Knowledge

Hybrid system

Source 📝

626:. One also notices from basic convex analysis that the complementarity relation can equivalently be rewritten as the inclusion into a normal cone, so that the bouncing ball dynamics is a differential inclusion into a normal cone to a convex set. See Chapters 1, 2 and 3 in Acary-Brogliato's book cited below (Springer LNACM 35, 2008). See also the other references on non-smooth mechanics. 141:, a physical system with impact. Here, the ball (thought of as a point-mass) is dropped from an initial height and bounces off the ground, dissipating its energy with each bounce. The ball exhibits continuous dynamics between each bounce; however, as the ball impacts the ground, its velocity undergoes a discrete change modeled after an 605:
Such a contact model does not incorporate magnetic forces, nor gluing effects. When the complementarity relations are in, one can continue to integrate the system after the impacts have accumulated and vanished: the equilibrium of the system is well-defined as the static equilibrium of the ball on
653:
impossible. Instead, the tools are analyzed for their capabilities on benchmark problems. A possible theoretical characterization of this is algorithms that succeed with hybrid systems verification in all robust cases implying that many problems for hybrid systems, while undecidable, are at least
559:
It is noteworthy that the dynamical model is complete if and only if one adds the contact force between the ground and the ball. Indeed, without forces, one cannot properly define the bouncing ball and the model is, from a mechanical point of view, meaningless. The simplest contact model that
693:
models. These methods generate traces of system behaviors in discrete event system manner which are different from discrete time systems. Detailed of this approach can be found in references and the software tool
637:
There are approaches to automatically proving properties of hybrid systems (e.g., some of the tools mentioned below). Common techniques for proving safety of hybrid systems are computation of reachable sets,
70:, or of electrical and mechanical drivelines. A hybrid system has the benefit of encompassing a larger class of systems within its structure, allowing for more flexibility in modeling dynamic phenomena. 487: 331: 603: 560:
represents the interactions between the ball and the ground, is the complementarity relation between the force and the distance (the gap) between the ball and the ground. This is written as
251: 405: 519: 889: 940: 939:
Alur, Rajeev; Courcoubetis, Costas; Halbwachs, Nicolas; Henzinger, Thomas A.; Ho, Pei-Hsin; Nicollin, Xavier; Olivero, Alfredo; Sifakis, Joseph; Yovine, Sergio (1995),
624: 556:
amount of time. In this example, each time the ball bounces it loses energy, making the subsequent jumps (impacts with the ground) closer and closer together in time.
539: 521:
is a dissipation factor. This is saying that when the height of the ball is zero (it has impacted the ground), its velocity is reversed and decreased by a factor of
197: 170: 351: 925: 840: 62:). Often, the term "hybrid dynamical system" is used instead of "hybrid system", to distinguish from other usages of "hybrid system", such as the combination 1199:
Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya: What's Decidable about Hybrid Automata, Journal of Computer and System Sciences, 1998
1217:
Stefan Ratschan: Safety verification of non-linear hybrid systems is quasi-decidable, Formal Methods in System Design, volume 44, pp. 71-90, 2014,
662:
Two basic hybrid system modeling approaches can be classified, an implicit and an explicit one. The explicit approach is often represented by a
353:
is the acceleration due to gravity. These equations state that when the ball is above ground, it is being drawn to the ground by gravity.
