Knowledge

Finite ring

Source đź“ť

454:: "(1) What is the order of the smallest non-trivial ring with identity which is not a field? Find two such rings with this minimal order. Are there more? (2) How many rings of order four are there?" One can find the solution by D.M. Bloom in a two-page proof that there are eleven rings of order 4, four of which have a multiplicative identity. Indeed, four-element rings introduce the complexity of the subject. There are three rings over the 507:
finite ring with 1 has the order of a prime cubed, then the ring is isomorphic to the upper triangular 2 × 2 matrix ring over the Galois field of the prime. The study of rings of order the cube of a prime was further developed in
611:
1, 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4, 390, 2, 22, 2, 22, 4, 4, 2, 104, 11, 4, 59, 22, 2, 8, 2, >18590, 4, 4, 4, 121, 2, 4, 4, 104, 2, 8, 2, 22, 22, 4, 2, 780, 11, 22, ... (sequence
416: 102: 53:
was one of the major breakthroughs of 20th century mathematics, its proof spanning thousands of journal pages. On the other hand, it has been known since 1907 that any finite
516:). Next Flor and Wessenbauer (1975) made improvements on the cube-of-a-prime case. Definitive work on the isomorphism classes came with ( 49:
Although rings have more structure than groups do, the theory of finite rings is simpler than that of finite groups. For instance, the
1086:
Saniga, Metod; Planat, Michel; Kibler, Maurice R.; Pracna, Petr (2007), "A classification of the projective lines over small rings",
755: 618: 138: 129: 534:
These are a few of the facts that are known about the number of finite rings (not necessarily with unity) of a given order (suppose
442:(Warning: the enumerations in this section include rings that do not necessarily have a multiplicative identity, sometimes called 50: 1036: 967: 878: 648: 1077:
Scorza, Gaetano (1935). "Le algebre regolari e le varietĂ  di Segre che con esse si riconnettono". In Rossetti, Pavia (ed.).
374: 60: 896: 1162: 225:
Despite the classification, finite fields are still an active area of research, including recent results on the
908: 301: 292: 451: 371:
is relatively straightforward in nature. More specifically, any finite simple ring is isomorphic to the ring
367:
Yet another theorem by Wedderburn has, as its consequence, a result demonstrating that the theory of finite
296: 781:
Ballieu, Robert (1947), "Anneaux finis; systèmes hypercomplexes de rang trois sur un corps commutatif",
335:
later discovered yet another condition which guarantees commutativity of a ring: if for every element
475: 192: 272: 230: 154: 163:
is perhaps the most important aspect of finite ring theory due to its intimate connections with
39:
is an example of a finite ring, and the additive part of every finite ring is an example of an
531:
There are earlier references in the topic of finite rings, such as Robert Ballieu and Scorza.
1167: 175:. An important, but fairly old aspect of the theory is the classification of finite fields: 1172: 1125: 1105: 951: 822: 794: 504: 364:
is commutative. More general conditions that imply commutativity of a ring are also known.
276: 1070: 1046: 888: 802: 761: 8: 1109: 1129: 1095: 994: 856: 737: 164: 32: 1032: 963: 939: 874: 860: 483: 431: 226: 1054: 1133: 1113: 1066: 1042: 1014: 986: 931: 912: 884: 848: 818: 798: 729: 701: 500: 463: 447: 24: 1121: 977:
Eldridge, K. E. (May 1968), "Orders for Finite Noncommutative Rings with Unity",
947: 919: 868: 790: 706: 332: 268: 1117: 46:, but the concept of finite rings in their own right has a more recent history. 692:
Pinter-Lucke, J. (May 2007), "Commutativity conditions for rings: 1950–2005",
1156: 1019: 943: 443: 305: 172: 168: 160: 40: 902: 434:
established in 1905 and 1907 (one of which is Wedderburn's little theorem).
