Knowledge

Gene mapping

Source 📝

773: 781: 31: 77: 702:. While the physical map could be a more accurate representation of the genome, genetic maps often offer insights into the nature of different regions of the chromosome, for example the genetic distance to physical distance ratio varies greatly at different genomic regions which reflects different recombination rates, and such rate is often indicative of euchromatic (usually gene-rich) vs heterochromatic (usually gene-poor) regions of the genome. 1046: 670:) include physical mapping and genetic mapping. Physical mapping utilizes molecular biology techniques to inspect chromosomes. These techniques consequently allow researchers to observe chromosomes directly so that a map may be constructed with relative gene positions. Genetic mapping on the other hand uses genetic techniques to indirectly find association between genes. Techniques can include cross-breeding ( 719:
recorded for both parents and each individual in the following generations. The quality of the genetic maps is largely dependent upon these factors: the number of genetic markers on the map and the size of the mapping population. The two factors are interlinked, as a larger mapping population could increase the "resolution" of the map and prevent the map from being "saturated".
723:
same way as if they are common markers and the actual gene loci are then bracketed in a region between the two nearest neighboring markers. The entire process is then repeated by looking at more markers that target that region to map the gene neighborhood to a higher resolution until a specific causative locus can be identified. This process is often referred to as "
735:
two genes is measured in units known as centimorgan or map units, these terms are interchangeable. A centimorgan is a distance between genes for which one product of meiosis in one hundred is recombinant. The farther two genes are from each other, the more likely they are going to recombine. If it were closer, the opposite would occur.
923:. By attaching fluorochromes to probes, researchers are able to visualize multiple DNA sequences simultaneously. When a probe comes into contact with DNA on a specific chromosome, hybridization will occur. Consequently, information regarding the location of that sequence of DNA will be attained. FISH analyzes single stranded DNA ( 845:, which provides one with information regarding the size of these digested fragments. The sizes of these fragments help indicate the distance between restriction enzyme sites on the DNA analyzed, and provides researchers with information regarding the structure of DNA analyzed. The resulting pattern of DNA migration – its 821:
Since actual base-pair distances are generally hard or not possible to directly measure, physical maps are actually constructed by first shattering the genome into hierarchically smaller pieces. By characterizing each single piece and assembling back together, the overlapping path or "tiling path" of
718:
and a mapping population. The closer two markers are on the chromosome, the more likely they are to be passed on to the next generation together. Therefore, the "co-segregation" patterns of all markers can be used to reconstruct their order. With this in mind, the genotypes of each genetic marker are
722:
In gene mapping, any sequence feature that can be faithfully distinguished from the two parents can be used as a genetic marker. Genes, in this regard, are represented by "traits" that can be faithfully distinguished between two parents. Their linkage with other genetic markers is calculated in the
710:
Researchers begin a genetic map by collecting samples of blood, saliva, or tissue from family members that carry a prominent disease or trait and family members that do not. The most common sample used in gene mapping, especially in personal genomic tests is saliva. Scientists then isolate DNA from
1170:
Using the methods mentioned above, researchers are capable of mapping disease genes. Generating a gene map is the critical first step towards identifying disease genes. Gene maps allow for variant alleles to be identified and allow for researchers to make predictions about the genes they think are
734:
Genetic mapping is a way to identify exactly which chromosome has which gene and exactly pinpointing where that gene lies on that particular chromosome. Mapping also acts as a method in determining which gene is most likely to recombine based on the distance between two genes. The distance between
1007:
of the gene's DNA specify each successive amino acid of its encoded protein. Thus the genetic code was shown to be a triplet code, where each triplet (called a codon) specifies a particular amino acid. They also obtained evidence that the codons do not overlap with each other in the DNA sequence
628:
onto their respective positions on the genome. Molecular markers come in all forms. Genes can be viewed as one special type of genetic markers in the construction of genome maps, and mapped the same way as any other markers. In some areas of study, gene mapping contributes to the creation of new
1031:
resembles the process of physical mapping: it shatters the genome into small fragments, characterizes each fragment, then puts them back together (more recent sequencing technologies are drastically different). While the scope, purpose and process are totally different, a genome assembly can be
1011:
Edgar et al. performed mapping experiments with r mutants of bacteriophage T4 showing that recombination frequencies between rII mutants are not strictly additive. The recombination frequency from a cross of two rII mutants (a x d) is usually less than the sum of recombination frequencies for
908:, which provides one with information regarding the size of these digested fragments. The sizes of these fragments help indicate the distance between restriction enzyme sites on the DNA analyzed, and provides researchers with information regarding the structure of DNA analyzed. 711:
the samples and closely examine it, looking for unique patterns in the DNA of the family members who do carry the disease and the DNA of those who do not carry the disease do not have. These unique molecular patterns in the DNA are referred to as polymorphisms, or markers.
804:
Gene association analysis is population based; it is not focused on inheritance patterns, but rather is based on the entire history of a population. Gene association analysis looks at a particular population and tries to identify whether the frequency of an
1142:
Identification of genes is usually the first step in understanding a genome of a species; mapping of the gene is usually the first step of identification of the gene. Gene mapping is usually the starting point of many important downstream studies.
