Knowledge

Fuchsian group

Source 📝

1189:
The type of a Fuchsian group need not be the same as its type when considered as a Kleinian group: in fact, all Fuchsian groups are Kleinian groups of type 2, as their limit sets (as Kleinian groups) are proper subsets of the Riemann sphere, contained in some circle.
454: 1305: 209: 870:
Although discontinuity and discreteness are equivalent in this case, this is not generally true for the case of an arbitrary group of conformal homeomorphisms acting on the full Riemann sphere (as opposed to
1415: 1600: 312: 636: 1065:
That is, any one of these three can serve as a definition of a Fuchsian group, the others following as theorems. The notion of an invariant proper subset Δ is important; the so-called
925: 1646:"Ueber eine Klasse von Funktionen mehrerer Variablen, welche durch Umkehrung der Integrale von Lösungen der linearen Differentialgleichungen mit rationalen Coeffizienten entstehen" 811: 844: 783: 63:, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be 741: 1182:∪ ∞. Since it is nowhere dense, this implies that any limit point is arbitrarily close to an open set that is not in the limit set. In other words, the limit set is a 761: 704: 684: 511: 1058: 955: 362: 1216: 889: 864: 660: 583: 563: 539: 488: 346: 233: 1144:∪ ∞. The limit set may be empty, or may contain one or two points, or may contain an infinite number. In the latter case, there are two types: 152: 1089:. Similarly, the idea that Δ is a proper subset of the region of discontinuity is important; when it is not, the subgroup is called a 1367: 763:
converging to the identity in the usual topology of point-wise convergence is eventually constant, i.e. there exists an integer
1541: 245: 591: 1764: 1746: 1723: 1703: 1677: 1623: 1463: 1467: 1478: 349: 1694: 1827: 1669: 898: 1848: 1085:
a Fuchsian group, does not act discontinuously on the real number line; it has accumulation points at the
1822: 788: 586: 325: 1853: 1817: 1759:, (1989) London Mathematical Society Lecture Note Series 143, Cambridge University Press, Cambridge 1858: 1843: 1737: 1047: 816: 64: 56: 1358: 766: 353: 1000:
to some open disk Δ. Conjugating by such a transformation will send a discrete subgroup of PSL(2,
719: 1645: 1528: 1428: 1124:
in the upper half-plane. There may, however, be limit points on the real axis. Let Λ(Γ) be the
107: 103: 746: 689: 669: 496: 1609:
of the corresponding Riemann surface, if the Fuchsian group is torsion-free and co-compact.
1159:/Γ has finite volume, but there are Fuchsian groups of the first kind of infinite covolume. 71:) (so that it contains orientation-reversing elements), and sometimes it is allowed to be a 1751:(Provides an excellent exposition of theory and results, richly illustrated with diagrams.) 1618: 449:{\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}\cdot z={\frac {az+b}{cz+d}}.} 1806: 1300:{\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}\cdot z={\frac {az+b}{cz+d}}} 8: 934: 52: 44: 1121: 874: 849: 645: 639: 568: 548: 524: 473: 331: 218: 111: 1073:) is discrete but does not preserve any disk in the Riemann sphere. Indeed, even the 1863: 1794: 1760: 1742: 1719: 1699: 1673: 1606: 1770: 126: 1802: 1784: 1775: 1436: 1101: 236: 212: 60: 1732: 1086: 95: 1813: 1711: 1685: 1628: 1448: 1444: 1339: 1097: 1090: 1036: 982: 708: 91: 72: 28: 1837: 1798: 1728: 1641: 1485: 1440: 1432: 1199: 1175: 1074: 138: 16:
Discrete subgroup of the real projective special linear group of dimension 2
1451:, corresponding to orientation-preserving isometries) is a Fuchsian group. 1335: 115: 1171: 20: 1789: 1503: 1183: 464: 1031:
if and only if any of the following three equivalent properties hold:
1661: 1125: 962: 1020: 467: 204:{\displaystyle H=\{z\in \mathbb {C} |\operatorname {Im} {z}>0\}} 48: 32: 977:
A linear fractional transformation defined by a matrix from PSL(2,
895:) is discrete but has accumulation points on the real number line 1096:
It is most usual to take the invariant domain Δ to be either the
318: 76: 1410:{\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} 1170:. Equivalently, this is a group for which the limit set is a 1151:
is a group for which the limit set is the closed real line
144: 1595:{\displaystyle |\mathrm {tr} \;h|=2\cosh {\frac {L}{2}}.} 307:{\displaystyle ds={\frac {1}{y}}{\sqrt {dx^{2}+dy^{2}}}.} 1527:
of its action in the upper half-plane is related to the
1481:
cyclic subgroup is Fuchsian if and only if it is finite.
