Knowledge

Gröbner basis

Source 📝

5394: 5038: 6275: 5389:{\displaystyle {\begin{aligned}S(f,g)&=\left(\mathrm {lcm} -{\frac {1}{\operatorname {lc} (g)}}\,{\frac {\mathrm {lcm} }{\operatorname {lm} (g)}}\,g\right)-\left(\mathrm {lcm} -{\frac {1}{\operatorname {lc} (f)}}\,{\frac {\mathrm {lcm} }{\operatorname {lm} (f)}}\,f\right)\\&={\frac {1}{\operatorname {lc} (f)}}\,{\frac {\mathrm {lcm} }{\operatorname {lm} (f)}}\,f-{\frac {1}{\operatorname {lc} (g)}}\,{\frac {\mathrm {lcm} }{\operatorname {lm} (g)}}\,g\\\end{aligned}}.} 11326:). Tuning F5 for a general use is difficult, since its performances depend on an order on the input polynomials and a balance between the incrementation of the working polynomial degree and of the number of the input polynomials that are considered. To date (2022), there is no distributed implementation that is significantly more efficient than F4, but, over modular integers F5 has been used successfully for several 5578: 9468:, many properties become false if the triangle degenerates to a line segment, i.e. the length of one side is equal to the sum of the lengths of the other sides. In such situations, one cannot deduce relevant information from the polynomial system unless the degenerate solutions are ignored. More precisely, the system of equations defines an 4724: 5770: 12377:
Gröbner basis has been applied in the theory of error-correcting codes for algebraic decoding. By using Gröbner basis computation on various forms of error-correcting equations, decoding methods were developed for correcting errors of cyclic codes, affine variety codes, algebraic-geometric codes and
1141:
Gröbner basis theory was initially introduced for the lexicographical ordering. It was soon realised that the Gröbner basis for degrevlex is almost always much easier to compute, and that it is almost always easier to compute a lex Gröbner basis by first computing the degrevlex basis and then using a
7477:
of polynomials of the basis that depend only on the first variable. After substituting this root in the basis, the second coordinate of this solution is a root of the greatest common divisor of the resulting polynomials that depend only on the second variable, and so on. This solving process is only
2886:
may be reduced. However, the reduction of a term amounts to removing this term at the cost of adding new lower terms; if it is not the first reducible term that is reduced, it may occur that a further reduction adds a similar term, which must be reduced again. It is therefore always better to reduce
6153:
by removing the polynomials whose leading monomials are multiple of the leading monomial of another element of the Gröbner basis. However, if two polynomials of the basis have the same leading monomial, only one must be removed. So, every Gröbner basis contains a minimal Gröbner basis as a subset.
7258:
It is a common misconception that the lexicographical order is needed for some of these results. On the contrary, the lexicographical order is, almost always, the most difficult to compute, and using it makes impractical many computations that are relatively easy with graded reverse lexicographic
6184:
by first removing the polynomials that are lead-reducible by other elements of the basis (for getting a minimal basis); then replacing each element of the basis by the result of the complete reduction by the other elements of the basis; and, finally, by dividing each element of the basis by its
5920:
There are many characterizing properties, which can each be taken as an equivalent definition of Gröbner bases. For conciseness, in the following list, the notation "one-word/another word" means that one can take either "one-word" or "another word" for having two different characterizations of
7411:
by equating the polynomials to zero. The set of the solutions of such a system depends only on the generated ideal, and, therefore does not change when the given generating set is replaced by the Gröbner basis, for any ordering, of the generated ideal. Such a solution, with coordinates in an
7193: 8995: 3780: 1206:
Most polynomial operations related to Gröbner bases involve the leading terms. So, the representation of polynomials as sorted lists make these operations particularly efficient (reading the first element of a list takes a constant time, independently of the length of the list).
1159:
Once a monomial ordering is fixed, the terms of a polynomial (product of a monomial with its nonzero coefficient) are naturally ordered by decreasing monomials (for this order). This makes the representation of a polynomial as a sorted list of pairs coefficient–exponent vector a
3535: 10661: 9495:
consists in adjoining to it the formal inverses of some elements. This section concerns only the case of a single element, or equivalently a finite number of elements (adjoining the inverses of several elements is equivalent to adjoining the inverse of their product). The
2607:
In the example that follows, there are exactly two complete lead-reductions that produce two very different results. The fact that the results are irreducible (not only lead-irreducible) is specific to the example, although this is rather common with such small examples.
5417: 7478:
theoretical, because it implies GCD computation and root-finding of polynomials with approximate coefficients, which are not practicable because of numeric instability. Therefore, other methods have been developed to solve polynomial systems through Gröbner bases (see
2263: 6124:
The above method is an algorithm for computing Gröbner bases; however, it is very inefficient. Many improvements of the original Buchberger's algorithm, and several other algorithms have been proposed and implemented, which dramatically improve the efficiency. See
4426: 10486:
of the field of the coefficients, if and only if 1 belongs to the generated ideal. This is easily tested with a Gröbner basis computation, because 1 belongs to an ideal if and only if 1 belongs to the Gröbner basis of the ideal, for any monomial ordering.
4987: 2030:
is a special case of reduction that is easier to compute. It is fundamental for Gröbner basis computation, since general reduction is needed only at the end of a Gröbner basis computation, for getting a reduced Gröbner basis from a non-reduced one.
5627: 11368:
have implementations of one or several algorithms for Gröbner bases, often also embedded in other functions, such as for solving systems of polynomial equations or for simplifying trigonometric functions; this is the case, for example, of
6224:, it is useful to work only with polynomials with integer coefficients. In this case, the condition on the leading coefficients in the definition of a reduced basis may be replaced by the condition that all elements of the basis are 3175: 2878: 10973: 8633: 6018:
Counting the above definition, this provides 12 characterizations of Gröbner bases. The fact that so many characterizations are possible makes Gröbner bases very useful. For example, condition 3 provides an algorithm for testing
776:
formed by an exponent vector and the corresponding coefficient. This representation of polynomials is especially efficient for Gröbner basis computation in computers, although it is less convenient for other computations such as
11405:. When F4 is available, it is generally much more efficient than Buchberger's algorithm. The implementation techniques and algorithmic variants are not always documented, although they may have a dramatic effect on efficiency. 9869: 12071: 7462:(without any other variable appearing in the leading term). If this is the case, then the number of zeros, counted with multiplicity, is equal to the number of monomials that are not multiples of any leading monomial of 6918: 7243:. So, it can be applied mechanically to any similar example, although, in general, there are many polynomials and S-polynomials to consider, and the computation is generally too large for being done without a computer. 9394: 7763: 6157:
All minimal Gröbner bases of a given ideal (for a fixed monomial ordering) have the same number of elements, and the same leading monomials, and the non-minimal Gröbner bases have more elements than the minimal ones.
1712: 2558: 11306:
can be used. This solves partially issue 4., as reductions to zero in Buchberger's algorithm correspond to relations between rows of the matrix to be reduced, and the zero rows of the reduced matrix correspond to a
8830: 3580: 1881: 9282: 11454:
In the worst case, the main parameter of the complexity is the maximal degree of the elements of the resulting reduced Gröbner basis. More precisely, if the Gröbner basis contains an element of a large degree
8412: 1994: 127:
had introduced a similar notion in 1913, published in various Russian mathematical journals. These papers were largely ignored by the mathematical community until their rediscovery in 1987 by Bodo Renschuch
10140:. Which method is most efficient depends on the problem. However, if the saturation does not remove any component, that is if the ideal is equal to its saturated ideal, computing first the Gröbner basis of 7271:
for any given ideal and any monomial ordering. Thus two ideals are equal if and only if they have the same (reduced) Gröbner basis (usually a Gröbner basis software always produces reduced Gröbner bases).
8414:
Thus a Gröbner basis for this ordering carries much more information than usually necessary. This may explain why Gröbner bases for the lexicographical ordering are usually the most difficult to compute.
3362: 10978:
One could guess that it suffices to eliminate the parameters to obtain the implicit equations of the variety, as it has been done in the case of curves. Unfortunately this is not always the case. If the
10540: 5573:{\displaystyle S(f,g)={\frac {1}{\operatorname {lc} (f)}}\,{\frac {\operatorname {lm} (g)}{\mathrm {gcd} }}\,f-{\frac {1}{\operatorname {lc} (g)}}\,{\frac {\operatorname {lm} (f)}{\mathrm {gcd} }}\,g;} 760: 11215:
together with the Gröbner basis theory. It is straightforward to implement, but it appeared soon that raw implementations can solve only trivial problems. The main issues are the following ones:
1052: 11337:
Issue 5. has been solved by the discovery of basis conversion algorithms that start from the Gröbner basis for one monomial ordering for computing a Gröbner basis for another monomial ordering.
10545: 8835: 6923: 5043: 2781: 2158: 1384: 1314: 10441: 4719:{\displaystyle g_{3}=\left(x^{2}y-{\frac {x^{2}y}{lt(g_{2})}}g_{2}\right)-\left(x^{2}y-{\frac {x^{2}y}{lt(g_{1})}}g_{1}\right)={\frac {x^{2}y}{lt(g_{1})}}g_{1}-{\frac {x^{2}y}{lt(g_{2})}}g_{2}} 533: 11554: 11261:. As in many computational problems, heuristics cannot detect most hidden simplifications, and if heuristic choices are avoided, one may get a dramatic improvement of the algorithm efficiency. 4273: 396: 7623: 2456: 11318:
F5 algorithm improves F4 by introducing a criterion that allows reducing the size of the matrices to be reduced. This criterion is almost optimal, since the matrices to be reduced have
11693: 8313: 976: 844: 7473:
When the number of zeros is finite, the Gröbner basis for a lexicographical monomial ordering provides, theoretically, a solution: the first coordinate of a solution is a root of the
5030: 2716: 9948: 9450: 6541: 6251:(the whole polynomial ring). Conversely, every Gröbner basis of the unit ideal contains a nonzero constant. The reduced Gröbner basis of the unit is formed by the single polynomial 1215:
The other polynomial operations involved by Gröbner basis computations are also compatible with the monomial ordering; that is, they can be performed without reordering the result:
921: 6401: 10767: 10240: 6694: 12347: 12272: 12171: 12117: 10859: 10813: 10710: 10290: 10191: 4879: 3927: 4784: 2771: 1102:
Although Gröbner basis theory does not depend on a particular choice of an admissible monomial ordering, three monomial orderings are specially important for the applications:
11838: 6188:
All reduced Gröbner bases of an ideal (for a fixed monomial ordering) are equal. It follows that two ideals are equal if and only if they have the same reduced Gröbner basis.
5765:{\displaystyle S(f,g)=\operatorname {lc} (g)\,{\frac {\operatorname {lm} (g)}{\mathrm {gcd} }}\,f-\operatorname {lc} (f)\,{\frac {\operatorname {lm} (f)}{\mathrm {gcd} }}\,g;} 2776: 11881: 10078: 9574: 1567: 11493: 10123: 6363: 10011: 8803: 3863: 11792: 6596: 6218: 3991: 3355: 4173: 4075: 4031: 1739: 1606: 12309: 11941: 11616: 9464:
When modeling a problem by polynomial equations, it is often assumed that some quantities are non-zero, so as to avoid degenerate cases. For example, when dealing with
6484: 6443: 9150: 9114: 9070: 9034: 8702: 8265: 6851: 6817: 1082: 11736: 8189: 8142: 8103: 8068: 6883: 3211: 2642: 1146:
is needed, degrevlex is not convenient; both lex and lexdeg may be used but, again, many computations are relatively easy with lexdeg and almost impossible with lex.
10353: 10323: 9776: 9742: 9654: 9624: 8754: 8728: 6723: 4845: 4310: 3325: 3295: 2979: 2918: 12635:. 2021 International Symposium on Symbolic and Algebraic Computation. 46th International Symposium on Symbolic and Algebraic Computation. Saint Petersburg, Russia. 11177: 11128: 11070: 11039: 11004: 10468: 9685: 7650: 4815: 4418: 4391: 4364: 4337: 4133: 4106: 3810: 3565: 3265: 3238: 3006: 2949: 2494: 560: 458: 423: 7997: 7860: 7828: 7799: 6191:
Sometimes, reduced Gröbner bases are defined without the condition on the leading coefficients. In this case, the uniqueness of reduced Gröbner bases is true only
6012: 10242:
there are three ways to proceed which give the same result but may have very different computation times (it depends on the problem which is the most efficient).
6053: 5846: 1503: 327: 244: 12683: 11341:
is such a basis conversion algorithm that works only in the zero-dimensional case (where the polynomials have a finite number of complex common zeros) and has a
1442: 680: 618: 12226: 11197: 11148: 11101: 7534:
of the ideal and of its associated algebraic set is the number of points of this finite intersection, counted with multiplicity. In particular, the degree of a
6316: 6296: 6258:
In the case of polynomials in a single variable, there is a unique admissible monomial ordering, the ordering by the degree. The minimal Gröbner bases are the
3025: 10867: 1223:
of the two corresponding lists of terms, with a special treatment in the case of a conflict (that is, when the same monomial appears in the two polynomials).
8509: 12678: 12353:
is a polynomial ring, this reduces the theory and the algorithms of Gröbner bases of modules to the theory and the algorithms of Gröbner bases of ideals.
147:
The theory of Gröbner bases has been extended by many authors in various directions. It has been generalized to other structures such as polynomials over
9781: 2354:
consists of iterating one-step reductions (respect. one-step lead reductions) until getting a polynomial that is irreducible (resp. lead-irreducible) by
1226:
The multiplication of a polynomial by a scalar consists of multiplying each coefficient by this scalar, without any other change in the representation.
12356:
The concept and algorithms of Gröbner bases have also been generalized to ideals over various rings, commutative or not, like polynomial rings over a
11271:
that is most often needed for the applications (pure lexicographic) is not the ordering that leads to the easiest computation, generally the ordering
7188:{\displaystyle {\begin{aligned}yf-xk&=y(x^{2}-y)-x(xy-x)=f-h\\yk-xh&=y(xy-x)-x(y^{2}-y)=0\\y^{2}f-x^{2}h&=y(yf-xk)+x(yk-xh)\end{aligned}}} 13131: 11954: 11219:
Even when the resulting Gröbner basis is small, the intermediate polynomials can be huge. It results that most of the computing time may be spent in
7869:
that provide functions to compute Gröbner bases provide also functions for computing the Hilbert series, and thus also the dimension and the degree.
2887:
first the largest (for the monomial order) reducible term; that is, in particular, to lead-reduce first until getting a lead-irreducible polynomial.
10490:
The second version asserts that the set of common zeros (in an algebraic closure of the field of the coefficients) of an ideal is contained in the
12898:"Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal" 12467:"Contributions to constructive polynomial ideal theory XXIII: forgotten works of Leningrad mathematician N. M. Gjunter on polynomial ideal theory" 12664: 8990:{\displaystyle {\begin{aligned}x_{1}&={\frac {f_{1}(t)}{g_{1}(t)}}\\&\;\;\vdots \\x_{n}&={\frac {f_{n}(t)}{g_{n}(t)}},\end{aligned}}} 9298: 7662: 3775:{\displaystyle f\;\xrightarrow {-2xg_{1}} \;f_{1}\;\xrightarrow {yg_{1}} \;-2xy^{2}+2x+2y^{3}+2y\;\xrightarrow {2yg_{2}} \;f_{3}=2x+2y^{3}-2y.} 2499: 1611: 89: 13179: 7439:), or, equivalently, if its Gröbner basis (for any monomial ordering) contains 1, or, also, if the corresponding reduced Gröbner basis is . 2008:
of a polynomial by other polynomials with respect to a monomial ordering is central to Gröbner basis theory. It is a generalization of both
13054: 1778: 9180: 13213:
Computer Aided Systems Theory — EUROCAST 2001: A Selection of Papers from the 8th International Workshop on Computer Aided Systems Theory
8318: 1923: 7541:
Both degree and dimension depend only on the set of the leading monomials of the Gröbner basis of the ideal for any monomial ordering.
7259:
order (grevlex), or, when elimination is needed, the elimination order (lexdeg) which restricts to grevlex on each block of variables.
2595:
is the quotient. Moreover, the division algorithm is exactly the process of lead-reduction. For this reason, some authors use the term
120: 3530:{\displaystyle f\;\xrightarrow {-2xg_{1}} \;f_{1}\;\xrightarrow {xg_{2}} \;-2xy^{2}+y^{3}+3y\;\xrightarrow {2yg_{2}} \;f_{2}=y^{3}-y.} 10656:{\displaystyle {\begin{aligned}x_{1}&={\frac {p_{1}}{p_{0}}}\\&\;\;\vdots \\x_{n}&={\frac {p_{n}}{p_{0}}},\end{aligned}}} 10144:
is usually faster. On the other hand, if the saturation removes some components, the direct computation may be dramatically faster.
12378:
even general linear block codes. Applying Gröbner basis in algebraic decoding is still a research area of channel coding theory.
7833:
Although the dimension and the degree do not depend on the choice of the monomial ordering, the Hilbert series and the polynomial
12717: 11883:
elements. As every algorithm for computing a Gröbner basis must write its result, this provides a lower bound of the complexity.
9687:
is not efficient because of the need to manage the denominators. Therefore, localization is usually replaced by the operation of
12779:
Bulygin, S.; Pellikaan, R. (2009). "Decoding linear error-correcting codes up to half the minimum distance with Gröbner bases".
7307:. This allows to test the membership of an element in an ideal. Another method consists in verifying that the Gröbner basis of 6145:
if all leading monomials of its elements are irreducible by the other elements of the basis. Given a Gröbner basis of an ideal
11264:
In most cases most S-polynomials that are computed are reduced to zero; that is, most computing time is spent to compute zero.
7656:
that are not multiple of any leading monomial in the Gröbner basis. The Hilbert series may be summed into a rational fraction
685: 13300: 13221: 12978: 12852: 12792: 12449: 2258:{\displaystyle \operatorname {red} _{1}(f,g)=f-{\frac {c}{\operatorname {lc} (g)}}\,{\frac {m}{\operatorname {lm} (g)}}\,g.} 13082: 12929: 12885: 11284: 1013: 2034:
Let an admissible monomial ordering be fixed, to which refers every monomial comparison that will occur in this section.
1319: 1249: 116: 10365: 471: 13480: 11498: 7474: 6225: 6023:; condition 4 provides an algorithm for testing whether a set of polynomials is a Gröbner basis and forms the basis of 782: 93: 13032: 12871: 12829: 12523: 12466: 7515: 6173:
as leading coefficient. So, every reduced Gröbner basis is minimal, but a minimal Gröbner basis need not be reduced.
4188: 2017: 66: 9961:
The important property of the saturation, which ensures that it removes from the algebraic set defined by the ideal
332: 69:
and the number of zeros when it is finite. Gröbner basis computation is one of the main practical tools for solving
12784: 11378: 5868: 851: 40: 12902: 12817: 11420: 11350: 7570: 2399: 12973:. London Mathematical Society Lecture Note Series. Vol. 251. Cambridge University Press. pp. 535–545. 13073: 11621: 8272: 7479: 7408: 7402: 926: 791: 70: 12516:
Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
6228:
with integer coefficients, with positive leading coefficients. This restores the uniqueness of reduced bases.
5008: 2647: 13195: 12821: 11382: 9483:
the equations by the degeneracy conditions, which may be done via the elimination property of Gröbner bases.
6247:
For every monomial ordering, a set of polynomials that contains a nonzero constant is a Gröbner basis of the
12887:
An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal
11423:
that outperforms dramatically the other software for this problem (Maple and Magma). Msolve is available on
9905: 9403: 6505: 4982:{\displaystyle S(f,g)=\operatorname {red} _{1}(\mathrm {lcm} ,g)-\operatorname {red} _{1}(\mathrm {lcm} ,f)} 13536: 13475: 13459: 11431:, Maple and SageMath; this means that Msolve can be used directly from within these software environments. 11428: 10479: 7436: 6368: 868: 10723: 10196: 6627: 5614:-polynomials. This is a fundamental fact for Gröbner basis theory and all algorithms for computing them. 13531: 13495: 13204: 13190: 12314: 12231: 12130: 12076: 11374: 10818: 10772: 10669: 10249: 10150: 7530:
which are needed to have an intersection with the algebraic set, which is a finite number of points. The
3868: 11223:. So, specialized memory management algorithms may be a fundamental part of an efficient implementation. 4733: 2721: 995:
on the monomials, with the following properties of compatibility with multiplication. For all monomials
13551: 13340: 12387: 7413: 6114: 1164:
of the polynomials (that is, two polynomials are equal if and only they have the same representation).
13126: 11794:
On the other hand, examples have been given of reduced Gröbner bases containing polynomials of degree
11257:
The choice of the S-polynomials to reduce and of the polynomials used for reducing them is devoted to
13546: 13541: 13293: 13232: 11797: 11247: 11208: 10039: 9511: 7240: 6076: 6024: 4282:-polynomial by Buchberger, is the difference of the one-step reductions of the least common multiple 1532: 108: 11843: 11462: 10087: 6325: 13485: 13185: 12937: 12658: 11440: 11231: 9983: 8773: 8210: 6020: 5882:
is a Gröbner basis (with respect to the monomial ordering), or, more precisely, a Gröbner basis of
3822: 2612: 1220: 778: 78: 11345:
in the number of common zeros. A basis conversion algorithm that works is the general case is the
6548: 6201: 3953: 3330: 2370:. In general this form is not uniquely defined because there are, in general, several elements of 13424: 11745: 11365: 7866: 6259: 4138: 4040: 3996: 12572: 12432:(1983). "Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations". 12277: 11288: 1717: 1584: 253:. Although the theory works for any field, most Gröbner basis computations are done either when 13454: 13449: 13444: 13322: 13169:(on infinite dimensional Gröbner bases for polynomial rings in infinitely many indeterminates). 13122: 11920: 11582: 11308: 10014:
consists of the components of the primary decomposition of I that do not contain any power of f
9492: 7432: 6450: 6409: 12966: 10482:
has two versions. The first one asserts that a set of polynomials has no common zeros over an
9119: 9083: 9039: 9003: 8666: 8232: 6821: 6787: 1058: 13434: 13414: 13067: 11342: 11011: 9976: 9966: 9476:, and one must remove the components on which the degeneracy conditions are everywhere zero. 9473: 8159: 8112: 8073: 8038: 6856: 3183: 2618: 1171:
for this ordering and the corresponding monomial and coefficient are respectively called the
13211: 11704: 10328: 10298: 9751: 9717: 9629: 9599: 8733: 8707: 8481:
and the other block contains all the other variables (this means that a monomial containing
6702: 4820: 4285: 3300: 3270: 2954: 2893: 13500: 13419: 13286: 13001: 12357: 11155: 11106: 11048: 11017: 10982: 10446: 9663: 8214: 7628: 7548:
of the variables such that there is no leading monomial depending only on the variables in
4793: 4396: 4369: 4342: 4315: 4111: 4084: 3788: 3543: 3243: 3216: 2984: 2927: 2472: 2013: 538: 436: 401: 148: 97: 88:
Gröbner basis computation can be seen as a multivariate, non-linear generalization of both
11298:
Roughly speaking, F4 algorithm solves 3. by replacing many S-polynomial reductions by the
8463:}, then a single Gröbner basis computation produces a Gröbner basis of their intersection 8011:, that is a monomial ordering for which two monomials are compared by comparing first the 7891: 7836: 7804: 7775: 6082:
This algorithm uses condition 4, and proceeds roughly as follows: for any two elements of
5986: 8: 13313: 11416: 11409: 10531: 8821: 7255:(see that article for the definitions of the different orders that are mentioned below). 6030: 5872: 5790: 5610:, one can deal with all cases of non-uniqueness of the reduction by considering only the 3170:{\displaystyle f\;\xrightarrow {-2xg_{1}} \;f_{1}=f-2xg_{1}=-x^{2}y-2xy^{2}+2x+y^{3}+3y.} 2873:{\displaystyle {\begin{aligned}g_{1}&=x^{2}+y^{2}-1,\\g_{2}&=xy-2.\end{aligned}}} 1447: 271: 247: 188: 179: 53: 32: 13005: 11291:. As these algorithms are designed for integer coefficients or with coefficients in the 1389: 627: 565: 112: 13490: 13357: 13352: 13278: 13160: 13140: 13105: 12954: 12761: 12744:
Fitzgerald, J.; Lax, R.F. (1998). "Decoding affine variety codes using Gröbner bases".
