Knowledge

Gauge anomaly

Source đź“ť

202: 521:(i.e. without boundary) and oriented, then it is the boundary of some d+1 dimensional oriented manifold M. If we then arbitrarily extend the fields (including ε) as defined on M to M with the only condition being they match on the boundaries and the expression Ω, being the exterior product of p-forms, can be extended and defined in the interior, then 512:
as a functional of the nonintegrated fields and is linear in ε. Let us make the further assumption (which turns out to be valid in all the cases of interest) that this functional is local (i.e. Ω(x) only depends upon the values of the fields and their derivatives at x) and that it can be expressed as
1110: 1416: 912: 609: 54:
All gauge anomalies must cancel out. Anomalies in gauge symmetries lead to an inconsistency, since a gauge symmetry is required in order to cancel degrees of freedom with a negative norm which are unphysical (such as a
1199: 503: 927: 364: 1279: 1290: 425: 236: 391: 1211:
Once again, if we assume Ω can be expressed as an exterior product and that it can be extended into a d+1 -form in a d+2 dimensional oriented manifold, we can define
171: 191: 90:
Anomalies occur only in even spacetime dimensions. For example, the anomalies in the usual 4 spacetime dimensions arise from triangle Feynman diagrams.
620: 527: 1121: 1105:{\displaystyle \delta _{\epsilon _{1}}d\Omega ^{(d)}(\epsilon _{2})-\delta _{\epsilon _{2}}d\Omega ^{(d)}(\epsilon _{1})=d\Omega ^{(d)}(\left).} 433: 1115:
Because of the Frobenius consistency condition, this means that there exists a d+1-form Ω (not depending upon ε) defined over M satisfying
248: 239: 1411:{\displaystyle \delta _{\epsilon }\Omega ^{(d+2)}=d\delta _{\epsilon }\Omega ^{(d+1)}=d^{2}\Omega ^{(d)}(\epsilon )=0} 1217: 99: 1501: 394: 400: 1444: 214: 1439: 372: 211:. If there is a gauge anomaly, the resulting action will not be gauge invariant. If we denote by 1205: 136: 71: 44: 8: 1434: 119: 20: 176: 509: 32: 28: 514: 238:
the operator corresponding to an infinitesimal gauge transformation by ε, then the
36: 907:{\displaystyle \leftS=\int _{M^{d+1}}\left=\int _{M^{d+1}}d\Omega ^{(d)}(\left).} 518: 115: 70:
is usually used for vector gauge anomalies. Another type of gauge anomaly is the
208: 111: 103: 75: 60: 40: 604:{\displaystyle \delta _{\epsilon }S=\int _{M^{d+1}}d\Omega ^{(d)}(\epsilon ).} 1495: 1449: 1194:{\displaystyle \delta _{\epsilon }\Omega ^{(d+1)}=d\Omega ^{(d)}(\epsilon ).} 207:
Let us look at the (semi)effective action we get after integrating over the
48: 498:{\displaystyle \delta _{\epsilon }S=\int _{M^{d}}\Omega ^{(d)}(\epsilon )} 130: 107: 79: 194: 59:
polarized in the time direction). Indeed, cancellation occurs in the
201: 359:{\displaystyle \left{\mathcal {F}}=\delta _{\left}{\mathcal {F}}} 122: 56: 114:, and can be calculated exactly at one loop level, via a 393:, including the (semi)effective action S where is the 1293: 1220: 1124: 930: 921:
arbitrary extension of the fields into the interior,