631:{\displaystyle \Gamma z=\{\gamma z:\gamma \in \Gamma \}} 1666:
Theta Constants, Riemann Surfaces and the Modular Group
1376: 1225: 371: 59:
of the unit disc, or conformal transformations of the
1690:
Spectral Methods of Automorphic Forms, Second Edition
1544: 1420:
are congruent to those of the identity matrix modulo
1370: 1219: 1120:
in the upper half-plane under the action of Γ has no
937: 901: 877: 852: 819: 791: 769: 749: 722: 692: 672: 648: 594: 571: 551: 527: 499: 476: 365: 334: 248: 221: 155: 67:, sometimes it is allowed to be a subgroup of PGL(2, 1427:A co-compact example is the (ordinary, rotational) 1594: 1409: 1361:of the above form where the entries of the matrix 1299: 1210:) consisting of linear fractional transformations 949: 919: 883: 858: 838: 805: 777: 755: 735: 698: 678: 654: 630: 577: 557: 533: 505: 482: 448: 340: 306: 227: 203: 1835: 1698:), America Mathematical Society, Providence, RI 1523:is a hyperbolic element, the translation length 1502:Let Γ be a non-abelian Fuchsian group. Then the 1039:(with respect to the standard topology on PSL(2, 125:General Fuchsian groups were first studied by 1718:(1992), University of Chicago Press, Chicago 1011:This motivates the following definition of a 1345:Other Fuchsian groups include the groups Γ( 957:to every rational number, and the rationals 625: 604: 198: 162: 98:. In this case, the group may be called the 83:) which is conjugate to a subgroup of PSL(2, 1128:of Γ, that is, the set of limit points of Γ 1112:Because of the discrete action, the orbit Γ 459:This action is faithful, and in fact PSL(2, 1558: 1788: 1773:(1882), "Théorie des groupes fuchsiens", 1738:Indra's Pearls: The Vision of Felix Klein 799: 771: 513:may be defined to be a subgroup of PSL(2, 172: 1769: 1431:, containing the Fuchsian groups of the 1155:∪ ∞. This happens if the quotient space 996:∪ ∞, but will send the upper-half plane 130: 102:. In some sense, Fuchsian groups do for 1812: 145:Fuchsian groups on the upper half-plane 1836: 1198:An example of a Fuchsian group is the 920:{\displaystyle \operatorname {Im} z=0} 1757:The Ergodic Theory of Discrete Groups 1640: 972: 891:). Indeed, the Fuchsian group PSL(2, 134: 1741:, (2002) Cambridge University Press 1624:Non-Euclidean crystallographic group 1514: 463:) is isomorphic to the group of all 118:graphics are based on them (for the 43:) can be regarded equivalently as a 1491:No Fuchsian group is isomorphic to 133:), who was motivated by the paper ( 90:Fuchsian groups are used to create 13: 1554: 1551: 1326:are integers. The quotient space 1206:). This is the subgroup of PSL(2, 1027:∪ ∞, that is, Γ(Δ) = Δ. Then Γ is 1004:) to a discrete subgroup of PSL(2, 750: 693: 673: 622: 595: 500: 137:), and therefore named them after 14: 1875: 1605:A similar relation holds for the 1456:Fuchsian groups of the first kind 1443:. More generally, any hyperbolic 1359:linear fractional transformations 806:{\displaystyle n>\mathbb {N} } 350:linear fractional transformations 1535:as a 2×2 matrix by the relation 1149:Fuchsian group of