12636: 12608: 12588: 12489: 12465:
Renschuch, Bodo; Roloff, Hartmut; Rasputin, Georgij G.; Abramson, Michael (June 2003).
12176: 11331: 11243: 11235: 11182: 11133: 11086: 10968:{\displaystyle I=\left\langle p_{0}x_{1}-p_{1},\ldots ,p_{0}x_{n}-p_{n}\right\rangle .} 8202: 7882: 6365:
be the ring of bivariate polynomials with rational coefficients and consider the ideal
6301: 6281: 6106: 6056: 5776: 2573: 258: 28: 8628:{\displaystyle K=\langle tf_{1},\ldots ,tf_{m},(1-t)g_{1},\ldots ,(1-t)g_{k}\rangle .} 124: 13335: 13252: 13217: 13028: 12974: 12958: 12867: 12848: 12825: 12788: 12519: 12445: 11739: 11557: 11292: 11268: 11220: 10483: 9163: 7252: 6169:
if every polynomial in it is irreducible by the other elements of the basis, and has
765: 74: 62: 13269: 13109: 12713:"Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance" 6274: 5921:
Gröbner bases. All the following assertions are characterizations of Gröbner bases:
5617:
For avoiding fractions when dealing with polynomials with integer coefficients, the
13388: 13381: 13376: 13255: 13164: 13150: 13097: 13009: 12946: 12925: 12911: 12881: 12844: 12765: 12753: 12726: 12692: 12646: 12598: 12552: 12493: 12481: 12437: 11386: 11323: 11212: 10523: 9864:{\displaystyle I:f^{\infty }=\{g\in R\mid (\exists k\in \mathbb {N} )f^{k}g\in I\}} 7527: 6263: 5856:. In this section, we suppose that an admissible monomial ordering has been fixed. 3932: 137: 104: 61:. A Gröbner basis allows many important properties of the ideal and the associated 24: 13155: 12630: 12612: 11697:
The worst-case complexity of a Gröbner basis computation is doubly exponential in
6117:). Condition 4 ensures that the result is a Gröbner basis, and the definitions of 6075:
and generates the same ideal. Moreover, such a Gröbner basis may be computed with
13398: 13393: 13345: 13330: 13042: 12967:"An Algorithmic Criterion for the Solvability of a System of Algebraic Equations" 12930:"An Algorithmic Criterion for the Solvability of a System of Algebraic Equations" 12511: 9159: 8817: 8218: 7503: 7421: 6221: 6110: 5849: 183: 173: 152: 44: 13239: 11322:
in sufficiently regular cases (in particular, when the input polynomials form a
9456:. In the other case, the resultant is a power of the result of the elimination. 6318:
form the three blue vertical lines. Their intersection consists of three points.
13369: 13364: 12066:{\displaystyle R/\left\langle \{e_{i}e_{j}|1\leq i\leq j\leq l\}\right\rangle } 11565: 11338: 11303: 11251: 11199:
to get a Gröbner basis of the ideal (of the implicit equations) of the variety.
8813: 8477:, and one uses an elimination ordering such that the first block contains only 7564: 7297: 1161: 986: 13046: 13014: 12989: 12916: 12897: 12757: 12712: 12603: 12576: 11443:
of the Gröbner basis computations is commonly evaluated in term of the number
1237:. This does not change the term ordering by definition of a monomial ordering. 13525: 12441: 12429: 12403: 11419:, and combines all these functions in an algorithm for the real solutions of 11354: 11299: 11239: 9469: 7425: 2009: 773: 682:
of the variables is fixed, the notation of monomials is often abbreviated as
12650: 11211:
is the oldest algorithm for computing Gröbner bases. It has been devised by
2319:
if it is reducible or lead-reducible, respectively, by at least one element
107:
in his 1965 Ph.D. thesis, which also included an algorithm to compute them (
13505: 13273: 12697: 12557: 12540: 12507: 12393: 12361: 11569: 11327: 11312: 10491: 7535: 6121:-polynomials and reduction ensure that the generated ideal is not changed. 5775:
This does not changes anything to the theory since the two polynomials are
133: 82: 13244: 13101: 12485: 9389:{\displaystyle \langle g_{1}x_{1}-f_{1},\ldots ,g_{n}x_{n}-f_{n}\rangle .} 7758:{\displaystyle \sum _{i=0}^{\infty }d_{i}t^{i}={\frac {P(t)}{(1-t)^{d}}},} 7450:, it has only a finite number of zeros, if and only if, for each variable 1707:{\textstyle {\frac {N}{M}}=x_{1}^{b_{1}-a_{1}}\cdots x_{n}^{b_{n}-a_{n}}.} 12628: 12398: 11903: 11390: 2553:{\displaystyle \operatorname {lm} (q_{g}\,g)\leq \operatorname {lm} (f).} 992: 156: 20: 12629:
Berthomieu \first1=Jérémy; Eder, Christian; Safey El Din, Mohab (2021).
9958:
produces a Gröbner basis of the saturation of an ideal by a polynomial.
2611:
In this two variable example, the monomial ordering that is used is the
2327:. In this case, a one-step reduction (resp. one-step lead-reduction) of 144:. This term has been used by some authors to also denote Gröbner bases. 13309: 12950: 11915: 11295:, Buchberger's algorithm remains useful for more general coefficients. 7523: 7251:
Unless explicitly stated, all the results that follow are true for any
6248: 6241: 4178:
Here Buchberger's algorithm for Gröbner bases would begin by adding to
3574:
One gets a different result with the other choice for the second step:
1096: 265: 12730: 12436:. Lecture Notes in Computer Science. Vol. 162. pp. 146–156. 9287:
Elimination with Gröbner bases allows to implicitize for any value of
3297:
So, one has two choices for the second reduction step. If one chooses
1876:{\textstyle x_{1}^{\min(a_{1},b_{1})}\cdots x_{n}^{\min(a_{n},b_{n})}} 1099:, that is, every strictly decreasing sequence of monomials is finite. 764:
Monomials are uniquely defined by their exponent vectors, and, when a
13439: 13260: 13145: 11899: 11898:
The concept and algorithms of Gröbner bases have been generalized to
11701:. More precisely, the complexity is upper bounded by a polynomial in 11556:
On the other hand, if all polynomials in the reduced Gröbner basis a
11319: 11280: 11258: 9171: 6262:
consisting of a single polynomial. The reduced Gröbner bases are the
6237: 2882:
For the first reduction step, either the first or the second term of
2378:; this non-uniqueness is the starting point of Gröbner basis theory. 11230:
occurring during a computation may be sufficiently large for making
10502:
belongs to the ideal. This may be tested by saturating the ideal by
9277:{\displaystyle {\text{Res}}_{t}(g_{1}x_{1}-f_{1},g_{2}x_{2}-f_{2}).} 8007:. Let us also choose an elimination monomial ordering "eliminating" 7556:
there is a leading monomial in the Gröbner basis that is a power of
3931:
It is for dealing with the problems set by this non-uniqueness that
3705: 3630: 3592: 3475: 3412: 3374: 3037: 155:, and also some classes of non-commutative rings and algebras, like 13429: 12681:(September 1997), "Some Complexity Results for Polynomial Ideals", 12641: 11887: 11398: 11394: 9465: 6027:
for computing Gröbner bases; conditions 5 and 6 allow computing in
5890:
the ideal generated by the leading monomials of the polynomials in
769: 461: 12593: 11349:. In its original form, FGLM may be the critical step for solving 8407:{\displaystyle \{x_{1},\ldots ,x_{k}\},\{x_{k+1},\ldots ,x_{n}\}.} 6098:
if it is not zero; repeat this operation with the new elements of
1989:{\displaystyle \operatorname {lcm} (M,N)={\frac {MN}{\gcd(M,N)}}.} 768:(see below) is fixed, a polynomial is uniquely represented by the 11415:. Beside Gröbner algorithms, Msolve contains fast algorithms for 11227: 11079:>1, two Gröbner basis computations are needed to implicitize: 9153: 7458:
contains a polynomial with a leading monomial that is a power of
7366:. One may also test the equality of the reduced Gröbner bases of 5934:, if and only if some/every complete lead-reduction/reduction of 13114:(translated from Sibirsk. Mat. Zh. Siberian Mathematics Journal 11238:
useful. For this reason, most optimized implementations use the
8217:
into a subspace of the ambient space: with above notation, the (
5587:
denotes the greatest common divisor of the leading monomials of
1088:
A total order satisfying these condition is sometimes called an
991:
All operations related to Gröbner bases require the choice of a
12464: 11424: 11045:. It follows that, in this case, the direct elimination of the 10028:
of a polynomial ideal generated by a finite set of polynomials
7424:
coefficients, this algebraically closed field is chosen as the
7396: 7246: 12864:
Gröbner Bases: A Computational Approach to Commutative Algebra
9954:
is a polynomial ring, a Gröbner basis computation eliminating
9400:= 2, the result is the same as with the resultant, if the map 4997:
denotes the least common multiple of the leading monomials of
2288:
produces a polynomial all of whose monomials are smaller than
12539:
Collart, Stéphane; Kalkbrener, Michael; Mall, Daniel (1997).
11402: 11370: 10147:
If one wants to saturate with respect to several polynomials
9170:= 2, that is for plane curves, this may be computed with the 8221:
of) the projection of the algebraic set defined by the ideal
7552:. Thus, if the ideal has dimension 0, then for each variable 6192: 2335:
is any one-step reduction (resp. one-step lead-reduction) of
2020:. When completed as much as possible, it is sometimes called 11408:
Implementations of F4 and (sparse)-FGLM are included in the
11041:
is an irreducible component of the algebraic set defined by
8198:
has many applications, some described in the next sections.
7431:
An ideal does not have any zero (the system of equations is
7416:
containing the coefficients of the polynomials, is called a
6067:
For every admissible monomial ordering and every finite set
5911:
is a multiple of the leading monomial of some polynomial in
1741:
is the componentwise subtraction of the exponent vectors of
13205:"Gröbner Bases: A Short Introduction for Systems Theorists" 2381:
The definition of the reduction shows immediately that, if
1233:
consists of multiplying each monomial of the polynomial by
12866:. Graduate Texts in Mathematics. Vol. 141. Springer. 12711:
Chen, X.; Reed, I.S.; Helleseth, T.; Truong, T.K. (1994).
10193:
or with respect to a single polynomial which is a product
6102:
included until, eventually, all reductions produce zero.
13210:. In Moreno-Diaz, R.; Buchberger, B.; Freire, J. (eds.). 12963:(This is the journal publication of Buchberger's thesis.) 6195:
the multiplication of polynomials by a nonzero constant.
3812:
is irreducible, although only lead reductions were done.
1154: 13308: 12390:, an extension of Gröbner bases to non-commutative rings 8023:-variable is greater than every monomial independent of 2276:
without changing the terms with a monomial greater than
755:{\displaystyle x_{1}^{a_{1}}\cdots x_{n}^{a_{n}}=X^{A}.} 12965:
Burchberger, B.; Winkler, F., eds. (26 February 1998).
12710: 11302:
of a single large matrix for which advanced methods of
8015:-parts, and, in case of equality only, considering the 7485: 6784:, and none of them is reducible by the others, none of 6071:
of polynomials, there is a Gröbner basis that contains
5894:
equals the ideal generated by the leading monomials of
13250: 11846: 11800: 11748: 11707: 10517: 10510:
belongs to the ideal if and only if the saturation by
8807: 7573: 4175:
and this restores the uniqueness of the reduced form.
1883:
whose exponent vector is the componentwise minimum of
1781: 1720: 1614: 1587: 871: 846:
is a finite set of polynomials in the polynomial ring
12538: 12317: 12280: 12234: 12179: 12133: 12079: 11957: 11943:
as a ring by defining the product of two elements of
11923: 11624: 11585: 11501: 11465: 11185: 11158: 11136: 11109: 11089: 11051: 11020: 10985: 10870: 10821: 10775: 10726: 10672: 10543: 10449: 10368: 10331: 10301: 10252: 10199: 10153: 10090: 10042: 9986: 9908: 9784: 9754: 9720: 9666: 9632: 9602: 9514: 9406: 9301: 9183: 9122: 9086: 9042: 9006: 8833: 8776: 8736: 8710: 8669: 8512: 8485:
is greater than every monomial that does not contain
8321: 8275: 8235: 8191:, as only the leading monomials need to be checked). 8162: 8115: 8076: 8041: 7894: 7839: 7807: 7778: 7665: 7631: 7538:
is equal to the degree of its definition polynomial.
7275: 6921: 6859: 6824: 6790: 6705: 6630: 6551: 6508: 6453: 6412: 6371: 6328: 6304: 6284: 6204: 6033: 5989: 5793: 5630: 5420: 5041: 5011: 4882: 4823: 4796: 4736: 4429: 4399: 4372: 4345: 4318: 4288: 4191: 4141: 4114: 4087: 4043: 3999: 3956: 3871: 3825: 3791: 3583: 3546: 3365: 3333: 3303: 3273: 3246: 3219: 3186: 3028: 2987: 2957: 2930: 2896: 2779: 2724: 2650: 2621: 2502: 2475: 2402: 2161: 1926: 1535: 1450: 1392: 1322: 1252: 1061: 1016: 929: 865:; that is the set of polynomials that can be written 794: 688: 630: 568: 541: 474: 468:
by Buchberger and some of his followers) of the form
439: 404: 335: 274: 191: 10861:
of the points of the variety are zeros of the ideal
9174:. The implicit equation is the following resultant: 2981:
So the first reduction step consists of multiplying
1047:{\displaystyle M\leq N\Longleftrightarrow MP\leq NP} 13240:
Comparative Timings Page for Gröbner Bases Software
13121: 12506: 11495:nonzero terms whose computation requires a time of 9580:is a new indeterminate representing the inverse of 8489:). With this monomial ordering, a Gröbner basis of 8019:-parts. This implies that a monomial containing an 6126: 3327:one gets a polynomial that can be reduced again by 2346:The (complete) reduction (resp. lead-reduction) of 1379:{\displaystyle N=x_{1}^{b_{1}}\cdots x_{n}^{b_{n}}} 1309:{\displaystyle M=x_{1}^{a_{1}}\cdots x_{n}^{a_{n}}} 12964: 12861: 12341: 12303: 12266: 12220: 12165: 12111: 12065: 11935: 11875: 11832: 11786: 11730: 11687: 11610: 11548: 11487: 11191: 11171: 11142: 11122: 11095: 11064: 11033: 10998: 10967: 10853: 10807: 10761: 10704: 10655: 10462: 10436:{\displaystyle 1-t_{1}f_{1},\ldots ,1-t_{k}f_{k},} 10435: 10347: 10317: 10284: 10234: 10185: 10117: 10080:that is by keeping the polynomials independent of 10072: 10005: 9942: 9863: 9770: 9736: 9679: 9648: 9618: 9568: 9444: 9388: 9276: 9144: 9108: 9064: 9028: 8989: 8797: 8748: 8722: 8696: 8627: 8406: 8307: 8259: 8183: 8136: 8097: 8062: 7999:in which the variables are split into two subsets 7991: 7854: 7822: 7793: 7757: 7644: 7617: 7563:Both dimension and degree may be deduced from the 7187: 6877: 6845: 6811: 6717: 6688: 6590: 6535: 6478: 6437: 6395: 6357: 6310: 6290: 6240:of polynomials is the unique Gröbner basis of the 6212: 6047: 6006: 5957:, some/every complete lead-reduction/reduction of 5840: 5764: 5572: 5388: 5024: 4981: 4839: 4809: 4786:This does not complete Buchberger's algorithm, as 4778: 4718: 4412: 4385: 4358: 4331: 4304: 4267: 4167: 4127: 4100: 4081:, and this allows more reductions. In particular, 4069: 4025: 3985: 3921: 3857: 3804: 3774: 3559: 3529: 3349: 3319: 3289: 3259: 3232: 3205: 3169: 3000: 2973: 2943: 2912: 2872: 2765: 2710: 2636: 2552: 2488: 2450: 2257: 1988: 1875: 1733: 1706: 1600: 1561: 1497: 1436: 1378: 1308: 1076: 1046: 970: 915: 838: 754: 674: 612: 554: 528:{\displaystyle x_{1}^{a_{1}}\cdots x_{n}^{a_{n}},} 527: 452: 417: 390: 321: 238: 123:for this work. However, the Russian mathematician 13132:Transactions of the American Mathematical Society 11549:{\displaystyle \Omega (D^{n})>D^{\Omega (n)}.} 11203: 8659:. This may be proven by remarking that the ideal 7435:) if and only if 1 belongs to the ideal (this is 1229:The multiplication of a polynomial by a monomial 857:is the set of linear combinations of elements of 13523: 13180:Faugère's own implementation of his F4 algorithm 12987: 12812:Adams, William W.; Loustaunau, Philippe (1994). 12778: 12632:Msolve: a library for solving polynomial systems 12406:, an alternative way to represent algebraic sets 10019: 8499:consists in the polynomials that do not contain 2101:may be reducible without being lead-reducible.) 1962: 1839: 1792: 13083:"Certain algorithmic problems for Lie algebras" 12811: 11279:For solving 3. many improvements, variants and 10720:variables (parameters of the parameterization) 9486: 8473:. For this, one introduces a new indeterminate 8315:is an elimination ordering for every partition 7862:change when one changes the monomial ordering. 7215:The method that has been used here for finding 4268:{\displaystyle g_{3}=yg_{1}-xg_{2}=2x+y^{3}-y.} 3240:is a multiple of the leading monomials of both 13331:Zero polynomial (degree undefined or −1 or −∞) 13230: 11283:have been proposed before the introduction of 11014:of the non-empty algebraic set defined by the 7544:The dimension is the maximal size of a subset 7239:is a Gröbner basis is a direct application of 2602: 2280:(for the monomial ordering). In particular, a 1219:The addition of two polynomials consists in a 391:{\displaystyle c_{1}M_{1}+\cdots +c_{m}M_{m},} 13294: 12862:Becker, Thomas; Weispfenning, Volker (1998). 