Knowledge

Feedback arc set

Source 📝

2311:, and the Hamiltonian paths correspond one-for-one with minimal feedback arc sets, disjoint from the corresponding path. The Hamiltonian path for a feedback arc set is found by reversing its arcs and finding a topological order of the resulting acyclic tournament. Every consecutive pair of the order must be disjoint from the feedback arc sets, because otherwise one could find a smaller feedback arc set by reversing that pair. Therefore, this ordering gives a path through arcs of the original tournament, covering all vertices. Conversely, from any Hamiltonian path, the set of edges that connect later vertices in the path to earlier ones forms a feedback arc set. It is minimal, because each of its edges belongs to a cycle with the Hamiltonian path edges that is disjoint from all other such cycles. In a tournament, it may be the case that the minimum feedback arc set and maximum acyclic subgraph are both close to half the edges. More precisely, every tournament graph has a feedback arc set of size 291:, the vertices of a given directed graph are partitioned into an ordered sequence of subsets (the layers of the drawing), and each subset is placed along a horizontal line of this drawing, with the edges extending upwards and downwards between these layers. In this type of drawing, it is desirable for most or all of the edges to be oriented consistently downwards, rather than mixing upwards and downwards edges, in order for the reachability relations in the drawing to be more visually apparent. This is achieved by finding a minimum or minimal feedback arc set, reversing the edges in that set, and then choosing the partition into layers in a way that is consistent with a topological order of the resulting acyclic graph. Feedback arc sets have also been used for a different subproblem of layered graph drawing, the ordering of vertices within consecutive pairs of layers. 161: 1880: 168:, pool F, and the minimum-upset ranking for these scores. Arrows are directed from the loser to the winner of each match, and are colored blue when the outcome is consistent with the ranking and red for an upset, an outcome inconsistent with the ranking. With this ranking, only one match is an upset, the one in which USA beat QAT. The actual ranking used in the Olympics differed by placing ESP ahead of QAT on set ratio, causing their match to be ranked as another upset. 192:, the outcomes of each game can be recorded by directing an edge from the loser to the winner of each game. Finding a minimum feedback arc set in the resulting graph, reversing its edges, and topological ordering, produces a ranking on all of the competitors. Among all of the different ways of choosing a ranking, it minimizes the total number of upsets, games in which a lower-ranked competitor beat a higher-ranked competitor. Many sports use simpler methods for 218:, it is of interest to determine subjects' rankings of sets of objects according to a given criterion, such as their preference or their perception of size, based on pairwise comparisons between all pairs of objects. The minimum feedback arc set in a tournament graph provides a ranking that disagrees with as few pairwise outcomes as possible. Alternatively, if these comparisons result in independent probabilities for each pairwise ordering, then the 22: 487: 302:, the problem of removing the smallest number of dependencies to break a deadlock can be modeled as one of finding a minimum feedback arc set. However, because of the computational difficulty of finding this set, and the need for speed within operating system components, heuristics rather than exact algorithms are often used in this application. 1887:
of Karp and Lawler, from vertex cover of the large yellow graph to minimum feedback arc set in the small blue graph, expands each yellow vertex into two adjacent blue graph vertices, and each undirected yellow edge into two opposite directed edges. The minimum vertex cover (upper left and lower right
319:
of the other. However, for parameterized complexity and approximation, they differ, because the analysis used for those kinds of algorithms depends on the size of the solution and not just on the size of the input graph, and the minimum feedback arc set and maximum acyclic subgraph have different
530:
by splitting them at articulation vertices. The choice of solution within any one of these subproblems does not affect the others, and the edges that do not appear in any of these components are useless for inclusion in the feedback arc set. When one of these components can be separated into two
482:
into two vertices, one for incoming edges and one for outgoing edges. These transformations allow exact algorithms for feedback arc sets and for feedback vertex sets to be converted into each other, with an appropriate translation of their complexity bounds. However, this transformation does not
1834:
are another class of directed graphs on which the feedback arc set problem may be solved in polynomial time. These graphs describe the flow of control in structured programs for many programming languages. Although structured programs often produce planar directed flow graphs, the definition of
252:
can be described as seeking an ordering that minimizes the sum, over pairs of candidates, of the number of voters who prefer the opposite ordering for that pair. This can be formulated and solved as a minimum-weight feedback arc set problem, in which the vertices represent candidates, edges are
261:
circuits, in which signals can propagate in cycles through the circuit instead of always progressing from inputs to outputs. In such circuits, a minimum feedback arc set characterizes the number of points at which amplification is necessary to allow the signals to propagate without loss of
283:
on a feedback arc set, and guessing or trying all possibilities for the values on those edges, allows the rest of the process to be analyzed in a systematic way because of its acyclicity. In this application, the idea of breaking edges in this way is called "tearing".
1238:
to choose the ordering. This algorithm finds and deletes a vertex whose numbers of incoming and outgoing edges are as far apart as possible, recursively orders the remaining graph, and then places the deleted vertex at one end of the resulting order. For graphs with
1184:
This means that the size of the feedback arc set that it finds is at most this factor larger than the optimum. Determining whether feedback arc set has a constant-ratio approximation algorithm, or whether a non-constant ratio is necessary, remains an open problem.
69:
are also used. If a feedback arc set is minimal, meaning that removing any edge from it produces a subset that is not a feedback arc set, then it has an additional property: reversing all of its edges, rather than removing them, produces a directed acyclic graph.
2271:: the minimum size of a feedback arc set equals the maximum number of edge-disjoint directed cycles that can be found in the graph. This is not true for some other graphs; for instance the first illustration shows a directed version of the non-planar graph 4083:
Bonamy, Marthe; Kowalik, Lukasz; Nederlof, Jesper; Pilipczuk, Michal; Socala, Arkadiusz; Wrochna, Marcin (2018), "On directed feedback vertex set parameterized by treewidth", in Brandstädt, Andreas; Köhler, Ekkehard; Meer, Klaus (eds.),
2061:
from vertex cover to feedback arc set, which preserves the quality of approximations. By a different reduction, the maximum acyclic subgraph problem is also APX-hard, and NP-hard to approximate to within a factor of 65/66 of optimal.
2032:
Some NP-complete problems can become easier when their inputs are restricted to special cases. But for the most important special case of the feedback arc set problem, the case of tournaments, the problem remains NP-complete.
266:
made from asynchronous components, synchronization can be achieved by placing clocked gates on the edges of a feedback arc set. Additionally, cutting a circuit on a feedback arc a set reduces the remaining circuit to
725:, the time for algorithms is measured not just in terms of the size of the input graph, but also in terms of a separate parameter of the graph. In particular, for the minimum feedback arc set problem, the so-called 543:
One way to find the minimum feedback arc set is to search for an ordering of the vertices such that as few edges as possible are directed from later vertices to earlier vertices in the ordering. Searching all
2073:
is true, then the minimum feedback arc set problem is hard to approximate in polynomial time to within any constant factor, and the maximum feedback arc set problem is hard to approximate to within a factor
5540:
Hanauer, Kathrin; Brandenburg, Franz-Josef; Auer, Christopher (2013), "Tight upper bounds for minimum feedback arc sets of regular graphs", in Brandstädt, Andreas; Jansen, Klaus; Reischuk, Rüdiger (eds.),
1512: 1846:, which generalizes to a weighted version of the problem. A subexponential parameterized algorithm for weighted feedback arc sets on tournaments is also known. The maximum acyclic subgraph problem for 1815:, using the fact that the triconnected components of these graphs are either planar or of bounded size. Planar graphs have also been generalized in a different way to a class of directed graphs called 253:
directed to represent the winner of each head-to-head contest, and the cost of each edge represents the number of voters who would be made unhappy by giving a higher ranking to the head-to-head loser.
1092:
Instead of minimizing the size of the feedback arc set, researchers have also looked at minimizing the maximum number of edges removed from any vertex. This variation of the problem can be solved in
2389: 374:
Here, a feedback vertex set is defined analogously to a feedback arc set, as a subset of the vertices of the graph whose deletion would eliminate all cycles. The line graph of a directed graph
2057:, it has no polynomial time approximation ratio better than 1.3606. This is the same threshold for hardness of approximation that is known for vertex cover, and the proof uses the Karp–Lawler 518:, each a cycle of two vertices. The feedback arc set problem can be solved separately in each strongly connected component, and in each biconnected component of a strongly connected component. 4827: 1454: 165: 2551: 2471: 2206: 2109: 1373: 1227:
Partition the edges into two acyclic subgraphs, one consisting of the edges directed consistently with the ordering, and the other consisting of edges directed oppositely to the ordering.
993:
of the underlying undirected graph. The circuit rank is an undirected analogue of the feedback arc set, the minimum number of edges that need to be removed from a graph to reduce it to a
271:, simplifying its analysis, and the size of the feedback arc set controls how much additional analysis is needed to understand the behavior of the circuit across the cut. Similarly, in 2256: 2053:, meaning that accurate approximations for it could be used to achieve similarly accurate approximations for all other problems in APX. As a consequence of its hardness proof, unless 3161:
Estep, D.Q.; Crowell-Davis, S.L.; Earl-Costello, S.-A.; Beatey, S.A. (January 1993), "Changes in the social behaviour of drafthorse (Equus caballus) mares coincident with foaling",
1180: 835: 710: 965: 49:
is a subset of the edges of the graph that contains at least one edge out of every cycle in the graph. Removing these edges from the graph breaks all of the cycles, producing an
2752: 2171: 2139: 1771: 1647: 1896:
to the minimum feedback arc set, it is necessary to modify the problem from being an optimization problem (how few edges can be removed to break all cycles) to an equivalent
1217: 910:
Other parameters than the natural parameter have also been studied. A fixed-parameter tractable algorithm using dynamic programming can find minimum feedback arc sets in
1061: 1540: 654: 2911: 2007: 1687: 2302: 1809: 1397: 1319: 603: 2850: 2802: 1827:. Every planar directed graph is weakly acyclic in this sense, and the feedback arc set problem can be solved in polynomial time for all weakly acyclic digraphs. 1568: 211:
are often determined by searching for an ordering with the fewest reversals in observed dominance behavior, another form of the minimum feedback arc set problem.
2822: 2774: 2691: 2671: 2640: 2618: 2596: 2576: 1962: 1940: 1918: 1711: 1277: 1257: 1087: 1019: 987: 903: 879: 857: 769: 747: 567: 512: 480: 460: 438: 414: 392: 370: 341: 3995:; Fomin, Fedor V.; Koster, Arie M. C. A.; Kratsch, Dieter; Thilikos, Dimitrios M. (2012), "A note on exact algorithms for vertex ordering problems on graphs", 2881: 531:
disconnected subgraphs by removing two vertices, a more complicated decomposition applies, allowing the problem to be split into subproblems derived from the
4047:
Chen, Jianer; Liu, Yang; Lu, Songjian; O'Sullivan, Barry; Razgon, Igor (2008), "A fixed-parameter algorithm for the directed feedback vertex set problem",
839:
by transforming it into an equivalent feedback vertex set problem and applying a parameterized feedback vertex set algorithm. Because the exponent of
4707: 1023:
dynamic programming on a tree decomposition of the graph can find the minimum feedback arc set in time polynomial in the graph size and exponential
117:, and maximum acyclic subgraphs can be approximated to within a constant factor. Both are hard to approximate closer than some constant factor, an 5602: 3265: 2877: 3298:; published in preliminary form as ASTIA Document No. AD 206 573, United States Air Force, Office of Scientific Research, November 1958, 1594:. This dual problem is polynomially solvable, and therefore the planar minimum feedback arc set problem is as well. It can be solved in 4286: 4719: 241:
of arranging elements into a linear ordering, in cases where data is available that provides pairwise comparisons between the elements.