471: 455: 325: 241: 188: 150: 43: 36: 631: 368: 249: 54: 20: 998: 852: 741: 218: 478:, and left- and right-identities) in Gregory Dresden's lecture notes. 1100: 496: 467: 990: 935: 733: 1005:
Gilmer, Robert; Mott, Joe (1973), "Associative rings of order p3",
907:
a research report of the work of 13 students and Prof. Sieler at a
1147: 922:(1945), "The radical and semi-simplicity for arbitrary rings", 466:. There is an interesting display of the discriminatory tools ( 116:(as a consequence of Wedderburn's theorems, described below). 839:
Antipkin, V. G.; Elizarov, V. P. (1982), "Rings of order p",
613: 133: 720:
Singmaster, David; Bloom, D. M. (October 1964), "E1648",
179:
The order or number of elements of a finite field equals
1085: 1081:(in Italian). Istituto matematico della R. UniversitĂ . 649:
Projective line over a ring § Over discrete rings
377: 63: 411:{\displaystyle \mathrm {M} _{n}(\mathbb {F} _{q})} 410: 97:{\displaystyle \mathrm {M} _{n}(\mathbb {F} _{q})} 96: 229:and open problems regarding the size of smallest 1154: 838: 577:There are fifty-two finite rings of order eight. 517: 870:Finite commutative rings and their applications 719: 217:Any two finite fields with the same order are 524: > 2, the number of classes is 3 1079:Scritti matematici offerti a Luigi Berzolari 1052: 691: 509: 35:that has a finite number of elements. Every 16:Abstract ring with finite number of elements 866: 634:, finite commutative rings that generalize 567:There are twenty-two finite rings of order 1148:Classification of finite commutative rings 1004: 513: 1099: 1018: 705: 395: 139:On-Line Encyclopedia of Integer Sequences 81: 1026: 976: 957: 918: 680: 668: 488: 286: 894: 780: 753: 560:There are eleven finite rings of order 1155: 1076: 814: 584: + 50 finite rings of order 450:proposed the following problem in the 426:matrices over a finite field of order 112:matrices over a finite field of order 51:classification of finite simple groups 553:There are four finite rings of order 430:. This follows from two theorems of 546:There are two finite rings of order 542:represent distinct prime numbers): 320:has a multiplicative inverse, then 210:, there exists a finite field with 13: 487:in finite rings was described in ( 380: 127:a natural number, is listed under 66: 14: 1184: 1141: 1007:Proceedings of the Japan Academy 491:) in two theorems: If the order 324:is commutative (and therefore a 924:American Journal of Mathematics 909:Washington & Lee University 144: 1088:Chaos, Solitons & Fractals 808: 774: 747: 713: 685: 674: 661: 495:of a finite ring with 1 has a 437: 405: 390: 91: 76: 1: 1027:McDonald, Bernard A. (1974), 979:American Mathematical Monthly 841:Siberian Mathematical Journal 831: 722:American Mathematical Monthly 452:American Mathematical Monthly 867:Bini, G; Flamini, F (2002), 707:10.1016/j.exmath.2006.07.001 518:Antipkin & Elizarov 1982 308:is necessarily commutative: 263:matrices with elements from 7: 1118:10.1016/j.chaos.2007.01.008 817:, see review of Ballieu by 625: 302:Wedderburn's little theorem 293:Wedderburn's little theorem 10: 1189: 1055:"Finite associative rings" 1029:Finite Rings with Identity 499:factorization, then it is 290: 148: 57:is isomorphic to the ring 1053:Raghavendran, R. (1969), 958:Jacobson, Nathan (1985). 895:Dresden, Gregory (2005), 754:Dresden, Gregory (2005), 694:Expositiones Mathematicae 596:The number of rings with 462:and eight rings over the 312:If every nonzero element 119:The number of rings with 783:Ann. Soc. Sci. Bruxelles 757:Rings with four elements 654: 343:there exists an integer 304:asserts that any finite 297:Artin–Wedderburn theorem 1163:Algebraic combinatorics 273:projective linear group 240:may be used to build a 202:For every prime number 155:Finite field arithmetic 1059:Compositio Mathematica 1020:10.3792/pja/1195519146 514:Gilmer & Mott 1973 412: 199:is a positive integer. 