970: 904: 1179: 1079: 1023: 410: 256: 1099:"Dynamical systems coupled with monotone set-valued operators: Formalisms, Applications, well-posedness, and stability" 548:
behavior. Zeno behavior has a strict mathematical definition, but can be described informally as the system making an
712: 563: 931: 1208:
Martin Fränzle: Analysis of Hybrid Systems: An ounce of realism can save an infinity of states, Springer LNCS 1683
1245: 675: 17: 205: 122: 359: 1250: 874: 639: 492: 869: 811: 1054: 1255: 1240: 826:: MATLAB toolbox for verification of hybrid systems with respect to temporal logic specifications 755:: A MATLAB Toolbox for reachability analysis of cyber-physical systems, including hybrid systems 1049: 609: 884: 879: 524: 43: 732:(Discrete Event System) modeling and simulation oriented to the simulation of hybrid systems 1098: 1041: 907:(PDMP), an example of a (stochastic) hybrid system and a generalization of the jump process 864: 175: 148: 51: 978:
Goebel, Rafal; Sanfelice, Ricardo G.; Teel, Andrew R. (2009), "Hybrid dynamical systems",
674:. The implicit approach is often represented by guarded equations to result in systems of 38:
that exhibits both continuous and discrete dynamic behavior – a system that can both
8: 643: 631: 142: 59: 1045: 764: 685:
As a unified simulation approach for hybrid system analysis, there is a method based on
1121: 995: 823: 336: 86: 1158:
Branicky, Michael S. (2005), Hristu-Varsakelis, Dimitrios; Levine, William S. (eds.),
795: 770: 1175: 1125: 1075: 1019: 956: 679: 999: 773:: C++ library for state set representations for hybrid systems reachability analysis 749:
library for (numerically rigorous) reachability analysis of nonlinear hybrid systems
689:
formalism in which integrators for differential equations are quantized into atomic
667: 1218: 1167: 1113: 1059: 1011: 987: 960: 952: 859: 663: 35: 817: 199:
be the velocity of the ball. A hybrid system describing the ball is as follows:
114: 113:
Hybrid systems have been used to model several cyber-physical systems, including
55: 910: 1222: 1063: 1015: 1234: 1090:
Building Software for Simulation: Theory, Algorithms, and Applications in C++
913:, an example of a (stochastic) hybrid system and a generalization of the PDMP 544:
The bouncing ball is an especially interesting hybrid system, as it exhibits
138: 1171: 991: 894: 807: 545: 1159: 836: 789: 898: 606:
the ground, under the action of gravity compensated by the contact force
67: 1138: 678:(DAEs) where the active equations may change, for example by means of a 1117: 63: 27:
Dynamical system that exhibits continuous and discrete dynamic behavior
1069: 1010:, Lecture Notes in Applied and Computational Mechanics, vol. 35, 901:), an example of a (stochastic) hybrid system with zero flow component 541:. Effectively, this describes the nature of the inelastic collision. 965: 725: 695: 671: 650: 649:
Most verification tasks are undecidable, making general verification
720: 126: 938: 801: 1032:
Kofman, E (2004), "Discrete Event Simulation of Hybrid Systems",
752: 145:. A mathematical description of the bouncing ball follows. Let 776: 930:, IEEE Computer Society Press, pp. 278–292, archived from 716: 924:
Henzinger, Thomas A. (1996), "The Theory of Hybrid Automata",
890:
Behavior trees (artificial intelligence, robotics and control)