5543:
Graph-Theoretic Concepts in Computer Science - 39th International Workshop, WG 2013, Lübeck, Germany, June 19-21, 2013, Revised Papers
4234: 3762:
Mishra, Sounaka; Sikdar, Kripasindhu (2004), "On approximability of linear ordering and related NP-optimization problems on graphs",
3400:; Schudy, Warren (2010), "Faster algorithms for feedback arc set tournament, Kemeny rank aggregation and betweenness tournament", in 4086:
Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings
3406:
Algorithms and Computation - 21st International Symposium, ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part I
1122: 1461: 25:
Partition of a directed graph into a minimum feedback arc set (red dashed edges) and a maximum acyclic subgraph (blue solid edges)
4945: 2598:
is the unique minimum feedback arc set of the tournament. The size of this tournament has been defined as the "reversing number"
4989: 4781: 3534: 3083:; Fleischer, Lisa K.; Rurda, Atri (2010), "Ordering by weighted number of wins gives a good ranking for weighted tournaments", 2304:
in which the minimum size of a feedback arc set is two, while the maximum number of edge-disjoint directed cycles is only one.
2045:
is defined as consisting of optimization problems that have a polynomial time approximation algorithm that achieves a constant
315:
The minimum feedback arc set and maximum acyclic subgraph are equivalent for the purposes of exact optimization, as one is the
5159: 5047: 5558: 4111: 3611: 3575: 3431: 3204: 5281: 4857: 1843: 5478:; Yuster, Raphael (2013), "Large feedback arc sets, high minimum degree subgraphs, and long cycles in Eulerian digraphs", 3479:
Feehrer, John R.; Jordan, Harry F. (December 1995), "Placement of clock gates in time-of-flight optoelectronic circuits",
662:
that tests all partitions of the vertices into two equal subsets and recurses within each subset can solve the problem in
3963: 2315: 462:
can be obtained from the solution to a minimum feedback arc set problem on a graph obtained by splitting every vertex of
2013:, implying that neither it nor the optimization problem are expected to have polynomial time algorithms. It was one of 196:
based on points awarded for each game; these methods can provide a constant approximation to the minimum-upset ranking.
176:, a directed graph with one edge between each pair of vertices. Reversing the edges of the feedback arc set produces a 1404: 5091: 4837: 4560: 3864: 3319: 2066: 2018: 2483: 2869: 2397: 522:
In both exact and approximate solutions to the feedback arc set problem, it is sufficient to solve separately each
5360:
Fernandez de la Vega, W. (1983), "On the maximum cardinality of a consistent set of arcs in a random tournament",
4988:(Ph.D. thesis), Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, 2176: 2079: 1326: 5239: 4688:
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007
3040: 193: 4678:; Schudy, Warren (2007), "How to rank with few errors: a PTAS for weighted feedback arc set on tournaments", in 4140: 3847:
Park, S.; Akers, S.B. (1992), "An efficient method for finding a minimal feedback arc set in directed graphs",
3461:, Technical reports, vol. 320, Massachusetts Institute of Technology, Research Laboratory of Electronics, 3085: 2212: 5076:
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada
3890:
Nutov, Zeev; Penn, Michal (2000), "On integrality, stability and composition of dicycle packings and covers",
1920:
edges). Thus, the decision version of the feedback arc set problem takes as input both a directed graph and a
1188:
The maximum acyclic subgraph problem has an easy approximation algorithm that achieves an approximation ratio
5597: 5592: 4174:
Schwikowski, Benno; Speckenmeyer, Ewald (2002), "On enumerating all minimal solutions of feedback problems",
1855: 219: 140:, is a set of vertices containing at least one vertex from every cycle in a directed or undirected graph. In 5402: 4808:, Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., New York: Plenum, pp. 85–103 4744:"A new rounding procedure for the assignment problem with applications to dense graph arrangement problems" 4176: 3764: 3004: 659: 523: 491: 2756:
There are infinitely many Eulerian directed graphs for which this bound is tight. If a directed graph has
2049:. Although such approximations are not known for the feedback arc set problem, the problem is known to be 1135: 778: 667: 172:
Several problems involving finding rankings or orderings can be solved by finding a feedback arc set on a
3803: 2144: 1066: 915: 295: 78: 4943:; D'Atri, A.; Protasi, M. (1980), "Structure preserving reductions among convex optimization problems", 4545:
34th Annual Symposium on Foundations of Computer Science, Palo Alto, California, USA, 3-5 November 1993
2697: 2150: 2118: 1720: 4347:
Hassin, Refael; Rubinstein, Shlomi (1994), "Approximations for the maximum acyclic subgraph problem",
3590:
Bastert, Oliver; Matuszewski, Christian (2001), "Layered drawings of digraphs", in Kaufmann, Michael;
1599: 5134: 1839: 1193: 1128:
The best known polynomial-time approximation algorithm for the feedback arc set has the non-constant
238: 148:
are the largest acyclic subgraphs, and the number of edges removed in forming a spanning tree is the
106: 2029:, could be transformed ("reduced") into equivalent inputs to the feedback arc set decision problem. 1831: 5587: 4748: 4596: 1824: 1591: 722: 5182:
Bonnet, Édouard; Paschos, Vangelis Th. (2018), "Sparsification and subexponential approximation",
4892: 3626:
Demetrescu, Camil; Finocchi, Irene (2001), "Break the "right" cycles and get the "best" drawing",
3029:; note that the algorithm suggested by Goddard for finding minimum-violation rankings is incorrect 2950:
Remage, Russell Jr.; Thompson, W. A. Jr. (1966), "Maximum-likelihood paired comparison rankings",
1377:
Another, more complicated, polynomial time approximation algorithm applies to graphs with maximum
2070: 1116: 612: 249: 215: 122: 86: 1028: 526:
of the given graph, and to break these strongly connected components down even farther to their
2556: 2058: 1884: 1519: 620: 230: 189: 177: 54: 1967: 1656: 5028: 4258: 2274: 1781: 1382: 1282: 527: 515: 288: 5438:"A classification of tournaments having an acyclic tournament as a minimum feedback arc set" 5234: 4716: 5568: 5519: 5461: 5423: 5383: 5339: 5302: 5262: 5213: 5155: 5114: 4966: 4919: 4878: 4769: 4662: 4617: 4570: 4524: 4479: 4437: 4368: 4334: 4282: 4222: 4199: 4161: 4026: 3911: 3785: 3741: 3692: 3639: 3488: 3350: 3294: 3106: 3025: 2981: 2932: 2026: 576: 280: 276: 272: 74: 66: 4226: 8: 4638: 2827: 2779: 2776:
vertices, with at most three edges per vertex, then it has a feedback arc set of at most
2653:
and each vertex has equal numbers of incoming and outgoing edges. For such a graph, with
2046: 1851: 1545: 1129: 608: 344: 268: 263: 223: 208: 181: 137: 114: 4591: 3849:
Proceedings of the 1992 IEEE International Symposium on Circuits and Systems (ISCAS '92)
3492: 3127:
Seyfarth, Robert M. (November 1976), "Social relationships among adult female baboons",
5523: 5487: 5343: 5217: 5191: 5097: 4923: 4773: 4699: 4621: 4574: 4483: 4117: 4089: 4066: 4049: 4030: 3992: 3915: 3870: 3830: 3812: 3745: 3718: 3696: 3598:, Lecture Notes in Computer Science, vol. 2025, Springer-Verlag, pp. 87–120, 3437: 3409: 3377: 3368: 3338: 3282: 3246: 3210: 3144: 3110: 3063: 2969: 2924: 2807: 2759: 2676: 2656: 2650: 2625: 2603: 2581: 2561: 1947: 1925: 1903: 1696: 1262: 1242: 1072: 1004: 972: 888: 864: 842: 754: 732: 552: 497: 465: 445: 423: 399: 377: 355: 326: 184:
can be used as the desired ranking. Applications of this method include the following:
4190: 3777: 3140: 2622:
and among directed acyclic graphs with the same number of vertices it is largest when
2069:
that are standard in computational complexity theory but stronger than P ≠ NP. If the
5554: 5415: 5374: 5347: 5276: 5253: 5087: 4980: 4958: 4833: 4743: 4654: 4625: 4556: 4360: 4274: 4107: 3919: 3874: 3860: 3658: 3607: 3571: 3504: 3427: 3317:
Thompson, W. A. Jr.; Remage, Russell Jr. (1964), "Rankings from paired comparisons",
3214: 3200: 3174: 2985: 2824:
edges, with at most four edges per vertex, then it has a feedback arc set of at most
2065:
The hardness of approximation of these problems has also been studied under unproven
1820: 118: 5127:"Beating the random ordering is hard: every ordering CSP is approximation resistant" 5020: 4927: 4578: 4487: 3834: 3522: 3441: 3148: 3067: 3039:
Vaziri, Baback; Dabadghao, Shaunak; Yih, Yuehwern; Morin, Thomas L. (January 2018),
160: 5546: 5527: 5505: 5497: 5449: 5411: 5369: 5327: 5290: 5248: 5221: 5201: 5143: 5126: 5101: 5079: 5037: 4954: 4940: 4907: 4866: 4823: 4819: 4777: 4757: 4703: 4691: 4679: 4650: 4605: 4548: 4512: 4467: 4425: 4389: 4356: 4322: 4270: 4185: 4149: 4121: 4099: 4070: 4058: 4034: 4012: 4004: 3972: 3941: 3899: 3852: 3822: 3773: 3749: 3727: 3700: 3680: 3599: 3559: 3496: 3462: 3419: 3328: 3304: 3299: 3274: 3238: 3192: 3170: 3136: 3094: 3055: 3013: 2961: 2920: 2308: 1897: 1879: 1235: 1097: 715: 299: 258: 173: 141: 126: 102: 5564: 5550: 5545:, Lecture Notes in Computer Science, vol. 8165, Springer, pp. 298–309, 5515: 5457: 5419: 5397: 5379: 5335: 5298: 5258: 5209: 5151: 4962: 4915: 4874: 4801: 4765: 4723: 4658: 4613: 4566: 4540: 4520: 4503:
Lucchesi, C. L.; Younger, D. H. (1978), "A minimax theorem for directed graphs",
4475: 4433: 4413: 4364: 4330: 4278: 4218: 4195: 4157: 4022: 3907: 3781: 3737: 3688: 3662: 3635: 3591: 3397: 3346: 3290: 3114: 3102: 3080: 3021: 2977: 2928: 2906: 2268: 2014: 1893: 1859: 110: 34: 5118: 5042: 4594:; Jünger, Michael; Reinelt, Gerhard (1985), "On the acyclic subgraph polytope", 4543:(1993), "A framework for cost-scaling algorithms for submodular flow problems", 4453: 4103: 4088:, Lecture Notes in Computer Science, vol. 11159, Springer, pp. 65–78, 3669:(1998), "Approximating minimum feedback sets and multicuts in directed graphs", 3423: 3263:
Brunk, H. D. (1960), "Mathematical models for ranking from paired comparisons",
3242: 2965: 997:; it is much easier to compute than the minimum feedback arc set. For graphs of 5122: 4739: 4711: 4675: 4516: 3401: 3363: 3227:
Slater, Patrick (1961), "Inconsistencies in a schedule of paired comparisons",
3002:
Goddard, Stephen T. (1983), "Ranking in tournaments and group decisionmaking",
2578:
can be embedded as a subgraph of a larger tournament graph, in such a way that
1863: 316: 113:, the minimum feedback arc set can be approximated to within a polylogarithmic 46: 5510: 5501: 5453: 5205: 4911: 4008: 3903: 3856: 3826: 3408:, Lecture Notes in Computer Science, vol. 6506, Springer, pp. 3–14, 3333: 3059: 222:
of the overall ranking can be obtained by converting these probabilities into
5581: 5475: 5279:(1990), "Sorting, minimal feedback sets, and Hamilton paths in tournaments", 4735: 4552: 4458: 4306: 3976: 3958: 3945: 3567: 3196: 2022: 1850:
also has a polynomial-time approximation scheme. Its main ideas are to apply
1776: 994: 245: 145: 94: 82: 5437: 4695: 4062: 3603: 3098: 3017: 2173:
the minimum feedback arc set does not have an approximation within a factor
129:, the minimum feedback arc set can be approximated more accurately, and for 5315: 5067: 5016: 4429: 4326: 4135: 3671: 3508: 1775:
These planar algorithms can be extended to the graphs that do not have the
1579: 990: 149: 130: 30: 5083: 4761: 3732: 3187:
Eickwort, George C. (April 2019), "Dominance in a cockroach (Nauphoeta)",
2989: 1964:
edges, or equivalently whether there is an acyclic subgraph with at least
226:
and finding a minimum-weight feedback arc set in the resulting tournament.
