Knowledge

Chief series

Source đź“ť

191: 445:
states that the chief factors of a group are unique up to isomorphism, independent of the particular chief series they are constructed from In particular, the number of chief factors is an
109: 52:
Chief series can be thought of as breaking the group down into less complicated pieces, which may be used to characterize various qualities of the group.
386:
Finite groups always have a chief series, though infinite groups need not have a chief series. For example, the group of integers
60:
A chief series is a maximal normal series for a group. Equivalently, a chief series is a composition series of the group
587: 362: 442: 278:. In other words, a chief series may be thought of as "full" in the sense that no normal subgroup of 606: 465:
In abelian groups, chief series and composition series are identical, as all subgroups are normal.
402:, and so all of its subgroups are normal and cyclic as well. Supposing there exists a chief series 370: 446: 366: 227: 441:
When a chief series for a group exists, it is generally not unique. However, a form of the
8: 76: 29: 186:{\displaystyle 1=N_{0}\subseteq N_{1}\subseteq N_{2}\subseteq \cdots \subseteq N_{n}=G,} 309: 65: 36: 583: 454: 558: 45: 17: 549:
Lafuente, J. (November 1978). "Homomorphs and formations of given derived class".
88: 390:
with addition as the operation does not have a chief series. To see this, note
197: 39:, though the two concepts are distinct in general: a chief series is a maximal 562: 600: 575: 399: 25: 395: 313: 551:
Mathematical Proceedings of the Cambridge Philosophical Society
426:
is a nontrivial normal subgroup properly contained in
112: 480:
is one of the elements (assuming a chief series for
433:, contradicting the definition of a chief series. 243:. Equivalently, there does not exist any subgroup 185: 598: 418:is cyclic and thus is generated by some integer 43:series, while a composition series is a maximal 508:have chief series. The converse also holds: if 457:of the chief factors and their multiplicities. 476:, one can always find a chief series in which 369:. In particular, a finite chief factor is a 557:(3). Cambridge University Press: 437–442. 365:, that is, they have no proper nontrivial 548: 361:. However, the chief factors are always 599: 574: 316:. That is, there may exist a subgroup 484:exists in the first place.) Also, if 422:, however the subgroup generated by 2 411:leads to an immediate contradiction: 542: 312:, chief factors are not necessarily 460: 13: 14: 618: 304:in a chief series are called the 1: 535: 436: 376: 373:of isomorphic simple groups. 55: 532:has a chief series as well. 381: 7: 226: − 1, is a 10: 623: 580:Algebra: A Graduate Course 468:Given any normal subgroup 87:is a finite collection of 563:10.1017/S0305004100055262 363:characteristically simple 367:characteristic subgroups 488:has a chief series and 228:minimal normal subgroup 308:of the series. Unlike 187: 443:Jordan–Hölder theorem 188: 282:may be added to it. 110: 64:under the action of 528:have chief series, 472: ⊆  455:isomorphism classes 310:composition factors 99: ⊆  66:inner automorphisms 35:It is similar to a 285:The factor groups 183: 37:composition series 576:Isaacs, I. Martin 453:, as well as the 357:is not normal in 614: 593: 567: 566: 546: 461:Other properties 192: 190: 189: 184: 173: 172: 154: 153: 141: 140: 128: 127: 89:normal subgroups 