Knowledge

Asymptotic homogenization

Source 📝

1029:
which statistical properties are the same at every point in space. In practice, many applications require a more general way of modeling that is neither periodic nor statistically homogeneous. For this end the methods of the homogenization theory have been extended to partial differential equations, which coefficients are neither periodic nor statistically homogeneous (so-called arbitrarily rough coefficients).
1368: 683: 1028:
Classical results of homogenization theory were obtained for media with periodic microstructure modeled by partial differential equations with periodic coefficients. These results were later generalized to spatially homogeneous random media modeled by differential equations with random coefficients
327:
It turns out that the study of these equations is also of great importance in physics and engineering, since equations of this type govern the physics of inhomogeneous or heterogeneous materials. Of course, all matter is inhomogeneous at some scale, but frequently it is convenient to treat it as
993:
As a result of the above, homogenization can therefore be viewed as an extension of the continuum concept to materials which possess microstructure. The analogue of the differential element in the continuum concept (which contains enough atom, or molecular structure to be representative of that
862: 1115: 359:
and therefore they are subjected to loads or forcings which vary on a length scale which is far bigger than the characteristic length scale of the microstructure. In this situation, one can often replace the equation above with an equation of the form
131: 998:" in homogenization and micromechanics. This element contains enough statistical information about the inhomogeneous medium in order to be representative of the material. Therefore averaging over this element gives an effective property such as 454: 284: 721: 416: 1439: 1363:{\displaystyle u_{\epsilon }({\vec {x}})=u({\vec {x}},{\vec {y}})=u_{0}({\vec {x}},{\vec {y}})+\epsilon u_{1}({\vec {x}},{\vec {y}})+\epsilon ^{2}u_{2}({\vec {x}},{\vec {y}})+O(\epsilon ^{3})\,} 1087: 194: 1373:
which generates a hierarchy of problems. The homogenized equation is obtained and the effective coefficients are determined by solving the so-called "cell problems" for the function
909: 962: 56: 988: 1037:
Mathematical homogenization theory dates back to the French, Russian and Italian schools. The method of asymptotic homogenization proceeds by introducing the fast variable
678:{\displaystyle A_{ij}^{*}=\int _{(0,1)^{n}}A({\vec {y}})\left(\nabla w_{j}({\vec {y}})+{\vec {e}}_{j}\right)\cdot {\vec {e}}_{i}\,dy_{1}\dots dy_{n},\qquad i,j=1,\dots ,n} 322: 1107: 929: 154: 1023: 713: 446: 199: 1672:; Owhadi, H. (November 2010). "Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast". 448:
is a constant tensor coefficient and is known as the effective property associated with the material in question. It can be explicitly computed as
17: 867:
This process of replacing an equation with a highly oscillatory coefficient with one with a homogeneous (uniform) coefficient is known as
857:{\displaystyle \nabla _{y}\cdot \left(A({\vec {y}})\nabla w_{j}\right)=-\nabla _{y}\cdot \left(A({\vec {y}}){\vec {e}}_{j}\right).} 1997: 366: 1974: 1921: 1548: 1507: 1376: 1883: 1834: 1785: 1607: 1582: 1040: 340:, etc. can be treated as homogeneous materials and associated with these materials are material properties such as 1465: 47: 159: 28: 995: 881: 1992: 1930: 1528: 126:{\displaystyle \nabla \cdot \left(A\left({\frac {\vec {x}}{\epsilon }}\right)\nabla u_{\epsilon }\right)=f} 934: 1644: 967: 289: 1092: 914: 139: 1691: 1001: 691: 424: 1950: 1893: 1844: 8: 1570: 1450: 352: 329: 1695: 1738: 1707: 1681: 1970: 1942: 1917: 1879: 1830: 1781: 1603: 1578: 1544: 1503: 1460: 1753: 1726: 1946: 1909: 1889: 1840: 1773: 1772:. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser. 1748: 1711: 1699: 1536: 1495: 1455: 1966: 1905: 1826: 1669: 279:{\displaystyle A\left({\vec {y}}+{\vec {e}}_{i}\right)=A\left({\vec {y}}\right)} 872: 356: 345: 1913: 1777: 1703: 1540: 1986: 1867: 1822: 341: 1875: 1935:
Averaging of Processes in Periodic Media (English translation: Kluwer,1989)
1851: 1806: 1499: 1577:. Studies in Mathematics and its Applications. Amsterdam: North-Holland. 35: 1818: 328:
homogeneous. A good example is the continuum concept which is used in
1859: 1743: 1686: 1811:
Homogenization of differential operators and integral functionals
39: 1602:. Modern Mechanics and Mathematics. Chapman and Hall/CRC Press. 1962: 1938: 1863: 1814: 1645:"Boundary Value Problems with Rapidly Oscillating Coefficients" 337: 333: 1961:, Oxford Lecture Series in Mathematics and Its Applications, 1871: 1858:, Studies in Mathematics and its Applications, vol. 26, 1494:. Lecture Notes in Physics. Vol. 127. Springer Verlag. 1623:
Kozlov, S.M. (1979). "Homogenization of Random Operators".