the first type 1695:Graduate Studies in Mathematics 1019:) act invariantly on a proper, 1783:, Springer Netherlands: 1–62, 1563: 1546: 177: 1: 1670:American Mathematical Society 1634: 1107: 1057:The set Δ is a subset of the 839:{\displaystyle \gamma _{n}=I} 666:An equivalent definition for 239:when endowed with the metric 100:Fuchsian group of the surface 778:{\displaystyle \mathbb {N} } 7: 1823:Encyclopedia of Mathematics 1612: 1447:(the index 2 subgroup of a 1193: 736:{\displaystyle \gamma _{n}} 10: 1880: 1470:cyclic subgroups of PSL(2, 47:of orientation-preserving 1488:Fuchsian group is cyclic. 122:of hyperbolic geometry). 57:conformal transformations 1048:properly discontinuously 75:(a discrete subgroup of 1692:, (2002) (Volume 53 in 1059:region of discontinuity 866:is the identity matrix. 756:{\displaystyle \Gamma } 699:{\displaystyle \Gamma } 686:to be Fuchsian is that 679:{\displaystyle \Gamma } 506:{\displaystyle \Gamma } 108:crystallographic groups 1596: 1429:(2,3,7) triangle group 1411: 1301: 951: 921: 885: 860: 840: 807: 779: 757: 737: 700: 680: 656: 632: 579: 559: 535: 507: 484: 465:orientation-preserving 450: 354:Möbius transformations 342: 308: 229: 205: 104:non-Euclidean geometry 1650:J. Reine Angew. Math. 1597: 1412: 1302: 1166:is said to be of the 952: 922: 886: 861: 841: 808: 780: 758: 738: 701: 681: 657: 633: 580: 560: 536: 508: 485: 451: 343: 309: 230: 206: 1735:, and David Wright, 1619:Quasi-Fuchsian group 1542: 1368: 1217: 981:) will preserve the 935: 927:: elements of PSL(2, 899: 875: 850: 817: 789: 767: 747: 720: 712:, which means that: 690: 670: 646: 592: 569: 549: 525: 497: 474: 363: 332: 246: 219: 153: 1849:Hyperbolic geometry 1755:Peter J. Nicholls, 1660:Hershel M. Farkas, 1439:, as well as other 1349:) for each integer 1122:accumulation points 950:{\displaystyle z=0} 1814:Vinberg, Ernest B. 1790:10.1007/BF02592124 1592: 1407: 1401: 1297: 1250: 973:General definition 947: 917: 881: 856: 836: 803: 785:such that for all 775: 753: 733: 696: 676: 652: 640:accumulation point 628: 575: 555: 531: 503: 480: 446: 396: 338: 304: 235:is a model of the 225: 201: 127:Henri Poincaré 112:Euclidean geometry 65:finitely generated 39:. The group PSL(2, 1765:978-0-521-37674-7 1747:978-0-521-35253-6 1724:978-0-226-42583-2 1704:978-0-8218-3160-1 1681:(See section 1.6) 1678:978-0-8218-1392-8 1672:, Providence RI, 1587: 1515:Metric properties 1295: 884:{\displaystyle H} 859:{\displaystyle I} 655:{\displaystyle H} 578:{\displaystyle H} 558:{\displaystyle z} 534:{\displaystyle H} 493:A Fuchsian group 483:{\displaystyle H} 441: 341:{\displaystyle H} 299: 266: 228:{\displaystyle H} 29:discrete subgroup 1871: 1854:Riemann surfaces 1830: 1818:"Fuchsian group" 1809: 1792: 1776:Acta Mathematica 1707:(See Chapter 2.) 