Knowledge

Fitting subgroup

Source 📝

540:
if every element acts as an inner automorphism on every chief factor. The generalized Fitting subgroup is the unique largest subnormal quasi-nilpotent subgroup, and is equal to the set of all elements which act as inner automorphisms on every chief factor of the whole group
719:
is a finite solvable group, then the Fitting subgroup contains its own centralizer. The centralizer of the Fitting subgroup is the center of the Fitting subgroup. In this case, the generalized Fitting subgroup is equal to the Fitting subgroup. More generally, if
842:-local subgroups usually have components in the generalized Fitting subgroup, though there are many exceptions for groups that have small rank, are defined over small fields, or are sporadic. This is used to classify the finite simple groups, because if a 652: 310: 535:
The generalized Fitting subgroup can also be viewed as a generalized centralizer of chief factors. A nonabelian semisimple group cannot centralize itself, but it does act on itself as inner automorphisms. A group is said to be
371:) of a group is the subgroup generated by all components. Any two components of a group commute, so the layer is a perfect central extension of a product of simple groups, and is the largest normal subgroup of 208:
is centralized by every element. Relaxing the condition somewhat, and taking the subgroup of elements of a general finite group which centralize every chief factor, one simply gets the Fitting subgroup again
383:) is the subgroup generated by the layer and the Fitting subgroup. The layer commutes with the Fitting subgroup, so the generalized Fitting subgroup is a central extension of a product of 853:
The analysis of finite simple groups by means of the structure and embedding of the generalized Fitting subgroups of their maximal subgroups was originated by Helmut Bender (
551: 219: 401:
This definition of the generalized Fitting subgroup can be motivated by some of its intended uses. Consider the problem of trying to identify a normal subgroup
724:
is a finite group, then the generalized Fitting subgroup contains its own centralizer. This means that in some sense the generalized Fitting subgroup controls
532:
contains its own centralizer. The generalized Fitting subgroup is the smallest subgroup that contains the Fitting subgroup and all normal semisimple subgroups.
820: 966: 887: 823:, this allows one to guess over which field a simple group should be defined. Note that a few groups are of characteristic 195: 1003: 1034: 914: 647:{\displaystyle \operatorname {Fit} ^{*}(G)=\bigcap \{HC_{G}(H/K):H/K{\text{ a chief factor of }}G\}.} 100:, the Fitting subgroup is defined to be the subgroup generated by the nilpotent normal subgroups of 764:). In particular there are only a finite number of groups with given generalized Fitting subgroup. 349: 131:
is again a normal nilpotent subgroup. It may also be explicitly constructed as the product of the
85: 998:, Grundlehren der Mathematischen Wissenschaften, vol. 243, Berlin-New York: Springer-Verlag, 426: 305:{\displaystyle \operatorname {Fit} (G)=\bigcap \{C_{G}(H/K):H/K{\text{ a chief factor of }}G\}.} 154:
is a finite non-trivial solvable group then the Fitting subgroup is always non-trivial, i.e. if
1029: 1013: 976: 943: 783:
and exert a great deal of control over the structure of the group (allowing what is called
124: 8: 846:-local subgroup has a known component, it is often possible to identify the whole group ( 896: 875: 862: 858: 335: 198: 205: 60:. Intuitively, it represents the smallest subgroup which "controls" the structure of 999: 980: 962: 931: 883: 812: 338: 127:
which says that the product of a finite collection of normal nilpotent subgroups of
923: 21: 394:
The layer is also the maximal normal semisimple subgroup, where a group is called
1009: 991: 972: 958: 950: 939: 191: 120: 50: 47: 784: 183: 69: 899:; Seitz, Gary M. (1976), "On groups with a standard component of known type", 1023: 935: 346: 861:. It is especially effective in the exceptional cases where components or 465: 388: 132: 108: 43: 36: 25: 984: 834:
If a simple group is not of Lie type over a field of given characteristic
186:. Since the Fitting subgroup of a finite solvable group contains its own 496:) is a product of non-abelian simple groups then the derived subgroup of 316: 187: 17: 516:
contains the Fitting subgroup and all normal semisimple subgroups, then
927: 398:
if it is a perfect central extension of a product of simple groups.
104:. For infinite groups, the Fitting subgroup is not always nilpotent. 912:
Bender, Helmut (1970), "On groups with abelian Sylow 2-subgroups",
53: 190:, this gives a method of understanding finite solvable groups as 409:
that contains its own centralizer and the Fitting group. If
123:
of the Fitting subgroup of a finite group is guaranteed by
182:
is not itself nilpotent, giving rise to the concept of
375:
with this structure. The generalized Fitting subgroup
554: 222: 107:
The remainder of this article deals exclusively with
83:, which is generated by the Fitting subgroup and the 325: 646: 304: 76:is not solvable, a similar role is played by the 1021: 990: 542: 96:For an arbitrary (not necessarily finite) group 895: 847: 500:is a normal semisimple subgroup mapping onto 776:-subgroups of a finite group are called the 740:) is contained in the automorphism group of 638: 583: 296: 244: 444:, which is the same as the intersection of 874: 166:)≠1. Similarly the Fitting subgroup of 949: 815:defined over a field of characteristic 468:as it is characteristically simple. If 210: 114: 1022: 911: 854: 821:classification of finite simple groups 480:) is a product of cyclic groups then 787:). A finite group is said to be of 484:must be in the Fitting subgroup. If 545:, Chapter X, Theorem 5.4, p. 126): 13: 14: 1046: 326:The generalized Fitting subgroup 957:(in German), Berlin, New York: 767: 679:) if and only if there is some 882:, Cambridge University Press, 857:) and has come to be known as 772:The normalizers of nontrivial 613: 599: 574: 568: 271: 257: 235: 229: 1: 868: 811:-local subgroup, because any 710: 632: a chief factor of  290: a chief factor of  994:; Blackburn, Norman (1982), 543:Huppert & Blackburn 1982 464:) is a product of simple or 213:, Kap.VI, Satz 5.4, p.686): 204:In a nilpotent group, every 158:≠1 is finite solvable, then 78:generalized Fitting subgroup 20:, especially in the area of 7: 848:Aschbacher & Seitz 1976 819:has this property. In the 10: 1051: 748:), and the centralizer of 732:modulo the centralizer of 915:Mathematische Zeitschrift 425:. If not, pick a minimal 352:of a simple group.) The 178:) will be nontrivial if 46:, is the unique largest 827:type for more than one 427:characteristic subgroup 194:of nilpotent groups by 139:over all of the primes 648: 528:) must be trivial, so 417:we want to prove that 413:is the centralizer of 341:subgroup. (A group is 315:The generalization to 306: 143:dividing the order of 649: 307: 201:of nilpotent groups. 1035:Functional subgroups 865:are not applicable. 687:such that for every 552: 220: 115:The Fitting subgroup 996:Finite groups. III. 897:Aschbacher, Michael 880:Finite Group Theory 876:Aschbacher, Michael 863:signalizer functors 322:groups is similar. 199:automorphism groups 928:10.1007/BF01109839 756:) is contained in 644: 302: 968:978-3-540-03825-2 889:978-0-521-78675-1 813:group of Lie type 807:-group for every 633: 440:is the center of 350:central extension 291: 125:Fitting's theorem 1042: 1016: 992:Huppert, Bertram 987: 955:Endliche Gruppen 946: 908: 892: 781:-local subgroups 657:Here an element 653: 651: 650: 645: 634: 631: 626: 609: 598: 597: 564: 563: 421:is contained in 334:of a group is a 311: 309: 308: 303: 292: 289: 284: 267: 256: 255: 30:Fitting subgroup 1050: 1049: 1045: 1044: 1043: 1041: 1040: 1039: 1020: 1019: 1006: 969: 959:Springer-Verlag 890: 871: 859:Bender's method 789:characteristic 770: 713: 670: 630: 622: 605: 593: 589: 559: 555: 553: 550: 549: 538:quasi-nilpotent 328: 288: 280: 263: 251: 247: 221: 218: 217: 117: 12: 11: 5: 1048: 1038: 1037: 1032: 1018: 1017: 1004: 988: 967: 947: 909: 901:Osaka J. Math. 893: 888: 870: 867: 785:local analysis 769: 766: 712: 709: 666: 655: 654: 643: 640: 637: 629: 625: 621: 618: 615: 612: 608: 604: 601: 596: 592: 588: 585: 582: 579: 576: 573: 570: 567: 562: 558: 327: 324: 313: 312: 301: 298: 295: 287: 283: 279: 276: 273: 270: 266: 262: 259: 254: 250: 246: 243: 240: 237: 234: 231: 228: 225: 184:Fitting length 116: 113: 42:, named after 9: 6: 4: 3: 2: 1047: 1036: 1033: 1031: 1030:Finite groups 1028: 1027: 1025: 1015: 1011: 1007: 1005:3-540-10633-2 1001: 997: 993: 989: 986: 982: 978: 974: 970: 964: 960: 956: 952: 948: 