4683: 4254: 3666: 3555: 3500: 2010: 1847: 1812: 1093: 545: 483:
preserve approximation quality for the maximum acyclic subgraph problem.
442:
In the other direction, the minimum feedback vertex set of a given graph
200: 4393: 3381: 5331: 5063: 5012: 4641:(1988), "Finding a minimum feedback arc set in reducible flow graphs", 4609: 4471: 4310: 3684: 3466: 3342: 3286: 3250: 3229: 2973: 2952: 2646: 2476: 1583: 1107: 348: 257:
Another early application of feedback arc sets concerned the design of
234: 5147: 4870: 4829:
Computers and Intractability: A Guide to the Theory of NP-Completeness
3932:
Younger, D. (1963), "Minimum feedback arc sets for a directed graph",
5071: 4852: 4153: 4017: 3160: 999: 532: 97:. Finding minimum feedback arc sets and maximum acyclic subgraphs is 5294: 3278: 2693:
vertices, the size of a minimum feedback arc set is always at least
5113: 4398: 4094: 3817: 2050: 1096:. All minimal feedback arc sets can be listed by an algorithm with 204: 90: 21: 5492: 5196: 3414: 2804:
edges, and some graphs require this many. If a directed graph has
4893:"The minimum feedback arc set problem is NP-hard for tournaments" 4313:(1997), "Tight bounds for the maximum acyclic subgraph problem", 4259:"A fast and effective heuristic for the feedback arc set problem" 4216: 2054: 1888:
yellow vertices) corresponds to the red minimum feedback arc set.
98: 2267:
In planar directed graphs, the feedback arc set problem obeys a
3801:
Hecht, Michael (2017), "Exact localisations of feedback sets",
1587: 4082: 3553: 5400:; Tesman, Barry (1995), "The reversing number of a digraph", 3562:; Tollis, Ioannis G. (1998), "Layered Drawings of Digraphs", 1944:
It asks whether all cycles can be broken by removing at most
1691:
or when the weights are positive integers that are at most a
494:, the rightmost of which can be split at articulation vertex 4416:(1995), "Centroids, representations, and submodular flows", 3991: 2143:
Beyond polynomial time for approximation algorithms, if the
1507:{\displaystyle {\tfrac {1}{2}}+\Omega (1/{\sqrt {\Delta }})} 729:
is the size of the minimum feedback arc set. On graphs with
5395: 4982:
On the Approximability of NP-complete Optimization Problems
1838:
When the minimum feedback arc set problem is restricted to
4388:(Master's thesis), Massachusetts Institute of Technology, 2912:
British Journal of Mathematical and Statistical Psychology
4939: 3716:
Minoura, Toshimi (1982), "Deadlock avoidance revisited",
3564:
Graph Drawing: Algorithms for the Visualization of Graphs
3079: 2909:(1976), "Seriation using asymmetric proximity measures", 2042: 73:
Feedback arc sets have applications in circuit analysis,
57:. A feedback arc set with the fewest possible edges is a 4891:
Charbit, Pierre; Thomassé, Stéphan; Yeo, Anders (2007),
4217:
Crescenzi, Pierluigi; Kann, Viggo; Halldórsson, Magnús;
907:
this algorithm is said to be fixed-parameter tractable.
486: 133:
both problems can be solved exactly in polynomial time.
5396:
Barthélémy, Jean-Pierre; Hudry, Olivier; Isaak, Garth;
5021:"On the hardness of approximating minimum vertex cover" 4173: 4046: 3038: 5539: 4590: 2488: 2402: 2320: 2208:
that can be computed in the subexponential time bound
2181: 2084: 1835:
reducibility does not require the graph to be planar.
1466: 1331: 1198: 5473: 4804:(1972), "Reducibility among combinatorial problems", 3656: 2830: 2810: 2782: 2762: 2700: 2679: 2659: 2628: 2606: 2584: 2564: 2486: 2400: 2318: 2277: 2215: 2179: 2153: 2121: 2082: 2025:
by showing that inputs for another hard problem, the
1970: 1950: 1928: 1906: 1784: 1723: 1699: 1659: 1602: 1548: 1522: 1464: 1407: 1385: 1329: 1321:
edges, in linear time, giving an approximation ratio
1285: 1265: 1245: 1196: 1138: 1075: 1031: 1007: 975: 918: 891: 867: 845: 781: 757: 735: 670: 623: 579: 555: 500: 468: 448: 426: 402: 380: 358: 329: 229:
The same maximum-likelihood ordering can be used for
5359: 5318:(1980), "Optimally ranking unrankable tournaments", 4674: 4456:(1981), "How to make a digraph strongly connected", 1900:, with a yes or no answer (is it possible to remove 3521:Rosen, Edward M.; Henley, Ernest J. (Summer 1968), 2384:{\displaystyle {\tbinom {n}{2}}/2-\Omega (n^{3/2})} 1651:A weighted version of the problem can be solved in 4890: 3961:(1964), "A comment on minimum feedback arc sets", 3625: 3589: 3392: 3390: 2844: 2816: 2796: 2768: 2746: 2685: 2665: 2634: 2612: 2590: 2570: 2545: 2465: 2383: 2296: 2250: 2200: 2165: 2133: 2103: 2001: 1956: 1934: 1912: 1803: 1765: 1705: 1681: 1641: 1562: 1534: 1506: 1448: 1391: 1367: 1313: 1271: 1251: 1211: 1174: 1081: 1055: 1013: 981: 959: 897: 873: 851: 829: 763: 741: 704: 648: 597: 561: 506: 474: 454: 432: 408: 386: 364: 335: 4734: 3459:A study of asynchronous logical feedback networks 1279:vertices, this produces an acyclic subgraph with 5579: 4346: 1825:polytope associated with their feedback arc sets 1586:to the problem of contracting a set of edges (a 1449:{\displaystyle m/2+\Omega (m/{\sqrt {\Delta }})} 4502: 3396: 3387: 3266:Journal of the American Statistical Association 1109: 3316: 2949: 2546:{\displaystyle {\tbinom {n}{2}}/2-1.73n^{3/2}} 773:the feedback arc set problem can be solved in 5181: 5070:(2002), "The importance of being biased", in 4668: 4253: 4212: 4210: 4208: 3478: 2504: 2491: 2466:{\displaystyle {\tbinom {n}{2}}/2-O(n^{3/2})} 2418: 2405: 2336: 2323: 2021:; its NP-completeness was proved by Karp and 658:also using an exponential amount of space. A 5435: 5237:(1976), "On two minimax theorems in graph", 5121:; Manokaran, Rajsekar; Raghavendra, Prasad; 4818: 4637: 4631: 3761: 3366:(Fall 1959), "Mathematics without numbers", 2201:{\displaystyle {\tfrac {7}{6}}-\varepsilon } 2104:{\displaystyle {\tfrac {1}{2}}+\varepsilon } 1456:edges, giving an approximation ratio of the 1368:{\displaystyle {\tfrac {1}{2}}+\Omega (n/m)} 5274: 4547:, IEEE Computer Society, pp. 449–458, 3520: 3048:Journal of the Operational Research Society 166:men's beach volleyball at the 2016 Olympics 5062: 5011: 4505:Journal of the London Mathematical Society 4386:Approximating the maximum acyclic subgraph 4305: 4205: 3711: 3709: 2852:edges, and some graphs require this many. 1115:Does the feedback arc set problem have an 121:result that can be strengthened under the 85:, ranking competitors in sporting events, 5509: 5491: 5436:Isaak, Garth; Narayan, Darren A. (2004), 5373: 5252: 5195: 5041: 4379: 4377: 4189: 4093: 4016: 3889: 3846: 3816: 3731: 3413: 3404:; Chwa, Kyung-Yong; Park, Kunsoo (eds.), 3332: 3154: 2251:{\displaystyle O(2^{n^{1-\varepsilon }})} 1224:Fix an arbitrary ordering of the vertices 5480:Combinatorics, Probability and Computing 4900:Combinatorics, Probability and Computing 4535: 4533: 4448: 4446: 4408: 4406: 4231:A compendium of NP optimization problems 4133: 3987: 3985: 3796: 3794: 3628:ACM Journal of Experimental Algorithmics 3452: 3450: 3186: 3180: 3126: 2901: 2899: 2897: 1878: 485: 159: 20: 5314: 5308: 4946:Journal of Computer and System Sciences 4498: 4496: 4138:(1989), "Fair edge deletion problems", 3931: 3925: 3885: 3883: 3715: 3706: 3652: 3650: 3648: 3120: 3001: 2878:Fédération Internationale de Volleyball 1862:the resulting algorithm using walks on 1230:Return the larger of the two subgraphs. 1123:(more unsolved problems in mathematics) 5603:Computational problems in graph theory 5580: 5233: 5227: 4383: 4374: 4076: 3957: 3951: 3755: 3547: 3362: 3356: 3226: 3220: 3041:"Properties of sports ranking methods" 2995: 2945: 2943: 2941: 2905: 535:of its strongly connected components. 