879:
in a group of clones overlaps without completely sequencing the clones. Once the map is determined, the clones can be used as a resource to efficiently contain large stretches of the genome. This type of mapping is more accurate than genetic maps.
869:. By this approach, physical map contigs can be "anchored" onto a genetic map. The clones used in the physical map contigs can then be sequenced on a local scale to help new genetic marker design and identification of the causative loci. 647:
to find the distance between other genes on a chromosome. Maps provide researchers with the opportunity to predict the inheritance patterns of specific traits, which can eventually lead to a better understanding of disease-linked traits.
1179:. For example, with Cystic Fibrosis (CF), DNA samples from fifty families affected by CF were analyzed using linkage analysis. Hundreds of markers pertaining to CF were analyzed throughout the genome until CF was identified on the 864:
In physical mapping, there are no direct ways of marking up a specific gene since the mapping does not include any information that concerns traits and functions. Genetic markers can be linked to a physical map by processes like
1183:
of chromosome 7. Researchers then had completed linkage analysis on additional DNA markers within chromosome 7 to identify an even more precise location of the CF gene. They found that the CF gene resides around 7q31-q32 (see
903:
that help cut segments of DNA at specific recognition sequences. The basis to restriction mapping involves digesting (or cutting) DNA with restriction enzymes. The digested DNA fragments are then run on an agarose gel using
840:
that help cut segments of DNA at specific recognition sequences. The basis to restriction mapping involves digesting (or cutting) DNA with restriction enzymes. The digested DNA fragments are then run on an agarose gel using
943:
in length) that is seen to appear multiple times within an individual's genome. These sites are easily recognizable, usually appearing at least once in the DNA being analyzed. These sites usually contain genetic
809:
in affected individuals is different from that of a control set of unaffected individuals of the same population. This method is particularly useful to identify complex diseases that do not have a
1012:
adjacent internal sub-intervals (a x b) + (b x c) + (c x d). Although not strictly additive, a systematic relationship was demonstrated that likely reflects the underlying molecular mechanism of
948:
making them sources of viable genetic markers (as they differ from other sequences). Sequenced tagged sites can be mapped within our genome and require a group of overlapping DNA fragments.
857:
are assembled by automated (FPC) or manual means (pathfinders) into overlapping DNA stretches. Now a good choice of clones can be made to efficiently sequence the clones to determine the
919:(FISH) is a method used to detect the presence (or absence) of a DNA sequence within a cell. DNA probes that are specific for chromosomal regions or genes of interest are labeled with 686:
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) and physical maps. While both maps are a collection of
956:
between STSs can be analyzed. In order to calculate the map distance between STSs, researchers determine the frequency at which breaks between the two markers occur (see
872:
Macrorestriction is a type of physical mapping wherein the high molecular weight DNA is digested with a restriction enzyme having a low number of restriction sites.
1032:
viewed as the "ultimate" form of physical map, in that it provides in a much better way all the information that a traditional physical map can offer.
999:
In 1961, Francis Crick, Leslie Barnett, Sydney Brenner and Richard Watts-Tobin performed genetic experiments that demonstrated the basic nature of the
1003:
for proteins. These experiments, involving mapping of mutational sites within the rIIB gene of bacteriophage T4, demonstrated that three sequential
1462: 992:
could be mapped in a linear order. This result provided evidence for the key idea that the gene has a linear structure equivalent to a length of
531: 1155:
is also referred to as "mapping". If the locus in which the search is performed is already considerably constrained, the search is called the
1823:
Hartwell, Leland H.; Hood, Leroy; Goldberg, Michael L.; Reynolds, Anne E.; Silver, Lee M.; Karagiannis, Jim; Papaconstantinou, Maria (2014).
727:", and it is used extensively in the study of plant species. One plant species, in particular in which positional cloning is utilized is in 731:. The great advantage of genetic mapping is that it can identify the relative position of genes based solely on their phenotypic effect. 1824: 1290: 678:. These technique allow for maps to be constructed so that relative positions of genes and other important sequences can be analyzed. 2212: 1392: 65:
characteristics on the second Drosophila chromosome. The distance between the genes (map units) are equal to the percentage of
1834: 1683: 1402: 1266: 1197: 1110: 1082: 655:. A gene map helps point out the relative positions of genes and allows researchers to locate regions of interest in the 54: 1857: 916: 617:
and the distances between genes. Gene mapping can also describe the distances between different sites within a gene.
2182: 1446: 1129: 1089: 1980:
Crick FH, Barnett L, Brenner S, Watts-Tobin RJ (December 1961). "General nature of the genetic code for proteins".
1289:. Bethesda, MD: Lister Hill National Center for Biomedical Communications, an Intramural Research Division of the 769:
of diseases. Because linkage analysis can identify inheritance patterns, these studies are usually family based.