98: 413: 287:Wedderburn's theorems 244:of n-dimensions over 206:and positive integer 99: 823:Mathematical Reviews 375: 277:multiplicative group 233:(in number theory). 61: 23:, more specifically 1110:2007CSF....33.1095S 600:elements are (with 520:) proving that for 853:10.1007/BF00968650 592: > 2. 481:The occurrence of 408: 195:of the field, and 165:algebraic geometry 94: 1038:978-0-8247-6161-5 1031:, Marcel Dekker, 969:978-0-7167-1480-4 880:978-1-4020-7039-6 645:and finite fields 528: + 50. 510:Raghavendran 1969 484:non-commutativity 432:Joseph Wedderburn 316:of a finite ring 227:Kakeya conjecture 1180: 1136: 1103: 1094:(4): 1095–1102, 1082: 1073: 1049: 1023: 1022: 1001: 973: 962:. W.H. Freeman. 954: 920:Jacobson, Nathan 913:Abstract algebra 906: 901:, archived from 891: 863: 825: 819:Irving Kaplansky 812: 806: 805: 778: 772: 771: 770: 769: 760:, archived from 751: 745: 744: 717: 711: 710: 709: 689: 683: 678: 672: 665: 616: 606: 464:Klein four-group 448:David Singmaster 417: 415: 414: 409: 404: 403: 398: 389: 388: 383: 359: 349: 136: 103: 101: 100: 95: 90: 89: 84: 75: 74: 69: 25:abstract algebra 1188: 1187: 1183: 1182: 1181: 1179: 1178: 1177: 1153: 1152: 1144: 1139: 1039: 991:10.2307/2314716 970: 960:Basic Algebra I 936:10.2307/2371731 881: 834: 829: 828: 813: 809: 779: 775: 767: 765: 752: 748: 734:10.2307/2312421 718: 714: 690: 686: 679: 675: 666: 662: 657: 628: 612: 601: 505:non-commutative 461: 440: 399: 394: 393: 384: 379: 378: 376: 373: 372: 351: 344: 333:Nathan Jacobson 299: 291:Main articles: 289: 275:serving as the 269:Galois geometry 236:A finite field 231:primitive roots 157: 149:Main articles: 147: 128: 85: 80: 79: 70: 65: 64: 62: 59: 58: 17: 12: 11: 5: 1186: 1176: 1175: 1170: 1165: 1151: 1150: 1143: 1142:External links 1140: 1138: 1137: 1083: 1074: 1065:(2): 195–229, 1050: 1037: 1024: 1002: 974: 968: 955: 916: 892: 879: 864: 847:(4): 457–464, 835: 833: 830: 827: 826: 807: 773: 746: 728:(8): 918–920, 712: 700:(2): 165–174, 684: 673: 671:, p. 287) 659: 658: 656: 653: 652: 651: 646: 627: 624: 623: 622: 594: 593: 578: 575: 565: 558: 551: 459: 439: 436: 407: 402: 397: 392: 387: 382: 330: 329: 288: 285: 223: 222: 215: 200: 193:characteristic 159:The theory of 146: 143: 123:elements, for 93: 88: 83: 78: 73: 68: 15: 9: 6: 4: 3: 2: 1185: 1174: 1171: 1169: 1166: 1164: 1161: 1160: 1158: 1149: 1146: 1145: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1102: 1097: 1093: 1089: 1084: 1080: 1075: 1072: 1068: 1064: 1060: 1056: 1051: 1048: 1044: 1040: 1034: 1030: 1025: 1021: 1016: 1013:(10): 795–9, 1012: 1008: 1003: 1000: 996: 992: 988: 984: 980: 975: 971: 965: 961: 956: 953: 949: 945: 941: 937: 933: 929: 925: 921: 917: 914: 910: 905:on 2017-05-01 904: 900: 899: 893: 890: 886: 882: 876: 872: 871: 865: 862: 858: 854: 850: 846: 842: 837: 836: 824: 820: 816: 811: 804: 800: 796: 792: 788: 784: 777: 764:on 2010-08-02 763: 759: 758: 750: 743: 739: 735: 731: 727: 723: 716: 708: 703: 699: 695: 688: 682: 681:Jacobson 1945 677: 670: 669:Jacobson 1985 664: 660: 650: 647: 644: 641: 637: 633: 630: 629: 620: 615: 610: 609: 608: 604: 599: 591: 587: 583: 579: 576: 573: 570: 566: 563: 559: 556: 552: 549: 545: 544: 543: 541: 537: 532: 529: 527: 523: 519: 515: 511: 506: 502: 498: 494: 490: 489:Eldridge 1968 486: 485: 479: 477: 473: 472:zero-divisors 469: 465: 457: 453: 449: 445: 435: 433: 429: 425: 421: 400: 385: 370: 365: 363: 358: 354: 347: 342: 338: 334: 327: 323: 319: 315: 311: 310: 309: 307: 306:division