18:abstract algebra 622: 621: 617: 616: 615: 613: 612: 611: 607:Subgroup series 597: 596: 590: 582:. Brooks/Cole. 571: 570: 547: 543: 538: 463: 439: 432: 417: 410: 384: 379: 352: 338: 329: 303: 294: 273: 259: 242: 217: 208: 196:such that each 168: 164: 149: 145: 136: 132: 123: 119: 111: 108: 107: 98: 58: 12: 11: 5: 620: 610: 609: 595: 594: 588: 569: 568: 540: 539: 537: 534: 462: 459: 438: 435: 430: 415: 406: 383: 380: 378: 375: 371:direct product 347: 334: 324: 299: 289: 268: 255: 238: 213: 203: 198:quotient group 194: 193: 182: 179: 176: 171: 167: 163: 160: 157: 152: 148: 144: 139: 135: 131: 126: 122: 118: 115: 94: 71:In detail, if 57: 54: 9: 6: 4: 3: 2: 619: 608: 605: 604: 602: 591: 589:0-534-19002-2 585: 581: 577: 573: 572: 564: 560: 556: 552: 545: 541: 533: 531: 527: 523: 519: 515: 512:is normal in 511: 507: 503: 499: 495: 492:is normal in 491: 487: 483: 479: 475: 471: 466: 458: 456: 452: 449:of the group 448: 444: 434: 429: 425: 421: 414: 409: 405: 401: 397: 393: 389: 374: 372: 368: 364: 360: 356: 350: 346: 342: 337: 333: 327: 323: 319: 315: 311: 307: 306:chief factors 302: 298: 292: 288: 283: 281: 277: 271: 267: 263: 258: 254: 250: 246: 241: 237: 233: 229: 225: 221: 216: 212: 206: 202: 199: 180: 177: 174: 169: 165: 161: 158: 155: 150: 146: 142: 137: 133: 129: 124: 120: 116: 113: 106: 105: 104: 102: 97: 93: 90: 86: 82: 78: 74: 69: 67: 63: 53: 50: 48: 47: 42: 38: 33: 31: 27: 26:normal series 24:is a maximal 23: 19: 579: 554: 550: 544: 529: 525: 521: 517: 513: 509: 505: 501: 497: 496:, then both 493: 489: 485: 481: 477: 473: 469: 467: 464: 450: 440: 427: 423: 419: 412: 407: 403: 391: 387: 385: 358: 354: 348: 344: 340: 335: 331: 325: 321: 317: 305: 300: 296: 290: 286: 284: 279: 275: 269: 265: 261: 256: 252: 248: 244: 239: 235: 231: 223: 222:= 1, 2,..., 219: 214: 210: 204: 200: 195: 100: 95: 91: 84: 81:chief series 80: 72: 70: 61: 59: 51: 44: 40: 34: 22:chief series 21: 15: 536:References 437:Uniqueness 377:Properties 320:normal in 251:such that 247:normal in 56:Definition 516:and both 447:invariant 382:Existence 162:⊆ 159:⋯ 156:⊆ 143:⊆ 130:⊆ 79:, then a 46:subnormal 601:Category 578:(1994). 274:for any 49:series. 400:abelian 586:  396:cyclic 353:, but 314:simple 218:, for 41:normal 28:for a 343:< 339:< 330:with 264:< 260:< 77:group 75:is a 30:group 584:ISBN 520:and 500:and 398:and 20:, a 559:doi 394:is 230:of 83:of 16:In 603:: 555:84 553:. 351:+1 328:+1 293:+1 272:+1 207:+1 103:, 68:. 32:. 592:. 565:. 561:: 530:G 526:N 524:/ 522:G 518:N 514:G 510:N 506:N 504:/ 502:G 498:N 494:G 490:N 486:G 482:G 478:N 474:G 470:N 451:G 431:1 428:N 424:a 420:a 416:1 413:N 408:i 404:N 392:Z 388:Z 359:G 355:A 349:i 345:N 341:A 336:i 332:N 326:i 322:N 318:A 301:i 297:N 295:/ 291:i 287:N 280:G 276:i 270:i 266:N 262:A 257:i 253:N 249:G 245:A 240:i 236:N 234:/ 232:G 224:n 220:i 215:i 211:N 209:/ 205:i 201:N 181:, 178:G 175:= 170:n 166:N 151:2 147:N 138:1 134:N 125:0 121:N 117:= 114:1 101:G 96:i 92:N 85:G 73:G 62:G

Index

abstract algebra
normal series
group
composition series
subnormal
inner automorphisms
group
normal subgroups
quotient group
minimal normal subgroup
composition factors
simple
characteristically simple
characteristic subgroups
direct product
cyclic
abelian
Jordan–Hölder theorem
invariant
isomorphism classes
doi
10.1017/S0305004100055262
Isaacs, I. Martin
ISBN
0-534-19002-2
Category
Subgroup series

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