Knowledge

Higher residuosity problem

Source 📝

396: 176: 285: 971: 897: 837: 785: 710: 654: 507: 459: 270: 583: 1139: 222: 104: 1236: 1229: 391:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{\times }\simeq (\mathbb {Z} /p\mathbb {Z} )^{\times }\times (\mathbb {Z} /q\mathbb {Z} )^{\times }} 1444: 1320: 1284: 1222: 1315: 1189:
Zhang, Yuliang; Tsutomu Matsumoto; Hideki Imai (1988). "Cryptographic Applications of th-Residuosity Problem with an Odd Integer".
925: 854: 794: 742: 667: 611: 464: 416: 227: 1439: 540: 1245: 1075: 1169: 192: 1392: 1362: 1372: 1279: 1149: 171:{\displaystyle \mathbb {Z} /n\mathbb {Z} \simeq \mathbb {Z} /p\mathbb {Z} \times \mathbb {Z} /q\mathbb {Z} } 1408: 1346: 1310: 1387: 95: 1305: 1203: 1413: 21: 1198: 1274: 1264: 1259: 40: 1382: 1165: 8: 590: 186: 1376: 1366: 182: 71: 64: 1214: 1161: 848: 402: 1341: 276: 1418: 1336: 1067: 1433: 510: 91: 17: 1269: 586: 24:
are founded on problems that are believed to be intractable. The
1188: 526: 60: 851:, it is well-known that exactly one quarter of the elements in 43:, so the assumption that this problem is hard to solve is 47:
than the assumption that integer factorization is hard.
966:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{\times }.} 1244: 892:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{\times }} 832:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{\times }} 780:{\displaystyle (\mathbb {Z} /q\mathbb {Z} )^{\times }} 705:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{\times }} 649:{\displaystyle (\mathbb {Z} /q\mathbb {Z} )^{\times }} 502:{\displaystyle (\mathbb {Z} /q\mathbb {Z} )^{\times }} 454:{\displaystyle (\mathbb {Z} /p\mathbb {Z} )^{\times }} 265:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{\times }} 1078: 928: 857: 797: 745: 670: 614: 543: 467: 419: 288: 230: 195: 107: 1133: 965: 891: 831: 779: 704: 648: 577: 501: 453: 390: 264: 216: 170: 1431: 578:{\displaystyle (\mathbb {Z} /p\mathbb {Z} )^{*}} 189:under multiplication, and the group of units in 1134:{\displaystyle x^{(p-1)/d}\equiv 1{\pmod {p}}} 903:is the product of two primes, as it is here). 1230: 1172:rests on the intractability of this problem. 906:The important point is that for any divisor 847:= 2, and we are considering the subgroup of 1237: 1223: 1043:are known it is easy to determine whether 217:{\displaystyle \mathbb {Z} /n\mathbb {Z} } 50: 1202: 946: 933: 875: 862: 815: 802: 763: 750: 688: 675: 632: 619: 561: 548: 485: 472: 437: 424: 374: 361: 340: 327: 306: 293: 248: 235: 210: 197: 164: 151: 143: 130: 122: 109: 1182: 1016:, it is infeasible to determine whether 35:) is one such problem. This problem is 1432: 1218: 922: th powers forms a subgroup of 413:were assumed to be prime, the groups 975: 1123: 13: 1445:Computational hardness assumptions 1246:Computational hardness assumptions 843:. This is most commonly seen when 14: 1456: 1285:Decisional composite residuosity 1155: 1116: 660: th power, so the set of 1127: 1117: 1096: 1084: 1024: th power (equivalently 