510: 1067: 945: 1096: 2216: 1063: 1159:
of a gene. This information is derived from the investigation of disease manifestations in large families (
952:
is generally used to produce the collection of DNA fragments. After overlapping fragments are created, the
1765: 1078: 651:
The genetic basis to gene maps is to provide an outline that can potentially help researchers carry out
1766:"The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association" 223: 195: 949: 1342:
Ladejobi O, Elderfield J, Gardner KA, Gaynor RC, Hickey J, Hibberd JM, et al. (December 2016).
822:
these small fragments would allow researchers to infer physical distances between genomic features.
1232: 562: 17: 2115:"Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension" 1627:"Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension" 1500: 750: 1185: 1056: 1024: 792:
The earliest gene maps were done by linkage analysis of fruitflies, in the research group around
39: 1700: 1501:
Aguilera-Galvez C, Champouret N, Rietman H, Lin X, Wouters D, Chu Z, et al. (March 2018).
1212: 95: 1013: 977: 973: 866: 810: 698:
information, while physical maps use actual physical distances usually measured in number of
66: 753:
is understanding chromosomal location and identifying disease genes. Certain genes that are
1780: 1222: 985: 936: 1103: 1027:
is sometimes mistakenly referred to as "genome mapping" by non-biologists. The process of
8: 1164: 927:). Once the DNA is in its single stranded state, the DNA can bind to its specific probe. 905: 846: 842: 1784: 780: 757:
or associated with each other reside close to each other on the same chromosome. During
2141: 2114: 2090: 2065: 2041: 2016: 1796: 1651: 1626: 1625:
Saygin D, Tabib T, Bittar HE, Valenzi E, Sembrat J, Chan SY, et al. (2017-04-01).
1602: 1577: 1539: 1502: 1476: 1456: 1368: 1343: 1028: 957: 896: 833: 793: 772: 724: 538: 517: 503: 482: 461: 328: 314: 272: 181: 174: 151: 34: 1957: 1932: 1908: 1883: 2254: 2188: 2178: 2146: 2095: 2046: 1997: 1962: 1913: 1830: 1722: 1679: 1656: 1607: 1544: 1442: 1408: 1398: 1373: 1262: 644: 580: 552: 475: 447: 384: 363: 216: 1800: 2136: 2126: 2085: 2077: 2036: 2028: 1989: 1952: 1944: 1903: 1895: 1788: 1712: 1646: 1638: 1597: 1589: 1534: 1526: 1363: 1355: 1314: 850: 691: 671: 640: 625: 606: 2131: 1008:
encoding a protein, and that such a sequence is read from a fixed starting point.
2174: 2113:
Saygin D, Tabib T, Bittar HE, Valenzi E, Sembrat J, Chan SY, et al. (2018).
2081: 1530: 1227: 1176: 1160: 888: 825: 754: 744: 695: 687: 575: 43: 2032: 1748: 1937:
Proceedings of the National Academy of Sciences of the United States of America
1888:
Proceedings of the National Academy of Sciences of the United States of America
1436: 1217: 1175:
phenotype. An example of a disorder that was identified by Linkage analysis is
858: 762: 715: 675: 660: 652: 568: 524: 398: 356: 349: 293: 265: 144: 123: 1717: 1359: 1282: 30: 2248: 2192: 1829:(Canadian ed.). Canada: McGraw-Hill Ryerson. pp. 456–459, 635–636. 1642: 1237: 981: 454: 433: 419: 335: 279: 244: 230: 88: 1948: 976:
and arranged like beads on a string. During 1955 to 1959, Benzer performed
588:, segments with labels on the outside are on the A strand. Notches indicate 2150: 2050: 2001: 1966: 1917: 1792: 1726: 1660: 1611: 1548: 1377: 1202: 1000: 761:, these genes are capable of being inherited together and can be used as a 639:. Genes are designated to a specific location on a chromosome known as the 370: 300: 2099: 2015:
Edgar RS, Feynman RP, Klein S, Lielausis I, Steinberg CM (February 1962).
1899: 1593: 1391:
Nussbaum, Robert L.; McInnes, Roderick R.; Wilard, Huntington F. (2016).
953: 920: 286: 258: 58: 1070: in this section. Unsourced material may be challenged and removed. 1004: 969: 636: 614: 81: 1993: 1337: 1335: 1207: 940: 766: 699: 209: 1151:
The process to identify a genetic element that is responsible for a
1045: 988:. He found that, on the basis of recombination tests, the sites of 1172: 989: 891:
is a method in which structural information regarding a segment of
828:
is a method in which structural information regarding a segment of
50: 2208: 1562: 1332: 776:
First genetic map (Sturtevant, 1913). It shows 6 sex-linked genes.