1568: 1633:(English transl.: Math. USSR, Sb. 37:2, 1980, pp. 167-180) 1032: 871:. This subject is inextricably linked with the subject of 878:
In homogenization one equation is replaced by another if
411:{\displaystyle \nabla \cdot \left(A^{*}\nabla u\right)=f} 1535:. Mathematics and its Applications. Dordrecht: Kluwer. 1904:, Interdisciplinary Applied Mathematics, vol. 6, 1899: 1856:
Mathematical problems in elasticity and homogenization
1850: 1434:{\displaystyle u_{1}({\vec {x}},{\vec {x}}/\epsilon )} 1533:
Homogenisation: Averaging Processes in Periodic Media
1379: 1118: 1095: 1043: 1004: 970: 937: 917: 884: 724: 694: 457: 427: 369: 292: 202: 162: 142: 59: 1642: 1956: 1804: 1600:
Microstructural randomness and scaling in materials
1929: 1527: 1433: 1362: 1101: 1081: 1017: 982: 956: 923: 903: 856: 707: 677: 440: 410: 316: 278: 188: 148: 125: 1724: 1597: 1984: 1489: 1082:{\displaystyle {\vec {y}}={\vec {x}}/\epsilon } 50:with rapidly oscillating coefficients, such as 1727:"Localization of elliptic multiscale problems" 1668: 351:Frequently, inhomogeneous materials (such as 1643:Papanicolaou, G. C.; Varadhan, S.R. (1981). 1674:Archive for Rational Mechanics and Analysis 1575:Asymptotic Analysis for Periodic Structures 332:. Under this assumption, materials such as 1492:Non-homogeneous media and vibration theory 1752: 1742: 1685: 1359: 614: 1854:; Shamaev, A.S.; Yosifian, G.A. (1991), 1767: 1652:Seria Colloq. Math. Society Janos Bolyai 189:{\displaystyle A\left({\vec {y}}\right)} 1033:The method of asymptotic homogenization 14: 1985: 1957:Braides, A.; Defranceschi, A. (1998), 1622: 904:{\displaystyle u_{\epsilon }\approx u} 1564: 1562: 1560: 1523: 1521: 1519: 1485: 1483: 1481: 1959:Homogenization of Multiple Integrals 1725:Målqvist, A.; Peterseim, D. (2014). 24: 1557: 1516: 1478: 957:{\displaystyle u_{\epsilon }\to u} 789: 764: 726: 534: 391: 370: 99: 60: 25: 2009: 1089:and posing a formal expansion in 1770:An Introduction to Γ-Convergence 156:is a very small parameter and 1902:Homogenization and Porous Media 1900:Hornung, Ulrich (Ed.). (1997), 1754:10.1090/S0025-5718-2014-02868-8 1466:Effective medium approximations 647: 1998:Partial differential equations 1761: 1718: 1662: 1636: 1616: 1598:Ostoja-Starzewski, M. (2007). 1591: 1428: 1414: 1399: 1390: 1356: 1343: 1334: 1328: 1313: 1304: 1278: 1272: 1257: 1248: 1229: 1223: 1208: 1199: 1183: 1177: 1162: 1153: 1144: 1138: 1129: 1065: 1050: 983:{\displaystyle \epsilon \to 0} 974: 948: 834: 824: 818: 809: 761: 755: 746: 602: 575: 562: 556: 547: 526: 520: 511: 497: 484: 266: 233: 217: 176: 85: 48:partial differential equations 29:Homogenization of a polynomial 13: 1: 1798: 1490:Sanchez-Palencia, E. (1980). 996:Representative Volume Element 196:is a 1-periodic coefficient: 994:material), is known as the " 964:in some appropriate norm as 317:{\displaystyle i=1,\dots ,n} 18:Homogenization (mathematics) 7: 1933:; Panasenko, G. P. (1984), 1573:; Papanicolaou, G. (1978). 