5467: 5389: 5107: 4933: 4728: 4584: 4539: 4530: 4452: 4443: 4412: 4403: 4040: 3982: 3892:Journal of Combinatorial Optimization 3800: 3791: 3472: 3456: 3447: 3262: 3256: 2894: 5474:Huang, Hao; Ma, Jie; Shapira, Asaf; 5429: 5353: 5282:SIAM Journal on Discrete Mathematics 5268: 5175: 5005: 4978: 4972: 4858:SIAM Journal on Discrete Mathematics 4851: 4845: 4812: 4800: 4794: 4493: 4340: 4299: 4257:; Lin, Xuemin; Smyth, W. F. (1993), 4167: 4127: 3880: 3840: 3645: 3619: 3583: 3514: 3457:Unger, Stephen H. (April 26, 1957), 3310: 2036: 1844:polynomial-time approximation scheme 1573: 1175:{\displaystyle O(\log n\log \log n)} 1119:with a constant approximation ratio? 830:{\displaystyle O(n^{4}4^{k}k^{3}k!)} 705:{\displaystyle O(4^{n}/{\sqrt {n}})} 615:can find the optimal permutation in 323:A feedback arc set of a given graph 18:Edges that hit all cycles in a graph 5533: 4884: 4806:Complexity of Computer Computations 4247: 3964:IEEE Transactions on Circuit Theory 3934:IEEE Transactions on Circuit Theory 3851:, vol. 4, pp. 1863–1866, 3032: 2938: 2862: 2642:is itself an (acyclic) tournament. 1401:and finds an acyclic subgraph with 960:{\displaystyle O(2^{r}m^{4}\log m)} 418:and an edge for each two-edge path 53:of the given graph, often called a 13: 3596:Drawing Graphs: Methods and Models 3073: 2925:10.1111/j.2044-8317.1976.tb00701.x 2495: 2479:tournaments, the size is at least 2409: 2393:and some tournaments require size 2354: 2327: 2067:computational hardness assumptions 1582:, the feedback arc set problem is 1523: 1496: 1480: 1438: 1422: 1386: 1345: 14: 5614: 3320:Annals of Mathematical Statistics 2747:{\displaystyle (m^{2}+mn)/2n^{2}} 2166:{\displaystyle \varepsilon >0} 2134:{\displaystyle \varepsilon >0} 1766:{\displaystyle O(n^{5/2}\log nN)} 3163:Applied Animal Behaviour Science 1892:In order to apply the theory of 1642:{\displaystyle O(n^{5/2}\log n)} 1234:This can be improved by using a 194:group tournament ranking systems 5362:Journal of Combinatorial Theory 5320:Periodica Mathematica Hungarica 5240:Journal of Combinatorial Theory 5165:from the original on 2021-07-31 5053:from the original on 2009-09-20 4995:from the original on 2010-12-29 4855:(2006), "Ranking tournaments", 4784:from the original on 2021-08-03 4289:from the original on 2020-10-22 4237:from the original on 2021-07-29 3537:from the original on 2021-08-02 3191:, CRC Press, pp. 120–126, 2884:from the original on 2016-12-23 1212:{\displaystyle {\tfrac {1}{2}}} 1110:Unsolved problem in mathematics 310: 155: 136:A closely related problem, the 5442:Information Processing Letters 4349:Information Processing Letters 4263:Information Processing Letters 4141:IEEE Transactions on Computers 3527:Chemical Engineering Education 3086:ACM Transactions on Algorithms 2723: 2701: 2460: 2439: 2378: 2357: 2245: 2219: 1989: 1985: 1979: 1972: 1874: 1760: 1727: 1676: 1663: 1636: 1606: 1590:) to make the resulting graph 1501: 1483: 1443: 1425: 1362: 1348: 1169: 1142: 1103: 1050: 1035: 954: 922: 824: 785: 699: 674: 643: 627: 592: 583: 188:In sporting competitions with 101:; it can be solved exactly in 1: 4832:, W.H. Freeman, p. 192, 4384:Newman, Alantha (June 2000), 4191:10.1016/S0166-218X(00)00339-5 3778:10.1016/S0166-218X(03)00444-X 3141:10.1016/s0003-3472(76)80022-x 2855: 2307:Every tournament graph has a 1856:linear programming relaxation 492:strongly connected components 305: 220:maximum likelihood estimation 65:; weighted versions of these 5551:10.1007/978-3-642-45043-3_26 5416:10.1016/0166-218X(94)00042-C 5403:Discrete Applied Mathematics 5375:10.1016/0095-8956(83)90060-6 5254:10.1016/0095-8956(76)90049-6 4959:10.1016/0022-0000(80)90046-X 4655:10.1016/0196-6774(88)90022-3 4361:10.1016/0020-0190(94)00086-7 4275:10.1016/0020-0190(93)90079-O 4177:Discrete Applied Mathematics 3765:Discrete Applied Mathematics 3175:10.1016/0168-1591(93)90137-e 660:divide-and-conquer algorithm 524:strongly connected component 490:A directed graph with three 7: 5043:10.4007/annals.2005.162.439 4104:10.1007/978-3-030-00256-5_6 3997:Theory of Computing Systems 3804:Theory of Computing Systems 3424:10.1007/978-3-642-17517-6_3 2145:exponential time hypothesis 1869: 1067:exponential time hypothesis 394:has a vertex for each edge 10: 5619: 4227:"Minimum Feedback Arc Set" 1542:, the approximation ratio 1069:, no better dependence on 1056:{\displaystyle O(t\log t)} 5502:10.1017/S0963548313000394 5454:10.1016/j.ipl.2004.07.001 5206:10.1007/s00236-016-0281-2 5135:SIAM Journal on Computing 5061:; preliminary version in 4912:10.1017/S0963548306007887 4717:author's extended version 4009:10.1007/s00224-011-9312-0 3857:10.1109/iscas.1992.230449 3827:10.1007/s00224-017-9777-6 3243:10.1093/biomet/48.3-4.303 3060:10.1057/s41274-017-0266-8 2966:10.1093/biomet/53.1-2.143 2262: 1885:NP-completeness reduction 1535:{\displaystyle \Delta =3} 859:in this algorithm is the 649:{\displaystyle O(n2^{n})} 239:exploratory data analysis 107:fixed-parameter tractable 61:and its removal leaves a 4749:Mathematical Programming 4597:Mathematical Programming 4553:10.1109/SFCS.1993.366842 4517:10.1112/jlms/s2-17.3.369 3977:10.1109/tct.1964.1082291 3946:10.1109/tct.1963.1082116 3197:10.1201/9780429049262-18 2645:A directed graph has an 2147:is true, then for every 2002:{\displaystyle |E(G)|-k} 1682:{\displaystyle O(n^{3})} 723:parameterized complexity 538: 63:maximum acyclic subgraph 59:minimum feedback arc set 4742:; Kaplan, Haim (2002), 4696:10.1145/1250790.1250806 4399:Guruswami et al. (2011) 4063:10.1145/1411509.1411511 3904:10.1023/A:1009802905533 3604:10.1007/3-540-44969-8_5 3554:Di Battista, Giuseppe; 3523:"The New Stoichiometry" 3334:10.1214/aoms/1177703572 3305:2027/mdp.39015095254010 3099:10.1145/1798596.1798608 3018:10.1287/mnsc.29.12.1384 2297:{\displaystyle K_{3,3}} 2071:unique games conjecture 2019:21 NP-complete problems 2009:edges. This problem is 1858:of the problem, and to 1817:weakly acyclic digraphs 1804:{\displaystyle K_{3,3}} 1392:{\displaystyle \Delta } 1314:{\displaystyle m/2+n/6} 1117:approximation algorithm 749:vertices, with natural 533:triconnected components 320:sizes from each other. 216:mathematical psychology 123:unique games conjecture 87:mathematical psychology 4676:Kenyon-Mathieu, Claire 4430:10.1006/jagm.1995.1022 4327:10.1006/jagm.1997.0864 2846: 2818: 2798: 2770: 2748: 2687: 2667: 2636: 2614: 2592: 2572: 2557:directed acyclic graph 2547: 2467: 2385: 2298: 2252: 2202: 2167: 2135: 2105: 2003: 1958: 1936: 1914: 1889: 1805: 1767: 1707: 1683: 1643: 1564: 1536: 1508: 1450: 1393: 1369: 1315: 1273: 1253: 1213: 1176: 1083: 1057: 1015: 983: 961: 899: 875: 853: 831: 765: 743: 706: 650: 599: 563: 528:biconnected components 519: 516:biconnected components 508: 476: 456: 434: 410: 388: 366: 337: 279:, breaking edges of a 203:and more generally in 178:directed acyclic graph 169: 55:directed acyclic graph 26: 5115:Guruswami, Venkatesan 5084:10.1145/509907.509915 5029:Annals of Mathematics 4826:(1979), "A1.1: GT8", 4762:10.1007/s101070100271 4643:Journal of Algorithms 4418:Journal of Algorithms 4315:Journal of Algorithms 3733:10.1145/322344.322351 2847: 2819: 2799: 2771: 2749: 2688: 2668: 2637: 2615: 2593: 2573: 2548: 2468: 2386: 2299: 2253: 2203: 2168: 2136: 2106: 2041:The complexity class 2004: 1959: 1937: 1915: 1882: 1832:reducible flow graphs 1806: 1768: 1708: 1684: 1644: 1565: 1537: 1509: 1451: 1394: 1370: 1316: 1274: 1254: 1214: 1177: 1084: 1058: 1016: 984: 962: 900: 876: 854: 832: 766: 744: 707: 651: 600: 598:{\displaystyle O(n!)