12743: 12571: 11357:. This has been fixed by the introduction of 10136:, one may also start from a Gröbner basis of 6269: 6198:When working with polynomials over the field 2024:although its result is not uniquely defined. 1121:Total degree reverse lexicographical ordering 13055:Notices of the American Mathematical Society 12910:(3–4). Translated by Abramson, M.: 471–511. 12055: 12006: 11353:because FGML does not take into account the 10474: 10112: 10097: 10064: 10049: 9858: 9804: 9380: 9302: 9156:(they have no non-constant common factors). 8619: 8519: 8398: 8360: 8354: 8322: 7618:{\textstyle \sum _{i=0}^{\infty }d_{i}t^{i}} 7397:Solutions of a system of algebraic equations 7247:Properties and applications of Gröbner bases 6872: 6860: 6837: 6825: 6803: 6791: 6527: 6515: 6390: 6378: 5907:the leading monomial of every polynomial in 5598:As the monomials that are reducible by both 2757: 2731: 2018:Euclidean division of univariate polynomials 1241: 833: 801: 12663:: CS1 maint: numeric names: authors list ( 6105:The algorithm terminates always because of 2451:{\displaystyle f=h+\sum _{g\in G}q_{g}\,g,} 1095:These conditions imply that the order is a 264:In the context of Gröbner bases, a nonzero 13301: 13287: 13202: 12988:Buchberger, Bruno; Kauers, Manuel (2010). 12924: 12895: 12880: 12123:. This allows identifying a submodule of 11618:So, the complexity of this computation is 10597: 10596: 8909: 8908: 8431:are two ideals generated respectively by { 7885:. This is based on the following theorem. 7407:Any set of polynomials may be viewed as a 4037:. So, this ideal is not changed by adding 3724: 3700: 3646: 3625: 3614: 3587: 3494: 3470: 3428: 3407: 3396: 3369: 3059: 3032: 2560:In the case of univariate polynomials, if 1167:The first (greatest) term of a polynomial 121:Paris Kanellakis Theory and Practice Award 16:Mathematical construct in computer algebra 13154: 13144: 13041: 13013: 12915: 12696: 12640: 12602: 12592: 12556: 12372: 11688:{\displaystyle O(D^{n})^{O(1)}=D^{O(n)}.} 9832: 8308:{\displaystyle x_{1}>\cdots >x_{n}} 8156:(this makes very easy the computation of 6336: 6206: 5968:all complete reductions of an element of 5755: 5722: 5700: 5667: 5563: 5530: 5499: 5466: 5375: 5342: 5311: 5278: 5235: 5202: 5147: 5114: 4790:gives different results, when reduced by 2522: 2441: 2248: 2223: 971:{\displaystyle g_{1},\ldots ,g_{k}\in R.} 839:{\displaystyle F=\{f_{1},\ldots ,f_{k}\}} 13080: 12624: 12622: 12541:"Converting bases with the Gröbner walk" 12367: 10362:or to its Gröbner basis the polynomials 10125:for an elimination ordering eliminating 7877:The computation of Gröbner bases for an 6273: 6132: 5025:{\displaystyle \operatorname {red} _{1}} 2711:{\displaystyle f=2x^{3}-x^{2}y+y^{3}+3y} 1386:be two monomials, with exponent vectors 1210: 178:Gröbner bases are primarily defined for 13127:"Finite generation of symmetric ideals" 13022: 12781:Gröbner Bases, Coding, and Cryptography 12718:IEEE Transactions on Information Theory 11564:, the Gröbner basis can be computed by 10514:provides a Gröbner basis containing 1. 8269:The lexicographical ordering such that 8144:consists exactly of the polynomials of 7881:monomial ordering allows computational 1714:In other words, the exponent vector of 261:or the integers modulo a prime number. 13524: 12428: 11072:provides an empty set of polynomials. 10470:in a single Gröbner basis computation. 10292:in a single Gröbner basis computation. 9943:{\displaystyle I:f^{\infty }=J\cap R.} 9445:{\displaystyle t\mapsto (x_{1},x_{2})} 8756:. Such a polynomial is independent of 8418: 6536:{\displaystyle I=\langle f,k\rangle :} 6180:, one gets a reduced Gröbner basis of 6149:, one gets a minimal Gröbner basis of 5975:the monomials that are irreducible by 3815:In summary, the complete reduction of 1155:Leading term, coefficient and monomial 916:{\textstyle \sum _{i=1}^{k}g_{i}f_{i}} 132:An analogous concept for multivariate 13282: 13251: 13062:(10): 1199–1200, a brief introduction 12619: 12424: 12422: 12420: 11254:are used in optimized implementations 11006:have a common zero (sometimes called 10024:A Gröbner basis of the saturation by 7652:is the number of monomials of degree 7262: 6396:{\displaystyle I=\langle f,g\rangle } 6298:form the red parabola; the zeroes of 6127:§ Algorithms and implementations 3540:No further reduction is possible, so 1142:"change of ordering algorithm". When 562:are nonnegative integers. The vector 12677: 11906:over a polynomial ring. In fact, if 11447:of variables and the maximal degree 10762:{\displaystyle t_{1},\ldots ,t_{k}.} 10235:{\displaystyle f=f_{1}\cdots f_{k},} 8503:, in the Gröbner basis of the ideal 8209:realizes the geometric operation of 7486:Dimension, degree and Hilbert series 6689:{\displaystyle h=xk-(y-1)f=y^{2}-y.} 6617:, which gives another polynomial in 6086:, compute the complete reduction by 5411:-polynomial can also be written as: 5399:Using the property that relates the 2268:This operation removes the monomial 980: 12342:{\displaystyle 1\leq i\leq j\leq l} 12267:{\displaystyle g_{1},\ldots ,g_{k}} 12166:{\displaystyle g_{1},\ldots ,g_{k}} 12112:{\displaystyle e_{1},\ldots ,e_{l}} 11951:. This ring may be identified with 11572:of polynomials of degree less than 10854:{\displaystyle x_{1},\ldots ,x_{n}} 10808:{\displaystyle t_{1},\ldots ,t_{k}} 10705:{\displaystyle p_{0},\ldots ,p_{n}} 10518:Implicitization in higher dimension 10285:{\displaystyle f=f_{1}\cdots f_{k}} 10186:{\displaystyle f_{1},\ldots ,f_{k}} 9660:is a polynomial ring, computing in 9072:are univariate polynomials for 1 ≤ 8808:Implicitization of a rational curve 6094:-polynomial, and add the result to 3922:{\displaystyle f_{3}=2x+2y^{3}-2y.} 1149: 117:Association for Computing Machinery 115:. In 2007, Buchberger received the 111:). He named them after his advisor 94:polynomial greatest common divisors 13: 12838: 12805: 12671: 12417: 11893: 11857: 11811: 11529: 11502: 11466: 9998: 9920: 9822: 9796: 9080:. One may (and will) suppose that 8229:-subspace is defined by the ideal 7772:is the dimension of the ideal and 7682: 7590: 7567:of the ideal, which is the series 7276:Membership and inclusion of ideals 6699:Under lexicographic ordering with 6176:Given a Gröbner basis of an ideal 5863:be a finite set of polynomials in 5749: 5746: 5743: 5694: 5691: 5688: 5557: 5554: 5551: 5493: 5490: 5487: 5352: 5349: 5346: 5288: 5285: 5282: 5212: 5209: 5206: 5171: 5168: 5165: 5124: 5121: 5118: 5083: 5080: 5077: 4966: 4963: 4960: 4927: 4924: 4921: 4779:{\displaystyle g_{3}=f_{3}-f_{2}.} 4033:belongs to the ideal generated by 2766:{\displaystyle G=\{g_{1},g_{2}\},} 1577:is componentwise not greater than 783:polynomial greatest common divisor 167: 65:to be deduced easily, such as the 14: 13563: 13173: 10032:, may be obtained by eliminating 9875:whose product with some power of 8035:for this monomial ordering, then 7351:, it suffices to test that every 6236:For every monomial ordering, the 6055:in a way that is very similar to 2644:and we consider the reduction of 329:is commonly represented as a sum 103:Gröbner bases were introduced by 13025:An Introduction to Gröbner Bases 12814:An Introduction to Gröbner Bases 11833:{\textstyle d^{2^{\Omega (n)}},} 8105:(this ideal is often called the 7522:. It is also equal to number of 6231: 6109:or because polynomial rings are 1143: 12903:Journal of Symbolic Computation 12893:(PhD). University of Innsbruck. 12818:Graduate Studies in Mathematics 12772: 12746:Designs, Codes and Cryptography 12581:Journal of Symbolic Computation 12545:Journal of Symbolic Computation 11876:{\textstyle d^{2^{\Omega (n)}}} 11421:systems of polynomial equations 11351:systems of polynomial equations 10073:{\displaystyle F\cup \{1-tf\},} 9569:{\displaystyle R_{f}=R/(1-ft),} 8031:is a Gröbner basis of an ideal 6609:is reducible by the other, but 6498:, one obtains a new polynomial 5621:polynomial is often defined as 4849: 1562:{\displaystyle a_{i}\leq b_{i}} 624:of the monomial. When the list 136:was developed independently by 71:systems of polynomial equations 13125:; Hillar, Christopher (2007). 13081:Shirshov, Anatoliĭ I. (1999). 13047:"What is ... a Gröbner Basis?" 12971:Gröbner Bases and Applications 12737: 12704: 12565: 12532: 12500: 12458: 12215: 12183: 12030: 11993: 11961: 11866: 11860: 11820: 11814: 11774: 11768: 11677: 11671: 11655: 11649: 11642: 11628: 11602: 11589: 11538: 11532: 11518: 11505: 11488:{\displaystyle \Omega (D^{n})} 11482: 11469: 11293:integers modulo a prime number 11232:fast multiplication algorithms 11204:Algorithms and implementations 10325:then saturating the result by 10118:{\displaystyle F\cup \{1-tf\}} 9871:consisting in all elements of 9836: 9819: 9560: 9545: 9537: 9531: 9452:is injective for almost every 9439: 9413: 9410: 9268: 9196: 9139: 9133: 9103: 9097: 9059: 9053: 9023: 9017: 8974: 8968: 8953: 8947: 8895: 8889: 8874: 8868: 8682: 8670: 8606: 8594: 8572: 8560: 8251: 8245: 8178: 8172: 8150:whose leading terms belong to 8131: 8125: 8092: 8086: 8057: 8051: 7983: 7971: 7962: 7898: 7872: 7849: 7843: 7817: 7811: 7788: 7782: 7740: 7727: 7722: 7716: 7516:dimension of the algebraic set 7480:System of polynomial equations 7409:system of polynomial equations 7403:System of polynomial equations 7281: 7178: 7160: 7151: 7133: 7081: 7062: 7053: 7038: 6994: 6979: 6970: 6951: 6658: 6646: 6358:{\displaystyle R=\mathbb {Q} } 6352: 6340: 5835: 5803: 5738: 5732: 5719: 5713: 5683: 5677: 5664: 5658: 5646: 5634: 5546: 5540: 5524: 5518: 5482: 5476: 5460: 5454: 5436: 5424: 5369: 5363: 5336: 5330: 5305: 5299: 5272: 5266: 5229: 5223: 5196: 5190: 5141: 5135: 5108: 5102: 5061: 5049: 4976: 4956: 4937: 4917: 4898: 4886: 4700: 4687: 4644: 4631: 4583: 4570: 4501: 4488: 2544: 2538: 2526: 2509: 2374:that can be used for reducing 2303:of polynomials, one says that 2242: 2236: 2217: 2211: 2187: 2175: 1977: 1965: 1945: 1933: 1868: 1842: 1821: 1795: 1489: 1457: 1431: 1399: 1183:and denoted, in this article, 1026: 669: 637: 607: 575: 316: 284: 233: 201: 1: 13491:Horner's method of evaluation 13231:Buchberger, B.; Zapletal, A. 13156:10.1090/S0002-9947-07-04116-5 12822:American Mathematical Society 12410: 11910:is a free module over a ring 11742:, it is therefore bounded by 11434: 11355:sparsity of involved matrices 10494:of the zeros of a polynomial 10020:Computation of the saturation 10006:{\displaystyle I:f^{\infty }} 9744:under the canonical map from 9459: 8798:{\displaystyle b\in I\cap J.} 6403:generated by the polynomials 5942:produces the zero polynomial; 5782: 5606:are exactly the multiples of 4857:Given monomial ordering, the 3935:introduced Gröbner bases and 3858:{\displaystyle f_{2}=y^{3}-y} 2564:consists of a single element 1581:. In this case, the quotient 13233:"Gröbner Bases Bibliography" 12841:Gröbner Bases in Ring Theory 11914:, then one may consider the 11787:{\textstyle d^{2^{n+o(n)}}.} 11330:; for example, for breaking 10498:, if and only if a power of 9487:Definition of the saturation 9166:of such a curve. In case of 8663:consists of the polynomials 7830:is the degree of the ideal. 7466:. This number is called the 6591:{\displaystyle k=g-xf=xy-x.} 6213:{\displaystyle \mathbb {Q} } 6062: 4312:of the leading monomials of 3986:{\displaystyle f_{2}-f_{3}.} 3350:{\displaystyle g_{2}\colon } 2097:, it is also reducible, but 1999: 1117:(for pure lexical ordering). 73:and computing the images of 7: 13496:Polynomial identity testing 13216:. Springer. pp. 1–19. 13191:Encyclopedia of Mathematics 12381: 11459:, this element may contain 9973:is zero, is the following: 7888:Consider a polynomial ring 4168:{\displaystyle f_{3}-f_{2}} 4070:{\displaystyle f_{3}-f_{2}} 4026:{\displaystyle f_{2}-f_{3}} 3939:-polynomials. Intuitively, 3567:is a complete reduction of 2603:Non uniqueness of reduction 2358:. It is sometimes called a 2016:and division steps of the 1734:{\textstyle {\frac {N}{M}}} 1601:{\textstyle {\frac {N}{M}}} 23:, and more specifically in 10: 13568: 13270:Gröbner basis introduction 13072:: CS1 maint: postscript ( 12551:(3–4). Elsevier: 465–469. 12304:{\displaystyle e_{i}e_{j}} 11451:of the input polynomials. 9890:is the ideal generated by 9162:consists in computing the 7801:is a polynomial such that 7414:algebraically closed field 7400: 7347:is contained in the ideal 7267:Reduced Gröbner bases are 7198:can be reduced to zero by 6912:, since the S-polynomials 6270:Example and counterexample 5005:. Using the definition of 2496:are polynomials such that 1906:is defined similarly with 984: 171: 41:generating set of an ideal 13468: 13407: 13320: 13015:10.4249/scholarpedia.7763 12917:10.1016/j.jsc.2005.09.007 12604:10.1016/j.jsc.2016.07.025 11936:{\displaystyle R\oplus L} 11611:{\displaystyle O(D^{n}).} 11560:have a degree of at most 11427:, and is interfaced with 11248:Chinese remainder theorem 10522:By definition, an affine 10480:Hilbert's Nullstellensatz 10475:Effective Nullstellensatz 7437:Hilbert's Nullstellensatz 6479:{\displaystyle g=x^{3}-x} 6438:{\displaystyle f=x^{2}-y} 4730:In this example, one has 3015:and adding the result to 1242:Divisibility of monomials 12938:Aequationes Mathematicae 12577:"Sparse FGLM algorithms" 12442:10.1007/3-540-12868-9_99 11579:, which has a dimension 11366:computer algebra systems 11328:cryptographic challenges 10084:in the Gröbner basis of 9969:on which the polynomial 9714:is the inverse image of 9291:, simply by eliminating 9145:{\displaystyle g_{i}(t)} 9109:{\displaystyle f_{i}(t)} 9065:{\displaystyle g_{i}(t)} 9029:{\displaystyle f_{i}(t)} 8697:{\displaystyle (a-b)t+b} 8260:{\displaystyle I\cap K.} 8201:Another application, in 7867:computer algebra systems 7442:Given the Gröbner basis 6846:{\displaystyle \{f,h\},} 6812:{\displaystyle \{f,k\},} 5972:produce the same result; 4278:This polynomial, called 2572:is the remainder of the 2049:if the leading monomial 1162:canonical representation 1107:Lexicographical ordering 1077:{\displaystyle M\leq MP} 779:polynomial factorization 425:are nonzero elements of 162: 140:in 1964, who named them 39:is a particular kind of 13481:Greatest common divisor 13203:Buchberger, B. (2003). 13123:Aschenbrenner, Matthias 12758:10.1023/A:1008274212057 12651:10.1145/3452143.3465545 12388:Bergman's diamond lemma 11731:{\textstyle d^{2^{n}}.} 11236:multimodular arithmetic 11130:to get a Gröbner basis 9472:which may have several 8184:{\displaystyle G\cap K} 8137:{\displaystyle G\cap K} 8098:{\displaystyle I\cap K} 8063:{\displaystyle G\cap K} 7475:greatest common divisor 7420:. In the usual case of 6878:{\displaystyle \{h,k\}} 6115:Hilbert's basis theorem 5924: 5905: 3206:{\displaystyle -x^{2}y} 2637:{\displaystyle x>y,} 2282:one step lead-reduction 2124:such that the monomial 1754:greatest common divisor 13353:Quadratic function (2) 13245:Prof. Bruno Buchberger 13023:Fröberg, Ralf (1997). 12698:10.1006/jcom.1997.0447 12575:; Chenqi, Mou (2017). 12558:10.1006/jsco.1996.0145 12373:Error-Correcting Codes 12343: 12305: 12268: 12222: 12167: 12113: 12067: 11937: 11877: 11834: 11788: 11732: 11689: 11612: 11550: 11489: 11359:sparse FGLM algorithms 11347:Gröbner walk algorithm 11209:Buchberger's algorithm 11193: 11173: 11144: 11124: 11097: 11066: 11035: 11000: 10969: 10855: 10809: 10763: 10716:+1 polynomials in the 10706: 10657: 10506:; in fact, a power of 10464: 10437: 10349: 10348:{\displaystyle f_{2},} 10319: 10318:{\displaystyle f_{1},} 10286: 10236: 10187: 10119: 10074: 10007: 9967:irreducible components 9944: 9865: 9772: 9771:{\displaystyle R_{f}.} 9738: 9737:{\displaystyle R_{f}I} 9681: 9650: 9649:{\displaystyle I_{f}.} 9620: 9619:{\displaystyle R_{f}I} 9570: 9493:localization of a ring 9474:irreducible components 9446: 9390: 9278: 9146: 9110: 9066: 9030: 8991: 8799: 8750: 8749:{\displaystyle b\in J} 8724: 8723:{\displaystyle a\in I} 8698: 8629: 8408: 8309: 8261: 8185: 8138: 8099: 8070:is a Gröbner basis of 8064: 7993: 7856: 7824: 7795: 7759: 7686: 7646: 7619: 7594: 7241:Buchberger's algorithm 7189: 6908:is a Gröbner basis of 6885:is a Gröbner basis of 6879: 6847: 6813: 6719: 6718:{\displaystyle x>y} 6690: 6592: 6537: 6480: 6439: 6397: 6359: 6319: 6312: 6292: 6214: 6077:Buchberger's algorithm 6049: 6025:Buchberger's algorithm 6008: 5842: 5766: 5574: 5390: 5032:, this translates to: 5026: 4983: 4841: 4840:{\displaystyle g_{3}.