767:: A tool for overapproximating reachability of hybrid automata 761:: A tool for reachability analysis of nonlinear hybrid systems 746: 742: 97:
hold, while discrete transitions can occur as soon as given
729: 690: 686: 101:
are satisfied. Discrete transitions may be associated with
846: 927:
11th Annual Symposium on Logic in Computer Science (LICS)
843:
of correct-by-construction controllers for hybrid systems
783: 85:. The state changes either continuously, according to a 482:{\displaystyle x_{1}^{+}=x_{1},x_{2}^{+}=-\gamma x_{2}} 758: 326:{\displaystyle {\dot {x}}_{1}=x_{2},{\dot {x}}_{2}=-g} 612: 566: 527: 495: 413: 362: 339: 259: 208: 178: 151: 93:. Continuous flow is permitted as long as so-called 977: 77:of a hybrid system is defined by the values of the 1164:Handbook of Networked and Embedded Control Systems 618: 597: 533: 513: 481: 399: 345: 325: 245: 191: 164: 1008:Numerical Methods for Nonsmooth Dynamical Systems 1232: 1096: 598:{\displaystyle 0\leq \lambda \perp x_{1}\geq 0.} 1070:Francois E. Cellier and Ernesto Kofman (2006), 1005: 629: 137:A canonical example of a hybrid system is the 1087: 941:"The algorithmic analysis of hybrid systems" 657: 394: 375: 240: 221: 1166:, Boston, MA: Birkhäuser, pp. 91–116, 1097:Brogliato, Bernard; Tanwani, Aneel (2020), 1006:Acary, Vincent; Brogliato, Bernard (2008), 1053: 964: 923: 1157: 89:condition, or discretely according to a 14: 1233: 1031: 905:Piecewise-deterministic Markov process 820:: Polyhedral hybrid automaton verifier 804:: Verification tool for hybrid systems 779:: A toolbox for set-based reachability 784:Temporal Logic and Other Verification 246:{\displaystyle x\in C=\{x_{1}>0\}} 1139:IEEE CSS Committee on Hybrid Systems 1034:SIAM Journal on Scientific Computing 24: 917: 798:: Model checker for hybrid systems 792:: Nonlinear hybrid system verifier 400:{\displaystyle x\in D=\{x_{1}=0\}} 25: 1267: 1132: 701: 514:{\displaystyle 0<\gamma <1} 1160:"Introduction to Hybrid Systems" 676:differential algebraic equations 132: 736: 1211: 1202: 1193: 1151: 172:be the height of the ball and 13: 1: 1144: 980:IEEE Control Systems Magazine 706: 1074:(first ed.), Springer, 1072:Continuous System Simulation 957:10.1016/0304-3975(94)00202-T 945:Theoretical Computer Science 7: 853: 728:: General-purpose tool for 715:: Hybrid system solver for 108: 10: 1272: 875:Variable structure control 1223:10.1007/s10703-013-0196-2 1064:10.1137/S1064827502418379 1016:10.1007/978-3-540-75392-6 870:Variable structure system 658:Other modeling approaches 830: 619:{\displaystyle \lambda } 407:, jumps are governed by 1172:10.1007/0-8176-4404-0_5 1092:(first ed.), Wiley 992:10.1109/MCS.2008.931718 534:{\displaystyle \gamma } 1246:Differential equations 849:: State-space explorer 640:abstraction refinement 620: 599: 535: 515: 483: 401: 347: 327: 253:, flow is governed by 247: 193: 166: 1088:James Nutaro (2010), 885:Cyber-physical system 880:Joint spectral radius 621: 600: 552:number of jumps in a 536: 516: 484: 402: 348: 328: 248: 194: 192:{\displaystyle x_{2}} 167: 165:{\displaystyle x_{1}} 44:differential equation 865:Sliding mode control 644:barrier certificates 610: 564: 525: 493: 411: 360: 337: 257: 206: 176: 149: 79:continuous variables 1046:2004SJSC...25.1771K 897:(in the context of 459: 428: 143:inelastic collision 60:difference equation 1118:10.1137/18M1234795 814:for hybrid systems 616: 595: 531: 511: 479: 445: 414: 397: 343: 323: 243: 189: 162: 1251:Dynamical systems 1181:978-0-8176-4404-8 1081:978-0-387-26102-7 1025:978-3-540-75391-9 680:hybrid bond graph 654:quasi-decidable. 