1444: 10: 2014: 1731:Mathematics of Computation 688:from 1-periodic functions 26: 1914:10.1007/978-1-4612-1920-0 1778:10.1007/978-1-4612-0327-8 1704:10.1007/s00205-010-0302-1 1541:10.1007/978-94-009-2247-1 1102:{\displaystyle \epsilon } 924:{\displaystyle \epsilon } 149:{\displaystyle \epsilon } 1531:; Panasenko, G. (1989). 1471: 46:is a method of studying 27:Not to be confused with 1809:; Zhikov, V.V. (1994), 1435: 1364: 1103: 1083: 1019: 984: 958: 925: 905: 875:for this very reason. 858: 709: 679: 442: 412: 318: 280: 190: 150: 127: 1768:Dal Maso, G. (1993). 1658:. Amsterdam: 835–873. 1500:10.1007/3-540-10000-8 1436: 1365: 1104: 1084: 1020: 1018:{\displaystyle A^{*}} 985: 959: 926: 906: 859: 710: 708:{\displaystyle w_{j}} 680: 443: 441:{\displaystyle A^{*}} 413: 319: 281: 191: 151: 128: 1377: 1116: 1093: 1041: 1002: 968: 935: 915: 882: 722: 692: 455: 425: 367: 290: 200: 160: 140: 57: 1993:Asymptotic analysis 1696:2010ArRMA.198..677B 1451:Asymptotic analysis 475: 353:composite materials 330:continuum mechanics 1737:(290): 2583–2603. 1431: 1360: 1099: 1079: 1015: 980: 954: 921: 901: 854: 705: 675: 458: 438: 408: 314: 276: 186: 146: 123: 1976:978-0-198-50246-3 1923:978-1-4612-7339-4 1550:978-94-010-7506-0 1509:978-3-540-10000-3 1461:Mosco convergence 1417: 1402: 1331: 1316: 1275: 1260: 1226: 1211: 1180: 1165: 1141: 1068: 1053: 911:for small enough 837: 821: 758: 605: 578: 559: 523: 269: 236: 220: 179: 93: 88: 16:(Redirected from 2005: 1979: 1953: 1931:Bakhvalov, N. S. 1926: 1896: 1847: 1792: 1791: 1765: 1759: 1758: 1756: 1746: 1722: 1716: 1715: 1689: 1666: 1660: 1659: 1649: 1640: 1634: 1632: 1620: 1614: 1613: 1595: 1589: 1588: 1569:Bensoussan, A.; 1566: 1555: 1554: 1525: 1514: 1513: 1487: 1440: 1438: 1437: 1432: 1424: 1419: 1418: 1410: 1404: 1403: 1395: 1389: 1388: 1369: 1367: 1366: 1361: 1355: 1354: 1333: 1332: 1324: 1318: 1317: 1309: 1303: 1302: 1293: 1292: 1277: 1276: 1268: 1262: 1261: 1253: 1247: 1246: 1228: 1227: 1219: 1213: 1212: 1204: 1198: 1197: 1182: 1181: 1173: 1167: 1166: 1158: 1143: 1142: 1134: 1128: 1127: 1108: 1106: 1105: 1100: 1088: 1086: 1085: 1080: 1075: 1070: 1069: 1061: 1055: 1054: 1046: 1024: 1022: 1021: 1016: 1014: 1013: 989: 987: 986: 981: 963: 961: 960: 955: 947: 946: 930: 928: 927: 922: 910: 908: 907: 902: 894: 893: 863: 861: 860: 855: 850: 846: 845: 844: 839: 838: 830: 823: 822: 814: 797: 796: 781: 777: 776: 775: 760: 759: 751: 734: 733: 714: 712: 711: 706: 704: 703: 684: 682: 681: 676: 643: 642: 627: 626: 613: 612: 607: 606: 598: 591: 587: 586: 585: 580: 579: 571: 561: 560: 552: 546: 545: 525: 524: 516: 507: 506: 505: 504: 474: 469: 447: 445: 444: 439: 437: 436: 417: 415: 414: 409: 401: 397: 390: 389: 323: 321: 320: 315: 285: 283: 282: 277: 275: 