} 4811: 4780: 4720: 4414: 4387: 4360: 4333: 4306: 4305:{\displaystyle x^{2}y} 4269: 4169: 4129: 4102: 4071: 4027: 3987: 3923: 3859: 3806: 3776: 3561: 3531: 3351: 3321: 3320:{\displaystyle g_{2},} 3291: 3290:{\displaystyle g_{2},} 3261: 3234: 3207: 3171: 3002: 2975: 2974:{\displaystyle g_{2}.} 2945: 2914: 2913:{\displaystyle 2x^{3}} 2874: 2767: 2712: 2638: 2599:instead of reduction. 2554: 2490: 2452: 2259: 2148:consists of replacing 2045:by another polynomial 1990: 1877: 1735: 1708: 1602: 1563: 1499: 1438: 1380: 1310: 1078: 1048: 972: 917: 892: 840: 756: 676: 614: 556: 529: 454: 419: 392: 323: 240: 109:Buchberger's algorithm 13336:Constant function (0) 13102:10.1145/334714.334715 12684:Journal of Complexity 12587:. Elsevier: 538–569. 12573:Faugère, Jean-Charles 12486:10.1145/944567.944569 12368:Areas of applications 12344: 12306: 12269: 12223: 12168: 12114: 12068: 11938: 11878: 11835: 11789: 11733: 11690: 11613: 11551: 11490: 11364:Most general-purpose 11343:polynomial complexity 11194: 11174: 11172:{\displaystyle t_{i}} 11145: 11125: 11123:{\displaystyle p_{0}} 11098: 11067: 11065:{\displaystyle t_{i}} 11036: 11034:{\displaystyle p_{i}} 11012:irreducible component 11001: 10999:{\displaystyle p_{i}} 10970: 10856: 10810: 10764: 10707: 10658: 10465: 10463:{\displaystyle t_{i}} 10438: 10350: 10320: 10287: 10237: 10188: 10120: 10075: 10008: 9977:primary decomposition 9945: 9866: 9773: 9739: 9682: 9680:{\displaystyle R_{f}} 9651: 9621: 9571: 9447: 9391: 9279: 9147: 9111: 9067: 9031: 8992: 8800: 8751: 8725: 8699: 8630: 8409: 8310: 8262: 8186: 8139: 8100: 8065: 7994: 7857: 7825: 7796: 7760: 7666: 7647: 7645:{\displaystyle d_{i}} 7620: 7574: 7498:in a polynomial ring 7325:To test if the ideal 7288:by the Gröbner basis 7190: 6880: 6848: 6814: 6720: 6691: 6593: 6538: 6481: 6440: 6398: 6360: 6313: 6293: 6277: 6226:primitive polynomials 6215: 6185:leading coefficient. 6133:Reduced Gröbner bases 6050: 6009: 5843: 5767: 5575: 5391: 5027: 4984: 4842: 4812: 4810:{\displaystyle g_{2}} 4781: 4721: 4415: 4413:{\displaystyle g_{1}} 4388: 4386:{\displaystyle g_{2}} 4361: 4359:{\displaystyle g_{2}} 4334: 4332:{\displaystyle g_{1}} 4307: 4270: 4170: 4130: 4128:{\displaystyle f_{2}} 4103: 4101:{\displaystyle f_{3}} 4072: 4028: 3988: 3924: 3860: 3819:can result in either 3807: 3805:{\displaystyle f_{3}} 3777: 3562: 3560:{\displaystyle f_{2}} 3532: 3352: 3322: 3292: 3262: 3260:{\displaystyle g_{1}} 3235: 3233:{\displaystyle f_{1}} 3208: 3172: 3003: 3001:{\displaystyle g_{1}} 2976: 2946: 2944:{\displaystyle g_{1}} 2915: 2875: 2768: 2713: 2639: 2597:multivariate division 2555: 2491: 2489:{\displaystyle q_{g}} 2453: 2260: 2093:is lead-reducible by 2022:multivariate division 1991: 1893:least common multiple 1878: 1736: 1709: 1603: 1564: 1500: 1439: 1381: 1311: 1211:Polynomial operations 1079: 1049: 973: 918: 872: 861:with coefficients in 841: 757: 677: 615: 557: 555:{\displaystyle a_{i}} 530: 455: 453:{\displaystyle M_{i}} 420: 418:{\displaystyle c_{i}} 393: 324: 241: 149:principal ideal rings 13469:Tools and algorithms 13389:Quintic function (5) 13377:Quartic function (4) 13314:polynomial functions 12358:principal ideal ring 12315: 12278: 12232: 12177: 12131: 12077: 11955: 11921: 11844: 11798: 11746: 11705: 11622: 11583: 11499: 11463: 11315:of these relations. 11289:Jean-Charles Faugère 11285:F4 and F5 algorithms 11183: 11156: 11134: 11107: 11087: 11049: 11018: 10983: 10868: 10819: 10815:and the coordinates 10773: 10769:Thus the parameters 10724: 10670: 10541: 10532:parametric equations 10530:may be described by 10447: 10443:and eliminating the 10366: 10329: 10299: 10250: 10197: 10151: 10088: 10040: 9984: 9950:It follows that, if 9906: 9782: 9752: 9718: 9664: 9630: 9600: 9512: 9404: 9299: 9181: 9120: 9084: 9040: 9004: 8831: 8822:parametric equations 8774: 8734: 8708: 8667: 8510: 8319: 8273: 8233: 8215:affine algebraic set 8196:elimination property 8160: 8113: 8074: 8039: 7992:{\displaystyle K=K,} 7892: 7855:{\displaystyle P(t)} 7837: 7823:{\displaystyle P(1)} 7805: 7794:{\displaystyle P(t)} 7776: 7663: 7629: 7571: 7514:and is equal to the 6919: 6857: 6822: 6788: 6703: 6628: 6549: 6506: 6451: 6410: 6369: 6326: 6302: 6282: 6202: 6031: 6007:{\displaystyle R/I.} 5987: 5979:form a basis of the 5791: 5628: 5418: 5039: 5009: 4880: 4821: 4794: 4734: 4427: 4397: 4370: 4343: 4316: 4286: 4189: 4139: 4112: 4085: 4041: 3997: 3954: 3869: 3823: 3789: 3581: 3544: 3363: 3331: 3301: 3271: 3244: 3217: 3184: 3026: 2985: 2955: 2928: 2894: 2777: 2722: 2648: 2619: 2500: 2473: 2400: 2385:is a normal form of 2159: 2077:if some monomial of 2014:Gaussian elimination 1924: 1779: 1718: 1612: 1585: 1533: 1448: 1390: 1320: 1250: 1131:Elimination ordering 1059: 1014: 927: 869: 792: 686: 628: 566: 539: 472: 437: 402: 333: 272: 189: 100:for linear systems. 98:Gaussian elimination 31:, and computational 13537:Commutative algebra 13399:Septic equation (7) 13394:Sextic equation (6) 13341:Linear function (1) 13090:ACM SIGSAM Bulletin 13006:2010SchpJ...5.7763B 12839:Li, Huishi (2011). 11417:real-root isolation 8770:, which means that 8419:Intersecting ideals 7482:for more details). 7223:, and proving that 6892:On the other hand, 6161:A Gröbner basis is 6137:A Gröbner basis is 6048:{\displaystyle R/I} 5841:{\displaystyle R=F} 4865:of two polynomials 3722: 3644: 3612: 3492: 3426: 3394: 3057: 2613:lexicographic order 2299:Given a finite set 1872: 1825: 1700: 1662: 1498:{\displaystyle B=.} 1375: 1350: 1305: 1280: 1181:leading coefficient 1090:admissible ordering 735: 710: 521: 496: 322:{\displaystyle R=K} 239:{\displaystyle R=K} 75:algebraic varieties 33:commutative algebra 13532:Algebraic geometry 13365:Cubic function (3) 13358:Quadratic equation 13253:Weisstein, Eric W. 12951:10.1007/BF01844169 12787:. pp. 361–5. 12339: 12301: 12264: 12218: 12173:with the ideal of 12163: 12109: 12063: 11933: 11873: 11830: 11784: 11728: 11685: 11608: 11546: 11485: 11244:modular arithmetic 11189: 11169: 11140: 11120: 11093: 11062: 11031: 10996: 10965: 10851: 10805: 10759: 10702: 10653: 10651: 10460: 10433: 10345: 10315: 10282: 10232: 10183: 10115: 10070: 10003: 9940: 9861: 9768: 9734: 9677: 9646: 9616: 9566: 9442: 9386: 9274: 9164:implicit equations 9142: 9106: 9062: 9026: 8987: 8985: 8820:that has a set of 8795: 8746: 8720: 8694: 8625: 8404: 8305: 8257: 8203:algebraic geometry 8181: 8134: 8095: 8060: 7989: 7883:elimination theory 7852: 7820: 7791: 7755: 7642: 7615: 7263:Equality of ideals 7185: 7183: 6875: 6843: 6809: 6715: 6686: 6588: 6533: 6476: 6435: 6393: 6355: 6320: 6308: 6288: 6210: 6057:modular arithmetic 6045: 6004: 5902:or, equivalently, 5838: 5762: 5570: 5386: 5381: 5022: 4979: 4873:is the polynomial 4837: 4807: 4776: 4716: 4410: 4383: 4356: 4329: 4302: 4265: 4165: 4125: 4108:can be reduced to 4098: 4067: 4023: 3993:This implies that 3983: 3950:may be reduced to 3919: 3855: 3802: 3785:Again, the result 3772: 3557: 3527: 3347: 3317: 3287: 3257: 3230: 3203: 3167: 2998: 2971: 2941: 2910: 2870: 2868: 2763: 2708: 2634: 2574:Euclidean division 2550: 2486: 2465:is irreducible by 2448: 2430: 2255: 2138:one-step reduction 1986: 1873: 1829: 1782: 1731: 1704: 1666: 1628: 1598: 1559: 1495: 1437:{\displaystyle A=} 1434: 1376: 1354: 1329: 1306: 1284: 1259: 1123:, commonly called 1109:, commonly called 1074: 1044: 968: 913: 852:ideal generated by 836: 752: 714: 689: 675:{\displaystyle X=} 672: 613:{\displaystyle A=} 610: 552: 525: 500: 475: 450: 415: 388: 319: 259:field of rationals 236: 90:Euclid's algorithm 29:algebraic geometry 13552:Rewriting systems 13519: 13518: 13460:Quasi-homogeneous 13223:978-3-540-45654-4 13118:(1962), 292–296). 13045:(November 2005). 12980:978-0-521-63298-0 12926:Buchberger, Bruno 12882:Buchberger, Bruno 12854:978-981-4365-13-0 12794:978-3-540-93805-7 12731:10.1109/18.333885 12451:978-3-540-12868-7 12274:and the products 12221:{\displaystyle R} 11888:EXPSPACE-complete 11886:Gröbner basis is 11740:little o notation 11558:homogeneous ideal 11269:monomial ordering 11221:memory management 11192:{\displaystyle G} 11143:{\displaystyle G} 11096:{\displaystyle I} 10644: 10587: 10484:algebraic closure 10132:Instead of using 9188: 8978: 8899: 8107:elimination ideal 7750: 7418:zero of the ideal 7253:monomial ordering 6311:{\displaystyle g} 6291:{\displaystyle f} 6264:monic polynomials 5753: 5698: 5561: 5528: 5497: 5464: 5373: 5340: 5309: 5276: 5233: 5200: 5145: 5112: 4704: 4648: 4587: 4505: 3723: 3645: 3613: 3493: 3427: 3395: 3180:The leading term 3058: 2890:The leading term 2415: 2339:by an element of 2246: 2221: 2128:is a multiple of 2065:. The polynomial 2057:is a multiple of 1981: 1729: 1623: 1596: 981:Monomial ordering 766:monomial ordering 63:algebraic variety 13559: 13547:Invariant theory 13542:Computer algebra 13382:Quartic equation 13303: 13296: 13289: 13280: 13279: 13266: 13265: 13247:Bruno Buchberger 13236: 13227: 13209: 13199: 13168: 13158: 13148: 13113: 13087: 13077: 13071: 13063: 13051: 13043:Sturmfels, Bernd 13038: 13019: 13017: 12984: 12962: 12934: 12921: 12919: 12896:— (2006). 12894: 12892: 12877: 12858: 12845:World Scientific 12835: 12799: 12798: 12776: 12770: 12769: 12741: 12735: 12734: 12708: 12702: 12701: 12700: 12675: 12669: 12668: 12662: 12654: 12644: 12626: 12617: 12616: 12606: 12596: 12569: 12563: 12562: 12560: 12536: 12530: 12529: 12510:; Little, John; 12504: 12498: 12497: 12471: 12462: 12456: 12455: 12434:Computer Algebra 12426: 12352: 12348: 12346: 12345: 12340: 12310: 12308: 12307: 12302: 12300: 12299: 12290: 12289: 12273: 12271: 12270: 12265: 12263: 12262: 12244: 12243: 12227: 12225: 12224: 12219: 12214: 12213: 12195: 12194: 12172: 12170: 12169: 12164: 12162: 12161: 12143: 12142: 12126: 12118: 12116: 12115: 12110: 12108: 12107: 12089: 12088: 12072: 12070: 12069: 12064: 12062: 12058: 12033: 12028: 12027: 12018: 12017: 12000: 11992: 11991: 11973: 11972: 11950: 11946: 11942: 11940: 11939: 11934: 11913: 11909: 11882: 11880: 11879: 11874: 11872: 11871: 11870: 11869: 11839: 11837: 11836: 11831: 11826: 11825: 11824: 11823: 11793: 11791: 11790: 11785: 11780: 11779: 11778: 11777: 11737: 11735: 11734: 11729: 11724: 11723: 11722: 11721: 11700: 11694: 11692: 11691: 11686: 11681: 11680: 11659: 11658: 11640: 11639: 11617: 11615: 11614: 11609: 11601: 11600: 11578: 11563: 11555: 11553: 11552: 11547: 11542: 11541: 11517: 11516: 11494: 11492: 11491: 11486: 11481: 11480: 11458: 11450: 11446: 11324:regular sequence 11213:Bruno Buchberger 11198: 11196: 11195: 11190: 11178: 11176: 11175: 11170: 11168: 11167: 11149: 11147: 11146: 11141: 11129: 11127: 11126: 11121: 11119: 11118: 11102: 11100: 11099: 11094: 11071: 11069: 11068: 11063: 11061: 11060: 11040: 11038: 11037: 11032: 11030: 11029: 11005: 11003: 11002: 10997: 10995: 10994: 10974: 10972: 10971: 10966: 10961: 10957: 10956: 10955: 10943: 10942: 10933: 10932: 10914: 10913: 10901: 10900: 10891: 10890: 10860: 10858: 10857: 10852: 10850: 10849: 10831: 10830: 10814: 10812: 10811: 10806: 10804: 10803: 10785: 10784: 10768: 10766: 10765: 10760: 10755: 10754: 10736: 10735: 10711: 10709: 10708: 10703: 10701: 10700: 10682: 10681: 10662: 10660: 10659: 10654: 10652: 10645: 10643: 10642: 10633: 10632: 10623: 10614: 10613: 10592: 10588: 10586: 10585: 10576: 10575: 10566: 10557: 10556: 10524:rational variety 10469: 10467: 10466: 10461: 10459: 10458: 10442: 10440: 10439: 10434: 10429: 10428: 10419: 10418: 10394: 10393: 10384: 10383: 10354: 10352: 10351: 10346: 10341: 10340: 10324: 10322: 10321: 10316: 10311: 10310: 10291: 10289: 10288: 10283: 10281: 10280: 10268: 10267: 10241: 10239: 10238: 10233: 10228: 10227: 10215: 10214: 10192: 10190: 10189: 10184: 10182: 10181: 10163: 10162: 10124: 10122: 10121: 10116: 10079: 10077: 10076: 10071: 10012: 10010: 10009: 10004: 10002: 10001: 9964: 9949: 9947: 9946: 9941: 9924: 9923: 9893: 9889: 9882: 9870: 9868: 9867: 9862: 9848: 9847: 9835: 9800: 9799: 9778:It is the ideal 9777: 9775: 9774: 9769: 9764: 9763: 9743: 9741: 9740: 9735: 9730: 9729: 9709: 9702:with respect to 9700: 9699: 9686: 9684: 9683: 9678: 9676: 9675: 9655: 9653: 9652: 9647: 9642: 9641: 9625: 9623: 9622: 9617: 9612: 9611: 9591: 9575: 9573: 9572: 9567: 9544: 9524: 9523: 9479:This is done by 9451: 9449: 9448: 9443: 9438: 9437: 9425: 9424: 9395: 9393: 9392: 9387: 9379: 9378: 9366: 9365: 9356: 9355: 9337: 9336: 9324: 9323: 9314: 9313: 9283: 9281: 9280: 9275: 9267: 9266: 9254: 9253: 9244: 9243: 9231: 9230: 9218: 9217: 9208: 9207: 9195: 9194: 9189: 9186: 9151: 9149: 9148: 9143: 9132: 9131: 9115: 9113: 9112: 9107: 9096: 9095: 9071: 9069: 9068: 9063: 9052: 9051: 9035: 9033: 9032: 9027: 9016: 9015: 8996: 8994: 8993: 8988: 8986: 8979: 8977: 8967: 8966: 8956: 8946: 8945: 8935: 8926: 8925: 8904: 8900: 8898: 8888: 8887: 8877: 8867: 8866: 8856: 8847: 8846: 8804: 8802: 8801: 8796: 8769: 8755: 8753: 8752: 8747: 8729: 8727: 8726: 8721: 8703: 8701: 8700: 8695: 8647: 8638:In other words, 8634: 8632: 8631: 8626: 8618: 8617: 8584: 8583: 8556: 8555: 8534: 8533: 8498: 8472: 8430: 8426: 8413: 8411: 8410: 8405: 8397: 8396: 8378: 8377: 8353: 8352: 8334: 8333: 8314: 8312: 8311: 8306: 8304: 8303: 8285: 8284: 8266: 8264: 8263: 8258: 8190: 8188: 8187: 8182: 8155: 8149: 8143: 8141: 8140: 8135: 8104: 8102: 8101: 8096: 8069: 8067: 8066: 8061: 7998: 7996: 7995: 7990: 7961: 7960: 7942: 7941: 7929: 7928: 7910: 7909: 7861: 7859: 7858: 7853: 7829: 7827: 7826: 7821: 7800: 7798: 7797: 7792: 7764: 7762: 7761: 7756: 7751: 7749: 7748: 7747: 7725: 7711: 7706: 7705: 7696: 7695: 7685: 7680: 7651: 7649: 7648: 7643: 7641: 7640: 7624: 7622: 7621: 7616: 7614: 7613: 7604: 7603: 7593: 7588: 7528:general position 7518:of the zeros of 7392: 7369: 7365: 7361: 7350: 7346: 7328: 7317: 7306: 7295: 7284:of a polynomial 7238: 7222: 7218: 7211: 7207: 7194: 7192: 7191: 7186: 7184: 7119: 7118: 7103: 7102: 7074: 7073: 6963: 6962: 6911: 6907: 6888: 6884: 6882: 6881: 6876: 6852: 6850: 6849: 6844: 6818: 6816: 6815: 6810: 6783: 6779: 6775: 6762: 6750: 6738: 6724: 6722: 6721: 6716: 6695: 6693: 6692: 6687: 6676: 6675: 6620: 6616: 6613:is reducible by 6612: 6608: 6604: 6597: 6595: 6594: 6589: 6542: 6540: 6539: 6534: 6501: 6497: 6493: 6485: 6483: 6482: 6477: 6469: 6468: 6444: 6442: 6441: 6436: 6428: 6427: 6402: 6400: 6399: 6394: 6364: 6362: 6361: 6356: 6339: 6317: 6315: 6314: 6309: 6297: 6295: 6294: 6289: 6254: 6222:rational numbers 6219: 6217: 6216: 6211: 6209: 6183: 6179: 6172: 6167: 6166: 6152: 6148: 6143: 6142: 6101: 6097: 6089: 6085: 6074: 6070: 6054: 6052: 6051: 6046: 6041: 6021:ideal membership 6013: 6011: 6010: 6005: 5997: 5982: 5978: 5971: 5964: 5960: 5956: 5952: 5948: 5941: 5937: 5933: 5929: 5914: 5910: 5897: 5893: 5885: 5881: 5877: 5866: 5862: 5855: 5847: 5845: 5844: 5839: 5834: 5833: 5815: 5814: 5771: 5769: 5768: 5763: 5754: 5752: 5741: 5724: 5699: 5697: 5686: 5669: 5609: 5605: 5601: 5594: 5590: 5586: 5579: 5577: 5576: 5571: 5562: 5560: 5549: 5532: 5529: 5527: 5507: 5498: 5496: 5485: 5468: 5465: 5463: 5443: 5406: 5402: 5395: 5393: 5392: 5387: 5382: 5374: 5372: 5355: 5344: 5341: 5339: 5319: 5310: 5308: 5291: 5280: 5277: 5275: 5255: 5247: 5243: 5239: 5234: 5232: 5215: 5204: 5201: 5199: 5179: 5174: 5155: 5151: 5146: 5144: 5127: 5116: 5113: 5111: 5091: 5086: 5031: 5029: 5028: 5023: 5021: 5020: 5004: 5000: 4996: 4988: 4986: 4985: 4980: 4969: 4952: 4951: 4930: 4913: 4912: 4872: 4868: 4846: 4844: 4843: 4838: 4833: 4832: 4816: 4814: 4813: 4808: 4806: 4805: 4789: 4785: 4783: 4782: 4777: 4772: 4771: 4759: 4758: 4746: 4745: 4725: 4723: 4722: 4717: 4715: 4714: 4705: 4703: 4699: 4698: 4679: 4675: 4674: 4664: 4659: 4658: 4649: 4647: 4643: 4642: 4623: 4619: 4618: 4608: 4603: 4599: 4598: 4597: 4588: 4586: 4582: 4581: 4562: 4558: 4557: 4547: 4539: 4538: 4521: 4517: 4516: 4515: 4506: 4504: 4500: 4499: 4480: 4476: 4475: 4465: 4457: 4456: 4439: 4438: 4419: 4417: 4416: 4411: 4409: 4408: 4392: 4390: 4389: 4384: 4382: 4381: 4365: 4363: 4362: 4357: 4355: 4354: 4338: 4336: 4335: 4330: 4328: 4327: 4311: 4309: 4308: 4303: 4298: 4297: 4281: 4274: 4272: 4271: 4266: 4255: 4254: 4233: 4232: 4217: 4216: 4201: 4200: 4181: 4174: 4172: 4171: 4166: 4164: 4163: 4151: 4150: 4134: 4132: 4131: 4126: 4124: 