:q 1545:Δ 1542:G 1535:q 1531:f 1525:Δ 1522:G 1511:) 1503:q 1499:/ 1496:Δ 1489:( 1481:q 1476:Δ 1473:P 1465:d 1460:Δ 1457:G 1448:d 1444:d 1433:n 1429:Δ 1425:n 1421:n 1409:) 1407:c 1403:b 1399:a 1397:( 1392:Δ 1389:G 1383:Δ 1380:G 1375:Δ 1358:n 1356:L 1302:) 1299:n 1284:( 1281:) 1278:n 1269:( 1264:) 1261:) 1258:1 1255:( 1252:o 1249:+ 1246:1 1243:( 1239:e 1235:= 1231:] 1227:) 1224:1 1221:( 1218:o 1215:+ 1212:1 1209:, 1203:2 1200:1 1193:[ 1187:n 1183:L 1050:p 1039:p 958:n 952:b 946:n 940:n 934:n 902:n 892:k 886:n 880:k 876:d 871:) 865:d 861:/ 857:n 851:( 849:d 845:n 827:k 821:n 806:k 786:n 746:b 741:) 739:b 733:) 731:b 712:n 694:. 690:) 683:3 680:2 674:) 670:n 654:( 646:3 643:1 637:) 633:n 623:( 617:) 613:) 610:1 607:( 604:o 601:+ 595:3 592:2 586:) 580:3 577:8 571:( 565:( 560:( 539:n 533:b 519:Δ 512:Δ 502:k 497:) 495:b 493:( 491:O 485:n 479:b 431:b 407:a 395:⌈ 389:b 385:a 378:b 374:a 366:4 358:n 354:a 347:b 338:n 333:⌈ 312:n 306:p 296:q 292:p 286:q 282:p 278:n 232:n 134:n 126:5 122:3 118:2 110:n 91:7 41:: 34:. 20:)

Index

Integer factorization problem
Prime decomposition of 3-manifolds
(more unsolved problems in computer science)
mathematics
positive integer
product
factors
composite number
prime number
prime factorization theorem
trial division
square root
testing whether each factor is prime
non-quantum
algorithm
difficulty
cryptography
RSA public-key encryption
RSA digital signature
mathematics
computer science
elliptic curves
algebraic number theory
quantum computing
semiprimes
bits
Fermat's factorization method
RSA problem
RSA
public-key

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