346:{\displaystyle g} 305: 270: 16:(Redirected from 1263: 1225: 1215: 1209: 1206: 1200: 1197: 1191: 1190: 1189: 1188: 1155: 1128: 1103: 1093: 1084: 1066: 1057: 1040:(5): 1771–1797, 1028: 1002: 974: 969:, archived from 968: 935: 860:Hybrid automaton 664:hybrid automaton 625: 623: 622: 617: 604: 602: 601: 596: 588: 587: 540: 538: 537: 532: 520: 518: 517: 512: 488: 486: 485: 480: 478: 477: 458: 453: 441: 440: 427: 422: 406: 404: 403: 398: 387: 386: 352: 350: 349: 344: 332: 330: 329: 324: 313: 312: 307: 306: 298: 291: 290: 278: 277: 272: 271: 263: 252: 250: 249: 244: 233: 232: 198: 196: 195: 190: 188: 187: 171: 169: 168: 163: 161: 160: 121:, logic-dynamic 115:physical systems 73:In general, the 50:(described by a 42:(described by a 36:dynamical system 21: 1271: 1270: 1266: 1265: 1264: 1262: 1261: 1260: 1231: 1230: 1229: 1228: 1216: 1212: 1207: 1203: 1198: 1194: 1186: 1184: 1182: 1156: 1152: 1147: 1135: 1101: 1082: 1026: 920: 918:Further reading 856: 839:: Tool for the 833: 786: 739: 709: 704: 660: 635: 630:Hybrid systems 611: 608: 607: 583: 579: 565: 562: 561: 526: 523: 522: 494: 491: 490: 473: 469: 454: 449: 436: 432: 423: 418: 412: 409: 408: 382: 378: 361: 358: 357: 338: 335: 334: 308: 297: 296: 295: 286: 282: 273: 262: 261: 260: 258: 255: 254: 228: 224: 207: 204: 203: 183: 179: 177: 174: 173: 156: 152: 150: 147: 146: 135: 111: 99:jump conditions 81:and a discrete 28: 23: 22: 15: 12: 11: 5: 1269: 1259: 1258: 1256:Control theory 1253: 1248: 1243: 1241:Systems theory 1227: 1226: 1210: 1201: 1192: 1180: 1149: 1148: 1146: 1143: 1142: 1141: 1134: 1133:External links 1131: 1130: 1129: 1094: 1085: 1080: 1067: 1055:10.1.1.72.2475 1029: 1024: 1003: 975: 936: 919: 916: 915: 914: 911:Jump diffusion 908: 902: 892: 887: 882: 877: 872: 867: 862: 855: 852: 851: 850: 844: 832: 829: 828: 827: 821: 815: 812:Theorem prover 805: 799: 793: 785: 782: 781: 780: 774: 768: 762: 756: 750: 738: 735: 734: 733: 723: 708: 705: 703: 702:Software Tools 700: 668:hybrid program 659: 656: 634: 628: 615: 594: 591: 586: 582: 578: 575: 572: 569: 530: 510: 507: 504: 501: 498: 476: 472: 468: 465: 462: 457: 452: 448: 444: 439: 435: 431: 426: 421: 417: 396: 393: 390: 385: 381: 377: 374: 371: 368: 365: 342: 322: 319: 316: 311: 304: 301: 294: 289: 285: 281: 276: 269: 266: 242: 239: 236: 231: 227: 223: 220: 217: 214: 211: 186: 182: 159: 155: 134: 131: 110: 107: 26: 18:Hybrid systems 9: 6: 4: 3: 2: 1268: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1236: 1224: 1220: 1214: 1205: 1196: 1183: 1177: 1173: 1169: 1165: 1161: 1154: 1150: 1140: 1137: 1136: 1127: 1123: 1119: 1115: 1111: 1107: 1100: 1095: 1091: 1086: 1083: 1077: 1073: 1068: 1065: 1061: 1056: 1051: 1047: 1043: 1039: 1035: 1030: 1027: 1021: 1017: 1013: 1009: 1004: 1001: 997: 993: 989: 985: 981: 976: 973:on 2010-01-27 972: 967: 962: 958: 954: 950: 946: 942: 937: 934:on 2010-01-27 933: 929: 928: 922: 921: 912: 909: 906: 903: 900: 896: 893: 891: 888: 886: 883: 881: 878: 876: 873: 871: 868: 866: 863: 861: 858: 857: 848: 845: 842: 838: 835: 834: 825: 822: 819: 816: 813: 809: 806: 803: 