4123: 4107: 4105: 4104: 4099: 4097: 4096: 4080: 4076: 4074: 4073: 4068: 4066: 4065: 4053: 4052: 4036: 4032: 4030: 4029: 4024: 4022: 4021: 4009: 4008: 3992: 3990: 3989: 3984: 3979: 3978: 3966: 3965: 3949: 3938: 3928: 3926: 3925: 3920: 3906: 3905: 3881: 3880: 3864: 3862: 3861: 3856: 3848: 3847: 3835: 3834: 3818: 3811: 3809: 3808: 3803: 3801: 3800: 3781: 3779: 3778: 3773: 3759: 3758: 3734: 3733: 3721: 3720: 3701: 3690: 3689: 3665: 3664: 3643: 3642: 3626: 3624: 3623: 3611: 3610: 3588: 3570: 3566: 3564: 3563: 3558: 3556: 3555: 3536: 3534: 3533: 3528: 3517: 3516: 3504: 3503: 3491: 3490: 3471: 3460: 3459: 3447: 3446: 3425: 3424: 3408: 3406: 3405: 3393: 3392: 3370: 3356: 3354: 3353: 3348: 3343: 3342: 3326: 3324: 3323: 3318: 3313: 3312: 3296: 3294: 3293: 3288: 3283: 3282: 3266: 3264: 3263: 3258: 3256: 3255: 3239: 3237: 3236: 3231: 3229: 3228: 3212: 3210: 3209: 3204: 3199: 3198: 3176: 3174: 3173: 3168: 3154: 3153: 3132: 3131: 3110: 3109: 3094: 3093: 3069: 3068: 3056: 3055: 3033: 3018: 3014: 3007: 3005: 3004: 2999: 2997: 2996: 2980: 2978: 2977: 2972: 2967: 2966: 2950: 2948: 2947: 2942: 2940: 2939: 2924:is reducible by 2923: 2919: 2917: 2916: 2911: 2909: 2908: 2885: 2879: 2877: 2876: 2871: 2869: 2846: 2845: 2823: 2822: 2810: 2809: 2793: 2792: 2772: 2770: 2769: 2764: 2756: 2755: 2743: 2742: 2717: 2715: 2714: 2709: 2698: 2697: 2682: 2681: 2669: 2668: 2643: 2641: 2640: 2635: 2594: 2583: 2579: 2571: 2567: 2563: 2559: 2557: 2556: 2551: 2521: 2520: 2495: 2493: 2492: 2487: 2485: 2484: 2468: 2464: 2457: 2455: 2454: 2449: 2440: 2439: 2429: 2392: 2388: 2384: 2377: 2373: 2369: 2365: 2357: 2353: 2349: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2306: 2302: 2295: 2287: 2279: 2275: 2271: 2264: 2262: 2261: 2256: 2247: 2245: 2225: 2222: 2220: 2200: 2171: 2170: 2151: 2147: 2143: 2135: 2127: 2123: 2119: 2115: 2107: 2100: 2096: 2092: 2088: 2080: 2076: 2068: 2064: 2056: 2048: 2040: 1995: 1993: 1992: 1987: 1982: 1980: 1960: 1952: 1913: 1909: 1905: 1890: 1886: 1882: 1880: 1879: 1874: 1871: 1867: 1866: 1854: 1853: 1837: 1824: 1820: 1819: 1807: 1806: 1790: 1775:is the monomial 1774: 1770: 1766: 1748: 1744: 1740: 1738: 1737: 1732: 1730: 1722: 1713: 1711: 1710: 1705: 1699: 1698: 1697: 1685: 1684: 1674: 1661: 1660: 1659: 1647: 1646: 1636: 1624: 1616: 1607: 1605: 1604: 1599: 1597: 1589: 1580: 1576: 1572: 1568: 1566: 1565: 1560: 1558: 1557: 1545: 1544: 1528: 1520: 1516: 1510: 1504: 1502: 1501: 1496: 1488: 1487: 1469: 1468: 1443: 1441: 1440: 1435: 1430: 1429: 1411: 1410: 1385: 1383: 1382: 1377: 1374: 1373: 1372: 1362: 1349: 1348: 1347: 1337: 1315: 1313: 1312: 1307: 1304: 1303: 1302: 1292: 1279: 1278: 1277: 1267: 1236: 1232: 1202: 1194: 1177:leading monomial 1170: 1150:Basic operations 1083: 1081: 1080: 1075: 1053: 1051: 1050: 1045: 1006: 1002: 998: 977: 975: 974: 969: 958: 957: 939: 938: 922: 920: 919: 914: 912: 911: 902: 901: 891: 886: 864: 860: 856: 849: 845: 843: 842: 837: 832: 831: 813: 812: 761: 759: 758: 753: 748: 747: 734: 733: 732: 722: 709: 708: 707: 697: 681: 679: 678: 673: 668: 667: 649: 648: 619: 617: 616: 611: 606: 605: 587: 586: 561: 559: 558: 553: 551: 550: 534: 532: 531: 526: 520: 519: 518: 508: 495: 494: 493: 483: 459: 457: 456: 451: 449: 448: 428: 424: 422: 421: 416: 414: 413: 397: 395: 394: 389: 384: 383: 374: 373: 355: 354: 345: 344: 328: 326: 325: 320: 315: 314: 296: 295: 256: 252: 245: 243: 242: 237: 232: 231: 213: 212: 153:polynomial rings 138:Heisuke Hironaka 113:Wolfgang Gröbner 105:Bruno Buchberger 60: 51: 27:, computational 25:computer algebra 13567: 13566: 13562: 13561: 13560: 13558: 13557: 13556: 13522: 13521: 13520: 13515: 13464: 13403: 13346:Linear equation 13316: 13307: 13256:"Gröbner Basis" 13224: 13207: 13186:"Gröbner basis" 13184: 13176: 13139:(11): 5171–92. 13085: 13065: 13064: 13049: 13035: 12990:"Gröbner Bases" 12981: 12932: 12890: 12874: 12855: 12832: 12820:. Vol. 3. 12808: 12806:Further reading 12803: 12802: 12795: 12777: 12773: 12742: 12738: 12709: 12705: 12676: 12672: 12659:cite conference 12656: 12655: 12627: 12620: 12570: 12566: 12537: 12533: 12526: 12505: 12501: 12469: 12463: 12459: 12452: 12427: 12418: 12413: 12384: 12375: 12370: 12350: 12316: 12313: 12312: 12295: 12291: 12285: 12281: 12279: 12276: 12275: 12258: 12254: 12239: 12235: 12233: 12230: 12229: 12209: 12205: 12190: 12186: 12178: 12175: 12174: 12157: 12153: 12138: 12134: 12132: 12129: 12128: 12124: 12103: 12099: 12084: 12080: 12078: 12075: 12074: 12029: 12023: 12019: 12013: 12009: 12005: 12001: 11996: 11987: 11983: 11968: 11964: 11956: 11953: 11952: 11948: 11944: 11922: 11919: 11918: 11911: 11907: 11896: 11894:Generalizations 11856: 11852: 11851: 11847: 11845: 11842: 11841: 11810: 11806: 11805: 11801: 11799: 11796: 11795: 11758: 11754: 11753: 11749: 11747: 11744: 11743: 11717: 11713: 11712: 11708: 11706: 11703: 11702: 11698: 11667: 11663: 11645: 11641: 11635: 11631: 11623: 11620: 11619: 11596: 11592: 11584: 11581: 11580: 11573: 11561: 11528: 11524: 11512: 11508: 11500: 11497: 11496: 11476: 11472: 11464: 11461: 11460: 11456: 11448: 11444: 11437: 11206: 11184: 11181: 11180: 11163: 11159: 11157: 11154: 11153: 11135: 11132: 11131: 11114: 11110: 11108: 11105: 11104: 11088: 11085: 11084: 11056: 11052: 11050: 11047: 11046: 11025: 11021: 11019: 11016: 11015: 10990: 10986: 10984: 10981: 10980: 10951: 10947: 10938: 10934: 10928: 10924: 10909: 10905: 10896: 10892: 10886: 10882: 10881: 10877: 10869: 10866: 10865: 10845: 10841: 10826: 10822: 10820: 10817: 10816: 10799: 10795: 10780: 10776: 10774: 10771: 10770: 10750: 10746: 10731: 10727: 10725: 10722: 10721: 10696: 10692: 10677: 10673: 10671: 10668: 10667: 10650: 10649: 10638: 10634: 10628: 10624: 10622: 10615: 10609: 10605: 10602: 10601: 10590: 10589: 10581: 10577: 10571: 10567: 10565: 10558: 10552: 10548: 10544: 10542: 10539: 10538: 10520: 10477: 10454: 10450: 10448: 10445: 10444: 10424: 10420: 10414: 10410: 10389: 10385: 10379: 10375: 10367: 10364: 10363: 10336: 10332: 10330: 10327: 10326: 10306: 10302: 10300: 10297: 10296: 10276: 10272: 10263: 10259: 10251: 10248: 10247: 10223: 10219: 10210: 10206: 10198: 10195: 10194: 10177: 10173: 10158: 10154: 10152: 10149: 10148: 10089: 10086: 10085: 10041: 10038: 10037: 10022: 9997: 9993: 9985: 9982: 9981: 9962: 9919: 9915: 9907: 9904: 9903: 9891: 9887: 9880: 9843: 9839: 9831: 9795: 9791: 9783: 9780: 9779: 9759: 9755: 9753: 9750: 9749: 9725: 9721: 9719: 9716: 9715: 9707: 9697: 9696: 9671: 9667: 9665: 9662: 9661: 9637: 9633: 9631: 9628: 9627: 9607: 9603: 9601: 9598: 9597: 9589: 9540: 9519: 9515: 9513: 9510: 9509: 9489: 9462: 9433: 9429: 9420: 9416: 9405: 9402: 9401: 9374: 9370: 9361: 9357: 9351: 9347: 9332: 9328: 9319: 9315: 9309: 9305: 9300: 9297: 9296: 9262: 9258: 9249: 9245: 9239: 9235: 9226: 9222: 9213: 9209: 9203: 9199: 9190: 9185: 9184: 9182: 9179: 9178: 9160:Implicitization 9127: 9123: 9121: 9118: 9117: 9091: 9087: 9085: 9082: 9081: 9047: 9043: 9041: 9038: 9037: 9011: 9007: 9005: 9002: 9001: 8984: 8983: 8962: 8958: 8957: 8941: 8937: 8936: 8934: 8927: 8921: 8917: 8914: 8913: 8902: 8901: 8883: 8879: 8878: 8862: 8858: 8857: 8855: 8848: 8842: 8838: 8834: 8832: 8829: 8828: 8818:algebraic curve 8810: 8775: 8772: 8771: 8761: 8760:if and only if 8735: 8732: 8731: 8709: 8706: 8705: 8668: 8665: 8664: 8648:is obtained by 8639: 8613: 8609: 8579: 8575: 8551: 8547: 8529: 8525: 8511: 8508: 8507: 8490: 8464: 8462: 8453: 8446: 8437: 8428: 8424: 8421: 8392: 8388: 8367: 8363: 8348: 8344: 8329: 8325: 8320: 8317: 8316: 8299: 8295: 8280: 8276: 8274: 8271: 8270: 8234: 8231: 8230: 8219:Zariski closure 8161: 8158: 8157: 8151: 8145: 8114: 8111: 8110: 8075: 8072: 8071: 8040: 8037: 8036: 7956: 7952: 7937: 7933: 7924: 7920: 7905: 7901: 7893: 7890: 7889: 7875: 7838: 7835: 7834: 7806: 7803: 7802: 7777: 7774: 7773: 7743: 7739: 7726: 7712: 7710: 7701: 7697: 7691: 7687: 7681: 7670: 7664: 7661: 7660: 7636: 7632: 7630: 7627: 7626: 7609: 7605: 7599: 7595: 7589: 7578: 7572: 7569: 7568: 7504:Krull dimension 7488: 7405: 7399: 7390: 7381: 7374: 7371: 7367: 7363: 7360: 7359: 7355: 7352: 7348: 7345: 7336: 7330: 7326: 7308: 7304: 7293: 7278: 7265: 7249: 7224: 7220: 7216: 7209: 7199: 7182: 7181: 7123: 7114: 7110: 7098: 7094: 7091: 7090: 7069: 7065: 7028: 7010: 7009: 6958: 6954: 6941: 6922: 6920: 6917: 6916: 6909: 6893: 6886: 6858: 6855: 6854: 6823: 6820: 6819: 6789: 6786: 6785: 6781: 6777: 6767: 6753: 6741: 6729: 6704: 6701: 6700: 6671: 6667: 6629: 6626: 6625: 6618: 6614: 6610: 6606: 6602: 6550: 6547: 6546: 6507: 6504: 6503: 6499: 6495: 6491: 6464: 6460: 6452: 6449: 6448: 6423: 6419: 6411: 6408: 6407: 6370: 6367: 6366: 6335: 6327: 6324: 6323: 6303: 6300: 6299: 6283: 6280: 6279: 6272: 6252: 6234: 6205: 6203: 6200: 6199: 6181: 6177: 6170: 6164: 6163: 6150: 6146: 6140: 6139: 6135: 6107:Dickson's lemma 6099: 6095: 6087: 6083: 6072: 6068: 6065: 6037: 6032: 6029: 6028: 6016: 5993: 5988: 5985: 5984: 5980: 5976: 5969: 5962: 5958: 5954: 5953:of elements of 5950: 5946: 5939: 5935: 5931: 5927: 5918: 5912: 5908: 5895: 5891: 5883: 5879: 5875: 5864: 5860: 5853: 5850:polynomial ring 5829: 5825: 5810: 5806: 5792: 5789: 5788: 5785: 5742: 5725: 5723: 5687: 5670: 5668: 5629: 5626: 5625: 5607: 5603: 5599: 5592: 5588: 5584: 5550: 5533: 5531: 5511: 5506: 5486: 5469: 5467: 5447: 5442: 5419: 5416: 5415: 5404: 5400: 5380: 5379: 5356: 5345: 5343: 5323: 5318: 5292: 5281: 5279: 5259: 5254: 5245: 5244: 5216: 5205: 5203: 5183: 5178: 5164: 5163: 5159: 5128: 5117: 5115: 5095: 5090: 5076: 5075: 5071: 5064: 5042: 5040: 5037: 5036: 5016: 5012: 5010: 5007: 5006: 5002: 4998: 4994: 4959: 4947: 4943: 4920: 4908: 4904: 4881: 4878: 4877: 4870: 4866: 4855: 4828: 4824: 4822: 4819: 4818: 4801: 4797: 4795: 4792: 4791: 4787: 4767: 4763: 4754: 4750: 4741: 4737: 4735: 4732: 4731: 4710: 4706: 4694: 4690: 4680: 4670: 4666: 4665: 4663: 4654: 4650: 4638: 4634: 4624: 4614: 4610: 4609: 4607: 4593: 4589: 4577: 4573: 4563: 4553: 4549: 4548: 4546: 4534: 4530: 4529: 4525: 4511: 4507: 4495: 4491: 4481: 4471: 4467: 4466: 4464: 4452: 4448: 4447: 4443: 4434: 4430: 4428: 4425: 4424: 4404: 4400: 4398: 4395: 4394: 4377: 4373: 4371: 4368: 4367: 4350: 4346: 4344: 4341: 4340: 4323: 4319: 4317: 4314: 4313: 4293: 4289: 4287: 4284: 4283: 4279: 4250: 4246: 4228: 4224: 4212: 4208: 4196: 4192: 4190: 4187: 4186: 4182:the polynomial 4179: 4159: 4155: 4146: 4142: 4140: 4137: 4136: 4119: 4115: 4113: 4110: 4109: 4092: 4088: 4086: 4083: 4082: 4078: 4061: 4057: 4048: 4044: 4042: 4039: 4038: 4034: 4017: 4013: 4004: 4000: 3998: 3995: 3994: 3974: 3970: 3961: 3957: 3955: 3952: 3951: 3940: 3936: 3901: 3897: 3876: 3872: 3870: 3867: 3866: 3843: 3839: 3830: 3826: 3824: 3821: 3820: 3816: 3796: 3792: 3790: 3787: 3786: 3754: 3750: 3729: 3725: 3716: 3712: 3685: 3681: 3660: 3656: 3638: 3634: 3619: 3615: 3606: 3602: 3582: 3579: 3578: 3568: 3551: 3547: 3545: 3542: 3541: 3512: 3508: 3499: 3495: 3486: 3482: 3455: 3451: 3442: 3438: 3420: 3416: 3401: 3397: 3388: 3384: 3364: 3361: 3360: 3338: 3334: 3332: 3329: 3328: 3308: 3304: 3302: 3299: 3298: 3278: 3274: 3272: 3269: 3268: 3251: 3247: 3245: 3242: 3241: 3224: 3220: 3218: 3215: 3214: 3194: 3190: 3185: 3182: 3181: 3149: 3145: 3127: 3123: 3105: 3101: 3089: 3085: 3064: 3060: 3051: 3047: 3027: 3024: 3023: 3016: 3009: 2992: 2988: 2986: 2983: 2982: 2962: 2958: 2956: 2953: 2952: 2935: 2931: 2929: 2926: 2925: 2921: 2904: 2900: 2895: 2892: 2891: 2883: 2867: 2866: 2847: 2841: 2837: 2834: 2833: 2818: 2814: 2805: 2801: 2794: 2788: 2784: 2780: 2778: 2775: 2774: 2751: 2747: 2738: 2734: 2723: 2720: 2719: 2693: 2689: 2677: 2673: 2664: 2660: 2649: 2646: 2645: 2620: 2617: 2616: 2605: 2593: 2585: 2581: 2577: 2569: 2565: 2561: 2516: 2512: 2501: 2498: 2497: 2480: 2476: 2474: 2471: 2470: 2466: 2462: 2435: 2431: 2419: 2401: 2398: 2397: 2390: 2386: 2382: 2375: 2371: 2367: 2363: 2355: 2351: 2347: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2304: 2300: 2289: 2285: 2277: 2273: 2269: 2229: 2224: 2204: 2199: 2166: 2162: 2160: 2157: 2156: 2149: 2145: 2141: 2129: 2125: 2121: 2117: 2113: 2105: 2098: 2094: 2090: 2082: 2078: 2074: 2066: 2058: 2050: 2046: 2038: 2002: 1961: 1953: 1951: 1925: 1922: 1921: 1911: 1907: 1895: 1888: 1884: 1862: 1858: 1849: 1845: 1838: 1833: 1815: 1811: 1802: 1798: 1791: 1786: 1780: 1777: 1776: 1772: 1768: 1756: 1746: 1742: 1721: 1719: 1716: 1715: 1693: 1689: 1680: 1676: 1675: 1670: 1655: 1651: 1642: 1638: 1637: 1632: 1615: 1613: 1610: 1609: 1588: 1586: 1583: 1582: 1578: 1574: 1570: 1553: 1549: 1540: 1536: 1534: 1531: 1530: 1526: 1518: 1514: 1508: 1483: 1479: 1464: 1460: 1449: 1446: 1445: 1425: 1421: 1406: 1402: 1391: 1388: 1387: 1368: 1364: 1363: 1358: 1343: 1339: 1338: 1333: 1321: 1318: 1317: 1298: 1294: 1293: 1288: 1273: 1269: 1268: 1263: 1251: 1248: 1247: 1244: 1234: 1230: 1213: 1196: 1184: 1168: 1157: 1152: 1060: 1057: 1056: 1015: 1012: 1011: 1004: 1000: 996: 989: 983: 953: 949: 934: 930: 928: 925: 924: 907: 903: 897: 893: 887: 876: 870: 867: 866: 862: 858: 854: 847: 827: 823: 808: 804: 793: 790: 789: 743: 739: 728: 724: 723: 718: 703: 699: 698: 693: 687: 684: 683: 663: 659: 644: 640: 629: 626: 625: 622:exponent vector 601: 597: 582: 578: 567: 564: 563: 546: 542: 540: 537: 536: 514: 510: 509: 504: 489: 485: 484: 479: 473: 470: 469: 444: 440: 438: 435: 434: 426: 409: 405: 403: 400: 399: 379: 375: 369: 365: 350: 346: 340: 336: 334: 331: 330: 310: 306: 291: 287: 273: 270: 269: 254: 250: 227: 223: 208: 204: 190: 187: 186: 184:polynomial ring 176: 174:Polynomial ring 170: 168:Polynomial ring 165: 125:Nikolai Günther 56: 47: 45:polynomial ring 17: 12: 11: 5: 13565: 13555: 13554: 13549: 13544: 13539: 13534: 13517: 13516: 13514: 13513: 13508: 13503: 13498: 13493: 13488: 13483: 13478: 13472: 13470: 13466: 13465: 13463: 13462: 13457: 13452: 13447: 13442: 13437: 13432: 13427: 13422: 13417: 13411: 13409: 13405: 13404: 13402: 13401: 13396: 13391: 13386: 13385: 13384: 13374: 13373: 13372: 13370:Cubic equation 13362: 13361: 13360: 13350: 13349: 13348: 13338: 13333: 13327: 13325: 13318: 13317: 13306: 13305: 13298: 13291: 13283: 13277: 13276: 13267: 13248: 13242: 13237: 13228: 13222: 13200: 13182: 13175: 13174:External links 13172: 13171: 13170: 13119: 13078: 13039: 13033: 13020: 12985: 12979: 12922: 12878: 12872: 12859: 12853: 12836: 12830: 12807: 12804: 12801: 12800: 12793: 12771: 12752:(2): 147–158. 12736: 12725:(5): 1654–61. 