1657: 1601: 1599: 1598: 1593: 1588: 1580: 1566: 1557: 1549: 1437:Macbeath surface 1416: 1414: 1413: 1408: 1406: 1405: 1353:> 0. Here Γ( 1306: 1304: 1303: 1298: 1296: 1294: 1280: 1266: 1255: 1254: 1102:upper half-plane 1087:rational numbers 1015:. Let Γ ⊂ PSL(2, 1008:) preserving Δ. 956: 954: 953: 948: 926: 924: 923: 918: 890: 888: 887: 882: 865: 863: 862: 857: 845: 843: 842: 837: 829: 828: 812: 810: 809: 804: 802: 784: 782: 781: 776: 774: 762: 760: 759: 754: 742: 740: 739: 734: 732: 731: 705: 703: 702: 697: 685: 683: 682: 677: 661: 659: 658: 653: 637: 635: 634: 629: 584: 582: 581: 576: 564: 562: 561: 556: 540: 538: 537: 532: 512: 510: 509: 504: 489: 487: 486: 481: 455: 453: 452: 447: 442: 440: 426: 412: 401: 400: 347: 345: 344: 339: 313: 311: 310: 305: 300: 298: 297: 282: 281: 269: 267: 259: 237:hyperbolic plane 234: 232: 231: 226: 213:upper half-plane 210: 208: 207: 202: 191: 180: 175: 96:Riemann surfaces 61:upper half plane 53:hyperbolic plane 1879: 1878: 1874: 1873: 1872: 1870: 1869: 1868: 1859:Discrete groups 1844:Kleinian groups 1834: 1833: 1771:Poincaré, Henri 1733:Caroline Series 1716:Fuchsian Groups 1637: 1615: 1579: 1562: 1550: 1545: 1543: 1540: 1539: 1517: 1474:) are Fuchsian. 1400: 1399: 1394: 1388: 1387: 1382: 1372: 1371: 1369: 1366: 1365: 1340:elliptic curves 1281: 1267: 1265: 1249: 1248: 1243: 1237: 1236: 1231: 1221: 1220: 1218: 1215: 1214: 1196: 1110: 975: 936: 933: 932: 900: 897: 896: 876: 873: 872: 851: 848: 847: 824: 820: 818: 815: 814: 798: 790: 787: 786: 770: 768: 765: 764: 748: 745: 744: 743:of elements of 727: 723: 721: 718: 717: 716:Every sequence 691: 688: 687: 671: 668: 667: 647: 644: 643: 593: 590: 589: 570: 567: 566: 550: 547: 546: 526: 523: 522: 519:discontinuously 498: 495: 494: 475: 472: 471: 427: 413: 411: 395: 394: 389: 383: 382: 377: 367: 366: 364: 361: 360: 352:(also known as 333: 330: 329: 293: 289: 277: 273: 268: 258: 247: 244: 243: 220: 217: 216: 187: 176: 171: 154: 151: 150: 147: 92:Fuchsian models 17: 12: 11: 5: 1877: 1867: 1866: 1861: 1856: 1851: 1846: 1832: 1831: 1810: 1767: 1753: 1726: 1712:Svetlana Katok 1709: 1686:Henryk Iwaniec 1683: 1658: 1642:Fuchs, Lazarus 1636: 1633: 1632: 1631: 1629:Schottky group 1626: 1621: 1614: 1611: 1603: 1602: 1591: 1586: 1583: 1578: 1575: 1572: 1569: 1565: 1561: 1556: 1553: 1548: 1516: 1513: 1512: 1511: 1510:) is Fuchsian. 1506:of Γ in PSL(2, 1500: 1489: 1482: 1475: 1454:All these are 1449:triangle group 1445:von Dyck group 1441:Hurwitz groups 1418: 1417: 1404: 1398: 1395: 1393: 1390: 1389: 1386: 1383: 1381: 1378: 1377: 1375: 1357:) consists of 1308: 1307: 1293: 1290: 1287: 1284: 1279: 1276: 1273: 1270: 1264: 1261: 1258: 1253: 1247: 1244: 1242: 1239: 1238: 1235: 1232: 1230: 1227: 1226: 1224: 1195: 1192: 1164:Fuchsian group 1140:. Then Λ(Γ) ⊆ 1109: 1106: 1098:open unit disk 1091:Kleinian group 1063: 1062: 1055: 1050:at each point 1044: 1037:discrete group 1013:Fuchsian group 983:Riemann sphere 974: 971: 946: 943: 940: 916: 913: 910: 907: 904: 880: 868: 867: 855: 835: 832: 827: 823: 801: 797: 794: 773: 752: 730: 726: 709:discrete group 695: 675: 664: 663: 651: 627: 624: 621: 618: 615: 612: 609: 606: 603: 600: 597: 574: 554: 530: 517:), which acts 502: 479: 457: 456: 445: 439: 436: 433: 430: 425: 422: 419: 416: 410: 407: 404: 399: 393: 390: 388: 385: 384: 381: 378: 376: 373: 372: 370: 337: 315: 314: 303: 296: 