Knowledge

Carnot cycle

Source đź“ť

2054:), the gas is in thermal contact with the hot temperature reservoir, and is thermally isolated from the cold temperature reservoir. The gas is allowed to expand, doing work on the surroundings by pushing up the piston (Stage One figure, right). Although the pressure drops from points 1 to 2 (figure 1) the temperature of the gas does not change during the process because the heat transferred from the hot temperature reservoir to the gas is exactly used to do work on the surroundings by the gas. There is no change in the gas internal energy, and no change in the gas temperature if it is an ideal gas. Heat 2359: 2202: 2145: 2009: 2693: 2394: 1978: 42: 1612: 2726: 2777:, is the amount of work energy exchanged by the system with its surroundings. The amount of heat exchanged with the hot reservoir is the sum of the two. If the system is behaving as an engine, the process moves clockwise around the loop, and moves counter-clockwise if it is behaving as a refrigerator. The efficiency to the cycle is the ratio of the white area (work) divided by the sum of the white and red areas (heat absorbed from the hot reservoir). 2380:) Once again the gas in the engine is thermally insulated from the hot and cold reservoirs, and the engine is assumed to be frictionless and the process is slow enough, hence reversible. During this step, the surroundings do work on the gas, pushing the piston down further (Stage Four figure, right), increasing its internal energy, compressing it, and causing its temperature to rise back to the temperature infinitesimally less than 4317: 3104: 3134: 2673:), the isothermal stages follow the isotherm lines for the working fluid, the adiabatic stages move between isotherms, and the area bounded by the complete cycle path represents the total work that can be done during one cycle. From point 1 to 2 and point 3 to 4 the temperature is constant (isothermal process). Heat transfer from point 4 to 1 and point 2 to 3 are equal to zero (adiabatic process). 2177:. The gas continues to expand with reduction of its pressure, doing work on the surroundings (raising the piston; Stage Two figure, right), and losing an amount of internal energy equal to the work done. The loss of internal energy causes the gas to cool. In this step it is cooled to a temperature that is infinitesimally higher than the cold reservoir temperature 4360:
Looking at this formula an interesting fact becomes apparent: Lowering the temperature of the cold reservoir will have more effect on the ceiling efficiency of a heat engine than raising the temperature of the hot reservoir by the same amount. In the real world, this may be difficult to achieve since the cold reservoir is often an existing ambient temperature.
4359:
Rearranging the right side of the equation gives what may be a more easily understood form of the equation, namely that the theoretical maximum efficiency of a heat engine equals the difference in temperature between the hot and cold reservoir divided by the absolute temperature of the hot reservoir.
4395:
In mesoscopic heat engines, work per cycle of operation in general fluctuates due to thermal noise. If the cycle is performed quasi-statically, the fluctuations vanish even on the mesoscale. However, if the cycle is performed faster than the relaxation time of the working medium, the fluctuations of
2910:
which is the amount of heat transferred in the process. If the process moves the system to greater entropy, the area under the curve is the amount of heat absorbed by the system in that process; otherwise, it is the amount of heat removed from or leaving the system. For any cyclic process, there is
2919:
diagrams for a clockwise cycle, the area under the upper portion will be the energy absorbed by the system during the cycle, while the area under the lower portion will be the energy removed from the system during the cycle. The area inside the cycle is then the difference between the two (the
4237:. This time, the cycle remains exactly the same except that the directions of any heat and work interactions are reversed. Heat is absorbed from the low-temperature reservoir, heat is rejected to a high-temperature reservoir, and a work input is required to accomplish all this. The 3099:
diagram is (a) equal to the total work performed by the system on the surroundings if the loop is traversed in a clockwise direction, and (b) is equal to the total work done on the system by the surroundings as the loop is traversed in a counterclockwise direction.