800: 797: 794: 791: 788: 787: 778: 775: 772: 769: 766: 763: 760: 757: 754: 751: 748: 744: 741: 740: 731: 727: 724: 722: 718: 714: 711: 710: 699: 697: 692: 688: 683: 681: 677: 673: 669: 665: 655: 652: 647: 645: 641: 633: 627: 613: 592: 589: 584: 580: 576: 573: 570: 567: 557: 555: 551: 547: 542: 528: 508: 505: 502: 499: 496: 474: 470: 466: 463: 460: 455: 450: 446: 442: 437: 433: 429: 424: 419: 415: 391: 388: 383: 379: 372: 369: 366: 363: 354: 340: 320: 317: 314: 309: 302: 299: 292: 287: 283: 279: 274: 267: 264: 237: 234: 229: 225: 218: 215: 212: 209: 200: 184: 180: 157: 153: 144: 140: 139:bouncing ball 133:Bouncing ball 130: 128: 124: 120: 116: 106: 104: 100: 96: 92: 91:control graph 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 52:state machine 49: 45: 41: 37: 33: 32:hybrid system 19: 1213: 1204: 1195: 1185:, retrieved 1163: 1153: 1112:(1): 3–129, 1109: 1105: 1089: 1071: 1037: 1033: 1007: 986:(2): 28–93, 983: 979: 971:the original 948: 944: 932:the original 926: 895:Jump process 737:Reachability 713:HyEQ Toolbox 684: 670:or a hybrid 661: 648: 636: 632:verification 558: 553: 549: 543: 355: 201: 136: 129:congestion. 118: 112: 102: 98: 94: 90: 82: 78: 74: 72: 47: 39: 31: 29: 1106:SIAM Review 951:(1): 3–34, 899:probability 125:, and even 123:controllers 68:fuzzy logic 64:neural nets 1235:Categories 1187:2022-06-08 1145:References 777:JuliaReach 707:Simulation 651:algorithms 95:invariants 1126:212727046 1050:CiteSeerX 966:1813/6241 841:synthesis 726:PowerDEVS 696:PowerDEVS 672:Petri net 614:λ 590:≥ 577:⊥ 574:λ 571:≤ 529:γ 503:γ 467:γ 464:− 367:∈ 318:− 303:˙ 268:˙ 213:∈ 56:automaton 1000:46488751 854:See also 824:S-TaLiRo 808:KeYmaera 765:HyCreate 721:Simulink 550:infinite 489:, where 333:, where 127:Internet 109:Examples 1042:Bibcode 847:SpaceEx 802:HSolver 743:Ariadne 58:, or a 1178:  1124:  1078:  1052:  1022:  998:  818:PHAVer 796:HyTech 717:MATLAB 642:, and 554:finite 119:impact 103:events 46:) and 1122:S2CID 1102:(PDF) 996:S2CID 837:SCOTS 831:Other 771:HyPro 759:Flow* 356:When 202:When 117:with 75:state 34:is a 1176:ISBN 1076:ISBN 1020:ISBN 790:C2E2 753:CORA 730:DEVS 719:and 691:DEVS 687:DEVS 666:, a 546:Zeno 506:< 500:< 235:> 87:flow 83:mode 66:and 48:jump 40:flow 1219:doi 1168:doi 1114:doi 1060:doi 1012:doi 988:doi 961:hdl 953:doi 949:138 747:C++ 1237:: 1174:, 1162:, 1120:, 1110:62 1108:, 1104:, 1058:, 1048:, 1038:25 1036:, 1018:, 994:, 984:29 982:, 959:, 947:, 943:, 810:: 745:: 698:. 682:. 646:. 593:0. 105:. 54:, 30:A 1221:: 1170:: 1116:: 1062:: 1044:: 1014:: 990:: 963:: 955:: 585:1 581:x 568:0 509:1 497:0 475:2 471:x 461:= 456:+ 451:2 447:x 443:, 438:1 434:x 430:= 425:+ 420:1 416:x 395:} 392:0 389:= 384:1 380:x 376:{ 373:= 370:D 364:x 341:g 321:g 315:= 310:2 300:x 293:, 288:2 284:x 280:= 275:1 265:x 241:} 238:0 230:1 226:x 222:{ 219:= 216:C 210:x 185:2 181:x 158:1 154:x 20:)

Index

Hybrid systems
dynamical system
differential equation
state machine
automaton
difference equation
neural nets
fuzzy logic
flow
physical systems
controllers
Internet
bouncing ball
inelastic collision
Zeno
verification
abstraction refinement
barrier certificates
algorithms
hybrid automaton
hybrid program
Petri net
differential algebraic equations
hybrid bond graph
DEVS
DEVS
PowerDEVS
HyEQ Toolbox
MATLAB
Simulink

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.