1397:(Eighth ed.). Philadelphia, PA: Elsevier. pp. 178–187. 1152: 758: 714:
The first steps of building a genetic map are the development of
589: 102: 1341: 968:
In the early 1950s the prevailing view was that the genes in a
900: 854: 837: 806: 656: 621: 584:. Segments with labels on the inside reside on the B strand of 62: 2066:"The additivity of intervals in the RIIA cistron of phage T4D" 1979: 1578:"Positional cloning in maize (Zea mays subsp. mays, Poaceae)" 1344:"Maximizing the potential of multi-parental crop populations" 1180: 924: 728: 545: 377: 342: 307: 237: 137: 130: 109: 1822: 1673: 1633:. Advances in Crop Science: Innovation and Sustainability. 610: 496: 489: 468: 440: 426: 412: 405: 391: 321: 251: 202: 188: 167: 160: 116: 2014: 2017:"Mapping experiments with r mutants of bacteriophage T4D" 993: 892: 876: 829: 585: 46: 2112: 1624: 2230: 1515:
and confer distinct resistance specificities in potato"
1261:(Ninth ed.). New York: McGraw-Hill. p. 209. 1884:"Fine structure of a genetic region in bacteriophage" 1753:. MBLWHOI Library. New Haven, Yale University Press; 1390: 930: 911: 635:
help describe the spatial arrangement of genes on a
1674:Goldberg M, Fischer J, Hood L, Hartwell L (2020). 939:(STS) is a short sequence of DNA (about 100 - 500 849:is used to identify what stretch of DNA is in the 1575: 53:produced and provides important evidence for the 2246: 2231:"Canada's Michael Smith Genome Sciences Centre" 2063: 1933:"On the topology of the genetic fine structure" 1858:"Fluorescence In Situ Hybridization Fact Sheet" 1678:. New York, NY: McGraw Hill. pp. 125–128. 996:with many sites that can independently mutate. 69:events that occurs between different alleles. 2008: 1973: 1924: 1875: 1461:: CS1 maint: multiple names: authors list ( 1394:Thompson & Thompson Genetics in Medicine 875:There are alternative ways to determine how 799: 2057: 1818: 1816: 1814: 1812: 1810: 963: 694:, genetic maps' distances are based on the 659:. Genes can then be identified quickly and 605:describes the methods used to identify the 1763: 1275: 61:. The map shows the relative positions of 2140: 2130: 2089: 2040: 1956: 1907: 1716: 1650: 1601: 1576:Gallavotti A, Whipple CJ (January 2015). 1538: 1367: 1309: 1307: 1130:Learn how and when to remove this message 2213:National Human Genome Research Institute 2064:Fisher KM, Bernstein H (December 1965). 1807: 784:Genetic map of drosophila, published in 779: 771: 666:Two approaches to generating gene maps ( 29: 1850: 1430: 1428: 1426: 14: 2247: 1930: 1881: 1746: 1304: 1146: 972:are discrete entities, indivisible by 883: 2168: 1698: 1469: 1434: 1256: 681: 1423: 1348:Applied & Translational Genomics 1198:Eukaryotic chromosome fine structure 1068:adding citations to reliable sources 1039: 1019: 624:mapping is to place a collection of 1441:. Manchester, UK: Garland Science. 816: 796:. The first was published in 1913. 738: 24: 2161: 931:Sequence-tagged site (STS) mapping 917:Fluorescence in situ hybridization 705: 27:Process of locating specific genes 25: 2266: 2201: 1291:U.S. National Library of Medicine 912:Fluorescent in situ hybridization 853:. By analyzing the fingerprints, 629:recombinants within an organism. 1044: 75: 49:. This was the first successful 2106: 1826:Genetics: From Genes to Genomes 1773:Journal of Experimental Zoology 1757: 1740: 1692: 1676:Genetics: From Genes to Genomes 1667: 1618: 1569: 1283:"Gene mapping - Glossary Entry" 1055:needs additional citations for 55:Boveri–Sutton chromosome theory 1699:Pulst, Stefan M. (June 1999). 1582:Applications in Plant Sciences 1555: 1494: 1384: 1250: 13: 1: 2233:. Vancouver, British Columbia 2217:National Institutes of Health 2132:10.1080/1828051X.2018.1462110 1243: 861:of the organism under study. 