951: 929: 880: 858: 820: 798: 768: 746: 693: 671: 637: 615: 566: 544: 490: 468: 442: 420: 379: 357: 345: 323: 311: 289: 253: 231: 1: 1175: 1150:quadratic residuosity problem 899:are quadratic residues (when 1321:Computational Diffie–Hellman 712:is also a subgroup of index 7: 1440:Computational number theory 1409:Exponential time hypothesis 1170:Naccache–Stern cryptosystem 10: 1461: 1028: th residue) modulo 26:higher residuosity problem 1419:Planted clique conjecture 1401: 1388:Ring learning with errors 1355: 1329: 1316:Decisional Diffie–Hellman 1298: 1252: 1191:Transactions of the IEICE 1063: th residue modulo 1051: th residue modulo 224:is traditionally denoted 96:Chinese remainder theorem 1148:= 2, this is called the 996:are unknown, an integer 22:public key cryptosystems 1414:Unique games conjecture 1363:Shortest vector problem 1337:External Diffie–Hellman 51:Mathematical background 1393:Short integer solution 1373:Closest vector problem 1135: 967: 893: 833: 781: 716:. In general, if gcd( 706: 650: 579: 503: 455: 392: 266: 218: 172: 33:th-residuosity problem 1280:Quadratic residuosity 1260:Integer factorization 1136: 968: 894: 834: 782: 707: 651: 580: 521:−1 respectively. If 504: 456: 403:isomorphism of groups 393: 267: 219: 173: 41:integer factorization 1383:Learning with errors 1166:Benaloh cryptosystem 1076: 926: 855: 795: 791: th powers in 743: 739: th powers in 668: 664: th powers in 612: 541: 537: th powers in 533:−1, then the set of 465: 417: 286: 228: 193: 105: 63:, then the integers 1008:−1, and an integer 185:of any ring form a 1306:Discrete logarithm 1290:Higher residuosity 1131: 963: 889: 849:quadratic residues 829: 777: 728:, then there are ( 702: 646: 575: 499: 451: 388: 262: 214: 168: 1427: 1426: 1402:Non-cryptographic 1162:semantic security 980:Given an integer 976:Problem statement 28:(also called the 1452: 1342:Sub-group hiding 1253:Number theoretic 1239: 1232: 1225: 1216: 1215: 1209: 1208: 1206: 1186: 1140: 1138: 1137: 1132: 1130: 1108: 1107: 1103: 972: 970: 969: 964: 959: 958: 949: 941: 936: 898: 896: 895: 890: 888: 887: 878: 870: 865: 838: 836: 835: 830: 828: 827: 818: 810: 805: 787:, so the set of 786: 784: 783: 778: 776: 775: 766: 758: 753: 711: 709: 708: 703: 701: 700: 691: 683: 678: 655: 653: 652: 647: 645: 644: 635: 627: 622: 584: 582: 581: 576: 574: 573: 564: 556: 551: 508: 506: 505: 500: 498: 497: 488: 480: 475: 460: 458: 457: 452: 450: 449: 440: 432: 427: 397: 395: 394: 389: 387: 386: 377: 369: 364: 353: 352: 343: 335: 330: 319: 318: 309: 301: 296: 277:ring isomorphism 271: 269: 268: 263: 261: 260: 251: 243: 238: 223: 221: 220: 215: 213: 205: 200: 177: 175: 174: 169: 167: 159: 154: 146: 138: 133: 125: 117: 112: 1460: 1459: 1455: 1454: 1453: 1451: 1450: 1449: 1430: 1429: 1428: 1423: 1397: 1351: 1347:Decision linear 1325: 1299:Group theoretic 1294: 1248: 1243: 1213: 1212: 1204:10.1.1.137.8511 1187: 1183: 1178: 1158: 1115: 1099: 1083: 1079: 1077: 1074: 1073: 1035:Notice that if 978: 954: 950: 945: 937: 932: 927: 