271: 270: 262: 249: 245: 244: 243: 238: 237: 229: 222: 221: 213: 195: 193: 192: 187: 185: 181: 180: 172: 155: 153: 152: 147: 132: 130: 129: 124: 116: 112: 111: 110: 98: 94: 89: 81: 79: 21: 2013: 2012: 2008: 2007: 2006: 2004: 2003: 2002: 1983: 1982: 1977: 1967:Clarendon Press 1924: 1906:Springer-Verlag 1886: 1837: 1827:Springer-Verlag 1801: 1796: 1795: 1788: 1766: 1762: 1723: 1719: 1667: 1663: 1647: 1641: 1637: 1631:(151): 188–202. 1621: 1617: 1610: 1596: 1592: 1585: 1567: 1558: 1551: 1526: 1517: 1510: 1488: 1479: 1474: 1447: 1420: 1409: 1408: 1394: 1393: 1384: 1380: 1378: 1375: 1374: 1350: 1346: 1323: 1322: 1308: 1307: 1298: 1294: 1288: 1284: 1267: 1266: 1252: 1251: 1242: 1238: 1218: 1217: 1203: 1202: 1193: 1189: 1172: 1171: 1157: 1156: 1133: 1132: 1123: 1119: 1117: 1114: 1113: 1094: 1091: 1090: 1071: 1060: 1059: 1045: 1044: 1042: 1039: 1038: 1035: 1009: 1005: 1003: 1000: 999: 969: 966: 965: 942: 938: 936: 933: 932: 916: 913: 912: 889: 885: 883: 880: 879: 840: 829: 828: 827: 813: 812: 805: 801: 792: 788: 771: 767: 750: 749: 742: 738: 729: 725: 723: 720: 719: 699: 695: 693: 690: 689: 638: 634: 622: 618: 608: 597: 596: 595: 581: 570: 569: 568: 551: 550: 541: 537: 533: 529: 515: 514: 500: 496: 483: 479: 470: 462: 456: 453: 452: 432: 428: 426: 423: 422: 385: 381: 380: 376: 368: 365: 364: 291: 288: 287: 261: 260: 256: 239: 228: 227: 226: 212: 211: 210: 206: 201: 198: 197: 171: 170: 166: 161: 158: 157: 141: 138: 137: 106: 102: 80: 78: 74: 70: 66: 58: 55: 54: 32: 23: 22: 15: 12: 11: 5: 2011: 2001: 2000: 1995: 1981: 1980: 1975: 1954: 1927: 1922: 1897: 1884: 1848: 1835: 1805:Kozlov, S.M.; 1800: 1797: 1794: 1793: 1786: 1760: 1717: 1680:(2): 677–721. 1661: 1635: 1615: 1608: 1590: 1583: 1556: 1549: 1515: 1508: 1476: 1475: 1473: 1470: 1469: 1468: 1463: 1458: 1453: 1446: 1443: 1430: 1427: 1423: 1416: 1413: 1407: 1401: 1398: 1392: 1387: 1383: 1371: 1370: 1358: 1353: 1349: 1345: 1342: 1339: 1336: 1330: 1327: 1321: 1315: 1312: 1306: 1301: 1297: 1291: 1287: 1283: 1280: 1274: 1271: 1265: 1259: 1256: 1250: 1245: 1241: 1237: 1234: 1231: 1225: 1222: 1216: 1210: 1207: 1201: 1196: 1192: 1188: 1185: 1179: 1176: 1170: 1164: 1161: 1155: 1152: 1149: 1146: 1140: 1137: 1131: 1126: 1122: 1098: 1078: 1074: 1067: 1064: 1058: 1052: 1049: 1034: 1031: 1012: 1008: 979: 976: 973: 953: 950: 945: 941: 920: 900: 897: 892: 888: 873:micromechanics 869:homogenization 865: 864: 853: 849: 843: 836: 833: 826: 820: 817: 811: 808: 804: 800: 795: 791: 787: 784: 780: 774: 770: 766: 763: 757: 754: 748: 745: 741: 737: 732: 728: 702: 698: 686: 685: 674: 671: 668: 665: 662: 659: 656: 653: 650: 646: 641: 637: 633: 630: 625: 621: 617: 611: 604: 601: 594: 590: 584: 577: 574: 567: 564: 558: 555: 549: 544: 540: 536: 532: 528: 522: 519: 513: 510: 503: 499: 495: 492: 489: 486: 482: 478: 473: 468: 465: 461: 435: 431: 419: 418: 407: 404: 400: 396: 