4697:
can improve the thermal efficiency of steam power plants and why the thermal efficiency of combined-cycle power plants (which incorporate gas turbines operating at even higher temperatures) exceeds that of conventional steam plants. The first prototype of the
5182: 2817:). For a simple closed system (control mass analysis), any point on the graph represents a particular state of the system. A thermodynamic process is represented by a curve connecting an initial state (A) and a final state (B). The area under the curve is: 4987:...since the Carnot heat engine, setting an upper bound on the efficiency of a heat engine is an ideal, reversible engine of which a single cycle must be performed in infinite time which is impractical and so the Carnot engine has zero power. 3669: 4224:
This is the Carnot heat engine working efficiency definition as the fraction of the work done by the system to the thermal energy received by the system from the hot reservoir per cycle. This thermal energy is the cycle initiator.
3065: 4594: 4518: 2721:. The vertical axis is the system temperature, the horizontal axis is the system entropy. A-to-B (isothermal expansion), B-to-C (isentropic expansion), C-to-D (isothermal compression), D-to-A (isentropic compression). 1936: 4396:
work are inevitable. Nevertheless, when work and heat fluctuations are counted, an exact equality relates the exponential average of work performed by any heat engine to the heat transfer from the hotter heat bath.
5179: 2481: 3255: 4123: 3453: 2555: 4022: 3352: 4420:. In addition, real engines that operate along the Carnot cycle style (isothermal expansion / isentropic expansion / isothermal compression / isentropic compression) are rare. Nevertheless, Equation 2920:
absorbed net heat energy), but since the internal energy of the system must have returned to its initial value, this difference must be the amount of work done by the system per cycle. Referring to
4198: 1331: 2892: 3927: 1801:
done by the system or engine to the environment per Carnot cycle depends on the temperatures of the thermal reservoirs and the entropy transferred from the hot reservoir to the system
2315: 2137: 4596:
at which the first integral is over a part of a cycle where heat goes into the system and the second integral is over a cycle part where heat goes out from the system. Then, replace
2248:. The surroundings do work on the gas, pushing the piston down (Stage Three figure, right). An amount of energy earned by the gas from this work exactly transfers as a heat energy 2351: 3527: 4522: 2653: 1166: 1111: 1056: 4446: 863: 816: 731: 684: 596: 549: 1773:, merely transferred between the thermal reservoirs and the system without gain or loss. When work is applied to the system, heat moves from the cold to hot reservoir ( 1822: 767: 635: 1001: 4311: 4284: 4233:
A Carnot heat-engine cycle described is a totally reversible cycle. That is, all the processes that compose it can be reversed, in which case it becomes the Carnot
4218: 3870: 3841: 3812: 3779: 3750: 3721: 3559: 3549: 2611: 2584: 1963: 1759: 1732: 4363:
In other words, the maximum efficiency is achieved if and only if entropy does not change per cycle. An entropy change per cycle is made, for example, if there is
4323:: A real engine (left) compared to the Carnot cycle (right). The entropy of a real material changes with temperature. This change is indicated by the curve on a 2783:(energy lost to the cold reservoir) can be seen as a direct subtraction, or expressed as the sum of a negative quantity, which can lead to different conventions. 500: 3475: 2079: 1799: 839: 792: 707: 660: 572: 525: 5131:
Kostic, M (2011). "Revisiting The Second Law of Energy Degradation and Entropy Generation: From Sadi Carnot's Ingenious Reasoning to Holistic Generalization".
2404:
to illustrate the work done. 1-to-2 (isothermal expansion), 2-to-3 (isentropic expansion), 3-to-4 (isothermal compression), 4-to-1 (isentropic compression).
1761:(referred to as the hot and cold reservoirs, respectively), and a part of this transferred energy is converted to the work done by the system. The cycle is 2936: 2415: 4739:, the Carnot engine may be thought as the theoretical limit of macroscopic scale heat engines rather than any practical device that could ever be built. 2038:. (The infinitesimal temperature difference allows the heat to transfer into the gas without a significant change in the gas temperature. This is called 3149: 2387:
due solely to the work added to the system, but the entropy remains unchanged. At this point the gas is in the same state as at the start of step 1.
