Knowledge

GF(2)

Source 📝

832: 105: 547:
Because of the algebraic properties above, many familiar and powerful tools of mathematics work in GF(2) just as well as other fields. For example, matrix operations, including
373: 60: 662:. These spaces can also be augmented with a multiplication operation that makes them into a field GF(2), but the multiplication operation cannot be a bitwise operation. When 838:(these operations are however different from the standard addition and multiplication of ordinal numbers). The addition in this field is simple to perform and is akin to 968: 778:
is countable and contains a single copy of each of the finite fields GF(2); the copy of GF(2) is contained in the copy of GF(2) if and only if
249:
The multiplication of GF(2) is again the usual multiplication modulo 2 (see the table below), and on boolean variables corresponds to the
17: 952: 919: 803: 75: 679: 198:
Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below:
538:. All larger fields contain elements other than 0 and 1, and those elements cannot satisfy this property). 655: 1024: 911: 749: 495: 349: 36: 468: 238:
If the elements of GF(2) are seen as boolean values, then the addition is the same as that of the
983: 294: 184: 126: 1014: 855: 675: 614: 243: 835: 697: 430: 929: 8: 1019: 899: 741: 562: 312: 118: 904: 396:
Because GF(2) is a field, many of the familiar properties of number systems such as the
962: 769: 168: 834:, where the addition and multiplication operations are defined in a natural manner by 948: 915: 729: 643: 180: 122: 925: 659: 548: 409: 305: 164: 415:
multiplication has an identity element (1) and an inverse for every element but 0;
910:. Encyclopedia of Mathematics and Its Applications. Vol. 20 (2nd ed.). 843: 737: 713: 689: 397: 798: 376: 149: 1008: 717: 693: 586: 301: 839: 701: 685: 639: 634: 590: 391: 108: 709: 651: 555: 527:
must have a multiplicative inverse, in which case dividing both sides by
423: 419: 401: 320: 250: 239: 875: 629: 490: 846:
has shown that the multiplication can also be performed efficiently.
375:
may be encountered although they can be confused with the notation of
748:
is a root of a polynomial with coefficients in GF(2)), and which is
121:
with the smallest possible number of elements, and is unique if the
705: 625: 674:, one can use multiplication of polynomials over GF(2) modulo a 437:
Properties that are not familiar from the real numbers include:
678:(as for instance for the field GF(2) in the description of the 667: 666:
is itself a power of two, the multiplication operation can be
765: 712:
over GF(2) (codes defined from vector spaces over GF(2)), or
654:
is another operation on this vector space, which makes it a
704:. For example, many common error correcting codes (such as 790:
is countable and is the union of all these finite fields.
647: 145: 494:
with respect to multiplication); this is an instance of
772:(i.e. essentially up to the notation of its elements). 246:, subtraction is thus the same operation as addition. 806: 642:
over GF(2). The addition of this vector space is the
551:, can be applied to matrices with elements in GF(2) ( 352: 179:
GF(2) is the unique field with two elements with its
78: 39: 144:
may be identified with the two possible values of a
903: 826: 752:(any non-constant polynomial with coefficients in 367: 99: 54: 1006: 897: 593:over GF(2) in a natural fashion, by defining 0 293:GF(2) can be identified with the field of the 947:(2nd ed.). Wellesley, Mass. p. 61. 764:is uniquely determined by these properties, 638:. These are endowed with the structure of a 827:{\displaystyle \omega ^{\omega ^{\omega }}} 967:: CS1 maint: location missing publisher ( 617:, implying that the number of elements of 100:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 355: 242:operation. Since each element equals its 93: 80: 42: 991:Indagationes Mathematicae (Proceedings) 981: 14: 1007: 942: 621:must be a power of 2 (or infinite). 