393: 388: 384: 379: 375: 372: 357:microstructure 346:elastic moduli 313: 310: 307: 304: 301: 298: 295: 274: 268: 265: 259: 255: 252: 248: 242: 235: 232: 225: 219: 216: 209: 205: 184: 178: 175: 169: 165: 145: 134: 133: 122: 119: 115: 109: 105: 101: 97: 92: 87: 84: 77: 73: 69: 65: 62: 44:homogenization 9: 6: 4: 3: 2: 2010: 1999: 1996: 1994: 1991: 1990: 1988: 1978: 1972: 1968: 1964: 1960: 1955: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1925: 1919: 1915: 1911: 1907: 1903: 1898: 1895: 1891: 1887: 1885:0-444-88441-6 1881: 1877: 1876:North-Holland 1873: 1869: 1868:New York City 1865: 1861: 1857: 1853: 1852:Oleinik, O.A. 1849: 1846: 1842: 1838: 1836:3-540-54809-2 1832: 1828: 1824: 1823:New York City 1820: 1816: 1812: 1808: 1807:Oleinik, O.A. 1803: 1802: 1789: 1787:9780817636791 1783: 1779: 1775: 1771: 1764: 1755: 1750: 1745: 1740: 1736: 1732: 1728: 1721: 1713: 1709: 1705: 1701: 1697: 1693: 1688: 1683: 1679: 1675: 1671: 1665: 1657: 1653: 1646: 1639: 1630: 1626: 1619: 1611: 1609:9781584884170 1605: 1601: 1594: 1586: 1584:0-444-85172-0 1580: 1576: 1572: 1565: 1563: 1561: 1552: 1546: 1542: 1538: 1534: 1530: 1529:Bakhvalov, N. 1524: 1522: 1520: 1511: 1505: 1501: 1497: 1493: 1486: 1484: 1482: 1477: 1467: 1464: 1462: 1459: 1457: 1456:Γ-convergence 1454: 1452: 1449: 1448: 1442: 1425: 1421: 1411: 1405: 1396: 1385: 1381: 1351: 1347: 1340: 1337: 1325: 1319: 1310: 1299: 1295: 1289: 1285: 1281: 1269: 1263: 1254: 1243: 1239: 1235: 1232: 1220: 1214: 1205: 1194: 1190: 1186: 1174: 1168: 1159: 1150: 1147: 1135: 1124: 1120: 1112: 1111: 1110: 1096: 1076: 1072: 1062: 1056: 1047: 1030: 1026: 1010: 1006: 997: 991: 977: 971: 951: 943: 939: 918: 898: 895: 890: 886: 876: 874: 870: 851: 847: 841: 831: 815: 806: 802: 798: 793: 785: 782: 778: 772: 768: 752: 743: 739: 735: 730: 718: 717: 716: 700: 696: 672: 669: 666: 663: 660: 657: 654: 651: 648: 644: 639: 635: 631: 628: 623: 619: 615: 609: 599: 592: 588: 582: 572: 565: 553: 542: 538: 530: 517: 508: 501: 493: 490: 487: 480: 476: 471: 466: 463: 459: 451: 450: 449: 433: 429: 405: 402: 398: 394: 386: 382: 377: 373: 363: 362: 361: 358: 354: 349: 347: 343: 342:shear modulus 339: 335: 331: 325: 311: 308: 305: 302: 299: 296: 293: 272: 263: 257: 253: 250: 246: 240: 230: 223: 214: 207: 203: 182: 173: 167: 163: 143: 120: 117: 113: 107: 103: 95: 90: 82: 75: 71: 67: 63: 53: 52: 51: 49: 45: 41: 37: 30: 19: 1958: 1934: 1901: 1855: 1810: 1769: 1763: 1734: 1730: 1720: 1677: 1673: 1670:Berlyand, L. 1664: 1655: 1651: 1638: 1628: 1625:Mat. Sbornik 1624: 1618: 1599: 1593: 1574: 1532: 1491: 1372: 1036: 1027: 992: 877: 868: 866: 715:satisfying: 687: 420: 350: 326: 135: 43: 33: 1571:Lions, J.L. 931:, provided 36:mathematics 1987:Categories 1951:0607.73009 1894:0768.73003 1845:0838.35001 1819:Heidelberg 1799:References 355:) possess 1860:Amsterdam 1744:1110.0692 1687:0901.1463 1426:ϵ 1415:→ 