12703: 12691:(3): 303–325, 12679:Mayr, Ernst W. 12670: 12618: 12564: 12531: 12524: 12499: 12457: 12450: 12430:Lazard, Daniel 12415: 12414: 12412: 12409: 12408: 12407: 12404:Regular chains 12401: 12396: 12391: 12383: 12380: 12374: 12371: 12369: 12366: 12338: 12335: 12332: 12329: 12326: 12323: 12320: 12298: 12294: 12288: 12284: 12261: 12257: 12253: 12250: 12247: 12242: 12238: 12217: 12212: 12208: 12204: 12201: 12198: 12193: 12189: 12185: 12182: 12160: 12156: 12152: 12149: 12146: 12141: 12137: 12119:is a basis of 12106: 12102: 12098: 12095: 12092: 12087: 12083: 12061: 12057: 12054: 12051: 12048: 12045: 12042: 12039: 12036: 12032: 12026: 12022: 12016: 12012: 12008: 12004: 11999: 11995: 11990: 11986: 11982: 11979: 11976: 11971: 11967: 11963: 11960: 11932: 11929: 11926: 11895: 11892: 11868: 11865: 11862: 11859: 11855: 11850: 11840:or containing 11829: 11822: 11819: 11816: 11813: 11809: 11804: 11783: 11776: 11773: 11770: 11767: 11764: 11761: 11757: 11752: 11727: 11720: 11716: 11711: 11684: 11679: 11676: 11673: 11670: 11666: 11662: 11657: 11654: 11651: 11648: 11644: 11638: 11634: 11630: 11627: 11607: 11604: 11599: 11595: 11591: 11588: 11566:linear algebra 11545: 11540: 11537: 11534: 11531: 11527: 11523: 11520: 11515: 11511: 11507: 11504: 11484: 11479: 11475: 11471: 11468: 11436: 11433: 11339:FGLM algorithm 11304:linear algebra 11277: 11276: 11265: 11262: 11255: 11252:Hensel lifting 11224: 11205: 11202: 11201: 11200: 11188: 11166: 11162: 11152:Eliminate the 11150: 11139: 11117: 11113: 11092: 11075:Therefore, if 11059: 11055: 11028: 11024: 10993: 10989: 10976: 10975: 10964: 10960: 10954: 10950: 10946: 10941: 10937: 10931: 10927: 10923: 10920: 10917: 10912: 10908: 10904: 10899: 10895: 10889: 10885: 10880: 10876: 10873: 10848: 10844: 10840: 10837: 10834: 10829: 10825: 10802: 10798: 10794: 10791: 10788: 10783: 10779: 10758: 10753: 10749: 10745: 10742: 10739: 10734: 10730: 10699: 10695: 10691: 10688: 10685: 10680: 10676: 10664: 10663: 10648: 10641: 10637: 10631: 10627: 10621: 10618: 10616: 10612: 10608: 10604: 10603: 10600: 10595: 10593: 10591: 10584: 10580: 10574: 10570: 10564: 10561: 10559: 10555: 10551: 10547: 10546: 10519: 10516: 10476: 10473: 10472: 10471: 10457: 10453: 10432: 10427: 10423: 10417: 10413: 10409: 10406: 10403: 10400: 10397: 10392: 10388: 10382: 10378: 10374: 10371: 10356: 10344: 10339: 10335: 10314: 10309: 10305: 10295:Saturating by 10293: 10279: 10275: 10271: 10266: 10262: 10258: 10255: 10246:Saturating by 10231: 10226: 10222: 10218: 10213: 10209: 10205: 10202: 10180: 10176: 10172: 10169: 10166: 10161: 10157: 10114: 10111: 10108: 10105: 10102: 10099: 10096: 10093: 10069: 10066: 10063: 10060: 10057: 10054: 10051: 10048: 10045: 10021: 10018: 10000: 9996: 9992: 9989: 9939: 9936: 9933: 9930: 9927: 9922: 9918: 9914: 9911: 9860: 9857: 9854: 9851: 9846: 9842: 9838: 9834: 9830: 9827: 9824: 9821: 9818: 9815: 9812: 9809: 9806: 9803: 9798: 9794: 9790: 9787: 9767: 9762: 9758: 9733: 9728: 9724: 9674: 9670: 9645: 9640: 9636: 9615: 9610: 9606: 9565: 9562: 9559: 9556: 9553: 9550: 9547: 9543: 9539: 9536: 9533: 9530: 9527: 9522: 9518: 9504:by an element 9488: 9485: 9461: 9458: 9441: 9436: 9432: 9428: 9423: 9419: 9415: 9412: 9409: 9385: 9382: 9377: 9373: 9369: 9364: 9360: 9354: 9350: 9346: 9343: 9340: 9335: 9331: 9327: 9322: 9318: 9312: 9308: 9304: 9285: 9284: 9273: 9270: 9265: 9261: 9257: 9252: 9248: 9242: 9238: 9234: 9229: 9225: 9221: 9216: 9212: 9206: 9202: 9198: 9193: 9141: 9138: 9135: 9130: 9126: 9105: 9102: 9099: 9094: 9090: 9061: 9058: 9055: 9050: 9046: 9025: 9022: 9019: 9014: 9010: 8998: 8997: 8982: 8976: 8973: 8970: 8965: 8961: 8955: 8952: 8949: 8944: 8940: 8933: 8930: 8928: 8924: 8920: 8916: 8915: 8912: 8907: 8905: 8903: 8897: 8894: 8891: 8886: 8882: 8876: 8873: 8870: 8865: 8861: 8854: 8851: 8849: 8845: 8841: 8837: 8836: 8814:rational curve 8809: 8806: 8794: 8791: 8788: 8785: 8782: 8779: 8745: 8742: 8739: 8719: 8716: 8713: 8693: 8690: 8687: 8684: 8681: 8678: 8675: 8672: 8636: 8635: 8624: 8621: 8616: 8612: 8608: 8605: 8602: 8599: 8596: 8593: 8590: 8587: 8582: 8578: 8574: 8571: 8568: 8565: 8562: 8559: 8554: 8550: 8546: 8543: 8540: 8537: 8532: 8528: 8524: 8521: 8518: 8515: 8458: 8451: 8442: 8435: 8420: 8417: 8403: 8400: 8395: 8391: 8387: 8384: 8381: 8376: 8373: 8370: 8366: 8362: 8359: 8356: 8351: 8347: 8343: 8340: 8337: 8332: 8328: 8324: 8302: 8298: 8294: 8291: 8288: 8283: 8279: 8256: 8253: 8250: 8247: 8244: 8241: 8238: 8180: 8177: 8174: 8171: 8168: 8165: 8133: 8130: 8127: 8124: 8121: 8118: 8094: 8091: 8088: 8085: 8082: 8079: 8059: 8056: 8053: 8050: 8047: 8044: 7988: 7985: 7982: 7979: 7976: 7973: 7970: 7967: 7964: 7959: 7955: 7951: 7948: 7945: 7940: 7936: 7932: 7927: 7923: 7919: 7916: 7913: 7908: 7904: 7900: 7897: 7874: 7871: 7851: 7848: 7845: 7842: 7819: 7816: 7813: 7810: 7790: 7787: 7784: 7781: 7766: 7765: 7754: 7746: 7742: 7738: 7735: 7732: 7729: 7724: 7721: 7718: 7715: 7709: 7704: 7700: 7694: 7690: 7684: 7679: 7676: 7673: 7669: 7639: 7635: 7612: 7608: 7602: 7598: 7592: 7587: 7584: 7581: 7577: 7565:Hilbert series 7487: 7484: 7470:of the ideal. 7401:Main article: 7398: 7395: 7386: 7379: 7372: 7357: 7356: 7353: 7341: 7334: 7298:if and only if 7277: 7274: 7264: 7261: 7248: 7245: 7196: 7195: 7180: 7177: 7174: 7171: 7168: 7165: 7162: 7159: 7156: 7153: 7150: 7147: 7144: 7141: 7138: 7135: 7132: 7129: 7126: 7124: 7122: 7117: 7113: 7109: 7106: 7101: 7097: 7093: 7092: 7089: 7086: 7083: 7080: 7077: 7072: 7068: 7064: 7061: 7058: 7055: 7052: 7049: 7046: 7043: 7040: 7037: 7034: 7031: 7029: 7027: 7024: 7021: 7018: 7015: 7012: 7011: 7008: 7005: 7002: 6999: 6996: 6993: 6990: 6987: 6984: 6981: 6978: 6975: 6972: 6969: 6966: 6961: 6957: 6953: 6950: 6947: 6944: 6942: 6940: 6937: 6934: 6931: 6928: 6925: 6924: 6874: 6871: 6868: 6865: 6862: 6842: 6839: 6836: 6833: 6830: 6827: 6808: 6805: 6802: 6799: 6796: 6793: 6764: 6763: 6751: 6739: 6714: 6711: 6708: 6697: 6696: 6685: 6682: 6679: 6674: 6670: 6666: 6663: 6660: 6657: 6654: 6651: 6648: 6645: 6642: 6639: 6636: 6633: 6599: 6598: 6587: 6584: 6581: 6578: 6575: 6572: 6569: 6566: 6563: 6560: 6557: 6554: 6532: 6529: 6526: 6523: 6520: 6517: 6514: 6511: 6488: 6487: 6475: 6472: 6467: 6463: 6459: 6456: 6446: 6434: 6431: 6426: 6422: 6418: 6415: 6392: 6389: 6386: 6383: 6380: 6377: 6374: 6354: 6351: 6348: 6345: 6342: 6338: 6334: 6331: 6307: 6287: 6278:The zeroes of 6271: 6268: 6233: 6230: 6208: 6134: 6131: 6064: 6061: 6044: 6040: 6036: 6015: 6014: 6003: 6000: 5996: 5992: 5983:-vector space 5973: 5966: 5965:produces zero; 5943: 5923: 5917: 5916: 5904: 5900: 5899: 5837: 5832: 5828: 5824: 5821: 5818: 5813: 5809: 5805: 5802: 5799: 5796: 5784: 5781: 5773: 5772: 5761: 5758: 5751: 5748: 5745: 5740: 5737: 5734: 5731: 5728: 5721: 5718: 5715: 5712: 5709: 5706: 5703: 5696: 5693: 5690: 5685: 5682: 5679: 5676: 5673: 5666: 5663: 5660: 5657: 5654: 5651: 5648: 5645: 5642: 5639: 5636: 5633: 5581: 5580: 5569: 5566: 5559: 5556: 5553: 5548: 5545: 5542: 5539: 5536: 5526: 5523: 5520: 5517: 5514: 5510: 5505: 5502: 5495: 5492: 5489: 5484: 5481: 5478: 5475: 5472: 5462: 5459: 5456: 5453: 5450: 5446: 5441: 5438: 5435: 5432: 5429: 5426: 5423: 5397: 5396: 5385: 5378: 5371: 5368: 5365: 5362: 5359: 5354: 5351: 5348: 5338: 5335: 5332: 5329: 5326: 5322: 5317: 5314: 5307: 5304: 5301: 5298: 5295: 5290: 5287: 5284: 5274: 5271: 5268: 5265: 5262: 5258: 5253: 5250: 5248: 5246: 5242: 5238: 5231: 5228: 5225: 5222: 5219: 5214: 5211: 5208: 5198: 5195: 5192: 5189: 5186: 5182: 5177: 5173: 5170: 5167: 5162: 5158: 5154: 5150: 5143: 5140: 5137: 5134: 5131: 5126: 5123: 5120: 5110: 5107: 5104: 5101: 5098: 5094: 5089: 5085: 5082: 5079: 5074: 5070: 5067: 5065: 5063: 5060: 5057: 5054: 5051: 5048: 5045: 5044: 5019: 5015: 4991: 4990: 4978: 4975: 4972: 4968: 4965: 4962: 4958: 4955: 4950: 4946: 4942: 4939: 4936: 4933: 4929: 4926: 4923: 4919: 4916: 4911: 4907: 4903: 4900: 4897: 4894: 4891: 4888: 4885: 4854: 4848: 4836: 4831: 4827: 4804: 4800: 4775: 4770: 4766: 4762: 4757: 4753: 4749: 4744: 4740: 4728: 4727: 4713: 4709: 4702: 4697: 4693: 4689: 4686: 4683: 4678: 4673: 4669: 4662: 4657: 4653: 4646: 4641: 4637: 4633: 4630: 4627: 4622: 4617: 4613: 4606: 4602: 4596: 4592: 4585: 4580: 4576: 4572: 4569: 4566: 4561: 4556: 4552: 4545: 4542: 4537: 4533: 4528: 4524: 4520: 4514: 4510: 4503: 4498: 4494: 4490: 4487: 4484: 4479: 4474: 4470: 4463: 4460: 4455: 4451: 4446: 4442: 4437: 4433: 4420:respectively: 4407: 4403: 4380: 4376: 4353: 4349: 4326: 4322: 4301: 4296: 4292: 4276: 4275: 4264: 4261: 4258: 4253: 4249: 4245: 4242: 4239: 4236: 4231: 4227: 4223: 4220: 4215: 4211: 4207: 4204: 4199: 4195: 4162: 4158: 4154: 4149: 4145: 4122: 4118: 4095: 4091: 4064: 4060: 4056: 4051: 4047: 4020: 4016: 4012: 4007: 4003: 3982: 3977: 3973: 3969: 3964: 3960: 3918: 3915: 3912: 3909: 3904: 3900: 3896: 3893: 3890: 3887: 3884: 3879: 3875: 3854: 3851: 3846: 3842: 3838: 3833: 3829: 3799: 3795: 3783: 3782: 3771: 3768: 3765: 3762: 3757: 3753: 3749: 3746: 3743: 3740: 3737: 3732: 3728: 3719: 3715: 3711: 3708: 3704: 3699: 3696: 3693: 3688: 3684: 3680: 3677: 3674: 3671: 3668: 3663: 3659: 3655: 3652: 3649: 3641: 3637: 3633: 3629: 3622: 3618: 3609: 3605: 3601: 3598: 3595: 3591: 3586: 3554: 3550: 3538: 3537: 3526: 3523: 3520: 3515: 3511: 3507: 3502: 3498: 3489: 3485: 3481: 3478: 3474: 3469: 3466: 3463: 3458: 3454: 3450: 3445: 3441: 3437: 3434: 3431: 3423: 3419: 3415: 3411: 3404: 3400: 3391: 3387: 3383: 3380: 3377: 3373: 3368: 3346: 3341: 3337: 3316: 3311: 3307: 3286: 3281: 3277: 3254: 3250: 3227: 3223: 3202: 3197: 3193: 3189: 3178: 3177: 3166: 3163: 3160: 3157: 3152: 3148: 3144: 3141: 3138: 3135: 3130: 3126: 3122: 3119: 3116: 3113: 3108: 3104: 3100: 3097: 3092: 3088: 3084: 3081: 3078: 3075: 3072: 3067: 3063: 3054: 3050: 3046: 3043: 3040: 3036: 3031: 2995: 2991: 2970: 2965: 2961: 2938: 2934: 2907: 2903: 2899: 2865: 2862: 2859: 2856: 2853: 2850: 2848: 2844: 2840: 2836: 2835: 2832: 2829: 2826: 2821: 2817: 2813: 2808: 2804: 2800: 2797: 2795: 2791: 2787: 2783: 2782: 2762: 2759: 2754: 2750: 2746: 2741: 2737: 2733: 2730: 2727: 2707: 2704: 2701: 2696: 2692: 2688: 2685: 2680: 2676: 2672: 2667: 2663: 2659: 2656: 2653: 2633: 2630: 2627: 2624: 2604: 2601: 2589: 2549: 2546: 2543: 2540: 2537: 2534: 2531: 2528: 2525: 2519: 2515: 2511: 2508: 2505: 2483: 2479: 2459: 2458: 2447: 2444: 2438: 2434: 2428: 2425: 2422: 2418: 2414: 2411: 2408: 2405: 2313:lead-reducible 2266: 2265: 2254: 2251: 2244: 2241: 2238: 2235: 2232: 2228: 2219: 2216: 2213: 2210: 2207: 2203: 2198: 2195: 2192: 2189: 2186: 2183: 2180: 2177: 2174: 2169: 2165: 2081:is a multiple 2043:lead-reducible 2028:Lead-reduction 2001: 1998: 1997: 1996: 1985: 1979: 1976: 1973: 1970: 1967: 1964: 1959: 1956: 1950: 1947: 1944: 1941: 1938: 1935: 1932: 1929: 1870: 1865: 1861: 1857: 1852: 1848: 1844: 1841: 1836: 1832: 1828: 1823: 1818: 1814: 1810: 1805: 1801: 1797: 1794: 1789: 1785: 1728: 1725: 1703: 1696: 1692: 1688: 1683: 1679: 1673: 1669: 1665: 1658: 1654: 1650: 1645: 1641: 1635: 1631: 1627: 1622: 1619: 1608:is defined as 1595: 1592: 1573:; that is, if 1556: 1552: 1548: 1543: 1539: 1507:One says that 1494: 1491: 1486: 1482: 1478: 1475: 1472: 1467: 1463: 1459: 1456: 1453: 1433: 1428: 1424: 1420: 1417: 1414: 1409: 1405: 1401: 1398: 1395: 1371: 1367: 1361: 1357: 1353: 1346: 1342: 1336: 1332: 1328: 1325: 1301: 1297: 1291: 1287: 1283: 1276: 1272: 1266: 1262: 1258: 1255: 1243: 1240: 1239: 1238: 1227: 1224: 1212: 1209: 1156: 1153: 1151: 1148: 1139: 1138: 1128: 1118: 1086: 1085: 1073: 1070: 1067: 1064: 1054: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 987:Monomial order 985:Main article: 982: 979: 967: 964: 961: 956: 952: 948: 945: 942: 937: 933: 910: 906: 900: 896: 890: 885: 882: 879: 875: 835: 830: 826: 822: 819: 816: 811: 807: 803: 800: 797: 751: 746: 742: 738: 731: 727: 721: 717: 713: 706: 702: 696: 692: 671: 666: 662: 658: 655: 652: 647: 643: 639: 636: 633: 620:is called the 609: 604: 600: 596: 593: 590: 585: 581: 577: 574: 571: 549: 545: 524: 517: 513: 507: 503: 499: 492: 488: 482: 478: 466:power products 447: 443: 412: 408: 387: 382: 378: 372: 368: 364: 361: 358: 353: 349: 343: 339: 318: 313: 309: 305: 302: 299: 294: 290: 286: 283: 280: 277: 235: 230: 226: 222: 219: 216: 211: 207: 203: 200: 197: 194: 172:Main article: 169: 166: 164: 161: 142:standard bases 92:for computing 15: 9: 6: 4: 3: 2: 13564: 13553: 13550: 13548: 13545: 13543: 13540: 13538: 13535: 13533: 13530: 13529: 13527: 13512: 13511:Gröbner basis 13509: 13507: 13504: 13502: 13499: 13497: 13494: 13492: 13489: 13487: 13484: 13482: 13479: 13477: 13476:Factorization 13474: 13473: 13471: 13467: 13461: 13458: 13456: 13453: 13451: 13448: 13446: 13443: 13441: 13438: 13436: 13433: 13431: 13428: 13426: 13423: 13421: 13418: 13416: 13413: 13412: 13410: 13408:By properties 13406: 13400: 13397: 13395: 13392: 13390: 13387: 13383: 13380: 13379: 13378: 13375: 13371: 13368: 13367: 13366: 13363: 13359: 13356: 13355: 13354: 13351: 13347: 13344: 13343: 13342: 13339: 13337: 13334: 13332: 13329: 13328: 13326: 13324: 13319: 13315: 13311: 13304: 13299: 13297: 13292: 13290: 13285: 13284: 13281: 13275: 13271: 13268: 13263: 13262: 13257: 13254: 13249: 13246: 13243: 13241: 13238: 13234: 13229: 13225: 13219: 13215: 13214: 13206: 13201: 13197: 13193: 13192: 13187: 13183: 13181: 13178: 13177: 13166: 13162: 13157: 13152: 13147: 13142: 13138: 13134: 13133: 13128: 13124: 13120: 13117: 13111: 13107: 13103: 13099: 13095: 13091: 13084: 13079: 13075: 13069: 13061: 13057: 13056: 13048: 13044: 13040: 13036: 13034:0-471-97442-0 13030: 13026: 13021: 13016: 13011: 13007: 13003: 12999: 12995: 12991: 12986: 12982: 12976: 12972: 12968: 12960: 12956: 12952: 12948: 12944: 12940: 12939: 12931: 12927: 12923: 12918: 12913: 12909: 12905: 12904: 12899: 12889: 12888: 12883: 12879: 12875: 12873:0-387-97971-9 12869: 12865: 12860: 12856: 12850: 12846: 12842: 12837: 12833: 12831:0-8218-3804-0 12827: 12823: 12819: 12815: 12810: 12809: 12796: 12790: 12786: 12782: 12775: 12767: 12763: 12759: 12755: 12751: 12747: 12740: 12732: 12728: 12724: 12720: 12719: 12714: 12707: 12699: 12694: 12690: 12686: 12685: 12680: 12674: 12666: 12660: 12652: 12648: 12643: 12638: 12634: 12633: 12625: 12623: 12614: 12610: 12605: 12600: 12595: 12590: 12586: 12582: 12578: 12574: 12568: 12559: 12554: 12550: 12546: 12542: 12535: 12527: 12525:0-387-94680-2 12521: 12517: 12513: 12512:O'Shea, Donal 12509: 12508:Cox, David A. 12503: 12495: 12491: 12487: 12483: 12479: 12475: 12468: 12461: 12453: 12447: 12443: 12439: 12435: 12431: 12425: 12423: 12421: 12416: 12405: 12402: 12400: 12397: 12395: 12392: 12389: 12386: 12385: 12379: 12365: 12363: 12362:Weyl algebras 12359: 12354: 12336: 12333: 12330: 12327: 12324: 12321: 12318: 12296: 12292: 12286: 12282: 12259: 12255: 12251: 12248: 12245: 12240: 12236: 12228:generated by 12210: 12206: 12202: 12199: 12196: 12191: 12187: 12180: 12158: 12154: 12150: 12147: 12144: 12139: 12135: 12127:generated by 12122: 12104: 12100: 12096: 12093: 12090: 12085: 12081: 12059: 12052: 12049: 12046: 12043: 12040: 12037: 12034: 12024: 12020: 12014: 12010: 12002: 11997: 11988: 11984: 11980: 11977: 11974: 11969: 11965: 11958: 11930: 11927: 11924: 11917: 11905: 11901: 11891: 11889: 11884: 11863: 11853: 11848: 11827: 11817: 11807: 11802: 11781: 11771: 11765: 11762: 11759: 11755: 11750: 11741: 11725: 11718: 11714: 11709: 11695: 11682: 11674: 11668: 11664: 11660: 11652: 11646: 11636: 11632: 11625: 11605: 11597: 11593: 11586: 11577: 11571: 11567: 11559: 11543: 11535: 11525: 11521: 11513: 11509: 11477: 11473: 11452: 11442: 11432: 11430: 11426: 11422: 11418: 11414: 11411: 11406: 11404: 11400: 11396: 11392: 11388: 11384: 11380: 11376: 11372: 11367: 11362: 11360: 11356: 11352: 11348: 11344: 11340: 11335: 11333: 11332:HFE challenge 11329: 11325: 11321: 11316: 11314: 11310: 11305: 11301: 11300:row reduction 11296: 11294: 11290: 11286: 11282: 11274: 11270: 11266: 11263: 11260: 11256: 11253: 11249: 11245: 11241: 11237: 11233: 11229: 11225: 11222: 11218: 11217: 11216: 11214: 11210: 11186: 11164: 11160: 11151: 11137: 11115: 11111: 11090: 11082: 11081: 11080: 11078: 11073: 11057: 11053: 11044: 11026: 11022: 11013: 11009: 10991: 10987: 10962: 10958: 10952: 10948: 10944: 10939: 10935: 10929: 10925: 10921: 10918: 10915: 10910: 10906: 10902: 10897: 10893: 10887: 10883: 10878: 10874: 10871: 10864: 10863: 10862: 10846: 10842: 10838: 10835: 10832: 10827: 10823: 10800: 10796: 10792: 10789: 10786: 10781: 10777: 10756: 10751: 10747: 10743: 10740: 10737: 10732: 10728: 10719: 10715: 10697: 10693: 10689: 10686: 10683: 10678: 10674: 10646: 10639: 10635: 10629: 10625: 10619: 10617: 10610: 10606: 10598: 10594: 10582: 10578: 10572: 10568: 10562: 10560: 10553: 10549: 10537: 10536: 10535: 10533: 10529: 10526:of dimension 10525: 10515: 10513: 10509: 10505: 10501: 10497: 10493: 10488: 10485: 10481: 10455: 10451: 10430: 10425: 10421: 10415: 10411: 10407: 10404: 10401: 10398: 10395: 10390: 10386: 10380: 10376: 10372: 10369: 10361: 10357: 10342: 10337: 10333: 10312: 10307: 10303: 10294: 10277: 10273: 10269: 10264: 10260: 10256: 10253: 10245: 10244: 10243: 10229: 10224: 10220: 10216: 10211: 10207: 10203: 10200: 10178: 10174: 10170: 10167: 10164: 10159: 10155: 10145: 10143: 10139: 10135: 10130: 10128: 10109: 10106: 10103: 10100: 10094: 10091: 10083: 10067: 10061: 10058: 10055: 10052: 10046: 10043: 10035: 10031: 10027: 10017: 10015: 9994: 9990: 9987: 9980: 9978: 9972: 9968: 9959: 9957: 9953: 9937: 9934: 9931: 9928: 9925: 9916: 9912: 9909: 9901: 9897: 9884: 9878: 9874: 9855: 9852: 9849: 9844: 9840: 9828: 9825: 9816: 9813: 9810: 9807: 9801: 9792: 9788: 9785: 9765: 9760: 9756: 9747: 9731: 9726: 9722: 9713: 9705: 9701: 9692: 9690: 9672: 9668: 9659: 9643: 9638: 9634: 9613: 9608: 9604: 9596:is the ideal 9595: 9587: 9583: 9579: 9563: 9557: 9554: 9551: 9548: 9541: 9534: 9528: 9525: 9520: 9516: 9507: 9503: 9499: 9494: 9484: 9482: 9477: 9475: 9471: 9470:algebraic set 9467: 9457: 9455: 9434: 9430: 9426: 9421: 9417: 9407: 9399: 9383: 9375: 9371: 9367: 9362: 9358: 9352: 9348: 9344: 9341: 9338: 9333: 9329: 9325: 9320: 9316: 9310: 9306: 9295:in the ideal 9294: 9290: 9271: 9263: 9259: 9255: 9250: 9246: 9240: 9236: 9232: 9227: 9223: 9219: 9214: 9210: 9204: 9200: 9191: 9177: 9176: 9175: 9173: 9169: 9165: 9161: 9157: 9155: 9136: 9128: 9124: 9100: 9092: 9088: 9079: 9075: 9056: 9048: 9044: 9020: 9012: 9008: 8980: 8971: 8963: 8959: 8950: 8942: 8938: 8931: 8929: 8922: 8918: 8910: 8906: 8892: 8884: 8880: 8871: 8863: 8859: 8852: 