ring 303: 298: 294: 284: 282: 278: 274: 270: 266: 262: 258: 254: 251: 247: 243: 239: 234: 232: 228: 220: 216: 213: 209: 205: 201: 198: 194: 190: 186: 182: 178: 177: 176: 174: 173:number theory 170: 169:Galois theory 166: 162: 161:finite fields 156: 152: 142: 140: 135: 131: 126: 122: 117: 115: 111: 107: 86: 71: 56: 52: 47: 45: 42: 38: 34: 30: 26: 22: 1168:Finite rings 1101:math/0605301 1091: 1087: 1078: 1062: 1058: 1028: 1010: 1006: 985:(5): 512–4, 982: 978: 959: 927: 923: 903:the original 897: 869: 844: 840: 810: 786: 782: 776: 766:, retrieved 762:the original 756: 749: 725: 721: 715: 697: 693: 687: 676: 663: 642: 639: 635: 602: 597: 595: 589: 585: 581: 571: 568: 561: 554: 547: 539: 535: 533: 530: 525: 521: 492: 482: 480: 456:cyclic group 441: 427: 423: 419: 369:simple rings 366: 361: 356: 352: 345: 340: 336: 331: 326:finite field 321: 317: 313: 300: 280: 264: 260: 256: 252: 245: 242:vector space 237: 235: 224: 211: 207: 203: 196: 189:prime number 184: 180: 158: 151:Finite field 145:Finite field 124: 120: 118: 113: 109: 105: 48: 44:finite group 37:finite field 28: 18: 1173:Ring theory 930:: 300–320, 915:(Math 322). 898:Small Rings 815:Scorza 1935 785:, SĂ©rie I, 632:Galois ring 580:There are 3 503:. And if a 501:commutative 476:idempotents 446:.) In 1964 438:Enumeration 271:, with the 267:is used in 250:matrix ring 191:called the 55:simple ring 29:finite ring 21:mathematics 1157:Categories 1071:0179.33602 1047:0294.16012 889:1095.13032 873:, Kluwer, 832:References 803:0031.10802 768:2009-07-28 468:nilpotents 350:such that 219:isomorphic 944:0002-9327 911:class in 861:121484642 789:: 222–7, 497:cube-free 355:  = 214:elements. 626:See also 183:, where 1134:8973277 1126:2318902 1106:Bibcode 999:2314716 952:0012271 795:0022841 742:2312421 617:in the 614:A027623 605:(0) = 1 512:) and ( 360:, then 137:in the 134:A027623 132::  41:abelian 1132:  1124:  1069:  1045:  1035:  997:  966:  950:  942:  887:  877:  859:  801:  793:  740:  418:, the 348:> 1 248:. The 104:– the 1130:S2CID 1096:arXiv 995:JSTOR 857:S2CID 738:JSTOR 655:Notes 187:is a 31:is a 1033:ISBN 964:ISBN 940:ISSN 875:ISBN 619:OEIS 538:and 444:rngs 422:-by- 295:and 171:and 153:and 130:OEIS 108:-by- 33:ring 27:, a 1114:doi 1067:Zbl 1043:Zbl 1015:doi 987:doi 932:doi 885:Zbl 849:doi 821:in 799:Zbl 730:doi 702:doi 588:, 339:of 279:of 255:of 19:In 1159:: 1128:, 1122:MR 1120:, 1112:, 1104:, 1092:33 1090:, 1063:21 1061:, 1057:, 1041:, 1011:49 1009:, 993:, 983:75 981:, 948:MR 946:, 938:, 928:67 926:, 883:, 855:, 845:23 843:, 797:, 791:MR 787:61 736:, 726:71 724:, 698:25 696:, 607:) 555:pq 474:, 470:, 328:). 283:. 259:Ă— 167:, 141:. 1116:: 1108:: 1098:: 1017:: 989:: 972:. 934:: 851:: 732:: 704:: 667:( 643:Z 640:p 638:/ 636:Z 621:) 603:a 598:n 590:p 586:p 582:p 574:. 572:q 569:p 564:. 562:p 557:. 550:. 548:p 540:q 536:p 526:p 522:p 508:( 493:m 460:4 458:C 428:q 424:n 420:n 406:) 401:q 396:F 391:( 386:n 381:M 362:R 357:r 353:r 346:n 341:R 337:r 322:R 318:R 314:r 281:A 265:F 261:n 257:n 253:A 246:F 238:F 221:. 212:p 208:n 204:p 197:n 185:p 181:p 125:m 121:m 114:q 110:n 106:n 92:) 87:q 82:F 77:( 72:n 67:M

Index

mathematics
abstract algebra
ring
finite field
abelian
finite group
classification of finite simple groups
simple ring
OEIS
A027623
On-Line Encyclopedia of Integer Sequences
Finite field
Finite field arithmetic
finite fields
algebraic geometry
Galois theory
number theory
prime number
characteristic
isomorphic
Kakeya conjecture
primitive roots
vector space
matrix ring
Galois geometry
projective linear group
multiplicative group
Wedderburn's little theorem
Artin–Wedderburn theorem
Wedderburn's little theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