2209:"Genetic Mapping Fact Sheet" 1747:Morgan, Thomas Hunt (1926). 1563:"Genetic Mapping Fact Sheet" 1531:10.1016/j.simyco.2018.01.002 1163:) or from populations-based 674:) experiments and examining 7: 1435:Brown, Terence, A. (2002). 1191: 574:An interactive gene map of 10: 2271: 2175:Garland Science Publishing 2082:10.1093/genetics/52.6.1127 1931:Benzer S (November 1959). 1764:Sturtevant, A. H. (1913). 1701:"Genetic Linkage Analysis" 1507:gene loci co-evolved with 899:. Restriction enzymes are 836:. Restriction enzymes are 742: 225:replication origin regions 197:replication origin regions 2033:10.1093/genetics/47.2.179 1718:10.1001/archneur.56.6.667 1360:10.1016/j.atg.2016.10.002 800:Gene association analysis 1643:10.1016/j.cj.2016.06.003 1287:Genetics Home Reference] 1233:Quantitative trait locus 1186:chromosomal nomenclature 964:Mapping mutational sites 1949:10.1073/pnas.45.11.1607 40:Drosophila melanogaster 1882:Benzer S (June 1955). 1793:10.1002/jez.1400140104 1750:The theory of the gene 1513:Phytophthora infestans 1213:Genetic fingerprinting 1035: 789: 786:The theory of the gene 777: 533:atp-dependent protease 97:acetyl-CoA carboxylase 70: 2119:Pulmonary Circulation 1900:10.1073/pnas.41.6.344 1631:Pulmonary Circulation 1014:genetic recombination 978:genetic recombination 974:genetic recombination 867:in situ hybridization 811:Mendelian inheritance 783: 775: 765:to help identify the 33: 1594:10.3732/apps.1400092 1223:Human Genome Project 1064:improve this article 937:sequence-tagged site 1785:1913JEZ....14...43S 1519:Studies in Mycology 1165:genetic association 1147:Disease association 897:restriction enzymes 889:Restriction mapping 884:Restriction mapping 847:genetic fingerprint 834:restriction enzymes 826:Restriction mapping 643:and can be used as 620:The essence of all 512:initiation factor 1 1029:shotgun sequencing 980:experiments using 958:shotgun sequencing 895:is obtained using 832:is obtained using 794:Thomas Hunt Morgan 790: 778: 755:genetically linked 725:positional cloning 682:Mapping approaches 540:ribosomal proteins 519:ribosomal proteins 505:ribosomal proteins 484:nadh dehydrogenase 463:nadh dehydrogenase 330:ribosomal proteins 316:nadh dehydrogenase 274:ribosomal proteins 183:ribosomal proteins 176:nadh dehydrogenase 71: 35:Thomas Hunt Morgan 2169:Brown TA (2007). 1994:10.1038/1921227a0 1836:978-0-07-094669-9 1685:978-1-260-24087-0 1404:978-1-4377-0696-3 1268:978-0-07-325839-3 1140: 1139: 1132: 1114: 1025:Genome sequencing 1020:Genome sequencing 645:molecular markers 626:molecular markers 581:Nicotiana tabacum 555:nicotiana tabacum 477:ribosomal protein 449:ribosomal protein 386:ribosomal protein 365:ribosomal protein 218:ribosomal protein 16:(Redirected from 2262: 2241: 2239: 2238: 2226: 2224: 2223: 2211:. Bethesda, MD: 2196: 2173:. New York, NY: 2155: 2154: 2144: 2134: 2110: 2104: 2103: 2093: 2061: 2055: 2054: 2044: 2012: 2006: 2005: 1977: 1971: 1970: 1960: 1928: 1922: 1921: 1911: 1879: 1873: 1872: 1870: 1868: 1854: 1848: 1847: 1845: 1843: 1820: 1805: 1804: 1770: 1761: 1755: 1754: 1744: 1738: 1737: 1735: 1733: 1720: 1696: 1690: 1689: 1671: 1665: 1664: 1654: 1622: 1616: 1615: 1605: 1573: 1567: 1566: 1559: 1553: 1552: 1542: 1498: 1492: 1491: 1489: 1487: 1473: 1467: 1466: 1460: 1452: 1432: 1421: 1420: 1418: 1416: 1407:. Archived from 1388: 1382: 1381: 1371: 1339: 1330: 1329: 1327: 1325: 1311: 1302: 1301: 1299: 1298: 1279: 1273: 1272: 1257:Mader S (2007). 