412:(0) and an inverse for every element; 723: 502:field with this property (Proof: if 24: 744:over GF(2) (i.e. every element of 25: 1036: 984:"On the Algebraic Closure of Two" 882:, another name for finite fields. 720:of polynomial rings over GF(2)). 658:, a structure that underlies all 163:is fundamental and ubiquitous in 613:. This vector space will have a 418:addition and multiplication are 368:{\displaystyle \mathbb {Z} _{2}} 55:{\displaystyle \mathbb {F} _{2}} 542: 975: 936: 891: 868: 692:over GF(2) are widely used in 13: 1: 861: 728:Like any field, GF(2) has an 385: 174: 680:Advanced Encryption Standard 628:, data are represented with 27:Finite field of two elements 7: 849: 797:can be identified with the 10: 1041: 912:Cambridge University Press 736:which contains GF(2) as a 632:of a fixed length, called 389: 982:Lenstra, Hendrik (1977). 670:; alternatively, for any 589:and can be turned into a 577: = 0 for every 185:multiplicative identities 129:are denoted respectively 943:Conway, John H. (2000). 696:, and in particular in 496:Fermat's little theorem 127:multiplicative identity 18:Field with two elements 856:Field with one element 828: 698:error correcting codes 676:irreducible polynomial 523:. In the latter case, 467:; this means that the 369: 101: 56: 836:transfinite induction 829: 793:Conway realized that 370: 187:respectively denoted 102: 57: 945:On Numbers and Games 900:Niederreiter, Harald 804: 750:algebraically closed 650:(exclusive or). The 597: = 0 and 1 569:) with the property 350: 111:with two elements. 76: 37: 478:of GF(2) satisfies 445:of GF(2) satisfies 824: 770:field automorphism 732:. This is a field 716:(codes defined as 668:nim-multiplication 429:multiplication is 365: 159:. It follows that 97: 52: 1025:Binary arithmetic 954:978-1-56881-127-7 730:algebraic closure 724:Algebraic closure 644:bitwise operation 291: 290: 236: 235: 123:additive identity 16:(Redirected from 1032: 999: 998: 988: 979: 973: 972: 966: 958: 940: 934: 933: 909: 895: 883: 872: 833: 831: 830: 825: 823: 822: 821: 820: 714:polynomial codes 690:polynomial rings 660:computer science 549:matrix inversion 537: 522: 515: 508: 487: 466: 455: 410:identity element 408:addition has an 398:rational numbers 379: 374: 372: 371: 366: 364: 363: 358: 345: 333: 306:ring of integers 298: 295:integers modulo 256: 255: 201: 200: 194: 190: 165:computer science 162: 143: 140:The elements of 136: 132: 116: 106: 104: 103: 98: 96: 88: 83: 71: 61: 59: 58: 53: 51: 50: 45: 32: 21: 1040: 1039: 1035: 1034: 1033: 1031: 1030: 1029: 1005: 1004: 1003: 1002: 986: 980: 976: 960: 959: 955: 941: 937: 922: 896: 892: 887: 886: 873: 869: 864: 852: 816: 812: 811: 807: 805: 802: 801: 726: 656:Boolean algebra 585:is necessarily 545: 532: 517: 510: 503: 498:. GF(2) is the 479: 457: 446: 394: 388: 377: 359: 354: 353: 351: 348: 347: 344: 338: 324: 300:, that is, the 296: 192: 188: 177: 160: 141: 134: 130: 114: 92: 84: 79: 77: 74: 73: 63: 46: 41: 40: 38: 35: 34: 30: 28: 23: 22: 15: 12: 11: 5: 1038: 1028: 1027: 1022: 1017: 1001: 1000: 974: 953: 935: 920: 898:Lidl, Rudolf; 889: 888: 885: 884: 866: 865: 863: 860: 859: 858: 851: 848: 819: 815: 810: 799:ordinal number 756:has a root in 725: 722: 544: 541: 540: 539: 509:, then either 474:every element 472: 471:of GF(2) is 2; 469:characteristic 456:and therefore 441:every element 435: 434: 433:over addition. 