} 564: 509: 489: 477: 457: 435: 411: 389: 367: 338: 289:layered graph drawing 209:dominance hierarchies 163: 67:optimization problems 24: 5598:NP-complete problems 5593:Graph theory objects 4979:Kann, Viggo (1992), 4639:Ramachandran, Vijaya 3570:, pp. 265–302, 3501:10.1364/ao.34.008125 2828: 2808: 2780: 2760: 2698: 2677: 2657: 2626: 2604: 2582: 2562: 2484: 2398: 2316: 2275: 2213: 2177: 2151: 2119: 2080: 2027:vertex cover problem 1968: 1948: 1926: 1904: 1782: 1721: 1697: 1657: 1600: 1546: 1520: 1462: 1405: 1383: 1327: 1283: 1263: 1243: 1194: 1136: 1073: 1029: 1005: 973: 916: 889: 865: 843: 779: 755: 733: 668: 621: 611:method based on the 577: 553: 498: 466: 446: 424: 400: 378: 356: 327: 281:process flow diagram 277:chemical engineering 273:process flowsheeting 264:synchronous circuits 75:chemical engineering 4690:, pp. 95–103, 3993:Bodlaender, Hans L. 3493:1995ApOpt..34.8125F 3093:(3): A55:1–A55:13, 2845:{\displaystyle m/3} 2797:{\displaystyle n/3} 2047:approximation ratio 2017:'s original set of 1852:randomized rounding 1563:{\displaystyle 8/9} 1130:approximation ratio 613:Held–Karp algorithm 609:dynamic programming 345:feedback vertex set 269:combinational logic 250:Kemeny–Young method 138:feedback vertex set 115:approximation ratio 5511:20.500.11850/73894 5332:10.1007/BF02017965 5078:, pp. 33–42, 4722:2009-01-15 at the 4610:10.1007/BF01582009 4472:10.1007/BF02579270 4223:Woeginger, Gerhard 4050:Journal of the ACM 3719:Journal of the ACM 3685:10.1007/PL00009191 3005:Management Science 2842: 2814: 2794: 2766: 2744: 2683: 2663: 2651:strongly connected 2632: 2610: 2588: 2568: 2543: 2509: 2463: 2423: 2381: 2341: 2294: 2248: 2198: 2190: 2163: 2131: 2101: 2093: 1999: 1954: 1932: 1910: 1890: 1801: 1763: 1703: 1679: 1639: 1592:strongly connected 1560: 1532: 1504: 1475: 1446: 1389: 1365: 1340: 1311: 1269: 1249: 1209: 1207: 1172: 1079: 1053: 1011: 979: 957: 895: 871: 849: 827: 761: 739: 702: 646: 595: 559: 520: 504: 472: 452: 430: 406: 384: 362: 333: 170: 27: 5560:978-3-642-45042-6 5148:10.1137/090756144 4871:10.1137/050623905 4824:Johnson, David S. 4820:Garey, Michael R. 4680:Johnson, David S. 4592:Grötschel, Martin 4507:, Second Series, 4113:978-3-030-00255-8 3613:978-3-540-42062-0 3577:978-0-13-301615-4 3560:Tamassia, Roberto 3487:(35): 8125–8136, 3433:978-3-642-17516-9 3206:978-0-429-04926-2 3012:(12): 1384–1392, 2870:"Main draw – Men" 2817:{\displaystyle m} 2769:{\displaystyle n} 2686:{\displaystyle n} 2666:{\displaystyle m} 2635:{\displaystyle D} 2613:{\displaystyle D} 2591:{\displaystyle D} 2571:{\displaystyle D} 2502: 2416: 2334: 2189: 2092: 2037:Inapproximability 1957:{\displaystyle k} 1935:{\displaystyle k} 1913:{\displaystyle k} 1819:, defined by the 1706:{\displaystyle N} 1574:Restricted inputs 1570:can be achieved. 1499: 1474: 1441: 1339: 1272:{\displaystyle n} 1252:{\displaystyle m} 1206: 1082:{\displaystyle t} 1014:{\displaystyle t} 982:{\displaystyle r} 898:{\displaystyle k} 874:{\displaystyle 4} 852:{\displaystyle n} 764:{\displaystyle k} 742:{\displaystyle n} 727:natural parameter 697: 571:graph would take 562:{\displaystyle n} 507:{\displaystyle d} 475:{\displaystyle G} 455:{\displaystyle G} 433:{\displaystyle G} 409:{\displaystyle G} 387:{\displaystyle G} 365:{\displaystyle G} 343:is the same as a 336:{\displaystyle G} 300:operating systems 233:, the problem in 182:topological order 142:undirected graphs 127:tournament graphs 119:inapproximability 43:feedback edge set 5610: 5572: 5571: 5537: 5531: 5530: 5513: 5495: 5471: 5465: 5464: 5433: 5427: 5426: 5398:Roberts, Fred S. 5393: 5387: 5386: 5377: 5357: 5351: 5350: 5312: 5306: 5305: 5275:Bar-Noy, Amotz; 5272: 5266: 5265: 5256: 5231: 5225: 5224: 5199: 5184:Acta Informatica 5179: 5173: 5172: 5171: 5170: 5164: 5131: 5111: 5105: 5104: 5060: 5059: 5058: 5052: 5045: 5025: 5009: 5003: 5002: 5001: 5000: 4994: 4987: 4976: 4970: 4969: 4937: 4931: 4930: 4897: 4888: 4882: 4881: 4849: 4843: 4842: 4816: 4810: 4809: 4802:Karp, Richard M. 4798: 4792: 4791: 4790: 4789: 4732: 4726: 4714: 4672: 4666: 4665: 4635: 4629: 4628: 4588: 4582: 4581: 4541:Gabow, Harold N. 4537: 4528: 4527: 4500: 4491: 4490: 4450: 4441: 4440: 4414:Gabow, Harold N. 4410: 4401: 4396: 4381: 4372: 4371: 4344: 4338: 4337: 4303: 4297: 4296: 4295: 4294: 4251: 4245: 4244: 4243: 4242: 4219:Karpinski, Marek 4214: 4203: 4202: 4193: 4184:(1–3): 253–265, 4171: 4165: 4164: 4154:10.1109/12.24280 4131: 4125: 4124: 4097: 4080: 4074: 4073: 4044: 4038: 4037: 4020: 3989: 3980: 3979: 3955: 3949: 3948: 3929: 3923: 3922: 3887: 3878: 3877: 3844: 3838: 3837: 3820: 3811:(5): 1048–1084, 3798: 3789: 3788: 3772:(2–3): 249–269, 3759: 3753: 3752: 3735: 3726:(4): 1023–1048, 3713: 3704: 3703: 3654: 3643: 3642: 3623: 3617: 3616: 3592:Wagner, Dorothea 3587: 3581: 3580: 3551: 3545: 3544: 3543: 3542: 3518: 3512: 3511: 3476: 3470: 3469: 3454: 3445: 3444: 3417: 3398:Karpinski, Marek 3394: 3385: 3384: 3360: 3354: 3353: 3336: 3314: 3308: 3307: 3297: 3273:(291): 503–520, 3260: 3254: 3253: 3237:(3–4): 303–312, 3224: 3218: 3217: 3184: 3178: 3177: 3158: 3152: 3151: 3129:Animal Behaviour 3124: 3118: 3117: 3081:Coppersmith, Don 3077: 3071: 3070: 3045: 3036: 3030: 3028: 2999: 2993: 2992: 2960:(1–2): 143–149, 2947: 2936: 2935: 2907:Hubert, Lawrence 2903: 2892: 2891: 2890: 2889: 2866: 2851: 2849: 2848: 2843: 2838: 2823: 2821: 2820: 2815: 2803: 2801: 2800: 2795: 2790: 2775: 2773: 2772: 2767: 2755: 2753: 2751: 2750: 2745: 2743: 2742: 2730: 2713: 2712: 2692: 2690: 2689: 2684: 2672: 2670: 2669: 2664: 2641: 2639: 2638: 2633: 2621: 2619: 2617: 2616: 2611: 2597: 2595: 2594: 2589: 2577: 2575: 2574: 2569: 2554: 2552: 2550: 2549: 2544: 2542: 2541: 2537: 2515: 2510: 2508: 2507: 2494: 2474: 2472: 2470: 2469: 2464: 2459: 2458: 2454: 2429: 2424: 2422: 2421: 2408: 2392: 2390: 2388: 2387: 2382: 2377: 2376: 2372: 2347: 2342: 2340: 2339: 2326: 2309:Hamiltonian path 2303: 2301: 2300: 2295: 2293: 2292: 2259: 2257: 2255: 2254: 2249: 2244: 2243: 2242: 2241: 2207: 2205: 2204: 2199: 2191: 2182: 2172: 2170: 2169: 2164: 2142: 2140: 2138: 2137: 2132: 2112: 2110: 2108: 2107: 2102: 2094: 2085: 2008: 2006: 2005: 2000: 1992: 1975: 1963: 1961: 1960: 1955: 1943: 1941: 1939: 1938: 1933: 1919: 1917: 1916: 1911: 1898:decision version 1810: 1808: 1807: 1802: 1800: 1799: 1774: 1772: 1770: 1769: 1764: 1747: 1746: 1742: 1714: 1712: 1710: 1709: 1704: 1690: 1688: 1686: 1685: 1680: 1675: 1674: 1650: 1648: 1646: 1645: 1640: 1626: 1625: 1621: 1569: 1567: 1566: 1561: 1556: 1541: 1539: 1538: 1533: 1515: 1513: 1511: 1510: 1505: 1500: 1495: 1493: 1476: 1467: 1455: 1453: 1452: 1447: 1442: 1437: 1435: 1415: 1400: 1398: 1396: 1395: 1390: 1376: 1374: 1372: 1371: 1366: 1358: 1341: 1332: 1320: 1318: 1317: 1312: 1307: 1293: 1278: 1276: 1275: 1270: 1258: 1256: 1255: 1250: 1236:greedy algorithm 1220: 1218: 1216: 1215: 1210: 1208: 1199: 1183: 1181: 1179: 1178: 1173: 1111: 1098:polynomial delay 1088: 1086: 1085: 1080: 1064: 1062: 1060: 1059: 1054: 1022: 1020: 1018: 1017: 1012: 988: 986: 985: 980: 968: 966: 964: 963: 958: 944: 943: 934: 933: 906: 904: 902: 901: 896: 882: 880: 878: 877: 872: 858: 856: 855: 850: 838: 836: 834: 833: 828: 817: 816: 807: 806: 797: 796: 772: 770: 768: 767: 762: 748: 746: 745: 740: 716:polynomial space 713: 711: 709: 708: 703: 698: 693: 691: 686: 685: 657: 655: 653: 652: 647: 642: 641: 606: 604: 602: 601: 596: 570: 568: 566: 565: 560: 513: 511: 510: 505: 481: 479: 478: 473: 461: 459: 458: 453: 441: 439: 437: 436: 431: 417: 415: 413: 412: 407: 393: 391: 390: 385: 373: 371: 369: 368: 363: 342: 340: 339: 334: 262:information. In 259:sequential logic 190:round-robin play 174:tournament graph 164:The scores from 103:exponential time 51:acyclic subgraph 39:feedback arc set 35:graph algorithms 5618: 5617: 5613: 5612: 5611: 5609: 5608: 5607: 5588:Directed graphs 5578: 5577: 5576: 5575: 5561: 5538: 5534: 5472: 5468: 5434: 5430: 5394: 5390: 5358: 5354: 5313: 5309: 5295:10.1137/0403002 5273: 5269: 