924: 923: 918:−1) the set of 883: 879: 874: 866: 861: 856: 853: 852: 823: 819: 814: 806: 801: 796: 793: 792: 771: 767: 762: 754: 749: 744: 741: 740: 696: 692: 687: 679: 674: 669: 666: 665: 640: 636: 631: 623: 618: 613: 610: 609: 569: 565: 560: 552: 547: 542: 539: 538: 493: 489: 484: 476: 471: 466: 463: 462: 445: 441: 436: 428: 423: 418: 415: 414: 382: 378: 373: 365: 360: 348: 344: 339: 331: 326: 314: 310: 305: 297: 292: 287: 284: 283: 279:above, we have 256: 252: 247: 239: 234: 229: 226: 225: 209: 201: 196: 194: 191: 190: 163: 155: 150: 142: 134: 129: 121: 113: 108: 106: 103: 102: 53: 12: 11: 5: 1458: 1448: 1447: 1442: 1425: 1424: 1422: 1421: 1416: 1411: 1405: 1403: 1399: 1398: 1396: 1395: 1390: 1385: 1380: 1370: 1359: 1357: 1353: 1352: 1350: 1349: 1344: 1339: 1333: 1331: 1327: 1326: 1324: 1323: 1318: 1313: 1311:Diffie-Hellman 1308: 1302: 1300: 1296: 1295: 1293: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1256: 1254: 1250: 1249: 1242: 1241: 1234: 1227: 1219: 1211: 1210: 1197:(8): 759–767. 1180: 1179: 1177: 1174: 1157: 1154: 1142: 1141: 1129: 1126: 1122: 1119: 1114: 1111: 1106: 1102: 1098: 1095: 1092: 1089: 1086: 1082: 1068:if and only if 977: 974: 962: 957: 953: 948: 944: 940: 935: 931: 886: 882: 877: 873: 869: 864: 860: 826: 822: 817: 813: 809: 804: 800: 774: 770: 765: 761: 757: 752: 748: 699: 695: 690: 686: 682: 677: 673: 643: 639: 634: 630: 626: 621: 617: 604:−1) = 1, then 572: 568: 563: 559: 555: 550: 546: 496: 492: 487: 483: 479: 474: 470: 448: 444: 439: 435: 431: 426: 422: 399: 398: 385: 381: 376: 372: 368: 363: 359: 356: 351: 347: 342: 338: 334: 329: 325: 322: 317: 313: 308: 304: 300: 295: 291: 259: 255: 250: 246: 242: 237: 233: 212: 208: 204: 199: 179: 178: 166: 162: 158: 153: 149: 145: 141: 137: 132: 128: 124: 120: 116: 111: 98:tells us that 52: 49: 39:to solve than 9: 6: 4: 3: 2: 1457: 1446: 1443: 1441: 1438: 1437: 1435: 1420: 1417: 1415: 1412: 1410: 1407: 1406: 1404: 1400: 1394: 1391: 1389: 1386: 1384: 1381: 1378: 1374: 1371: 1368: 1364: 1361: 1360: 1358: 1354: 1348: 1345: 1343: 1340: 1338: 1335: 1334: 1332: 1328: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1303: 1301: 1297: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1257: 1255: 1251: 1247: 1240: 1235: 1233: 1228: 1226: 1221: 1220: 1217: 1205: 1200: 1196: 1192: 1185: 1181: 1173: 1171: 1167: 1163: 1153: 1151: 1147: 1124: 1120: 1112: 1109: 1104: 1100: 1093: 1090: 1087: 1080: 1072: 1071: 1070: 1069: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1033: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 983: 973: 960: 955: 942: 938: 921: 917: 913: 909: 904: 902: 884: 871: 867: 850: 846: 842: 824: 811: 807: 790: 772: 759: 755: 738: 735: 731: 727: 723: 719: 715: 697: 684: 680: 663: 659: 641: 628: 624: 607: 603: 599: 595: 592: 588: 570: 557: 553: 536: 532: 528: 524: 520: 516: 512: 494: 481: 477: 446: 433: 429: 412: 408: 404: 383: 370: 366: 354: 349: 336: 332: 320: 315: 302: 298: 282: 281: 280: 278: 273: 257: 244: 240: 206: 202: 188: 184: 160: 156: 147: 139: 