427: 416: 413: 404:are retained: 390:Main article: 387: 384: 380:-adic integers 362: 357: 342: 289: 288: 285: 282: 278: 277: 274: 271: 267: 266: 263: 260: 234: 233: 230: 227: 223: 222: 219: 216: 212: 211: 208: 205: 176: 173: 150:boolean values 95: 91: 87: 82: 49: 44: 33:(also denoted 26: 9: 6: 4: 3: 2: 1037: 1026: 1023: 1021: 1018: 1016: 1015:Finite fields 1013: 1012: 1010: 996: 992: 985: 978: 970: 964: 956: 950: 946: 939: 931: 927: 923: 921:0-521-39231-4 917: 913: 908: 907: 906:Finite fields 901: 894: 890: 881: 877: 871: 867: 857: 854: 853: 847: 845: 841: 837: 817: 813: 808: 800: 796: 791: 789: 785: 781: 777: 773: 771: 767: 763: 760:). The field 759: 755: 751: 747: 743: 739: 735: 731: 721: 719: 715: 711: 707: 703: 699: 695: 694:coding theory 691: 687: 686:Vector spaces 683: 681: 677: 673: 669: 665: 661: 657: 653: 649: 645: 641: 637: 636: 635:machine words 631: 627: 622: 620: 616: 612: 608: 604: 601: =  600: 596: 592: 588: 584: 580: 576: 573: +  572: 568: 564: 559: 557: 554: 550: 535: 530: 526: 520: 513: 506: 501: 497: 493: 492: 486: 482: 477: 473: 470: 465: 461: 453: 449: 444: 440: 439: 438: 432: 428: 425: 421: 417: 414: 411: 407: 406: 405: 403: 399: 393: 383: 381: 360: 341: 335: 332: 328: 322: 318: 314: 310: 307: 303: 302:quotient ring 299: 286: 283: 280: 279: 275: 272: 269: 268: 264: 261: 258: 257: 254: 252: 247: 245: 241: 231: 228: 225: 224: 220: 217: 214: 213: 209: 206: 203: 202: 199: 196: 186: 182: 172: 171:foundations. 170: 166: 158: 154: 151: 147: 138: 128: 124: 120: 112: 110: 89: 85: 70: 66: 47: 19: 994: 990: 977: 944: 938: 905: 893: 880:Galois field 879: 870: 840:Nim-addition 794: 792: 787: 783: 779: 775: 774: 761: 757: 753: 745: 733: 727: 710:linear codes 702:cryptography 684: 671: 663: 640:vector space 633: 623: 618: 610: 606: 602: 598: 594: 591:vector space 582: 578: 574: 570: 566: 560: 552: 546: 543:Applications 533: 528: 524: 518: 511: 504: 499: 489: 484: 480: 475: 463: 459: 451: 447: 442: 436: 431:distributive 402:real numbers 395: 392:finite field 339: 336: 330: 326: 321:even numbers 316: 308: 292: 248: 237: 197: 178: 156: 152: 139: 137:, as usual. 113: 109:finite field 68: 64: 29: 740:, which is 700:and modern 652:bitwise AND 630:bit strings 556:matrix ring 424:associative 420:commutative 253:operation. 251:logical AND 240:logical XOR 148:and to the 1020:2 (number) 1009:Categories 930:0866.11069 876:initialism 874:GF is the 862:References 786:The field 624:In modern 491:idempotent 386:Properties 337:Notations 175:Definition 963:cite book 818:ω 814:ω 809:ω 742:algebraic 718:quotients 706:BCH codes 682:cipher). 626:computers 488:(i.e. is 107:) is the 902:(1997). 850:See also 782:divides 738:subfield 605:for all 325:GF(2) = 244:opposite 181:additive 167:and its 125:and the 844:Lenstra 646:called 587:abelian 319:of all 311:by the 304:of the 169:logical 117:is the 951:  928:  918:  708:) are 531:gives 987:(PDF) 766:up to 615:basis 563:group 313:ideal 161:GF(2) 157:false 142:GF(2) 119:field 115:GF(2) 31:GF(2) 997:(5). 969:link 949:ISBN 916:ISBN 688:and 561:Any 500:only 422:and 400:and 346:and 191:and 183:and 155:and 153:true 133:and 926:Zbl 878:of 648:XOR 609:in 581:in 567:V,+ 558:). 553:see 536:= 1 521:≠ 0 516:or 514:= 0 507:= x 454:= 0 146:bit 72:or 1011:: 995:80 993:. 989:. 965:}} 961:{{ 924:. 914:. 842:; 784:m. 768:a 483:= 462:= 450:+ 382:. 334:. 329:/2 323:: 287:1 281:1 276:0 270:0 265:1 232:0 226:1 221:1 215:0 210:1 195:. 67:/2 62:, 971:) 957:. 932:. 795:F 788:F 780:n 776:F 762:F 758:F 754:F 746:F 734:F 672:n 664:n 619:V 611:V 607:v 603:v 599:v 595:v 583:V 579:v 575:v 571:v 565:( 534:x 529:x 525:x 519:x 512:x 505:x 485:x 481:x 476:x 464:x 460:x 458:− 452:x 448:x 443:x 426:; 378:2 361:2 356:Z 343:2 340:Z 331:Z 327:Z 317:Z 315:2 309:Z 297:2 284:0 273:0 262:0 259:× 229:1 218:0 207:0 204:+ 193:1 189:0 135:1 131:0 94:Z 90:2 86:/ 81:Z 69:Z 65:Z 48:2 43:F 20:)

Index

Field with two elements
finite field
field
additive identity
multiplicative identity
bit
boolean values
computer science
logical
additive
multiplicative identities
logical XOR
opposite
logical AND
integers modulo 2
quotient ring
ring of integers
ideal
even numbers
2-adic integers
finite field
rational numbers
real numbers
identity element
commutative
associative
distributive
characteristic
idempotent
Fermat's little theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.