5232: 5228: 5180: 5176: 5168: 5166: 5162: 5129: 5123:Charikar, Moses 5112: 5108: 5094: 5056: 5054: 5050: 5023: 5010: 5006: 4998: 4996: 4992: 4985: 4977: 4973: 4938: 4934: 4895: 4889: 4885: 4850: 4846: 4840: 4817: 4813: 4799: 4795: 4787: 4785: 4733: 4729: 4724:Wayback Machine 4673: 4669: 4636: 4632: 4589: 4585: 4563: 4538: 4531: 4501: 4494: 4451: 4444: 4411: 4404: 4382: 4375: 4345: 4341: 4304: 4300: 4292: 4290: 4252: 4248: 4240: 4238: 4215: 4206: 4172: 4168: 4132: 4128: 4114: 4081: 4077: 4045: 4041: 3990: 3983: 3956: 3952: 3930: 3926: 3888: 3881: 3867: 3845: 3841: 3799: 3792: 3760: 3756: 3714: 3707: 3655: 3646: 3624: 3620: 3614: 3588: 3584: 3578: 3552: 3548: 3540: 3538: 3519: 3515: 3477: 3473: 3455: 3448: 3434: 3402:Cheong, Otfried 3395: 3388: 3364:Kemeny, John G. 3361: 3357: 3315: 3311: 3303: 3279:10.2307/2281911 3261: 3257: 3225: 3221: 3207: 3189:Insect Behavior 3185: 3181: 3159: 3155: 3125: 3121: 3078: 3074: 3043: 3037: 3033: 3000: 2996: 2948: 2939: 2904: 2895: 2887: 2885: 2868: 2867: 2863: 2858: 2834: 2829: 2826: 2825: 2809: 2806: 2805: 2786: 2781: 2778: 2777: 2761: 2758: 2757: 2738: 2734: 2726: 2708: 2704: 2699: 2696: 2695: 2694: 2678: 2675: 2674: 2658: 2655: 2654: 2649:whenever it is 2627: 2624: 2623: 2605: 2602: 2601: 2599: 2583: 2580: 2579: 2563: 2560: 2559: 2533: 2529: 2525: 2511: 2503: 2490: 2489: 2487: 2485: 2482: 2481: 2480: 2450: 2446: 2442: 2425: 2417: 2404: 2403: 2401: 2399: 2396: 2395: 2394: 2368: 2364: 2360: 2343: 2335: 2322: 2321: 2319: 2317: 2314: 2313: 2312: 2282: 2278: 2276: 2273: 2272: 2269:min-max theorem 2265: 2231: 2227: 2226: 2222: 2214: 2211: 2210: 2209: 2180: 2178: 2175: 2174: 2152: 2149: 2148: 2120: 2117: 2116: 2114: 2083: 2081: 2078: 2077: 2075: 2039: 2015:Richard M. Karp 1988: 1971: 1969: 1966: 1965: 1949: 1946: 1945: 1927: 1924: 1923: 1921: 1905: 1902: 1901: 1894:NP-completeness 1877: 1872: 1864:expander graphs 1789: 1785: 1783: 1780: 1779: 1738: 1734: 1730: 1722: 1719: 1718: 1716: 1698: 1695: 1694: 1692: 1670: 1666: 1658: 1655: 1654: 1652: 1617: 1613: 1609: 1601: 1598: 1597: 1595: 1576: 1552: 1547: 1544: 1543: 1521: 1518: 1517: 1494: 1489: 1465: 1463: 1460: 1459: 1457: 1436: 1431: 1411: 1406: 1403: 1402: 1384: 1381: 1380: 1378: 1354: 1330: 1328: 1325: 1324: 1322: 1303: 1289: 1284: 1281: 1280: 1264: 1261: 1260: 1244: 1241: 1240: 1197: 1195: 1192: 1191: 1189: 1137: 1134: 1133: 1132: 1126: 1125: 1120: 1113: 1106: 1074: 1071: 1070: 1030: 1027: 1026: 1024: 1006: 1003: 1002: 998: 974: 971: 970: 939: 935: 929: 925: 917: 914: 913: 911: 890: 887: 886: 884: 866: 863: 862: 860: 844: 841: 840: 812: 808: 802: 798: 792: 788: 780: 777: 776: 774: 756: 753: 752: 750: 734: 731: 730: 692: 687: 681: 677: 669: 666: 665: 663: 637: 633: 622: 619: 618: 616: 578: 575: 574: 572: 554: 551: 550: 549: 541: 499: 496: 495: 467: 464: 463: 447: 444: 443: 425: 422: 421: 419: 401: 398: 397: 395: 379: 376: 375: 357: 354: 353: 351: 328: 325: 324: 313: 308: 224:log-likelihoods 158: 111:polynomial time 19: 12: 11: 5: 5616: 5606: 5605: 5600: 5595: 5590: 5574: 5573: 5559: 5532: 5486:(6): 859–873, 5476:Sudakov, Benny 5466: 5448:(3): 107–111, 5428: 5410:(1–3): 39–76, 5388: 5368:(3): 328–332, 5352: 5326:(2): 131–144, 5307: 5267: 5235:Lovász, László 5226: 5174: 5142:(3): 878–914, 5106: 5092: 5036:(1): 439–485, 5004: 4971: 4953:(1): 136–153, 4932: 4883: 4865:(1): 137–142, 4844: 4838: 4811: 4793: 4736:Arora, Sanjeev 4727: 4667: 4649:(3): 299–313, 4630: 4583: 4561: 4529: 4511:(3): 369–374, 4492: 4466:(2): 145–153, 4442: 4424:(3): 586–628, 4402: 4397:, as cited by 4373: 4355:(3): 133–140, 4339: 4311:Shor, Peter W. 4307:Berger, Bonnie 4298: 4269:(6): 319–323, 4246: 4204: 4166: 4148:(5): 756–761, 4126: 4112: 4075: 4039: 4003:(3): 420–432, 3981: 3971:(2): 296–297, 3950: 3940:(2): 238–245, 3924: 3898:(2): 235–251, 3879: 3865: 3839: 3790: 3754: 3705: 3679:(2): 151–174, 3644: 3618: 3612: 3582: 3576: 3546: 3533:(3): 120–125, 3513: 3481:Applied Optics 3471: 3446: 3432: 3386: 3376:(4): 577–591, 3355: 3327:(2): 739–747, 3309: 3255: 3219: 3205: 3179: 3169:(3): 199–213, 3153: 3135:(4): 917–938, 3119: 3072: 3054:(5): 776–787, 3031: 2994: 2937: 2893: 2860: 2859: 2857: 2854: 2841: 2837: 2833: 2813: 2793: 2789: 2785: 2765: 2741: 2737: 2733: 2729: 2725: 2722: 2719: 2716: 2711: 2707: 2703: 2682: 2662: 2631: 2609: 2587: 2567: 2540: 2536: 2532: 2528: 2524: 2521: 2518: 2514: 2506: 2501: 2498: 2493: 2462: 2457: 2453: 2449: 2445: 2441: 2438: 2435: 2432: 2428: 2420: 2415: 2412: 2407: 2380: 2375: 2371: 2367: 2363: 2359: 2356: 2353: 2350: 2346: 2338: 2333: 2330: 2325: 2291: 2288: 2285: 2281: 2264: 2261: 2247: 2240: 2237: 2234: 2230: 2225: 2221: 2218: 2197: 2194: 2188: 2185: 2162: 2159: 2156: 2130: 2127: 2124: 2100: 2097: 2091: 2088: 2038: 2035: 1998: 1995: 1991: 1987: 1984: 1981: 1978: 1974: 1953: 1931: 1909: 1876: 1873: 1871: 1868: 1798: 1795: 1792: 1788: 1762: 1759: 1756: 1753: 1750: 1745: 1741: 1737: 1733: 1729: 1726: 1702: 1678: 1673: 1669: 1665: 1662: 1638: 1635: 1632: 1629: 1624: 1620: 1616: 1612: 1608: 1605: 1575: 1572: 1559: 1555: 1551: 1531: 1528: 1525: 1503: 1498: 1492: 1488: 1485: 1482: 1479: 1473: 1470: 1445: 1440: 1434: 1430: 1427: 1424: 1421: 1418: 1414: 1410: 1388: 1364: 1361: 1357: 1353: 1350: 1347: 1344: 1338: 1335: 1310: 1306: 1302: 1299: 1296: 1292: 1288: 1268: 1248: 1232: 1231: 1228: 1225: 1205: 1202: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1121: 1114: 1108: 1105: 1102: 1078: 1052: 1049: 1046: 1043: 1040: 1037: 1034: 1010: 978: 956: 953: 950: 947: 942: 938: 932: 928: 924: 921: 894: 870: 848: 826: 823: 820: 815: 811: 805: 801: 795: 791: 787: 784: 760: 738: 701: 696: 690: 684: 680: 676: 673: 645: 640: 636: 632: 629: 626: 594: 591: 588: 585: 582: 558: 540: 537: 503: 471: 451: 429: 405: 383: 361: 347:of a directed 332: 317:complement set 312: 309: 307: 304: 298:resolution in 255: 254: 242: 227: 212: 197: 157: 154: 146:spanning trees 47:directed graph 17: 9: 6: 4: 3: 2: 5615: 5604: 5601: 5599: 5596: 5594: 5591: 5589: 5586: 5585: 5583: 5570: 5566: 5562: 5556: 5552: 5548: 5544: 5536: 5529: 5525: 5521: 5517: 5512: 5507: 5503: 5499: 5494: 5489: 5485: 5481: 5477: 5470: 5463: 5459: 5455: 5451: 5447: 5443: 5439: 5432: 5425: 5421: 5417: 5413: 5409: 5405: 5404: 5399: 5392: 5385: 5381: 5376: 5371: 5367: 5363: 5356: 5349: 5345: 5341: 5337: 5333: 5329: 5325: 5321: 5317: 5311: 5304: 5300: 5296: 5292: 5288: 5284: 5283: 5278: 5271: 5264: 5260: 5255: 5250: 5247:(2): 96–103, 5246: 5242: 5241: 5236: 5230: 5223: 5219: 5215: 5211: 5207: 5203: 5198: 5193: 5189: 5185: 5178: 5161: 5157: 5153: 5149: 5145: 5141: 5137: 5136: 5128: 5124: 5120: 5119:Håstad, Johan 5116: 5110: 5103: 5099: 5095: 5093:1-58113-495-9 5089: 5085: 5081: 5077: 5073: 5072:Reif, John H. 5069: 5068:Safra, Samuel 5065: 5049: 5044: 5039: 5035: 5031: 5030: 5022: 5018: 5017:Safra, Samuel 5014: 5008: 4991: 4984: 4983: 4975: 4968: 4964: 4960: 4956: 4952: 4948: 4947: 4942: 4936: 4929: 4925: 4921: 4917: 4913: 4909: 4905: 4901: 4894: 4887: 4880: 4876: 4872: 4868: 4864: 4860: 4859: 4854: 4848: 4841: 4839:0-7167-1045-5 4835: 4831: 4830: 4825: 4821: 4815: 4807: 4803: 4797: 4783: 4779: 4775: 4771: 4767: 4763: 4759: 4755: 4751: 4750: 4745: 4741: 4737: 4731: 4725: 4721: 4718: 4713: 4709: 4705: 4701: 4697: 4693: 4689: 4685: 4681: 4677: 4671: 4664: 4660: 4656: 4652: 4648: 4644: 4640: 4634: 4627: 4623: 4619: 4615: 4611: 4607: 4603: 4599: 4598: 4593: 4587: 4580: 4576: 4572: 4568: 4564: 4562:0-8186-4370-6 4558: 4554: 4550: 4546: 4542: 4536: 4534: 4526: 4522: 4518: 4514: 4510: 4506: 4499: 4497: 4489: 4485: 4481: 4477: 4473: 4469: 4465: 4461: 4460: 4459:Combinatorica 4455: 4454:Frank, András 4449: 4447: 4439: 4435: 4431: 4427: 4423: 4419: 4415: 4409: 4407: 4400: 4395: 