1254: 1135: 1128: 1124: 1121: 1115: 1113: 1072: 1048: 1040: 986:bacteriophage T4 817:Physical mapping 751:linkage analysis 739:Linkage analysis 557: 548: 541: 534: 527: 520: 513: 506: 499: 492: 485: 478: 471: 464: 457: 450: 443: 436: 429: 422: 415: 408: 401: 394: 387: 380: 373: 366: 359: 352: 345: 338: 331: 324: 317: 310: 303: 296: 289: 282: 275: 268: 261: 254: 247: 240: 233: 226: 219: 212: 205: 198: 191: 184: 177: 170: 163: 156: 147: 140: 133: 126: 119: 112: 105: 98: 91: 84: 79: 78: 21: 2270: 2269: 2265: 2264: 2263: 2261: 2260: 2259: 2245: 2244: 2236: 2234: 2229: 2221: 2219: 2207: 2204: 2199: 2185: 2164: 2162:Further reading 2159: 2158: 2111: 2107: 2062: 2058: 2013: 2009: 1978: 1974: 1943:(11): 1607–20. 1929: 1925: 1880: 1876: 1866: 1864: 1856: 1855: 1851: 1841: 1839: 1837: 1821: 1808: 1768: 1762: 1758: 1745: 1741: 1731: 1729: 1697: 1693: 1686: 1672: 1668: 1623: 1619: 1574: 1570: 1561: 1560: 1556: 1503:"Two different 1499: 1495: 1485: 1483: 1475: 1474: 1470: 1454: 1453: 1449: 1433: 1424: 1414: 1412: 1411:on 4 March 2016 1405: 1389: 1385: 1340: 1333: 1323: 1321: 1313: 1312: 1305: 1296: 1294: 1281: 1280: 1276: 1269: 1255: 1251: 1246: 1228:Optical mapping 1194: 1177:Cystic Fibrosis 1161:genetic linkage 1149: 1136: 1125: 1119: 1116: 1073: 1071: 1061: 1049: 1038: 1022: 966: 933: 914: 906:electrophoresis 886: 843:electrophoresis 819: 802: 747: 745:Genetic linkage 741: 716:genetic markers 708: 706:Genetic mapping 696:genetic linkage 688:genetic markers 684: 596: 595: 594: 593: 576:chloroplast DNA 572: 559: 553: 550: 546: 543: 539: 536: 532: 529: 525: 522: 518: 515: 511: 508: 504: 501: 497: 494: 490: 487: 483: 480: 476: 473: 469: 466: 462: 459: 455: 452: 448: 445: 441: 438: 434: 431: 427: 424: 420: 417: 413: 410: 406: 403: 399: 396: 392: 389: 385: 382: 378: 375: 371: 368: 364: 361: 357: 354: 350: 347: 343: 340: 336: 333: 329: 326: 322: 319: 315: 312: 308: 305: 301: 298: 294: 291: 287: 284: 280: 277: 273: 270: 266: 263: 259: 256: 252: 249: 245: 242: 238: 235: 231: 228: 224: 221: 217: 214: 210: 207: 203: 200: 196: 193: 189: 186: 182: 179: 175: 172: 168: 165: 161: 158: 154: 152: 149: 145: 142: 138: 135: 131: 128: 124: 121: 117: 114: 110: 107: 103: 100: 96: 93: 89: 86: 82: 76: 44:genetic linkage 28: 23: 22: 15: 12: 11: 5: 2268: 2258: 2257: 2243: 2242: 2227: 2203: 2202:External links 2200: 2198: 2197: 2183: 2165: 2163: 2160: 2157: 2156: 2125:(1): 890–898. 2105: 2076:(6): 1127–36. 2056: 2027:(2): 179–186. 2007: 1972: 1923: 1874: 1849: 1835: 1806: 1756: 1739: 1711:(6): 667–672. 1705:JAMA Neurology 1691: 1684: 1666: 1637:(1): 175–184. 1617: 1588:(1): 1400092. 1568: 1554: 1493: 1468: 1447: 1422: 1403: 1383: 1331: 1303: 1274: 1267: 1248: 1247: 1245: 1242: 1241: 1240: 1235: 1230: 1225: 1220: 1218:Genome project 1215: 1210: 1205: 1200: 1193: 1190: 1148: 1145: 1138: 1137: 1079:"Gene mapping" 1052: 1050: 1043: 1037: 1034: 1021: 1018: 965: 962: 932: 929: 913: 910: 885: 882: 818: 815: 801: 798: 763:genetic marker 740: 737: 707: 704: 683: 680: 653:DNA sequencing 603:genome mapping 573: 560: 551: 544: 537: 530: 526:RNA polymerase 523: 516: 509: 502: 495: 488: 481: 474: 467: 460: 453: 446: 439: 432: 425: 418: 411: 404: 400:photosystem II 397: 390: 383: 376: 369: 362: 358:RNA polymerase 355: 351:photosystem II 348: 341: 334: 327: 320: 313: 306: 299: 295:photosystem II 292: 285: 278: 271: 267:photosystem II 264: 257: 250: 243: 236: 229: 222: 215: 208: 201: 194: 187: 180: 173: 166: 159: 150: 146:photosystem II 143: 136: 129: 125:photosystem II 122: 115: 108: 101: 94: 87: 80: 74: 73: 72: 26: 9: 6: 4: 3: 2: 2267: 2256: 2253: 2252: 2250: 2232: 2228: 2218: 2214: 2210: 2206: 2205: 2194: 2190: 2186: 2184:9780815341383 2180: 2176: 2172: 2167: 2166: 2152: 2148: 2143: 2138: 2133: 2128: 2124: 2120: 2116: 2109: 2101: 2097: 2092: 2087: 2083: 2079: 2075: 2071: 2067: 2060: 2052: 2048: 2043: 2038: 2034: 2030: 2026: 2022: 2018: 2011: 2003: 1999: 1995: 1991: 1987: 1983: 1976: 1968: 1964: 1959: 1954: 1950: 1946: 1942: 1938: 1934: 1927: 1919: 1915: 1910: 1905: 1901: 1897: 1894:(6): 344–54. 