8850: 8843: 8839: 8827: 8826: 8825: 8823: 8819: 8815: 8805: 8792: 8789: 8786: 8783: 8780: 8777: 8768: 8764: 8759: 8743: 8740: 8737: 8717: 8714: 8711: 8691: 8688: 8685: 8679: 8676: 8673: 8662: 8658: 8654: 8651: 8646: 8642: 8622: 8614: 8610: 8603: 8600: 8597: 8591: 8588: 8585: 8580: 8576: 8569: 8566: 8563: 8557: 8552: 8548: 8544: 8541: 8538: 8535: 8530: 8526: 8522: 8516: 8513: 8506: 8505: 8504: 8502: 8497: 8493: 8488: 8484: 8480: 8476: 8471: 8467: 8461: 8457: 8450: 8445: 8441: 8434: 8416: 8401: 8393: 8389: 8385: 8382: 8379: 8374: 8371: 8368: 8364: 8357: 8349: 8345: 8341: 8338: 8335: 8330: 8326: 8300: 8296: 8292: 8289: 8286: 8281: 8277: 8267: 8254: 8248: 8242: 8239: 8236: 8228: 8224: 8220: 8216: 8212: 8208: 8204: 8199: 8197: 8192: 8175: 8169: 8166: 8163: 8154: 8148: 8128: 8122: 8119: 8116: 8109:). Moreover, 8108: 8089: 8083: 8080: 8077: 8054: 8048: 8045: 8042: 8034: 8030: 8026: 8022: 8018: 8014: 8010: 8006: 8002: 7986: 7980: 7977: 7974: 7968: 7965: 7957: 7953: 7949: 7946: 7943: 7938: 7934: 7930: 7925: 7921: 7917: 7914: 7911: 7906: 7902: 7895: 7886: 7884: 7880: 7870: 7868: 7863: 7846: 7840: 7831: 7814: 7808: 7785: 7779: 7771: 7752: 7744: 7736: 7733: 7730: 7719: 7713: 7707: 7702: 7698: 7692: 7688: 7677: 7674: 7671: 7667: 7659: 7658: 7657: 7655: 7637: 7633: 7610: 7606: 7600: 7596: 7585: 7582: 7579: 7575: 7566: 7561: 7559: 7555: 7551: 7547: 7542: 7539: 7537: 7533: 7529: 7525: 7521: 7517: 7513: 7509: 7505: 7501: 7497: 7493: 7483: 7481: 7476: 7471: 7469: 7465: 7461: 7457: 7453: 7449: 7445: 7440: 7438: 7434: 7429: 7427: 7426:complex field 7423: 7419: 7415: 7410: 7404: 7394: 7389: 7385: 7378: 7344: 7340: 7333: 7329:generated by 7323: 7321: 7315: 7311: 7302: 7299: 7291: 7287: 7283: 7273: 7270: 7260: 7256: 7254: 7244: 7242: 7236: 7232: 7228: 7213: 7206: 7202: 7175: 7172: 7169: 7166: 7163: 7157: 7154: 7148: 7145: 7142: 7139: 7136: 7130: 7127: 7125: 7120: 7115: 7111: 7107: 7104: 7099: 7095: 7087: 7084: 7078: 7075: 7070: 7066: 7059: 7056: 7050: 7047: 7044: 7041: 7035: 7032: 7030: 7025: 7022: 7019: 7016: 7013: 7006: 7003: 7000: 6997: 6991: 6988: 6985: 6982: 6976: 6973: 6967: 6964: 6959: 6955: 6948: 6945: 6943: 6938: 6935: 6932: 6929: 6926: 6915: 6914: 6913: 6905: 6901: 6897: 6890: 6869: 6866: 6863: 6840: 6834: 6831: 6828: 6806: 6800: 6797: 6794: 6774: 6770: 6761: 6757: 6752: 6749: 6745: 6740: 6737: 6733: 6728: 6727: 6726: 6712: 6709: 6706: 6683: 6680: 6677: 6672: 6668: 6664: 6661: 6655: 6652: 6649: 6643: 6640: 6637: 6634: 6631: 6624: 6623: 6622: 6585: 6582: 6579: 6576: 6573: 6570: 6567: 6564: 6561: 6558: 6555: 6552: 6545: 6544: 6543: 6530: 6524: 6521: 6518: 6512: 6509: 6473: 6470: 6465: 6461: 6457: 6454: 6447: 6432: 6429: 6424: 6420: 6416: 6413: 6406: 6405: 6404: 6387: 6384: 6381: 6375: 6372: 6349: 6346: 6343: 6332: 6329: 6305: 6285: 6276: 6267: 6265: 6261: 6256: 6250: 6245: 6243: 6239: 6232:Special cases 6229: 6227: 6223: 6196: 6194: 6189: 6186: 6174: 6168: 6159: 6155: 6144: 6130: 6128: 6122: 6120: 6116: 6112: 6108: 6103: 6093: 6080: 6078: 6060: 6058: 6042: 6038: 6034: 6026: 6022: 6001: 5998: 5994: 5990: 5974: 5967: 5944: 5926:a polynomial 5925: 5922: 5906: 5903: 5889: 5888: 5887: 5874: 5870: 5857: 5852:over a field 5851: 5830: 5826: 5822: 5819: 5816: 5811: 5807: 5800: 5797: 5794: 5780: 5778: 5759: 5756: 5735: 5729: 5726: 5716: 5710: 5707: 5704: 5701: 5680: 5674: 5671: 5661: 5655: 5652: 5649: 5643: 5640: 5637: 5631: 5624: 5623: 5622: 5620: 5615: 5613: 5596: 5567: 5564: 5543: 5537: 5534: 5521: 5515: 5512: 5508: 5503: 5500: 5479: 5473: 5470: 5457: 5451: 5448: 5444: 5439: 5433: 5430: 5427: 5421: 5414: 5413: 5412: 5410: 5383: 5376: 5366: 5360: 5357: 5333: 5327: 5324: 5320: 5315: 5312: 5302: 5296: 5293: 5269: 5263: 5260: 5256: 5251: 5249: 5240: 5236: 5226: 5220: 5217: 5193: 5187: 5184: 5180: 5175: 5160: 5156: 5152: 5148: 5138: 5132: 5129: 5105: 5099: 5096: 5092: 5087: 5072: 5068: 5066: 5058: 5055: 5052: 5046: 5035: 5034: 5033: 5017: 5013: 4973: 4970: 4953: 4948: 4944: 4940: 4934: 4931: 4914: 4909: 4905: 4901: 4895: 4892: 4889: 4883: 4876: 4875: 4874: 4864: 4863:critical pair 4860: 4852: 4847: 4834: 4829: 4825: 4802: 4798: 4773: 4768: 4764: 4760: 4755: 4751: 4747: 4742: 4738: 4711: 4707: 4695: 4691: 4684: 4681: 4676: 4671: 4667: 4660: 4655: 4651: 4639: 4635: 4628: 4625: 4620: 4615: 4611: 4604: 4600: 4594: 4590: 4578: 4574: 4567: 4564: 4559: 4554: 4550: 4543: 4540: 4535: 4531: 4526: 4522: 4518: 4512: 4508: 4496: 4492: 4485: 4482: 4477: 4472: 4468: 4461: 4458: 4453: 4449: 4444: 4440: 4435: 4431: 4423: 4422: 4421: 4405: 4401: 4378: 4374: 4351: 4347: 4324: 4320: 4299: 4294: 4290: 4262: 4259: 4256: 4251: 4247: 4243: 4240: 4237: 4234: 4229: 4225: 4221: 4218: 4213: 4209: 4205: 4202: 4197: 4193: 4185: 4184: 4183: 4176: 4160: 4156: 4152: 4147: 4143: 4120: 4116: 4093: 4089: 4062: 4058: 4054: 4049: 4045: 4018: 4014: 4010: 4005: 4001: 3980: 3975: 3971: 3967: 3962: 3958: 3948: 3944: 3934: 3929: 3916: 3913: 3910: 3907: 3902: 3898: 3894: 3891: 3888: 3885: 3882: 3877: 3873: 3852: 3849: 3844: 3840: 3836: 3831: 3827: 3813: 3797: 3793: 3769: 3766: 3763: 3760: 3755: 3751: 3747: 3744: 3741: 3738: 3735: 3730: 3726: 3717: 3713: 3709: 3706: 3702: 3697: 3694: 3691: 3686: 3682: 3678: 3675: 3672: 3669: 3666: 3661: 3657: 3653: 3650: 3647: 3639: 3635: 3631: 3627: 3620: 3616: 3607: 3603: 3599: 3596: 3593: 3589: 3584: 3577: 3576: 3575: 3572: 3552: 3548: 3524: 3521: 3518: 3513: 3509: 3505: 3500: 3496: 3487: 3483: 3479: 3476: 3472: 3467: 3464: 3461: 3456: 3452: 3448: 3443: 3439: 3435: 3432: 3429: 3421: 3417: 3413: 3409: 3402: 3398: 3389: 3385: 3381: 3378: 3375: 3371: 3366: 3359: 3358: 3357: 3344: 3339: 3335: 3314: 3309: 3305: 3284: 3279: 3275: 3252: 3248: 3225: 3221: 3200: 3195: 3191: 3187: 3164: 3161: 3158: 3155: 3150: 3146: 3142: 3139: 3136: 3133: 3128: 3124: 3120: 3117: 3114: 3111: 3106: 3102: 3098: 3095: 3090: 3086: 3082: 3079: 3076: 3073: 3070: 3065: 3061: 3052: 3048: 3044: 3041: 3038: 3034: 3029: 3022: 3021: 3020: 3013: 2993: 2989: 2968: 2963: 2959: 2936: 2932: 2905: 2901: 2897: 2888: 2880: 2863: 2860: 2857: 2854: 2851: 2849: 2842: 2838: 2830: 2827: 2824: 2819: 2815: 2811: 2806: 2802: 2798: 2796: 2789: 2785: 2760: 2752: 2748: 2744: 2739: 2735: 2728: 2725: 2705: 2702: 2699: 2694: 2690: 2686: 2683: 2678: 2674: 2670: 2665: 2661: 2657: 2654: 2651: 2631: 2628: 2625: 2622: 2614: 2609: 2600: 2598: 2592: 2588: 2575: 2547: 2541: 2535: 2532: 2529: 2523: 2517: 2513: 2506: 2503: 2481: 2477: 2445: 2442: 2436: 2432: 2426: 2423: 2420: 2416: 2412: 2409: 2406: 2403: 2396: 2395: 2394: 2379: 2361: 2344: 2314: 2310: 2297: 2293: 2283: 2252: 2249: 2239: 2233: 2230: 2226: 2214: 2208: 2205: 2201: 2196: 2193: 2190: 2184: 2181: 2178: 2172: 2167: 2163: 2155: 2154: 2153: 2139: 2133: 2120:be a term of 2111: 2104:Suppose that 2102: 2086: 2072: 2062: 2054: 2044: 2037:A polynomial 2035: 2032: 2029: 2025: 2023: 2019: 2015: 2012:occurring in 2011: 2010:row reduction 2007: 1983: 1974: 1971: 1968: 1957: 1954: 1948: 1942: 1939: 1936: 1930: 1927: 1920: 1919: 1918: 1915: 1903: 1899: 1894: 1863: 1859: 1855: 1850: 1846: 1834: 1830: 1826: 1816: 1812: 1808: 1803: 1799: 1787: 1783: 1764: 1760: 1755: 1750: 1726: 1723: 1701: 1694: 1690: 1686: 1681: 1677: 1671: 1667: 1663: 1656: 1652: 1648: 1643: 1639: 1633: 1629: 1625: 1620: 1617: 1593: 1590: 1554: 1550: 1546: 1541: 1537: 1524: 1513: 1505: 1492: 1484: 1480: 1476: 1473: 1470: 1465: 1461: 1454: 1451: 1426: 1422: 1418: 1415: 1412: 1407: 1403: 1396: 1393: 1369: 1365: 1359: 1355: 1351: 1344: 1340: 1334: 1330: 1326: 1323: 1299: 1295: 1289: 1285: 1281: 1274: 1270: 1264: 1260: 1256: 1253: 1228: 1225: 1222: 1218: 1217: 1216: 1208: 1204: 1200: 1192: 1188: 1182: 1178: 1174: 1165: 1163: 1147: 1145: 1136: 1132: 1129: 1126: 1122: 1119: 1116: 1112: 1108: 1105: 1104: 1103: 1100: 1098: 1093: 1091: 1071: 1068: 1065: 1062: 1055: 1041: 1038: 1035: 1032: 1029: 1023: 1020: 1017: 1010: 1009: 1008: 994: 988: 978: 965: 962: 959: 954: 950: 946: 943: 940: 935: 931: 908: 904: 898: 894: 888: 883: 880: 877: 873: 853: 828: 824: 820: 817: 814: 809: 805: 798: 795: 786: 784: 780: 775: 774:ordered pairs 771: 767: 762: 749: 744: 740: 736: 729: 725: 719: 715: 711: 704: 700: 694: 690: 664: 660: 656: 653: 650: 645: 641: 634: 631: 623: 602: 598: 594: 591: 588: 583: 579: 572: 569: 547: 543: 522: 515: 511: 505: 501: 497: 490: 486: 480: 476: 467: 463: 445: 441: 432: 410: 406: 385: 380: 376: 370: 366: 362: 359: 356: 351: 347: 341: 337: 311: 307: 303: 300: 297: 292: 288: 281: 278: 275: 267: 262: 260: 249: 228: 224: 220: 217: 214: 209: 205: 198: 195: 192: 185: 181: 175: 160: 158: 154: 150: 145: 143: 139: 135: 131: 126: 122: 118: 114: 110: 106: 101: 99: 95: 91: 86: 84: 83:rational maps 80: 76: 72: 68: 64: 59: 55: 50: 46: 42: 38: 37:Gröbner basis 34: 30: 26: 22: 13510: 13506:Discriminant 13425:Multivariate 13274:Scholarpedia 13259: 13212: 13189: 13146:math/0411514 13136: 13130: 13115: 13093: 13089: 13068:cite journal 13059: 13053: 13024: 13000:(10): 7763. 12997: 12994:Scholarpedia 12993: 12970: 12942: 12936: 12907: 12901: 12886: 12863: 12840: 12813: 12780: 12774: 12749: 12745: 12739: 12722: 12716: 12706: 12688: 12682: 12673: 12631: 12584: 12580: 12567: 12548: 12544: 12534: 12518:. Springer. 12515: 12502: 12480:(2): 35–48. 12477: 12473: 12460: 12433: 12394:Graver basis 12376: 12355: 12120: 11904:free modules 11897: 11885: 11696: 11575: 11570:vector space 11453: 11438: 11412: 11407: 11363: 11358: 11346: 11336: 11317: 11313:vector space 11297: 11278: 11272: 11207: 11076: 11074: 11042: 11007: 10977: 10717: 10713: 10665: 10534:of the form 10527: 10521: 10511: 10507: 10503: 10499: 10495: 10492:hypersurface 10489: 10478: 10359: 10146: 10141: 10137: 10133: 10131: 10126: 10081: 10033: 10029: 10025: 10023: 10013: 9974: 9970: 9960: 9955: 9951: 9899: 9895: 9894:and 1− 9885: 9876: 9872: 9745: 9711: 9706:of an ideal 9703: 9695: 9693: 9688: 9657: 9593: 9588:of an ideal 9586:localization 9585: 9581: 9577: 9508:is the ring 9505: 9501: 9498:localization 9497: 9490: 9480: 9478: 9463: 9453: 9397: 9292: 9288: 9286: 9167: 9158: 9077: 9073: 8999: 8824:of the form 8811: 8766: 8762: 8757: 8660: 8656: 8652: 8649: 8644: 8640: 8637: 8500: 8495: 8491: 8486: 8482: 8478: 8474: 8469: 8465: 8459: 8455: 8448: 8443: 8439: 8432: 8422: 8268: 8226: 8222: 8206: 8200: 8195: 8193: 8152: 8146: 8106: 8032: 8028: 8024: 8020: 8016: 8012: 8008: 8004: 8000: 7887: 7878: 7876: 7864: 7832: 7769: 7767: 7653: 7562: 7557: 7553: 7549: 7545: 7543: 7540: 7536:hypersurface 7531: 7519: 7511: 7507: 7506:of the ring 7499: 7495: 7494:of an ideal 7491: 7489: 7472: 7467: 7463: 7459: 7455: 7451: 7447: 7446:of an ideal 7443: 7441: 7433:inconsistent 7430: 7417: 7406: 7387: 7383: 7376: 7342: 7338: 7331: 7324: 7319: 7318:is equal to 7313: 7309: 7300: 7292:of an ideal 7289: 7285: 7279: 7268: 7266: 7257: 7250: 7234: 7230: 7226: 7214: 7204: 7200: 7197: 6903: 6899: 6895: 6891: 6772: 6768: 6765: 6759: 6755: 6747: 6743: 6735: 6731: 6698: 6600: 6490:By reducing 6489: 6321: 6257: 6246: 6235: 6197: 6190: 6187: 6175: 6162: 6160: 6156: 6138: 6136: 6123: 6118: 6104: 6091: 6081: 6066: 6017: 5949:-polynomial 5919: 5901: 5858: 5786: 5774: 5618: 5616: 5611: 5597: 5582: 5408: 5398: 4992: 4862: 4859:S-polynomial 4858: 4856: 4850: 4729: 4277: 4177: 3946: 3942: 3930: 3814: 3784: 3573: 3539: 3179: 3011: 2889: 2881: 2610: 2606: 2596: 2590: 2586: 2460: 2380: 2359: 2345: 2312: 2308: 2298: 2291: 2281: 2267: 2137: 2131: 2109: 2103: 2084: 2070: 2060: 2052: 2042: 2036: 2033: 2027: 2026: 2021: 2005: 2003: 1916: 1901: 1897: 1892: 1762: 1758: 1753: 1751: 1522: 1511: 1506: 1245: 1214: 1205: 1198: 1190: 1186: 1180: 1176: 1173:leading term 1172: 1166: 1158: 1140: 1134: 1130: 1124: 1120: 1114: 1110: 1106: 1101: 1094: 1089: 1087: 990: 787: 770:ordered list 763: 621: 465: 431:coefficients 430: 263: 177: 157:Ore algebras 146: 141: 134:power series 129: 102: 87: 57: 48: 36: 18: 13455:Homogeneous 13450:Square-free 13445:Irreducible 13310:Polynomials 12945:: 374–383. 12474:SIGSAM Bull 12399:Janet basis 11391:Mathematica 9879:belongs to 8650:eliminating 8207:elimination 7879:elimination 7873:Elimination 7524:hyperplanes 4853:-polynomial 2951:and not by 2360:normal form 1910:instead of 1144:elimination 993:total order 79:projections 21:mathematics 13526:Categories 13415:Univariate 13096:(2): 3–6. 12642:2104.03572 12411:References 11916:direct sum 11900:submodules 11441:complexity 11435:Complexity 11379:Macaulay 2 11281:heuristics 11259:heuristics 11240:GMPlibrary 11008:base point 10358:Adding to 10355:and so on. 9698:saturation 9689:saturation 9500:of a ring 9481:saturating 9460:Saturation 8704:such that 8211:projection 8205:, is that 6780:belong to 6502:such that 6260:singletons 6249:unit ideal 6242:zero ideal 6111:Noetherian 5945:for every 5878:. The set 5783:Definition 5777:associates 3933:Buchberger 2393:, one has 2116:, and let 2089:. (So, if 1569:for every 1517:, or that 1097:well-order 535:where the 433:, and the 398:where the 266:polynomial 13501:Resultant 13440:Trinomial 13420:Bivariate 13261:MathWorld 13196:EMS Press 13027:. Wiley. 12959:189834323 12594:1304.1238 12334:≤ 12328:≤ 12322:≤ 12249:… 12200:… 12148:… 12094:… 12050:≤ 12044:≤ 12038:≤ 11978:… 11928:⊕ 11858:Ω 11812:Ω 11530:Ω 11503:Ω 11467:Ω 11320:full rank 11273:degrevlex 11083:Saturate 11010:), every 10945:− 10919:… 10903:− 10836:… 10790:… 10741:… 10687:… 10599:⋮ 10408:− 10399:… 10373:− 10270:⋯ 10217:⋯ 10168:… 10104:− 10095:∪ 10056:− 10047:∪ 9999:∞ 9932:∩ 9921:∞ 9853:∈ 9829:∈ 9823:∃ 9817:∣ 9811:∈ 9797:∞ 9552:− 9466:triangles 9411:↦ 9381:⟩ 9368:− 9342:… 9326:− 9303:⟨ 9256:− 9220:− 9172:resultant 8911:⋮ 8787:∩ 8781:∈ 8741:∈ 8715:∈ 8677:− 8620:⟩ 8601:− 8589:… 8567:− 8539:… 8520:⟨ 8383:… 8339:… 8290:⋯ 8240:∩ 8225:into the 8167:∩ 8120:∩ 8081:∩ 8046:∩ 7947:… 7915:… 7734:− 7683:∞ 7668:∑ 7591:∞ 7576:∑ 7492:dimension 7296:yields 0 7282:reduction 7170:− 7143:− 7108:− 7076:− 7057:− 7048:− 7020:− 7004:− 6989:− 6974:− 6965:− 6933:− 6678:− 6653:− 6644:− 6580:− 6562:− 6528:⟩ 6516:⟨ 6471:− 6430:− 6391:⟩ 6379:⟨ 6238:empty set 6129:, below. 6090:of their 6063:Existence 5869:generates 5820:… 5730:⁡ 5711:⁡ 5705:− 5675:⁡ 5656:⁡ 5538:⁡ 5516:⁡ 5504:− 5474:⁡ 5452:⁡ 5361:⁡ 5328:⁡ 5316:− 5297:⁡ 5264:⁡ 5221:⁡ 5188:⁡ 5176:− 5157:− 5133:⁡ 5100:⁡ 5088:− 4954:⁡ 4941:− 4915:⁡ 4761:− 4661:− 4544:− 4523:− 4462:− 4257:− 4219:− 4153:− 4055:− 4011:− 3968:− 3908:− 3850:− 3761:− 3648:− 3594:− 3519:− 3430:− 3376:− 3345:: 3188:− 3115:− 3099:− 3077:− 3039:− 2861:− 2825:− 2671:− 2536:⁡ 2530:≤ 2507:⁡ 2424:∈ 2417:∑ 2309:reducible 2234:⁡ 2209:⁡ 2197:− 2173:⁡ 2110:reducible 2071:reducible 2006:reduction 2000:Reduction 1931:⁡ 1827:⋯ 1687:− 1664:⋯ 1649:− 1547:≤ 1474:… 1416:… 1352:⋯ 1282:⋯ 1125:degrevlex 1066:≤ 1036:≤ 1027:⟺ 1021:≤ 960:∈ 944:… 874:∑ 818:… 712:⋯ 654:… 592:… 498:⋯ 462:monomials 429:, called 360:⋯ 301:… 218:… 67:dimension 13486:Division 13435:Binomial 13430:Monomial 13110:37070503 12928:(1970). 12884:(1965). 12785:Springer 12514:(1997). 12382:See also 12073:, where 12060:⟩ 12003:⟨ 11399:SageMath 11395:SINGULAR 11242:. Also, 11228:integers 10959:⟩ 10879:⟨ 7625:, where 7422:rational 6725:we have 6601:None of 5403:and the 3703:→ 3628:→ 3590:→ 3473:→ 3410:→ 3372:→ 3035:→ 2469:and the 1917:One has 1523:multiple 464:(called 13198:, 2001 13165:5656701 13002:Bibcode 12766:2515114 12494:1819694 11568:on the 11410:library 11311:of the 9902:, then 9154:coprime 8454:, ..., 8447:} and { 8438:, ..., 7502:is the 7337:, ..., 6220:of the 6165:reduced 6141:minimal 2568:, then 1512:divides 772:of the 257:is the 246:over a 52:over a 13323:degree 13220:  13163:  13108:  13031:  12977:  12957:  12870:  12851:  12828:  12791:  12764:  12613:149627 12611:  12522:  12492:  12448:  11947:to be 11738:Using 11425:GitHub 11413:Msolve 10666:where 9584:. The 9576:where 9000:where 8816:is an 8213:of an 7768:where 7532:degree 7468:degree 7382:, ..., 7362:is in 7303:is in 7269:unique 5930:is in 5583:where 5407:, the 4993:where 2584:, and 2461:where 1891:. The 1189:), lm( 1135:lexdeg 850:, the 180:ideals 130:et al. 96:, and 77:under 13208:(PDF) 13161:S2CID 13141:arXiv 13106:S2CID 13086:(PDF) 13050:(PDF) 12955:S2CID 12933:(PDF) 12891:(PDF) 12762:S2CID 12637:arXiv 12609:S2CID 12589:arXiv 12490:S2CID 12470:(PDF) 12349:. If 11429:Julia 11403:SymPy 11387:Maple 11383:Magma 11371:CoCoA 11309:basis 11179:from 9656:When 8194:This 8027:. If 7865:Most 6193:up to 5873:ideal 5867:that 5848:be a 4366:, by 2773:with 2718:, by 2615:with 2272:from 1529:, if 1521:is a 1221:merge 923:with 248:field 182:in a 163:Tools 54:field 43:in a 13312:and 13218:ISBN 13074:link 13029:ISBN 12975:ISBN 12868:ISBN 12849:ISBN 12826:ISBN 12789:ISBN 12665:link 12520:ISBN 12446:ISBN 11522:> 11439:The 11401:and 11267:The 11250:and 11234:and 11226:The 10712:are 9975:The 9965:the 9694:The 9491:The 9152:are 9116:and 9036:and 8730:and 8427:and 8293:> 8287:> 8003:and 7490:The 7370:and 7280:The 7219:and 7208:and 6853:and 6776:and 6758:) = 6746:) = 6734:) = 6710:> 6605:and 6322:Let 5859:Let 5787:Let 5602:and 5591:and 5001:and 4869:and 4861:or 4393:and 4339:and 3941:0 = 3267:and 2626:> 2152:by 2136:. A 2004:The 1896:lcm( 1887:and 1771:and 1757:gcd( 1752:The 1745:and 1444:and 1316:and 1246:Let 1195:and 1179:and 1115:plex 781:and 460:are 35:, a 13321:By 13272:on 13151:doi 13137:359 13098:doi 13010:doi 12947:doi 12912:doi 12754:doi 12727:doi 12693:doi 12647:doi 12599:doi 12553:doi 12482:doi 12438:doi 12360:or 11902:of 11375:GAP 11287:by 11103:by 10036:in 9898:in 9886:If 9748:to 9710:in 9626:of 9592:of 9396:If 9187:Res 8655:in 8423:If 7526:in 7375:∪ { 6766:As 6754:lt( 6742:lt( 6730:lt( 6494:by 5961:by 5938:by 5886:if 5871:an 5608:lcm 5595:. 