623: 530: 436: 403: 375: 251: 217: 179: 139: 1410: 1273: 1193: 1104: 906: 603: 497: 419: 385: 358: 230: 185: 165: 74:, because coordinate reparametrization (called a 1493: 1274:{\displaystyle \Omega ^{(d+2)}=d\Omega ^{(d+1)}} 614:The Frobenius consistency condition now becomes 16:Breakdown of gauge symmetry at the quantum level 85: 1483:Gauge Theory of Elementary Particle Physics 1284:in d+2 dimensions. Ω is gauge invariant: 93: 1467:Treiman, Sam, and Roman Jackiw, (2014). 1480: 1494: 917:As the previous equation is valid for 420:{\displaystyle \delta _{\epsilon }S} 231:{\displaystyle \delta _{\epsilon }} 13: 1378: 1343: 1305: 1250: 1222: 1164: 1136: 1045: 1007: 952: 847: 781: 726: 574: 517:of p-forms. If the spacetime M is 471: 378: 351: 301: 14: 1513: 200: 240:Frobenius consistency condition 110:is a vector), the anomaly is a 1485:. Oxford Science Publications. 1481:Cheng, T.P.; Li, L.F. (1984). 1474: 1461: 1399: 1393: 1388: 1382: 1359: 1347: 1321: 1309: 1266: 1254: 1238: 1226: 1185: 1179: 1174: 1168: 1152: 1140: 1096: 1060: 1055: 1049: 1035: 1022: 1017: 1011: 980: 967: 962: 956: 898: 862: 857: 851: 809: 796: 791: 785: 754: 741: 736: 730: 595: 589: 584: 578: 492: 486: 481: 475: 386:{\displaystyle {\mathcal {F}}} 1: 1471:. Princeton University Press. 1469:Current algebra and anomalies 1455: 427:is linear in ε, we can write 7: 1428: 133:attached to the loop where 78:) is the gauge symmetry of 10: 1518: 1440:Anomaly matching condition 86:Calculation of the anomaly 125:running in the loop with 1445:Green–Schwarz mechanism 166:{\displaystyle n=1+D/2} 1412: 1275: 1195: 1106: 908: 605: 499: 421: 387: 360: 232: 187: 167: 94:Vector gauge anomalies 39:—that invalidates the 1413: 1276: 1196: 1107: 909: 606: 500: 422: 388: 361: 233: 188: 168: 72:gravitational anomaly 31:: it is a feature of 1291: 1218: 1204:Ω is often called a 1122: 928: 621: 528: 434: 401: 373: 249: 215: 177: 137: 102:gauge anomalies (in 45:quantum field theory 27:is an example of an 1502:Anomalies (physics) 1435:Chiral gauge theory 369:for any functional 21:theoretical physics 1408: 1271: 1191: 1102: 904: 601: 495: 417: 383: 356: 228: 183: 163: 1206:Chern–Simons form 186:{\displaystyle D} 33:quantum mechanics 1509: 1487: 1486: 1478: 1472: 1465: 1417: 1415: 1414: 1409: 1392: 1391: 1376: 1375: 1363: 1362: 1341: 1340: 1325: 1324: 1303: 1302: 1280: 1278: 1277: 1272: 1270: 1269: 1242: 1241: 1200: 1198: 1197: 1192: 1178: 1177: 1156: 1155: 1134: 1133: 1111: 1109: 1108: 1103: 1095: 1091: 1090: 1089: 1077: 1076: 1059: 1058: 1034: 1033: 1021: 1020: 1002: 1001: 1000: 999: 979: 978: 966: 965: 947: 946: 945: 944: 913: 911: 910: 905: 897: 893: 892: 891: 879: 878: 861: 860: 842: 841: 840: 839: 816: 812: 808: 807: 795: 794: 776: 775: 774: 773: 753: 752: 740: 739: 721: 720: 719: 718: 699: 698: 697: 696: 670: 666: 665: 664: 663: 662: 645: 644: 643: 642: 610: 608: 607: 602: 588: 587: 569: 568: 567: 566: 540: 539: 515:exterior product 504: 502: 501: 496: 485: 484: 469: 468: 467: 466: 446: 445: 426: 424: 423: 418: 413: 412: 392: 390: 389: 384: 382: 381: 365: 363: 362: 357: 355: 354: 348: 347: 346: 342: 341: 340: 328: 327: 305: 304: 298: 294: 293: 292: 291: 290: 273: 272: 271: 270: 237: 235: 234: 229: 227: 226: 204: 192: 190: 189: 184: 172: 170: 169: 164: 159: 104:gauge symmetries 37:one-loop diagram 1517: 1516: 1512: 1511: 1510: 1508: 1507: 1506: 1492: 1491: 1490: 1479: 1475: 1466: 1462: 1458: 1431: 1424: 1381: 1377: 1371: 1367: 