1893: 1889: 1885: 1878: 1863: 1859: 1853: 1838: 1832: 1828: 1827: 1819: 1817: 1815: 1813: 1811: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1767: 1760: 1752: 1751: 1743: 1728: 1724: 1719: 1714: 1710: 1706: 1702: 1695: 1687: 1681: 1677: 1670: 1662: 1658: 1653: 1648: 1644: 1640: 1636: 1632: 1628: 1621: 1613: 1609: 1604: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1564: 1558: 1550: 1546: 1541: 1536: 1532: 1528: 1524: 1520: 1516: 1514: 1510: 1506: 1497: 1482: 1478: 1477:"Genetic Map" 1472: 1464: 1458: 1450: 1448:0-471-25046-5 1444: 1440: 1439: 1431: 1429: 1427: 1410: 1406: 1400: 1396: 1395: 1387: 1379: 1375: 1370: 1365: 1361: 1357: 1353: 1349: 1345: 1338: 1336: 1320: 1316: 1310: 1308: 1292: 1288: 1284: 1278: 1270: 1264: 1260: 1253: 1249: 1239: 1238:Sulston score 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1195: 1189: 1187: 1182: 1178: 1174: 1168: 1166: 1162: 1158: 1154: 1144: 1134: 1131: 1123: 1120:December 2023 1112: 1109: 1105: 1102: 1098: 1095: 1091: 1088: 1084: 1081: –  1080: 1076: 1075:Find sources: 1069: 1065: 1059: 1058: 1053:This section 1051: 1047: 1042: 1041: 1033: 1030: 1026: 1017: 1015: 1009: 1006: 1002: 997: 995: 991: 987: 983: 979: 975: 971: 961: 959: 955: 951: 947: 946:polymorphisms 942: 938: 928: 926: 922: 921:fluorochromes 918: 909: 907: 902: 898: 894: 890: 881: 878: 873: 870: 868: 862: 860: 856: 852: 848: 844: 839: 835: 831: 827: 823: 814: 812: 808: 797: 795: 788:1926 edition. 787: 782: 774: 770: 768: 764: 760: 756: 752: 749:The basis to 746: 736: 732: 730: 726: 720: 717: 712: 703: 701: 697: 693: 689: 679: 677: 673: 669: 664: 662: 658: 654: 649: 646: 642: 638: 634: 630: 627: 623: 618: 616: 612: 608: 604: 600: 591: 587: 583: 582: 577: 571: 570: 565: 564: 558: 556: 549: 542: 535: 528: 521: 514: 507: 500: 493: 486: 479: 472: 465: 458: 456:photosystem I 451: 444: 437: 435:ribosomal RNA 430: 423: 421:ribosomal RNA 416: 409: 402: 395: 388: 381: 374: 367: 360: 353: 346: 339: 337:photosystem I 332: 325: 318: 311: 304: 297: 290: 283: 281:photosystem I 276: 269: 262: 255: 248: 246:ribosomal RNA 241: 234: 232:ribosomal RNA 227: 220: 213: 206: 199: 192: 185: 178: 171: 164: 157: 148: 141: 134: 127: 120: 113: 106: 99: 92: 90:photosystem I 85: 68: 67:crossing-over 64: 60: 56: 52: 48: 45: 42: 41: 36: 32: 19: 2235:. Retrieved 2220:. Retrieved 2170: 2122: 2118: 2108: 2073: 2069: 2059: 2024: 2020: 2010: 1985: 1981: 1975: 1940: 1936: 1926: 1891: 1887: 1877: 1865:. Retrieved 1861: 1852: 1840:. Retrieved 1825: 1779:(1): 43–59. 1776: 1772: 1759: 1749: 1742: 1730:. Retrieved 1708: 1704: 1694: 1675: 1669: 1634: 1630: 1620: 1585: 1581: 1571: 1557: 1522: 1518: 1512: 1508: 1504: 1496: 1484:. Retrieved 1480: 1471: 1437: 1413:. Retrieved 1409:the original 1393: 1386: 1351: 1347: 1322:. Retrieved 1318: 1295:. Retrieved 1293:. 2013-09-03 1286: 1277: 1258: 1252: 1203:Fate mapping 1171:causing the 1169: 1157:fine mapping 1156: 1150: 1141: 1126: 1117: 1107: 1100: 1093: 1086: 1074: 1062:Please help 1057:verification 1054: 1023: 1010: 1001:genetic code 998: 967: 954:map distance 934: 915: 887: 874: 871: 863: 859:DNA sequence 824: 820: 803: 791: 785: 748: 733: 721: 713: 709: 685: 668:gene mapping 667: 665: 650: 632: 631: 619: 602: 599:Gene mapping 598: 597: 579: 567: 561: 554: 372:atp synthase 302:atp synthase 38: 1988:: 1227–32. 1525:: 105–115. 