5585:gcd 5405:gcd 5401:lcm 5014:red 4995:lcm 4945:red 4906:red 4817:or 4135:by 4077:to 3865:or 3213:of 3008:by 2920:of 2580:by 2576:of 2389:by 2366:by 2362:of 2350:by 2331:by 2323:of 2315:by 2311:or 2307:is 2290:lm( 2284:of 2164:red 2144:by 2140:of 2130:lm( 2112:by 2108:is 2083:lm( 2073:by 2069:is 2059:lm( 2051:lm( 2041:is 1963:gcd 1928:lcm 1912:min 1908:max 1840:min 1793:min 1767:of 1525:of 1197:lc( 1185:lt( 1113:or 1111:lex 788:If 268:in 151:or 119:'s 81:or 19:In 13528:: 13258:. 13194:, 13188:, 13159:. 13149:. 13135:. 13129:. 13104:. 13094:33 13092:. 13088:. 13070:}} 13066:{{ 13060:52 13058:. 13052:. 13008:. 12996:. 12992:. 12969:. 12953:. 12941:. 12935:. 12908:41 12906:. 12900:. 12847:. 12843:. 12824:. 12816:. 12783:. 12760:. 12750:13 12748:. 12723:40 12721:. 12715:. 12689:13 12687:, 12661:}} 12657:{{ 12645:. 12621:^ 12607:. 12597:. 12585:80 12583:. 12579:. 12549:24 12547:. 12543:. 12488:. 12478:37 12476:. 12472:. 12444:. 12419:^ 12364:. 12311:, 11890:. 11397:, 11393:, 11389:, 11385:, 11381:, 11377:, 11373:, 11361:. 11334:. 11246:, 10129:. 10016:. 9979:of 9896:ft 9883:. 9691:. 9076:≤ 8812:A 8765:= 8643:∩ 8494:∩ 8468:∩ 7560:. 7454:, 7428:. 7393:. 7322:. 7312:∪{ 7233:, 7229:, 7212:. 7203:, 6902:, 6898:, 6889:. 6771:, 6748:xy 6621:: 6611:xk 6266:. 6255:. 6244:. 6079:. 6059:. 5779:. 5727:lm 5708:lc 5672:lm 5653:lc 5535:lm 5513:lc 5471:lm 5449:lc 5358:lm 5325:lc 5294:lm 5261:lc 5218:lm 5185:lc 5130:lm 5097:lc 4788:xy 3945:− 3571:. 3019:: 3010:–2 2864:2. 2533:lm 2504:lm 2343:. 2296:. 2231:lm 2206:lc 2118:cm 1914:. 1900:, 1761:, 1749:. 1203:. 1175:, 1133:, 1092:. 1007:, 1003:, 999:, 785:. 159:. 85:. 13302:e 13295:t 13288:v 13264:. 13235:. 13226:. 13167:. 13153:: 13143:: 13116:3 13112:. 13100:: 13076:) 13037:. 13018:. 13012:: 13004:: 12998:5 12983:. 12961:. 12949:: 12943:4 12920:. 12914:: 12876:. 12857:. 12834:. 12797:. 12768:. 12756:: 12733:. 12729:: 12695:: 12667:) 12653:. 12649:: 12639:: 12615:. 12601:: 12591:: 12561:. 12555:: 12528:. 12496:. 12484:: 12454:. 12440:: 12351:R 12337:l 12331:j 12325:i 12319:1 12297:j 12293:e 12287:i 12283:e 12260:k 12256:g 12252:, 12246:, 12241:1 12237:g 12216:] 12211:l 12207:e 12203:, 12197:, 12192:1 12188:e 12184:[ 12181:R 12159:k 12155:g 12151:, 12145:, 12140:1 12136:g 12125:L 12121:L 12105:l 12101:e 12097:, 12091:, 12086:1 12082:e 12056:} 12053:l 12047:j 12041:i 12035:1 12031:| 12025:j 12021:e 12015:i 12011:e 12007:{ 11998:/ 11994:] 11989:l 11985:e 11981:, 11975:, 11970:1 11966:e 11962:[ 11959:R 11949:0 11945:L 11931:L 11925:R 11912:R 11908:L 11867:) 11864:n 11861:( 11854:2 11849:d 11828:, 11821:) 11818:n 11815:( 11808:2 11803:d 11782:. 11775:) 11772:n 11769:( 11766:o 11763:+ 11760:n 11756:2 11751:d 11726:. 11719:n 11715:2 11710:d 11699:n 11683:. 11678:) 11675:n 11672:( 11669:O 11665:D 11661:= 11656:) 11653:1 11650:( 11647:O 11643:) 11637:n 11633:D 11629:( 11626:O 11606:. 11603:) 11598:n 11594:D 11590:( 11587:O 11576:D 11574:2 11562:D 11544:. 11539:) 11536:n 11533:( 11526:D 11519:) 11514:n 11510:D 11506:( 11483:) 11478:n 11474:D 11470:( 11457:D 11449:d 11445:n 11275:. 11187:G 11165:i 11161:t 11138:G 11116:0 11112:p 11091:I 11077:k 11058:i 11054:t 11043:I 11027:i 11023:p 10992:i 10988:p 10963:. 10953:n 10949:p 10940:n 10936:x 10930:0 10926:p 10922:, 10916:, 10911:1 10907:p 10898:1 10894:x 10888:0 10884:p 10875:= 10872:I 10847:n 10843:x 10839:, 10833:, 10828:1 10824:x 10801:k 10797:t 10793:, 10787:, 10782:1 10778:t 10757:. 10752:k 10748:t 10744:, 10738:, 10733:1 10729:t 10718:k 10714:n 10698:n 10694:p 10690:, 10684:, 10679:0 10675:p 10647:, 10640:0 10636:p 10630:n 10626:p 10620:= 10611:n 10607:x 10583:0 10579:p 10573:1 10569:p 10563:= 10554:1 10550:x 10528:k 10512:f 10508:f 10504:f 10500:f 10496:f 10456:i 10452:t 10431:, 10426:k 10422:f 10416:k 10412:t 10405:1 10402:, 10396:, 10391:1 10387:f 10381:1 10377:t 10370:1 10360:F 10343:, 10338:2 10334:f 10313:, 10308:1 10304:f 10278:k 10274:f 10265:1 10261:f 10257:= 10254:f 10230:, 10225:k 10221:f 10212:1 10208:f 10204:= 10201:f 10179:k 10175:f 10171:, 10165:, 10160:1 10156:f 10142:F 10138:F 10134:F 10127:t 10113:} 10110:f 10107:t 10101:1 10098:{ 10092:F 10082:t 10068:, 10065:} 10062:f 10059:t 10053:1 10050:{ 10044:F 10034:t 10030:F 10026:f 9995:f 9991:: 9988:I 9971:f 9963:I 9956:t 9952:R 9938:. 9935:R 9929:J 9926:= 9917:f 9913:: 9910:I 9900:R 9892:I 9888:J 9881:I 9877:f 9873:R 9859:} 9856:I 9850:g 9845:k 9841:f 9837:) 9833:N 9826:k 9820:( 9814:R 9808:g 9805:{ 9802:= 9793:f 9789:: 9786:I 9766:. 9761:f 9757:R 9746:R 9732:I 9727:f 9723:R 9712:R 9708:I 9704:f 9673:f 9669:R 9658:R 9644:. 9639:f 9635:I 9614:I 9609:f 9605:R 9594:R 9590:I 9582:f 9578:t 9564:, 9561:) 9558:t 9555:f 9549:1 9546:( 9542:/ 9538:] 9535:t 9532:[ 9529:R 9526:= 9521:f 9517:R 9506:f 9502:R 9454:t 9440:) 9435:2 9431:x 9427:, 9422:1 9418:x 9414:( 9408:t 9398:n 9384:. 9376:n 9372:f 9363:n 9359:x 9353:n 9349:g 9345:, 9339:, 9334:1 9330:f 9321:1 9317:x 9311:1 9307:g 9293:t 9289:n 9272:. 9269:) 9264:2 9260:f 9251:2 9247:x 9241:2 9237:g 9233:, 9228:1 9224:f 9215:1 9211:x 9205:1 9201:g 9197:( 9192:t 9168:n 9140:) 9137:t 9134:( 9129:i 9125:g 9104:) 9101:t 9098:( 9093:i 9089:f 9078:n 9074:i 9060:) 9057:t 9054:( 9049:i 9045:g 9024:) 9021:t 9018:( 9013:i 9009:f 8981:, 8975:) 8972:t 8969:( 8964:n 8960:g 8954:) 8951:t 8948:( 8943:n 8939:f 8932:= 8923:n 8919:x 8896:) 8893:t 8890:( 8885:1 8881:g 8875:) 8872:t 8869:( 8864:1 8860:f 8853:= 8844:1 8840:x 8793:. 8790:J 8784:I 8778:b 8767:b 8763:a 8758:t 8744:J 8738:b 8718:I 8712:a 8692:b 8689:+ 8686:t 8683:) 8680:b 8674:a 8671:( 8661:K 8657:K 8653:t 8645:J 8641:I 8623:. 8615:k 8611:g 8607:) 8604:t 8598:1 8595:( 8592:, 8586:, 8581:1 8577:g 8573:) 8570:t 8564:1 8561:( 8558:, 8553:m 8549:f 8545:t 8542:, 8536:, 8531:1 8527:f 8523:t 8517:= 8514:K 8501:t 8496:J 8492:I 8487:t 8483:t 8479:t 8475:t 8470:J 8466:I 8460:k 8456:g 8452:1 8449:g 8444:m 8440:f 8436:1 8433:f 8429:J 8425:I 8402:. 8399:} 8394:n 8390:x 8386:, 8380:, 8375:1 8372:+ 8369:k 8365:x 8361:{ 8358:, 8355:} 8350:k 8346:x 8342:, 8336:, 8331:1 8327:x 8323:{ 8301:n 8297:x 8282:1 8278:x 8255:. 8252:] 8249:Y 8246:[ 8243:K 8237:I 8227:Y 8223:I 8179:] 8176:Y 8173:[ 8170:K 8164:G 8153:K 8147:G 8132:] 8129:Y 8126:[ 8123:K 8117:G 8093:] 8090:Y 8087:[ 8084:K 8078:I 8058:] 8055:Y 8052:[ 8049:K 8043:G 8033:I 8029:G 8025:X 8021:X 8017:Y 8013:X 8009:X 8005:Y 8001:X 7987:, 7984:] 7981:Y 7978:, 7975:X 7972:[ 7969:K 7966:= 7963:] 7958:m 7954:y 7950:, 7944:, 7939:1 7935:y 7931:, 7926:n 7922:x 7918:, 7912:, 7907:1 7903:x 7899:[ 7896:K 7850:) 7847:t 7844:( 7841:P 7818:) 7815:1 7812:( 7809:P 7789:) 7786:t 7783:( 7780:P 7770:d 7753:, 7745:d 7741:) 7737:t 7731:1 7728:( 7723:) 7720:t 7717:( 7714:P 7708:= 7703:i 7699:t 7693:i 7689:d 7678:0 7675:= 7672:i 7654:i 7638:i 7634:d 7611:i 7607:t 7601:i 7597:d 7586:0 7583:= 7580:i 7558:x 7554:x 7550:S 7546:S 7520:I 7512:I 7510:/ 7508:R 7500:R 7496:I 7464:G 7460:x 7456:G 7452:x 7448:I 7444:G 7391:} 7388:k 7384:f 7380:1 7377:f 7373:J 7368:J 7364:J 7358:I 7354:f 7349:J 7343:k 7339:f 7335:1 7332:f 7327:I 7320:G 7316:} 7314:f 7310:G 7305:I 7301:f 7294:I 7290:G 7286:f 7237:} 7235:h 7231:k 7227:f 7225:{ 7221:k 7217:h 7210:h 7205:k 7201:f 7179:) 7176:h 7173:x 7167:k 7164:y 7161:( 7158:x 7155:+ 7152:) 7149:k 7146:x 7140:f 7137:y 7134:( 7131:y 7128:= 7121:h 7116:2 7112:x 7105:f 7100:2 7096:y 7088:0 7085:= 7082:) 7079:y 7071:2 7067:y 7063:( 7060:x 7054:) 7051:x 7045:y 7042:x 7039:( 7036:y 7033:= 7026:h 7023:x 7017:k 7014:y 7007:h 7001:f 6998:= 6995:) 6992:x 6986:y 6983:x 6980:( 6977:x 6971:) 6968:y 6960:2 6956:x 6952:( 6949:y 6946:= 6939:k 6936:x 6930:f 6927:y 6910:I 6906:} 6904:h 6900:k 6896:f 6894:{ 6887:I 6873:} 6870:k 6867:, 6864:h 6861:{ 6841:, 6838:} 6835:h 6832:, 6829:f 6826:{ 6807:, 6804:} 6801:k 6798:, 6795:f 6792:{ 6782:I 6778:h 6773:k 6769:f 6760:y 6756:h 6744:k 6736:x 6732:f 6713:y 6707:x 6684:. 6681:y 6673:2 6669:y 6665:= 6662:f 6659:) 6656:1 6650:y 6647:( 6641:k 6638:x 6635:= 6632:h 6619:I 6615:f 6607:k 6603:f 6586:. 6583:x 6577:y 6574:x 6571:= 6568:f 6565:x 6559:g 6556:= 6553:k 6531:: 6525:k 6522:, 6519:f 6513:= 6510:I 6500:k 6496:f 6492:g 6486:. 6474:x 6466:3 6462:x 6458:= 6455:g 6445:, 6433:y 6425:2 6421:x 6417:= 6414:f 6388:g 6385:, 6382:f 6376:= 6373:I 6353:] 6350:y 6347:, 6344:x 6341:[ 6337:Q 6333:= 6330:R 6306:g 6286:f 6253:1 6207:Q 6182:I 6178:I 6171:1 6151:I 6147:I 6119:S 6113:( 6100:G 6096:G 6092:S 6088:G 6084:G 6073:G 6069:G 6043:I 6039:/ 6035:R 6002:. 5999:I 5995:/ 5991:R 5981:F 5977:G 5970:R 5963:G 5959:s 5955:G 5951:s 5947:S 5940:G 5936:f 5932:I 5928:f 5915:. 5913:G 5909:I 5898:, 5896:G 5892:I 5884:I 5880:G 5876:I 5865:R 5861:G 5854:F 5836:] 5831:n 5827:x 5823:, 5817:, 5812:1 5808:x 5804:[ 5801:F 5798:= 5795:R 5760:; 5757:g 5750:d 5747:c 5744:g 5739:) 5736:f 5733:( 5720:) 5717:f 5714:( 5702:f 5695:d 5692:c 5689:g 5684:) 5681:g 5678:( 5665:) 5662:g 5659:( 5650:= 5647:) 5644:g 5641:, 5638:f 5635:( 5632:S 5619:S 5612:S 5604:g 5600:f 5593:g 5589:f 5568:; 5565:g 5558:d 5555:c 5552:g 5547:) 5544:f 5541:( 5525:) 5522:g 5519:( 5509:1 5501:f 5494:d 5491:c 5488:g 5483:) 5480:g 5477:( 5461:) 5458:f 5455:( 5445:1 5440:= 5437:) 5434:g 5431:, 5428:f 5425:( 5422:S 5409:S 5384:. 5377:g 5370:) 5367:g 5364:( 5353:m 5350:c 5347:l 5337:) 5334:g 5331:( 5321:1 5313:f 5306:) 5303:f 5300:( 5289:m 5286:c 5283:l 5273:) 5270:f 5267:( 5257:1 5252:= 5241:) 5237:f 5230:) 5227:f 5224:( 5213:m 5210:c 5207:l 5197:) 5194:f 5191:( 5181:1 5172:m 5169:c 5166:l 5161:( 5153:) 5149:g 5142:) 5139:g 5136:( 5125:m 5122:c 5119:l 5109:) 5106:g 5103:( 5093:1 5084:m 5081:c 5078:l 5073:( 5069:= 5062:) 5059:g 5056:, 5053:f 5050:( 5047:S 5018:1 5003:g 4999:f 4989:; 4977:) 4974:f 4971:, 4967:m 4964:c 4961:l 4957:( 4949:1 4938:) 4935:g 4932:, 4928:m 4925:c 4922:l 4918:( 4910:1 4902:= 4899:) 4896:g 4893:, 4890:f 4887:( 4884:S 4871:g 4867:f 4851:S 4835:. 4830:3 4826:g 4803:2 4799:g 4774:. 4769:2 4765:f 4756:3 4752:f 4748:= 4743:3 4739:g 4726:. 4712:2 4708:g 4701:) 4696:2 4692:g 4688:( 4685:t 4682:l 4677:y 4672:2 4668:x 4656:1 4652:g 4645:) 4640:1 4636:g 4632:( 4629:t 4626:l 4621:y 4616:2 4612:x 4605:= 4601:) 4595:1 4591:g 4584:) 4579:1 4575:g 4571:( 4568:t 4565:l 4560:y 4555:2 4551:x 4541:y 4536:2 4532:x 4527:( 4519:) 4513:2 4509:g 4502:) 4497:2 4493:g 4489:( 4486:t 4483:l 4478:y 4473:2 4469:x 4459:y 4454:2 4450:x 4445:( 4441:= 4436:3 4432:g 4406:1 4402:g 4379:2 4375:g 4352:2 4348:g 4325:1 4321:g 4300:y 4295:2 4291:x 4280:S 4263:. 4260:y 4252:3 4248:y 4244:+ 4241:x 4238:2 4235:= 4230:2 4226:g 4222:x 4214:1 4210:g 4206:y 4203:= 4198:3 4194:g 4180:G 4161:2 4157:f 4148:3 4144:f 4121:2 4117:f 4094:3 4090:f 4079:G 4063:2 4059:f 4050:3 4046:f 4035:G 4019:3 4015:f 4006:2 4002:f 3981:. 3976:3 3972:f 3963:2 3959:f 3947:f 3943:f 3937:S 3917:. 3914:y 3911:2 3903:3 3899:y 3895:2 3892:+ 3889:x 3886:2 3883:= 3878:3 3874:f 3853:y 3845:3 3841:y 3837:= 3832:2 3828:f 3817:f 3798:3 3794:f 3770:. 3767:y 3764:2 3756:3 3752:y 3748:2 3745:+ 3742:x 3739:2 3736:= 3731:3 3727:f 3718:2 3714:g 3710:y 3707:2 3698:y 3695:2 3692:+ 3687:3 3683:y 3679:2 3676:+ 3673:x 3670:2 3667:+ 3662:2 3658:y 3654:x 3651:2 3640:1 3636:g 3632:y 3621:1 3617:f 3608:1 3604:g 3600:x 3597:2 3585:f 3569:f 3553:2 3549:f 3525:. 3522:y 3514:3 3510:y 3506:= 3501:2 3497:f 3488:2 3484:g 3480:y 3477:2 3468:y 3465:3 3462:+ 3457:3 3453:y 3449:+ 3444:2 3440:y 3436:x 3433:2 3422:2 3418:g 3414:x 3403:1 3399:f 3390:1 3386:g 3382:x 3379:2 3367:f 3340:2 3336:g 3315:, 3310:2 3306:g 3285:, 3280:2 3276:g 3253:1 3249:g 3226:1 3222:f 3201:y 3196:2 3192:x 3165:. 3162:y 3159:3 3156:+ 3151:3 3147:y 3143:+ 3140:x 3137:2 3134:+ 3129:2 3125:y 3121:x 3118:2 3112:y 3107:2 3103:x 3096:= 3091:1 3087:g 3083:x 3080:2 3074:f 3071:= 3066:1 3062:f 3053:1 3049:g 3045:x 3042:2 3030:f 3017:f 3012:x 2994:1 2990:g 2969:. 2964:2 2960:g 2937:1 2933:g 2922:f 2906:3 2902:x 2898:2 2884:f 2858:y 2855:x 2852:= 2843:2 2839:g 2831:, 2828:1 2820:2 2816:y 2812:+ 2807:2 2803:x 2799:= 2790:1 2786:g 2761:, 2758:} 2753:2 2749:g 2745:, 2740:1 2736:g 2732:{ 2729:= 2726:G 2706:y 2703:3 2700:+ 2695:3 2691:y 2687:+ 2684:y 2679:2 2675:x 2666:3 2662:x 2658:2 2655:= 2652:f 2632:, 2629:y 2623:x 2591:g 2587:q 2582:g 2578:f 2570:h 2566:g 2562:G 2548:. 2545:) 2542:f 2539:( 2527:) 2524:g 2518:g 2514:q 2510:( 2482:g 2478:q 2467:G 2463:h 2446:, 2443:g 2437:g 2433:q 2427:G 2421:g 2413:+ 2410:h 2407:= 2404:f 2391:G 2387:f 2383:h 2376:f 2372:G 2368:G 2364:f 2356:G 2352:G 2348:f 2341:G 2337:f 2333:G 2329:f 2325:G 2321:g 2317:G 2305:f 2301:G 2294:) 2292:f 2286:f 2278:m 2274:f 2270:m 2253:. 2250:g 2243:) 2240:g 2237:( 2227:m 2218:) 2215:g 2212:( 2202:c 2194:f 2191:= 2188:) 2185:g 2182:, 2179:f 2176:( 2168:1 2150:f 2146:g 2142:f 2134:) 2132:g 2126:m 2122:f 2114:g 2106:f 2099:f 2095:g 2091:f 2087:) 2085:g 2079:f 2075:g 2067:f 2063:) 2061:g 2055:) 2053:f 2047:g 2039:f 1984:. 1978:) 1975:N 1972:, 1969:M 1966:( 1958:N 1955:M 1949:= 1946:) 1943:N 1940:, 1937:M 1934:( 1904:) 1902:N 1898:M 1889:B 1885:A 1869:) 1864:n 1860:b 1856:, 1851:n 1847:a 1843:( 1835:n 1831:x 1822:) 1817:1 1813:b 1809:, 1804:1 1800:a 1796:( 1788:1 1784:x 1773:N 1769:M 1765:) 1763:N 1759:M 1747:M 1743:N 1727:M 1724:N 1702:. 1695:n 1691:a 1682:n 1678:b 1672:n 1668:x 1657:1 1653:a 1644:1 1640:b 1634:1 1630:x 1626:= 1621:M 1618:N 1594:M 1591:N 1579:B 1575:A 1571:i 1555:i 1551:b 1542:i 1538:a 1527:M 1519:N 1515:N 1509:M 1493:. 1490:] 1485:n 1481:b 1477:, 1471:, 1466:1 1462:b 1458:[ 1455:= 1452:B 1432:] 1427:n 1423:a 1419:, 1413:, 1408:1 1404:a 1400:[ 1397:= 1394:A 1370:n 1366:b 1360:n 1356:x 1345:1 1341:b 1335:1 1331:x 1327:= 1324:N 1300:n 1296:a 1290:n 1286:x 1275:1 1271:a 1265:1 1261:x 1257:= 1254:M 1235:m 1231:m 1201:) 1199:p 1193:) 1191:p 1187:p 1169:p 1137:. 1127:. 1084:. 1072:P 1069:M 1063:M 1042:P 1039:N 1033:P 1030:M 1024:N 1018:M 1005:P 1001:N 997:M 966:. 963:R 955:k 951:g 947:, 941:, 936:1 932:g 909:i 905:f 899:i 895:g 889:k 884:1 881:= 878:i 863:R 859:F 855:F 848:R 834:} 829:k 825:f 821:, 815:, 810:1 806:f 802:{ 799:= 796:F 750:. 745:A 741:X 737:= 730:n 726:a 720:n 716:x 705:1 701:a 695:1 691:x 670:] 665:n 661:x 657:, 651:, 646:1 642:x 638:[ 635:= 632:X 608:] 603:n 599:a 595:, 589:, 584:1 580:a 576:[ 573:= 570:A 548:i 544:a 523:, 516:n 512:a 506:n 502:x 491:1 487:a 481:1 477:x 446:i 442:M 427:K 411:i 407:c 386:, 381:m 377:M 371:m 367:c 363:+ 357:+ 352:1 348:M 342:1 338:c 317:] 312:n 308:x 304:, 298:, 293:1 289:x 285:[ 282:K 279:= 276:R 255:K 251:K 234:] 229:n 225:x 221:, 215:, 210:1 206:x 202:[ 199:K 196:= 193:R 58:K 49:K

Index

mathematics
computer algebra
algebraic geometry
commutative algebra
generating set of an ideal
polynomial ring
field
algebraic variety
dimension
systems of polynomial equations
algebraic varieties
projections
rational maps
Euclid's algorithm
polynomial greatest common divisors
Gaussian elimination
Bruno Buchberger
Buchberger's algorithm
Wolfgang Gröbner
Association for Computing Machinery
Paris Kanellakis Theory and Practice Award
Nikolai Günther
power series
Heisuke Hironaka
principal ideal rings
polynomial rings
Ore algebras
Polynomial ring
ideals
polynomial ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.