1346: 1342: 1336: 1332: 1308: 1304: 1298: 1294: 1292: 1289: 1288: 1253: 1249: 1225: 1221: 1219: 1216: 1215: 1167: 1163: 1139: 1135: 1129: 1125: 1123: 1120: 1119: 1085: 1081: 1072: 1068: 1067: 1063: 1048: 1044: 1029: 1025: 1010: 1006: 995: 991: 990: 986: 974: 970: 955: 951: 940: 936: 935: 931: 929: 926: 925: 887: 883: 874: 870: 869: 865: 850: 846: 829: 825: 824: 820: 803: 799: 784: 780: 769: 765: 764: 760: 748: 744: 729: 725: 714: 710: 709: 705: 704: 700: 686: 682: 681: 677: 658: 654: 653: 649: 638: 634: 633: 629: 628: 624: 622: 619: 618: 577: 573: 556: 552: 551: 547: 535: 531: 529: 526: 525: 474: 470: 462: 458: 457: 453: 441: 437: 435: 432: 431: 408: 404: 402: 399: 398: 377: 376: 374: 371: 370: 350: 349: 336: 332: 323: 319: 318: 314: 313: 309: 300: 299: 286: 282: 281: 277: 266: 262: 261: 257: 256: 252: 250: 247: 246: 222: 218: 216: 213: 212: 209:chiral fermions 178: 175: 174: 155: 138: 135: 134: 116:Feynman diagram 96: 88: 17: 12: 11: 5: 1515: 1505: 1504: 1489: 1488: 1473: 1459: 1457: 1454: 1453: 1452: 1447: 1442: 1437: 1430: 1427: 1422: 1419: 1418: 1407: 1404: 1401: 1398: 1395: 1390: 1387: 1384: 1380: 1374: 1370: 1366: 1361: 1358: 1355: 1352: 1349: 1345: 1339: 1335: 1331: 1328: 1323: 1320: 1317: 1314: 1311: 1307: 1301: 1297: 1282: 1281: 1268: 1265: 1262: 1259: 1256: 1252: 1248: 1245: 1240: 1237: 1234: 1231: 1228: 1224: 1202: 1201: 1190: 1187: 1184: 1181: 1176: 1173: 1170: 1166: 1162: 1159: 1154: 1151: 1148: 1145: 1142: 1138: 1132: 1128: 1113: 1112: 1101: 1098: 1094: 1088: 1084: 1080: 1075: 1071: 1066: 1062: 1057: 1054: 1051: 1047: 1043: 1040: 1037: 1032: 1028: 1024: 1019: 1016: 1013: 1009: 1005: 998: 994: 989: 985: 982: 977: 973: 969: 964: 961: 958: 954: 950: 943: 939: 934: 915: 914: 903: 900: 896: 890: 886: 882: 877: 873: 868: 864: 859: 856: 853: 849: 845: 838: 835: 832: 828: 823: 819: 815: 811: 806: 802: 798: 793: 790: 787: 783: 779: 772: 768: 763: 759: 756: 751: 747: 743: 738: 735: 732: 728: 724: 717: 713: 708: 703: 695: 692: 689: 685: 680: 676: 673: 669: 661: 657: 652: 648: 641: 637: 632: 627: 612: 611: 600: 597: 594: 591: 586: 583: 580: 576: 572: 565: 562: 559: 555: 550: 546: 543: 538: 534: 506: 505: 494: 491: 488: 483: 480: 477: 473: 465: 461: 456: 452: 449: 444: 440: 416: 411: 407: 380: 367: 366: 353: 345: 339: 335: 331: 326: 322: 317: 312: 308: 303: 297: 289: 285: 280: 276: 269: 265: 260: 255: 242:requires that 225: 221: 182: 162: 158: 154: 151: 148: 145: 142: 112:chiral anomaly 95: 92: 87: 84: 76:diffeomorphism 61:Standard Model 41:gauge symmetry 15: 9: 6: 4: 3: 2: 1514: 1503: 1500: 1499: 1497: 1484: 1477: 1470: 1464: 1460: 1451: 1450:Mixed anomaly 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1432: 1426: 1405: 1402: 1396: 1385: 1372: 1368: 1364: 1356: 1353: 1350: 1337: 1333: 1329: 1326: 1318: 1315: 1312: 1299: 1295: 1287: 1286: 1285: 1263: 1260: 1257: 1246: 1243: 1235: 1232: 1229: 1214: 1213: 1212: 1209: 1207: 1188: 1182: 1171: 1160: 1157: 1149: 1146: 1143: 1130: 1126: 1118: 1117: 1116: 1099: 1092: 1086: 1082: 1078: 1073: 1069: 1064: 1052: 1041: 1038: 1030: 1026: 1014: 1003: 996: 992: 987: 983: 975: 971: 959: 948: 941: 937: 932: 924: 923: 922: 920: 901: 894: 888: 884: 880: 875: 871: 866: 854: 843: 836: 833: 830: 826: 821: 817: 813: 804: 800: 