292: 288: 285: 280: 276: 272: 265: 262: 257: 254: 251: 224: 200: 197: 194: 190: 186: 183: 179: 174: 170: 167: 164: 161: 158: 146: 143: 73:Kleinian group 25:Fuchsian group 15: 9: 6: 4: 3: 2: 1876: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1841: 1839: 1829: 1825: 1824: 1819: 1815: 1811: 1808: 1804: 1800: 1796: 1791: 1786: 1782: 1778: 1777: 1772: 1768: 1766: 1762: 1758: 1754: 1752: 1748: 1744: 1740: 1739: 1734: 1730: 1729:David Mumford 1727: 1725: 1721: 1717: 1713: 1710: 1708: 1705: 1701: 1697: 1696: 1691: 1687: 1684: 1682: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1639: 1638: 1630: 1627: 1625: 1622: 1620: 1617: 1616: 1610: 1608: 1589: 1584: 1581: 1576: 1573: 1570: 1567: 1559: 1538: 1537: 1536: 1534: 1530: 1526: 1522: 1509: 1505: 1501: 1498: 1494: 1490: 1487: 1483: 1480: 1476: 1473: 1469: 1465: 1461: 1460: 1459: 1457: 1452: 1450: 1446: 1442: 1438: 1434: 1433:Klein quartic 1430: 1425: 1423: 1402: 1396: 1391: 1384: 1379: 1373: 1364: 1363: 1362: 1360: 1356: 1352: 1348: 1343: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1291: 1288: 1285: 1282: 1277: 1274: 1271: 1268: 1262: 1259: 1256: 1251: 1245: 1240: 1233: 1228: 1222: 1213: 1212: 1211: 1209: 1205: 1201: 1200:modular group 1191: 1187: 1185: 1181: 1177: 1176:nowhere dense 1173: 1169: 1165: 1162:Otherwise, a 1160: 1158: 1154: 1150: 1145: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1105: 1103: 1099: 1094: 1092: 1088: 1084: 1080: 1076: 1075:modular group 1072: 1068: 1060: 1056: 1053: 1049: 1045: 1042: 1038: 1034: 1033: 1032: 1030: 1026: 1022: 1018: 1014: 1009: 1007: 1003: 999: 995: 991: 987: 984: 980: 970: 968: 964: 960: 944: 941: 938: 931:) will carry 930: 914: 911: 908: 905: 902: 894: 878: 853: 833: 830: 825: 821: 795: 792: 728: 724: 715: 714: 713: 711: 710: 649: 641: 619: 616: 613: 610: 607: 601: 598: 588: 572: 552: 544: 543: 542: 528: 520: 516: 491: 477: 469: 466: 462: 443: 437: 434: 431: 428: 423: 420: 417: 414: 408: 405: 402: 397: 391: 386: 379: 374: 368: 359: 358: 357: 355: 351: 335: 327: 324: 322: 301: 294: 290: 286: 283: 278: 274: 270: 263: 260: 255: 252: 249: 242: 241: 240: 238: 222: 214: 195: 192: 188: 184: 181: 168: 165: 159: 156: 142: 140: 139:Lazarus Fuchs 136: 132: 128: 123: 121: 117: 113: 109: 105: 101: 97: 93: 88: 86: 82: 80: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 36: 30: 26: 22: 1821: 1780: 1774: 1756: 1750: 1736: 1715: 1706: 1693: 1689: 1680: 1665: 1653: 1649: 1604: 1532: 1524: 1520: 1518: 1507: 1496: 1492: 1471: 1455: 1453: 1426: 1421: 1419: 1354: 1350: 1346: 1344: 1336:moduli space 1331: 1327: 1323: 1319: 1315: 1311: 1309: 1207: 1203: 1197: 1188: 1179: 1167: 1163: 1161: 1156: 1152: 1148: 1146: 1141: 1137: 1133: 1129: 1117: 1113: 1111: 1095: 1082: 1078: 1070: 1067:Picard group 1066: 1064: 1051: 1040: 1028: 1024: 1016: 1012: 1010: 1005: 1001: 997: 993: 989: 985: 978: 976: 966: 958: 928: 892: 869: 707: 665: 541:. That is, 518: 514: 492: 460: 458: 320: 316: 148: 124: 119: 99: 89: 84: 78: 68: 40: 34: 24: 18: 1435:and of the 1172:perfect set 1168:second type 1116:of a point 21:mathematics 