135: 126: 118: 114: 101: 100: 99: 97: 93: 89: 85: 81: 77: 73: 69: 66: 62: 58: 48: 46: 42: 38: 34: 32: 27: 23: 19: 1289: 1194: 1190: 1184: 1159: 1156:Applications 1145: 1143: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1034: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 985: 981: 979: 919: 915: 911: 907: 905: 900: 844: 840: 788: 736: 733: 729: 725: 721: 717: 713: 661: 657: 605: 601: 597: 593: 534: 530: 522: 518: 514: 410: 406: 400: 274: 180: 87: 83: 79: 75: 67: 56: 54: 44: 36: 30: 29: 25: 18:cryptography 15: 1270:RSA problem 608:element in 94:, then the 1434:Categories 1275:Strong RSA 1265:Phi-hiding 1176:References 1059:will be a 1000:such that 839:has index 596:. If gcd( 513:of orders 1199:CiteSeerX 1110:≡ 1091:− 956:× 885:× 825:× 773:× 698:× 642:× 571:∗ 495:× 447:× 405:. Since 384:× 355:× 350:× 321:≃ 316:× 275:From the 258:× 148:× 127:≃ 1356:Lattices 1330:Pairings 1168:and the 1055:because 1004:divides 587:subgroup 45:stronger 1164:of the 914:−1 (or 585:form a 527:divisor 517:−1 and 70:form a 61:integer 20:, most 1201:  988:where 724:−1) = 511:cyclic 401:as an 92:primes 82:where 74:. If 65:modulo 59:is an 37:easier 1144:When 1047:is a 1020:is a 1012:< 656:is a 606:every 591:index 525:is a 187:group 183:units 1160:The 1039:and 992:and 732:−1)/ 509:are 461:and 409:and 181:The 90:are 86:and 72:ring 1377:gap 1367:gap 1121:mod 910:of 589:of 529:of 55:If 16:In 1436:: 1195:71 1193:. 1152:. 1032:. 986:pq 984:= 841:dg 272:. 80:pq 78:= 1379:) 1375:( 1369:) 1365:( 1238:e 1231:t 1224:v 1207:. 1146:d 1128:) 1125:p 1118:( 1113:1 1105:d 1101:/ 1097:) 1094:1 1088:p 1085:( 1081:x 1065:p 1061:d 1057:x 1053:n 1049:d 1045:x 1041:q 1037:p 1030:n 1026:d 1022:d 1018:x 1014:n 1010:x 1006:p 1002:d 998:d 994:q 990:p 982:n 961:. 952:) 947:Z 943:n 939:/ 934:Z 930:( 920:d 916:q 912:p 908:d 901:n 881:) 876:Z 872:n 868:/ 863:Z 859:( 845:d 821:) 816:Z 812:n 808:/ 803:Z 799:( 789:d 769:) 764:Z 760:q 756:/ 751:Z 747:( 737:d 734:g 730:q 726:g 722:q 720:, 718:d 714:d 694:) 689:Z 685:n 681:/ 676:Z 672:( 662:d 658:d 638:) 633:Z 629:q 625:/ 620:Z 616:( 602:q 600:, 598:d 594:d 567:) 562:Z 558:p 554:/ 549:Z 545:( 535:d 531:p 523:d 519:q 515:p 491:) 486:Z 482:q 478:/ 473:Z 469:( 443:) 438:Z 434:p 430:/ 425:Z 421:( 411:q 407:p 380:) 375:Z 371:q 367:/ 362:Z 358:( 346:) 341:Z 337:p 333:/ 328:Z 324:( 312:) 307:Z 303:n 299:/ 294:Z 290:( 254:) 249:Z 245:n 241:/ 236:Z 232:( 211:Z 207:n 203:/ 198:Z 165:Z 161:q 157:/ 152:Z 144:Z 140:p 136:/ 131:Z 123:Z 119:n 115:/ 110:Z 88:q 84:p 76:n 68:n 57:n 31:n

Index

cryptography
public key cryptosystems
integer factorization
integer
modulo
ring
primes
Chinese remainder theorem
units
group
ring isomorphism
isomorphism of groups
cyclic
divisor
subgroup
index
quadratic residues
if and only if
quadratic residuosity problem
semantic security
Benaloh cryptosystem
Naccache–Stern cryptosystem
CiteSeerX
10.1.1.137.8511
v
t
e
Computational hardness assumptions
Integer factorization
Phi-hiding

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.