945: 941: 937: 933: 929: 925: 921: 917: 916: 910: 906: 902: 898: 894: 891: 885: 881: 877: 873: 872: 866: 864: 860: 856: 851: 849: 845: 841: 837: 832: 830: 826: 822: 818: 814: 810: 806: 802: 798: 794: 792: 786: 782: 780: 775: 765: 763: 759: 755: 751: 747: 743: 739: 735: 731: 727: 723: 718: 708: 706: 702: 698: 694: 690: 686: 682: 678: 674: 669: 664: 660: 641: 635: 627: 623: 619: 616: 610: 606: 602: 594: 590: 586: 580: 577: 571: 565: 560: 556: 548: 547: 546: 544: 539: 533: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 491: 487: 483: 479: 475: 471: 467: 466:cyclic groups 463: 459: 455: 451: 447: 443: 439: 435: 431: 428: 424: 420: 416: 412: 408: 404: 399: 397: 392: 390: 389:simple groups 386: 382: 378: 374: 370: 366: 362: 358: 355: 351: 348: 344: 340: 337: 333: 323: 321: 319: 299: 293: 285: 281: 277: 274: 268: 264: 260: 252: 248: 241: 238: 232: 226: 223: 216: 215: 214: 212: 207: 202: 200: 197: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 148: 146: 142: 138: 134: 130: 126: 122: 112: 110: 109:finite groups 105: 103: 99: 94: 92: 88: 87: 82: 79: 75: 71: 67: 63: 59: 55: 52: 49: 45: 41: 38: 34: 31: 27: 23: 19: 995: 954: 919: 913: 907:(3): 439–482 904: 900: 879: 852: 843: 839: 835: 833: 828: 824: 816: 808: 804: 800: 796: 790: 788: 778: 777: 773: 771: 768:Applications 761: 757: 753: 749: 745: 741: 737: 733: 729: 725: 721: 716: 714: 704: 700: 696: 692: 688: 684: 680: 676: 672: 667: 662: 658: 656: 537: 534: 529: 525: 521: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 469: 461: 457: 453: 449: 445: 441: 437: 433: 429: 422: 418: 414: 410: 406: 402: 400: 395: 393: 387:-groups and 384: 380: 376: 372: 368: 364: 360: 356: 353: 342: 331: 329: 317: 314: 211:Huppert 1967 206:chief factor 203: 179: 175: 171: 167: 163: 159: 155: 151: 149: 144: 140: 136: 128: 118: 106: 101: 97: 95: 90: 84: 80: 77: 73: 65: 61: 57: 44:Hans Fitting 39: 37:finite group 32: 29: 26:group theory 15: 951:Huppert, B. 922:: 164–176, 855:Bender 1970 838:, then the 345:if it is a 343:quasisimple 339:quasisimple 188:centralizer 18:mathematics 1024:Categories 869:References 728:, because 711:Properties 396:semisimple 320:-nilpotent 192:extensions 121:nilpotency 86:components 936:0025-5874 581:⋂ 566:⁡ 561:∗ 512:). So if 336:subnormal 332:component 242:⋂ 227:⁡ 51:nilpotent 24:known as 953:(1967), 878:(2000), 452:. Then 436:, where 196:faithful 70:solvable 54:subgroup 1014:0650245 977:0224703 944:0288180 803:) is a 347:perfect 133:p-cores 72:. When 22:algebra 1012:  1002:  985:527050 983:  975:  965:  942:  934:  886:  661:is in 434:C/Z(H) 430:M/Z(H) 48:normal 28:, the 363:) or 354:layer 64:when 35:of a 1000:ISBN 981:OCLC 963:ISBN 932:ISSN 884:ISBN 793:type 703:mod 448:and 438:Z(H) 119:The 924:doi 920:117 850:). 795:if 715:If 691:in 683:in 557:Fit 432:of 405:of 224:Fit 150:If 135:of 93:. 89:of 68:is 56:of 16:In 1026:: 1010:MR 1008:, 979:, 973:MR 971:, 961:, 940:MR 938:, 930:, 918:, 905:13 903:, 831:. 707:. 699:≡ 695:, 391:. 330:A 147:. 111:. 926:: 844:p 840:p 836:p 829:p 825:p 817:p 809:p 805:p 801:G 799:( 797:F 791:p 779:p 774:p 762:G 760:( 758:F 754:G 752:( 750:F 746:G 744:( 742:F 738:G 736:( 734:F 730:G 726:G 722:G 717:G 705:K 701:x 697:x 693:H 689:x 685:H 681:h 677:K 675:/ 673:H 671:( 668:G 665:C 663:H 659:g 642:. 639:} 636:G 628:K 624:/ 620:H 617:: 614:) 611:K 607:/ 603:H 600:( 595:G 591:C 587:H 584:{ 578:= 575:) 572:G 569:( 541:( 530:H 526:H 524:( 522:Z 520:/ 518:M 514:H 510:H 508:( 506:Z 504:/ 502:M 498:M 494:H 492:( 490:Z 488:/ 486:M 482:M 478:H 476:( 474:Z 472:/ 470:M 462:H 460:( 458:Z 456:/ 454:M 450:H 446:C 442:H 423:H 419:C 415:H 411:C 407:G 403:H 385:p 381:G 379:( 377:F 373:G 369:G 367:( 365:L 361:G 359:( 357:E 318:p 300:. 297:} 294:G 286:K 282:/ 278:H 275:: 272:) 269:K 265:/ 261:H 258:( 253:G 249:C 245:{ 239:= 236:) 233:G 230:( 209:( 180:G 176:G 174:( 172:F 170:/ 168:G 164:G 162:( 160:F 156:G 152:G 145:G 141:p 137:G 129:G 102:G 98:G 91:G 81:F 74:G 66:G 62:G 58:G 40:G 33:F

Index

mathematics
algebra
group theory
finite group
Hans Fitting
normal
nilpotent
subgroup
solvable
components
finite groups
nilpotency
Fitting's theorem
p-cores
Fitting length
centralizer
extensions
faithful
automorphism groups
chief factor
Huppert 1967
p-nilpotent
subnormal
quasisimple
perfect
central extension
simple groups
characteristic subgroup
cyclic groups
Huppert & Blackburn 1982

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.