1005:nucleobases 984:mutants of 288:cytochromes 260:cytochromes 59:inheritance 2237:2013-09-06 2222:2013-09-06 1862:Genome.gov 1842:13 October 1732:13 October 1481:Genome.gov 1415:13 October 1319:Genome.gov 1297:2013-09-06 1244:References 1090:newspapers 970:chromosome 941:base pairs 743:See also: 700:base pairs 637:chromosome 615:chromosome 83:cytochrome 2193:444522997 2171:Genomes 3 1457:cite book 1315:"Mapping" 1208:G banding 1167:studies. 813:pattern. 767:phenotype 690:and gene 676:pedigrees 663:quickly. 661:sequenced 633:Gene maps 211:small RNA 153:ribosomal 2255:Genetics 2249:Category 2151:32166015 2070:Genetics 2051:13889186 2021:Genetics 2002:13882203 1967:16590553 1918:16589677 1801:82583173 1727:10369304 1661:32166015 1612:25606355 1549:29910517 1378:28018845 1354:: 9–17. 1192:See also 1181:long arm 990:mutation 607:location 155:proteins 51:gene map 18:Gene map 2142:7052475 2100:5882191 2091:1210971 2042:1210321 1781:Bibcode 1652:7052475 1603:4298233 1540:6002340 1438:Genomes 1369:5167364 1259:Biology 1153:disease 1104:scholar 901:enzymes 855:contigs 838:enzymes 759:meiosis 590:introns 104:rubisco 63:allelic 2191:  2181:  2149:  2139:  2098:  2088:  2049:  2039:  2000:  1982:Nature 1965:  1958:222769 1955:  1916:  1909:528093 1906:  1833:  1799:  1725:  1682:  1659:  1649:  1610:  1600:  1547:  1537:  1445:  1401:  1376:  1366:  1265:  1173:mutant 1106:  1099:  1092:  1085:  1077:  807:allele 672:hybrid 657:genome 622:genome 1867:3 May 1797:S2CID 1769:(PDF) 1486:2 May 1324:3 May 1111:JSTOR 1097:books 925:ssDNA 851:clone 729:maize 641:locus 613:on a 609:of a 578:from 569:image 547:tRNAs 379:tRNAs 344:tRNAs 309:tRNAs 239:tRNAs 139:tRNAs 132:tRNAs 111:tRNAs 2189:OCLC 2179:ISBN 2147:PMID 2096:PMID 2047:PMID 1998:PMID 1963:PMID 1914:PMID 1869:2023 1844:2015 1831:ISBN 1734:2015 1723:PMID 1680:ISBN 1657:PMID 1608:PMID 1545:PMID 1509:Avr2 1488:2023 1463:link 1443:ISBN 1417:2015 1399:ISBN 1374:PMID 1326:2023 1263:ISBN 1083:news 692:loci 611:gene 563:edit 498:tRNA 491:tRNA 470:tRNA 442:tRNA 428:tRNA 414:tRNA 407:tRNA 393:tRNA 323:tRNA 253:tRNA 204:tRNA 190:tRNA 169:tRNA 162:tRNA 118:tRNA 2137:PMC 2127:doi 2086:PMC 2078:doi 2037:PMC 2029:doi 1990:doi 1986:192 1953:PMC 1945:doi 1904:PMC 1896:doi 1789:doi 1713:doi 1647:PMC 1639:doi 1598:PMC 1590:doi 1535:PMC 1527:doi 1511:of 1364:PMC 1356:doi 1188:). 1066:by 1036:Use 994:DNA 982:rII 950:PCR 893:DNA 877:DNA 830:DNA 601:or 586:DNA 57:of 47:map 37:'s 2251:: 2215:, 2187:. 2177:. 2145:. 2135:. 2123:10 2121:. 2117:. 2094:. 2084:. 2074:52 2072:. 2068:. 2045:. 2035:. 2025:47 2023:. 2019:. 1996:. 1984:. 1961:. 1951:. 1941:45 1939:. 1935:. 1912:. 1902:. 1892:41 1890:. 1886:. 1860:. 1809:^ 1795:. 1787:. 1777:14 1775:. 1771:. 1721:. 1709:56 1707:. 1703:. 1655:. 1645:. 1635:10 1629:. 1606:. 1596:. 1584:. 1580:. 1543:. 1533:. 1523:89 1521:. 1517:. 1479:. 1459:}} 1455:{{ 1425:^ 1372:. 1362:. 1352:11 1350:. 1346:. 1334:^ 1317:. 1306:^ 1285:. 1016:. 960:) 935:A 566:· 2240:. 2225:. 2195:. 2153:. 2129:: 2102:. 2080:: 2053:. 2031:: 2004:. 1992:: 1969:. 1947:: 1920:. 1898:: 1871:. 1846:. 1803:. 1791:: 1783:: 1736:. 1715:: 1688:. 1663:. 1641:: 1614:. 1592:: 1586:3 1565:. 1551:. 1529:: 1505:R 1490:. 1465:) 1451:. 1419:. 1380:. 1358:: 1328:. 1300:. 1271:. 1133:) 1127:( 1122:) 1118:( 1108:· 1101:· 1094:· 1087:· 1060:. 592:. 20:)

Index

Gene map

Thomas Hunt Morgan
Drosophila melanogaster
genetic linkage
map
gene map
Boveri–Sutton chromosome theory
inheritance
allelic
crossing-over
cytochrome
photosystem I
acetyl-CoA carboxylase
rubisco
tRNAs
tRNA
photosystem II
tRNAs
tRNAs
photosystem II
ribosomal
proteins

tRNA
tRNA
nadh dehydrogenase
ribosomal proteins
tRNA
replication origin regions
tRNA
small RNA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.