788: 777: 770: 766: 761: 757: 749: 745: 733: 722: 715: 711: 706: 701: 693: 690: 687: 683: 678: 674: 671: 667: 659: 655: 650: 646: 639: 635: 630: 625: 617: 616: 615: 598: 592: 581: 570: 563: 560: 557: 553: 548: 544: 541: 536: 532: 524: 523: 522: 520: 516: 511: 489: 478: 463: 459: 454: 450: 447: 442: 438: 430: 429: 428: 414: 409: 405: 396: 343: 337: 333: 329: 324: 320: 315: 310: 306: 295: 287: 283: 278: 274: 267: 263: 258: 253: 245: 244: 243: 241: 223: 219: 210: 205: 203: 198: 196: 180: 160: 156: 152: 149: 146: 143: 140: 132: 128: 124: 121: 117: 113: 109: 105: 101: 91: 83: 81: 77: 73: 69: 68:gauge anomaly 64: 62: 58: 52: 50: 46: 42: 38: 34: 30: 26: 25:gauge anomaly 22: 1482: 1476: 1468: 1463: 1420: 1283: 1210: 1203: 1114: 918: 916: 613: 507: 368: 206: 199: 131:gauge bosons 126: 97: 89: 67: 65: 53: 49:gauge theory 47:; i.e. of a 24: 18: 508:where Ω is 395:Lie bracket 197:dimension. 108:gauge boson 80:gravitation 35:—usually a 1456:References 1421:as d and δ 1425:commute. 1397:ϵ 1379:Ω 1344:Ω 1338:ϵ 1334:δ 1306:Ω 1300:ϵ 1296:δ 1251:Ω 1223:Ω 1183:ϵ 1165:Ω 1137:Ω 1131:ϵ 1127:δ 1083:ϵ 1070:ϵ 1046:Ω 1027:ϵ 1008:Ω 993:ϵ 988:δ 984:− 972:ϵ 953:Ω 938:ϵ 933:δ 885:ϵ 872:ϵ 848:Ω 822:∫ 801:ϵ 782:Ω 767:ϵ 762:δ 758:− 746:ϵ 727:Ω 712:ϵ 707:δ 679:∫ 656:ϵ 651:δ 636:ϵ 631:δ 593:ϵ 575:Ω 549:∫ 537:ϵ 533:δ 490:ϵ 472:Ω 455:∫ 443:ϵ 439:δ 410:ϵ 406:δ 334:ϵ 321:ϵ 311:δ 284:ϵ 279:δ 264:ϵ 259:δ 224:ϵ 220:δ 195:spacetime 129:external 66:The term 1496:Category 1429:See also 193:is the 123:fermion 118:with a 29:anomaly 519:closed 510:d-form 173:where 120:chiral 106:whose 100:vector 57:photon 397:. As 43:of a 513:the 23:, a 919:any 98:In 19:In 1498:: 1208:. 82:. 63:. 51:. 1423:ε 1406:0 1403:= 1400:) 1394:( 1389:) 1386:d 1383:( 1373:2 1369:d 1365:= 1360:) 1357:1 1354:+ 1351:d 1348:( 1330:d 1327:= 1322:) 1319:2 1316:+ 1313:d 1310:( 1267:) 1264:1 1261:+ 1258:d 1255:( 1247:d 1244:= 1239:) 1236:2 1233:+ 1230:d 1227:( 1189:. 1186:) 1180:( 1175:) 1172:d 1169:( 1161:d 1158:= 1153:) 1150:1 1147:+ 1144:d 1141:( 1100:. 1097:) 1093:] 1087:2 1079:, 1074:1 1065:[ 1061:( 1056:) 1053:d 1050:( 1042:d 1039:= 1036:) 1031:1 1023:( 1018:) 1015:d 1012:( 1004:d 997:2 981:) 976:2 968:( 963:) 960:d 957:( 949:d 942:1 902:. 899:) 895:] 889:2 881:, 876:1 867:[ 863:( 858:) 855:d 852:( 844:d 837:1 834:+ 831:d 827:M 818:= 814:] 810:) 805:1 797:( 792:) 789:d 786:( 778:d 771:2 755:) 750:2 742:( 737:) 734:d 731:( 723:d 716:1 702:[ 694:1 691:+ 688:d 684:M 675:= 672:S 668:] 660:2 647:, 640:1 626:[ 599:. 596:) 590:( 585:) 582:d 579:( 571:d 564:1 561:+ 558:d 554:M 545:= 542:S 493:) 487:( 482:) 479:d 476:( 464:d 460:M 451:= 448:S 415:S 379:F 352:F 344:] 338:2 330:, 325:1 316:[ 307:= 302:F 296:] 288:2 275:, 268:1 254:[ 181:D 161:2 157:/ 153:D 150:+ 147:1 144:= 141:n 127:n

Index

theoretical physics
anomaly
quantum mechanics
one-loop diagram
gauge symmetry
quantum field theory
gauge theory
photon
Standard Model
gravitational anomaly
diffeomorphism
gravitation
vector
gauge symmetries
gauge boson
chiral anomaly
Feynman diagram
chiral
fermion
gauge bosons
spacetime

chiral fermions
Frobenius consistency condition
Lie bracket
d-form
exterior product
closed
Chern–Simons form
Chiral gauge theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