1400:→ 1348:ϵ 1329:→ 1314:→ 1286:ϵ 1273:→ 1258:→ 1236:ϵ 1224:→ 1209:→ 1178:→ 1163:→ 1139:→ 1125:ϵ 1097:ϵ 1077:ϵ 1066:→ 1051:→ 1011:∗ 975:→ 972:ϵ 949:→ 944:ϵ 919:ϵ 896:≈ 891:ϵ 835:→ 819:→ 799:⋅ 790:∇ 786:− 765:∇ 756:→ 736:⋅ 727:∇ 667:… 629:… 603:→ 593:⋅ 576:→ 557:→ 535:∇ 521:→ 481:∫ 472:∗ 434:∗ 392:∇ 387:∗ 374:⋅ 371:∇ 306:… 267:→ 234:→ 218:→ 177:→ 144:ϵ 108:ϵ 100:∇ 91:ϵ 86:→ 64:⋅ 61:∇ 1445:See also 1712:1337370 1692:Bibcode 1025:above. 348:, etc. 40:physics 1973:  1963:Oxford 1949:  1939:Moscow 1920:  1892:  1882:  1864:London 1843:  1833:  1815:Berlin 1784:  1710:  1606:  1581:  1547:  1506:  421:where 338:solids 334:fluids 136:where 1943:Nauka 1872:Tokyo 1739:arXiv 1708:S2CID 1682:arXiv 1648:(PDF) 1472:Notes 1971:ISBN 1918:ISBN 1880:ISBN 1831:ISBN 1782:ISBN 1604:ISBN 1579:ISBN 1545:ISBN 1504:ISBN 38:and 1947:Zbl 1910:doi 1890:Zbl 1841:Zbl 1774:doi 1749:doi 1700:doi 1678:198 1629:109 1537:doi 1496:doi 286:, 34:In 1989:: 1969:, 1965:: 1945:, 1941:: 1937:, 1916:, 1908:, 1888:, 1878:, 1874:: 1870:- 1866:- 1862:- 1839:, 1829:, 1825:: 1813:, 1780:. 1747:. 1735:83 1733:. 1729:. 1706:. 1698:. 1690:. 1676:. 1656:27 1654:. 1650:. 1627:. 1559:^ 1543:. 1518:^ 1502:. 1480:^ 1441:. 1109:: 990:. 344:, 336:, 324:. 42:, 1912:: 1821:- 1817:- 1790:. 1776:: 1757:. 1751:: 1741:: 1714:. 1702:: 1694:: 1684:: 1612:. 1587:. 1553:. 1539:: 1512:. 1498:: 1429:) 1422:/ 1412:x 1406:, 1397:x 1391:( 1386:1 1382:u 1357:) 1352:3 1344:( 1341:O 1338:+ 1335:) 1326:y 1320:, 1311:x 1305:( 1300:2 1296:u 1290:2 1282:+ 1279:) 1270:y 1264:, 1255:x 1249:( 1244:1 1240:u 1233:+ 1230:) 1221:y 1215:, 1206:x 1200:( 1195:0 1191:u 1187:= 1184:) 1175:y 1169:, 1160:x 1154:( 1151:u 1148:= 1145:) 1136:x 1130:( 1121:u 1073:/ 1063:x 1057:= 1048:y 1007:A 978:0 952:u 940:u 899:u 887:u 852:. 848:) 842:j 832:e 825:) 816:y 810:( 807:A 803:( 794:y 783:= 779:) 773:j 769:w 762:) 753:y 747:( 744:A 740:( 731:y 701:j 697:w 673:n 670:, 664:, 661:1 658:= 655:j 652:, 649:i 645:, 640:n 636:y 632:d 624:1 620:y 616:d 610:i 600:e 589:) 583:j 573:e 566:+ 563:) 554:y 548:( 543:j 539:w 531:( 527:) 518:y 512:( 509:A 502:n 498:) 494:1 491:, 488:0 485:( 477:= 467:j 464:i 460:A 430:A 406:f 403:= 399:) 395:u 383:A 378:( 312:n 309:, 303:, 300:1 297:= 294:i 273:) 264:y 258:( 254:A 251:= 247:) 241:i 231:e 224:+ 215:y 208:( 204:A 183:) 174:y 168:( 164:A 121:f 118:= 114:) 104:u 96:) 83:x 76:( 72:A 68:( 31:. 20:)

Index

Homogenization (mathematics)
Homogenization of a polynomial
mathematics
physics
partial differential equations
continuum mechanics
fluids
solids
shear modulus
elastic moduli
composite materials
microstructure
micromechanics
Representative Volume Element
Asymptotic analysis
Γ-convergence
Mosco convergence
Effective medium approximations



doi
10.1007/3-540-10000-8
ISBN
978-3-540-10000-3



Bakhvalov, N.
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.