1838:Categories 1807:14.0338.01 1635:References 1504:normalizer 1464:hyperbolic 1184:Cantor set 1108:Limit sets 1061:Ω(Γ) of Γ. 545:For every 468:isometries 317:The group 135:Fuchs 1880 120:disc model 49:isometries 1828:EMS Press 1816:(2001) , 1799:0001-5962 1662:Irwin Kra 1656:: 151–169 1577:⁡ 1468:parabolic 1334:) is the 1257:⋅ 1126:limit set 1081:), which 1023:disk Δ ⊂ 906:⁡ 822:γ 751:Γ 725:γ 694:Γ 674:Γ 623:Γ 620:∈ 617:γ 608:γ 596:Γ 501:Γ 403:⋅ 185:⁡ 169:∈ 1864:Fractals 1644:(1880), 1613:See also 1479:elliptic 1202:, PSL(2, 1194:Examples 1174:that is 1029:Fuchsian 846:, where 1607:systole 1486:abelian 1330:/PSL(2, 1100:or the 1046:Γ acts 1035:Γ is a 638:has no 215:. Then 211:be the 129: ( 114:. Some 110:do for 51:of the 1805:  1797:  1763:  1745:  1722:  1702:  1676:  1484:Every 1310:where 1077:PSL(2, 1069:PSL(2, 585:, the 319:PSL(2, 116:Escher 77:PSL(2, 33:PSL(2, 1529:trace 963:dense 706:be a 587:orbit 106:what 55:, or 45:group 27:is a 1795:ISSN 1761:ISBN 1743:ISBN 1720:ISBN 1700:ISBN 1674:ISBN 1574:cosh 1477:Any 1466:and 1462:All 1132:for 1054:∈ Δ. 1021:open 992:) = 961:are 796:> 326:acts 193:> 149:Let 131:1882 23:, a 1803:JFM 1785:doi 1531:of 1519:If 1338:of 1178:on 1043:)). 965:in 642:in 565:in 521:on 470:of 356:): 348:by 328:on 94:of 87:). 31:of 19:In 1840:: 1826:, 1820:, 1801:, 1793:, 1779:, 1749:. 1731:, 1714:, 1688:, 1668:, 1664:, 1654:89 1652:, 1648:, 1495:× 1458:. 1424:. 1342:. 1322:, 1318:, 1314:, 1186:. 1147:A 1136:∈ 1104:. 1093:. 1083:is 969:. 903:Im 813:, 490:. 182:Im 141:. 1787:: 1781:1 1590:. 1585:2 1582:L 1571:2 1568:= 1564:| 1560:h 1555:r 1552:t 1547:| 1533:h 1525:L 1521:h 1508:R 1499:. 1497:Z 1493:Z 1472:R 1422:n 1403:) 1397:d 1392:c 1385:b 1380:a 1374:( 1355:n 1351:n 1347:n 1332:Z 1328:H 1324:d 1320:c 1316:b 1312:a 1292:d 1289:+ 1286:z 1283:c 1278:b 1275:+ 1272:z 1269:a 1263:= 1260:z 1252:) 1246:d 1241:c 1234:b 1229:a 1223:( 1208:R 1204:Z 1180:R 1157:H 1153:R 1142:R 1138:H 1134:z 1130:z 1118:z 1114:z 1079:Z 1071:Z 1052:z 1041:C 1025:C 1017:C 1006:C 1002:R 998:H 994:C 990:C 988:( 986:P 979:C 967:R 959:Q 945:0 942:= 939:z 929:Z 915:0 912:= 909:z 893:Z 879:H 854:I 834:I 831:= 826:n 800:N 793:n 772:N 729:n 662:. 650:H 626:} 614:: 611:z 605:{ 602:= 599:z 573:H 553:z 529:H 515:R 478:H 461:R 444:. 438:d 435:+ 432:z 429:c 424:b 421:+ 418:z 415:a 409:= 406:z 398:) 392:d 387:c 380:b 375:a 369:( 336:H 323:) 321:R 302:. 295:2 291:y 287:d 284:+ 279:2 275:x 271:d 264:y 261:1 256:= 253:s 250:d 223:H 199:} 196:0 189:z 178:| 173:C 166:z 163:{ 160:= 157:H 85:R 81:) 79:C 69:R 41:R 37:) 35:R

Index

mathematics
discrete subgroup
PSL(2,R)
group
isometries
hyperbolic plane
conformal transformations
upper half plane
finitely generated
Kleinian group
PSL(2,C)
Fuchsian models
Riemann surfaces
non-Euclidean geometry
crystallographic groups
Euclidean geometry
Escher
Henri Poincaré
1882
Fuchs 1880
Lazarus Fuchs
upper half-plane
hyperbolic plane
PSL(2,R)
acts
linear fractional transformations
Möbius transformations
orientation-preserving
isometries
orbit

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.