4391: 4387: 4380: 4378: 4370: 4366: 4362: 4358: 4354: 4350: 4343: 4336: 4332: 4328: 4324: 4320: 4316: 4312: 4308: 4302: 4288: 4284: 4280: 4276: 4272: 4268: 4264: 4260: 4256: 4250: 4236: 4232: 4228: 4224: 4220: 4213: 4211: 4209: 4201: 4197: 4192: 4187: 4183: 4179: 4178: 4170: 4163: 4159: 4155: 4151: 4147: 4143: 4142: 4137: 4136:Sahni, Sartaj 4134:Lin, Lishin; 4130: 4123: 4119: 4115: 4109: 4105: 4101: 4096: 4091: 4087: 4079: 4072: 4068: 4064: 4060: 4056: 4052: 4051: 4043: 4036: 4032: 4028: 4024: 4019: 4014: 4010: 4006: 4002: 3998: 3994: 3988: 3986: 3978: 3974: 3970: 3966: 3965: 3960: 3954: 3947: 3943: 3939: 3935: 3928: 3921: 3917: 3913: 3909: 3905: 3901: 3897: 3893: 3886: 3884: 3876: 3872: 3868: 3866:0-7803-0593-0 3862: 3858: 3854: 3850: 3843: 3836: 3832: 3828: 3824: 3819: 3814: 3810: 3806: 3805: 3797: 3795: 3787: 3783: 3779: 3775: 3771: 3767: 3766: 3758: 3751: 3747: 3743: 3739: 3734: 3729: 3725: 3721: 3720: 3712: 3710: 3702: 3698: 3694: 3690: 3686: 3682: 3678: 3674: 3673: 3668: 3664: 3660: 3653: 3651: 3649: 3641: 3637: 3633: 3629: 3622: 3615: 3609: 3605: 3601: 3597: 3593: 3586: 3579: 3573: 3569: 3568:Prentice Hall 3565: 3561: 3557: 3550: 3536: 3532: 3528: 3524: 3517: 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3482: 3475: 3468: 3464: 3460: 3453: 3451: 3443: 3439: 3435: 3429: 3425: 3421: 3416: 3411: 3407: 3403: 3399: 3393: 3391: 3383: 3379: 3375: 3371: 3370: 3365: 3359: 3352: 3348: 3344: 3340: 3335: 3330: 3326: 3322: 3321: 3313: 3306: 3301: 3296: 3292: 3288: 3284: 3280: 3276: 3272: 3268: 3267: 3259: 3252: 3248: 3244: 3240: 3236: 3232: 3231: 3223: 3216: 3212: 3208: 3202: 3198: 3194: 3190: 3183: 3176: 3172: 3168: 3164: 3157: 3150: 3146: 3142: 3138: 3134: 3130: 3123: 3116: 3112: 3108: 3104: 3100: 3096: 3092: 3088: 3087: 3082: 3076: 3069: 3065: 3061: 3057: 3053: 3049: 3042: 3035: 3027: 3023: 3019: 3015: 3011: 3007: 3006: 2998: 2991: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2959: 2955: 2954: 2946: 2944: 2942: 2934: 2930: 2926: 2922: 2918: 2914: 2913: 2908: 2902: 2900: 2898: 2883: 2879: 2875: 2871: 2865: 2861: 2853: 2839: 2835: 2831: 2811: 2791: 2787: 2783: 2763: 2739: 2735: 2731: 2727: 2720: 2717: 2714: 2709: 2705: 2680: 2660: 2652: 2648: 2643: 2629: 2607: 2585: 2565: 2558: 2538: 2534: 2530: 2526: 2522: 2519: 2516: 2512: 2499: 2496: 2478: 2455: 2451: 2447: 2443: 2436: 2433: 2430: 2426: 2413: 2410: 2373: 2369: 2365: 2361: 2351: 2348: 2344: 2331: 2328: 2310: 2305: 2289: 2286: 2283: 2279: 2270: 2260: 2238: 2235: 2232: 2228: 2223: 2216: 2195: 2192: 2186: 2183: 2160: 2157: 2154: 2146: 2128: 2125: 2122: 2098: 2095: 2089: 2086: 2072: 2068: 2063: 2060: 2056: 2052: 2048: 2044: 2034: 2030: 2028: 2024: 2023:Eugene Lawler 2020: 2016: 2012: 1996: 1993: 1982: 1976: 1951: 1929: 1907: 1899: 1895: 1886: 1881: 1867: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1836: 1833: 1828: 1826: 1823:of a certain 1822: 1818: 1814: 1796: 1793: 1790: 1786: 1778: 1777:utility graph 1757: 1754: 1751: 1748: 1743: 1739: 1735: 1731: 1724: 1700: 1671: 1667: 1660: 1633: 1630: 1627: 1622: 1618: 1614: 1610: 1603: 1593: 1589: 1585: 1581: 1580:planar graphs 1571: 1557: 1553: 1549: 1529: 1526: 1490: 1486: 1477: 1471: 1468: 1432: 1428: 1419: 1416: 1412: 1408: 1359: 1355: 1351: 1342: 1336: 1333: 1308: 1304: 1300: 1297: 1294: 1290: 1286: 1266: 1246: 1237: 1229: 1226: 1223: 1222: 1221: 1203: 1200: 1186: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1139: 1131: 1124: 1118: 1101: 1099: 1095: 1090: 1089:is possible. 1076: 1068: 1047: 1044: 1041: 1038: 1032: 1008: 1001: 996: 995:spanning tree 992: 976: 951: 948: 945: 940: 936: 930: 926: 919: 908: 892: 868: 846: 821: 818: 813: 809: 803: 799: 793: 789: 782: 758: 736: 728: 724: 719: 717: 694: 688: 682: 678: 671: 661: 638: 634: 630: 624: 614: 610: 589: 586: 580: 556: 547: 536: 534: 529: 525: 517: 501: 493: 488: 484: 469: 449: 427: 403: 381: 359: 350: 346: 330: 321: 318: 303: 301: 297: 292: 290: 285: 282: 278: 274: 270: 265: 260: 251: 247: 246:ranked voting 243: 240: 236: 232: 228: 225: 221: 217: 213: 210: 206: 202: 198: 195: 191: 187: 186: 185: 183: 180:whose unique 179: 175: 167: 162: 153: 151: 147: 143: 139: 134: 132: 131:planar graphs 128: 124: 120: 116: 112: 108: 104: 100: 96: 95:graph drawing 92: 88: 84: 83:ranked voting 80: 76: 71: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 23: 16: 5542: 5535: 5483: 5479: 5469: 5445: 5441: 5431: 5407: 5401: 5391: 5365: 5364:, Series B, 5361: 5355: 5323: 5319: 5310: 5286: 5280: 5277:Naor, Joseph 5270: 5244: 5243:, Series B, 5238: 5229: 5187: 5183: 5177: 5167:, retrieved 5139: 5133: 5109: 5075: 5055:, retrieved 5033: 5027: 5007: 4997:, retrieved 4981: 4974: 4950: 4944: 4941:Ausiello, G. 4935: 4903: 4899: 4886: 4862: 4856: 4847: 4828: 4814: 4805: 4796: 4786:, retrieved 4753: 4747: 4740:Frieze, Alan 4730: 4687: 4684:Feige, Uriel 4670: 4646: 4642: 4633: 4604:(1): 28–42, 4601: 4595: 4586: 4544: 4508: 4504: 4463: 4457: 4421: 4417: 4394:1721.1/86548 4385: 4352: 4348: 4342: 4318: 4314: 4301: 4291:, retrieved 4266: 4262: 4255:Eades, Peter 4249: 4239:, retrieved 4230: 4181: 4175: 4169: 4145: 4139: 4129: 4085: 4078: 4054: 4048: 4042: 4000: 3996: 3968: 3962: 3953: 3937: 3933: 3927: 3895: 3891: 3848: 3842: 3808: 3802: 3769: 3763: 3757: 3723: 3717: 3676: 3672:Algorithmica 3670: 3663:Schieber, B. 3631: 3627: 3621: 3595: 3585: 3563: 3556:Eades, Peter 3549: 3539:, retrieved 3530: 3526: 3516: 3484: 3480: 3474: 3458: 3405: 3373: 3367: 3358: 3324: 3318: 3312: 3270: 3264: 3258: 3234: 3228: 3222: 3188: 3182: 3166: 3162: 3156: 3132: 3128: 3122: 3090: 3084: 3075: 3051: 3047: 3034: 3009: 3003: 2997: 2957: 2951: 2919:(1): 32–52, 2916: 2910: 2886:, retrieved 2873: 2864: 2644: 2306: 2266: 2064: 2040: 2031: 1891: 1848:dense graphs 1837: 1829: 1816: 1578:In directed 1577: 1233: 1187: 1127: 1091: 991:circuit rank 909: 883:independent 726: 720: 546:permutations 542: 521: 322: 314: 311:Equivalences 293: 286: 256: 171: 156:Applications 150:circuit rank 135: 81:resolution, 72: 62: 58: 50: 42: 38: 31:graph theory 28: 15: 5316:Spencer, J. 5289:(1): 7–20, 5190:(1): 1–15, 5064:Dinur, Irit 5013:Dinur, Irit 4756:(1): 1–36, 4715:; see also 4321:(1): 1–18, 4057:(5): 1–19, 3634:: 171–182, 3467:1721.1/4763 2011:NP-complete 1875:NP-hardness 1860:derandomize 1842:, it has a 1840:tournaments 1821:integrality 1813:graph minor 1104:Approximate 1094:linear time 201:primatology 5582:Categories 5169:2021-07-31 5057:2021-07-29 4999:2007-10-11 4906:(1): 1–4, 4853:Alon, Noga 4788:2021-08-03 4293:2021-08-01 4241:2021-07-29 4095:1707.01470 3959:Lawler, E. 3818:1702.07612 3657:Even, G.; 3541:2021-08-02 3230:Biometrika 2953:Biometrika 2888:2021-11-14 2856:References 2673:edges and 2647:Euler tour 2477:almost all 1259:edges and 1065:Under the 751:parameter 349:line graph 306:Algorithms 235:statistics 5493:1202.2602 5348:119894999 5197:1402.2843 4626:206798683 4018:1956/4556 3920:207632524 3875:122603659 3667:Sudan, M. 3415:1006.4396 3215:203898549 2520:− 2434:− 2355:Ω 2352:− 2239:ε 2236:− 2196:ε 2193:− 2155:ε 2123:ε 2099:ε 2059:reduction 1994:− 1752:⁡ 1631:⁡ 1524:Δ 1497:Δ 1481:Ω 1439:Δ 1423:Ω 1387:Δ 1346:Ω 1164:⁡ 1158:⁡ 1149:⁡ 1100:per set. 1045:⁡ 1000:treewidth 949:⁡ 861:constant 514:into two 231:seriation 109:time. In 5160:archived 5125:(2011), 5048:archived 5019:(2005), 4990:archived 4928:36539840 4782:archived 4720:Archived 4712:TR06-144 4686:(eds.), 4579:32162097 4488:27825518 4287:archived 4235:archived 4225:(2000), 3835:18394348 3659:Naor, J. 3594:(eds.), 3535:archived 3509:21068927 3442:16512997 3382:20026529 3369:Daedalus 3149:54284406 3068:51887586 2882:archived 2874:Rio 2016 2051:APX-hard 1870:Hardness 296:deadlock 205:ethology 105:, or in 91:ethology 79:deadlock 5569:3139198 5528:7967738 5520:3111546 5462:2095357 5424:1339075 5384:0735201 5340:0573525 5303:1033709 5263:0427138 5222:3136275 5214:3757549 5156:2823511 5102:1235048 5074:(ed.), 4967:0589808 4920:2282830 4879:2257251 4778:3207086 4770:1892295 4704:9436948 4663:0955140 4618:0809747 4571:1328441 4525:0500618 4480:0625547 4438:1334365 4369:1290207 4335:1474592 4283:1256786 4200:1881280 4162:0994519 4122:8008855 4071:1547510 4035:9967521 4027:2885638 3912:1772828 3786:2045215 3750:5284738 3742:0674256 3701:2437790 3693:1484534 3640:2027115 3489:Bibcode 3351:0161419 3343:2238526 3295:0115242 3287:2281911 3251:2332752 3107:2682624 3026:0809110 2990:5964054 2982:0196854 2974:2334060 2933:0429180 1922:number 1693:number 1379:degree 989:is the 569:-vertex 99:NP-hard 5567:  5557:  5526:  5518:  5460:  5422:  5382:  5346:  5338:  5301:  5261:  5220:  5212:  5154:  5100:  5090:  4965:  4926:  4918:  4877:  4836:  4776:  4768:  4710:  4702:  4661:  4624:  4616:  4577:  4569:  4559:  4523:  4486:  4478:  4436:  4367:  4333:  4281:  4198:  4160:  4120:  4110:  4069:  4033:  4025:  3918:  3910:  3873:  3863:  3833:  3784:  3748:  3740:  3699:  3691:  3638:  3610:  3574:  3507:  3440:  3430:  3380:  3349:  3341:  3293:  3285:  3249:  3213:  3203:  3147:  3113:  3105:  3066:  3024:  2988:  2980:  2972:  2931:  2555:Every 2263:Theory 2115:every 2055:P = NP 1588:dijoin 969:where 714:using 607:but a 548:of an 248:, the 144:, the 125:. For 93:, and 5524:S2CID 5488:arXiv 5344:S2CID 5218:S2CID 5192:arXiv 5163:(PDF) 5130:(PDF) 5098:S2CID 5051:(PDF) 5024:(PDF) 4993:(PDF) 4986:(PDF) 4924:S2CID 4896:(PDF) 4774:S2CID 4700:S2CID 4622:S2CID 4575:S2CID 4484:S2CID 4118:S2CID 4090:arXiv 4067:S2CID 4031:S2CID 3916:S2CID 3871:S2CID 3831:S2CID 3813:arXiv 3746:S2CID 3697:S2CID 3438:S2CID 3410:arXiv 3378:JSTOR 3339:JSTOR 3283:JSTOR 3247:JSTOR 3211:S2CID 3145:S2CID 3115:18416 3111:S2CID 3064:S2CID 3044:(PDF) 2970:JSTOR 1854:to a 1811:as a 1717:time 1653:time 1596:time 1516:When 1458:form 912:time 775:time 664:time 617:time 573:time 539:Exact 45:in a 5555:ISBN 5088:ISBN 4834:ISBN 4708:ECCC 4557:ISBN 4108:ISBN 3861:ISBN 3608:ISBN 3572:ISBN 3505:PMID 3428:ISBN 3201:ISBN 2986:PMID 2523:1.73 2475:For 2158:> 2126:> 2113:for 1883:The 1830:The 1584:dual 237:and 37:, a 33:and 5547:doi 5506:hdl 5498:doi 5450:doi 5412:doi 5370:doi 5328:doi 5291:doi 5249:doi 5202:doi 5144:doi 5080:doi 5038:doi 5034:162 4955:doi 4908:doi 4867:doi 4758:doi 4692:doi 4651:doi 4606:doi 4549:doi 4513:doi 4468:doi 4426:doi 4390:hdl 4357:doi 4323:doi 4271:doi 4186:doi 4182:117 4150:doi 4100:doi 4059:doi 4013:hdl 4005:doi 3973:doi 3942:doi 3900:doi 3853:doi 3823:doi 3774:doi 3770:136 3728:doi 3681:doi 3600:doi 3497:doi 3463:hdl 3420:doi 3329:doi 3300:hdl 3275:doi 3239:doi 3193:doi 3171:doi 3137:doi 3095:doi 3056:doi 3014:doi 2962:doi 2921:doi 2600:of 2076:of 2043:APX 1749:log 1715:in 1628:log 1323:of 1190:of 1161:log 1155:log 1146:log 1042:log 1025:in 946:log 885:of 721:In 420:in 396:of 352:of 294:In 287:In 275:in 244:In 214:In 199:In 41:or 29:In 5584:: 5565:MR 5563:, 5553:, 5522:, 5516:MR 5514:, 5504:, 5496:, 5484:22 5482:, 5458:MR 5456:, 5446:92 5444:, 5440:, 5420:MR 5418:, 5408:60 5406:, 5380:MR 5378:, 5366:35 5342:, 5336:MR 5334:, 5324:11 5322:, 5299:MR 5297:, 5285:, 5259:MR 5257:, 5245:21 5216:, 5210:MR 5208:, 5200:, 5188:55 5186:, 5158:, 5152:MR 5150:, 5140:40 5138:, 5132:, 5117:; 5096:, 5086:, 5066:; 5046:, 5032:, 5026:, 5015:; 4963:MR 4961:, 4951:21 4949:, 4922:, 4916:MR 4914:, 4904:16 4902:, 4898:, 4875:MR 4873:, 4863:20 4861:, 4822:; 4780:, 4772:, 4766:MR 4764:, 4754:92 4752:, 4746:, 4738:; 4706:, 4698:, 4682:; 4659:MR 4657:, 4645:, 4620:, 4614:MR 4612:, 4602:33 4600:, 4573:, 4567:MR 4565:, 4555:, 4532:^ 4521:MR 4519:, 4509:17 4495:^ 4482:, 4476:MR 4474:, 4462:, 4445:^ 4434:MR 4432:, 4422:18 4420:, 4405:^ 4376:^ 4365:MR 4363:, 4353:51 4351:, 4331:MR 4329:, 4319:25 4317:, 4309:; 4285:, 4279:MR 4277:, 4267:47 4265:, 4261:, 4233:, 4229:, 4221:; 4207:^ 4196:MR 4194:, 4180:, 4158:MR 4156:, 4146:38 4144:, 4116:, 4106:, 4098:, 4065:, 4055:55 4053:, 4029:, 4023:MR 4021:, 4011:, 4001:50 3999:, 3984:^ 3969:11 3967:, 3938:10 3936:, 3914:, 3908:MR 3906:, 3894:, 3882:^ 3869:, 3859:, 3829:, 3821:, 3809:62 3807:, 3793:^ 3782:MR 3780:, 3768:, 3744:, 3738:MR 3736:, 3724:29 3722:, 3708:^ 3695:, 3689:MR 3687:, 3677:20 3675:, 3665:; 3661:; 3647:^ 3636:MR 3630:, 3606:, 3566:, 3558:; 3529:, 3525:, 3503:, 3495:, 3485:34 3483:, 3449:^ 3436:, 3426:, 3418:, 3389:^ 3374:88 3372:, 3347:MR 3345:, 3337:, 3325:35 3323:, 3291:MR 3289:, 3281:, 3271:55 3269:, 3245:, 3235:48 3233:, 3209:, 3199:, 3167:35 3165:, 3143:, 3133:24 3131:, 3109:, 3103:MR 3101:, 3089:, 3062:, 3052:69 3050:, 3046:, 3022:MR 3020:, 3010:29 3008:, 2984:, 2978:MR 2976:, 2968:, 2958:53 2956:, 2940:^ 2929:MR 2927:, 2917:29 2915:, 2896:^ 2880:, 2876:, 2872:, 1866:. 718:. 207:, 152:. 89:, 77:, 5549:: 5508:: 5500:: 5490:: 5452:: 5414:: 5372:: 5330:: 5293:: 5287:3 5251:: 5204:: 5194:: 5146:: 5082:: 5040:: 4957:: 4910:: 4869:: 4760:: 4694:: 4653:: 4647:9 4608:: 4551:: 4515:: 4470:: 4464:1 4428:: 4392:: 4359:: 4325:: 4273:: 4188:: 4152:: 4102:: 4092:: 4061:: 4015:: 4007:: 3975:: 3944:: 3902:: 3896:4 3855:: 3825:: 3815:: 3776:: 3730:: 3683:: 3632:6 3602:: 3531:2 3499:: 3491:: 3465:: 3422:: 3412:: 3331:: 3302:: 3277:: 3241:: 3195:: 3173:: 3139:: 3097:: 3091:6 3058:: 3016:: 2964:: 2923:: 2840:3 2836:/ 2832:m 2812:m 2792:3 2788:/ 2784:n 2764:n 2754:. 2740:2 2736:n 2732:2 2728:/ 2724:) 2721:n 2718:m 2715:+ 2710:2 2706:m 2702:( 2681:n 2661:m 2630:D 2620:, 2608:D 2586:D 2566:D 2553:. 2539:2 2535:/ 2531:3 2527:n 2517:2 2513:/ 2505:) 2500:2 2497:n 2492:( 2473:. 2461:) 2456:2 2452:/ 2448:3 2444:n 2440:( 2437:O 2431:2 2427:/ 2419:) 2414:2 2411:n 2406:( 2391:, 2379:) 2374:2 2370:/ 2366:3 2362:n 2358:( 2349:2 2345:/ 2337:) 2332:2 2329:n 2324:( 2290:3 2287:, 2284:3 2280:K 2258:. 2246:) 2233:1 2229:n 2224:2 2220:( 2217:O 2187:6 2184:7 2161:0 2141:. 2129:0 2111:, 2096:+ 2090:2 2087:1 1997:k 1990:| 1986:) 1983:G 1980:( 1977:E 1973:| 1952:k 1942:. 1930:k 1908:k 1797:3 1794:, 1791:3 1787:K 1773:. 1761:) 1758:N 1755:n 1744:2 1740:/ 1736:5 1732:n 1728:( 1725:O 1713:, 1701:N 1689:, 1677:) 1672:3 1668:n 1664:( 1661:O 1649:. 1637:) 1634:n 1623:2 1619:/ 1615:5 1611:n 1607:( 1604:O 1558:9 1554:/ 1550:8 1530:3 1527:= 1514:. 1502:) 1491:/ 1487:1 1484:( 1478:+ 1472:2 1469:1 1444:) 1433:/ 1429:m 1426:( 1420:+ 1417:2 1413:/ 1409:m 1399:, 1375:. 1363:) 1360:m 1356:/ 1352:n 1349:( 1343:+ 1337:2 1334:1 1309:6 1305:/ 1301:n 1298:+ 1295:2 1291:/ 1287:m 1267:n 1247:m 1219:: 1204:2 1201:1 1182:. 1170:) 1167:n 1152:n 1143:( 1140:O 1112:: 1077:t 1063:. 1051:) 1048:t 1039:t 1036:( 1033:O 1021:, 1009:t 977:r 967:, 955:) 952:m 941:4 937:m 931:r 927:2 923:( 920:O 905:, 893:k 881:, 869:4 847:n 837:, 825:) 822:! 819:k 814:3 810:k 804:k 800:4 794:4 790:n 786:( 783:O 771:, 759:k 737:n 712:, 700:) 695:n 689:/ 683:n 679:4 675:( 672:O 656:, 644:) 639:n 635:2 631:n 628:( 625:O 605:, 593:) 590:! 587:n 584:( 581:O 557:n 502:d 470:G 450:G 440:. 428:G 416:, 404:G 382:G 372:. 360:G 331:G

Index


graph theory
graph algorithms
directed graph
directed acyclic graph
optimization problems
chemical engineering
deadlock
ranked voting
mathematical psychology
ethology
graph drawing
NP-hard
exponential time
fixed-parameter tractable
polynomial time
approximation ratio
inapproximability
unique games conjecture
tournament graphs
planar graphs
feedback vertex set
undirected graphs
spanning trees
circuit rank

men's beach volleyball at the 2016 Olympics
tournament graph
directed acyclic graph
topological order

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.