3357: 2486: 4338:). Irreversible systems and losses of energy (for example, work due to friction and heat losses) prevent the ideal from taking place at every step. 1641: 1827: 3262: 5234: 4731:. However, on a macroscopic scale limitations placed by the model's assumptions prove it impractical, and, ultimately, incapable of doing any 4245:
diagram of the reversed Carnot cycle is the same as for the Carnot heat-engine cycle except that the directions of the processes are reversed.
1342: 1230: 4379:, the required dumping of heat into the environment to dispose of excess entropy leads to a (minimal) reduction in efficiency. So Equation 464: 4355:
gives the maximum efficiency possible for any engine using the corresponding temperatures. A corollary to Carnot's theorem states that:
4027: 2173:) the gas in the engine is thermally insulated from both the hot and cold reservoirs, thus they neither gain nor lose heat. It is an 1320: 4347:
No engine operating between two heat reservoirs can be more efficient than a Carnot engine operating between those same reservoirs.
5396: 5032: 1353: 3932: 4426:
is extremely useful for determining the maximum efficiency that could ever be expected for a given set of thermal reservoirs.
5172: 5121: 5095: 5068: 923: 4128: 4736: 4254: 1669: 1634: 1221: 890: 457: 335: 2825: 4753: 4727:. On a practical human-scale level the Carnot cycle has proven a valuable model, as in advancing the development of the 4386: 2409: 1762: 273: 3144:
Evaluation of the above integral is particularly simple for a Carnot cycle. The amount of energy transferred as work is
5227: 3354:
and the total amount of heat transferred from the system to the cold reservoir (in the isothermal compression) will be
2707:), illustrated on a TS (temperature T–entropy S) diagram. The cycle takes place between a hot reservoir at temperature 1405: 1379: 900: 354: 5462: 4234: 3480: 306: 3879: 2019:
expansion. Heat (as an energy) is transferred reversibly from the hot temperature reservoir at constant temperature
1458: 929: 328: 4711: 2209:
Isothermal compression. Heat is transferred reversibly to the low temperature reservoir at a constant temperature
5500: 2788: 2687: 1627: 3259:
The total amount of heat transferred from the hot reservoir to the system (in the isothermal expansion) will be
1558: 90: 2262: 2084: 1665: 1453: 5536: 5220: 1533: 1306: 283: 1781:). When heat moves from the hot to the cold reservoir, the system applies work to the environment. The work 5447: 2928:, mathematically, for a reversible process, we may write the amount of work done over a cyclic process as: 2747: 2156: 918: 121: 111: 17: 4694: 4411: 2664: 126: 116: 2773:|, is the amount of energy exchanged between the system and the cold reservoir. The area in white, 5361: 5251: 2320: 2244:
to allow heat transfer from the gas to the cold reservoir. There is no change in temperature, it is an
2237:, and is thermally isolated from the hot reservoir. The gas temperature is infinitesimally higher than 1410: 1374: 152: 86: 1448: 5515: 1203: 951: 397: 210: 200: 5153: 4833:
Holubec Viktor and Ryabov Artem (2018). "Cycling Tames Power Fluctuations near Optimum Efficiency".
5276: 5495: 5480: 5470: 5426: 2616: 1615: 1443: 1240: 1121: 1066: 1011: 943: 882: 418: 407: 73: 5196: 845: 798: 713: 666: 578: 531: 5148: 2061:> 0 is absorbed from the hot temperature reservoir, resulting in an increase in the entropy 1548: 1265: 349: 103: 78: 5087: 5080: 3664:{\displaystyle \eta ={\frac {W}{Q_{H}}}={\frac {Q_{H}-Q_{C}}{Q_{H}}}=1-{\frac {T_{C}}{T_{H}}}} 3091:, its integral over any closed loop is zero and it follows that the area inside the loop on a 1804: 1468: 749: 614: 5341: 5301: 1685: 1483: 1060: 373: 219: 68: 971: 5485: 5203: 5140: 4913: 4852: 4724: 4289: 4262: 4203: 3848: 3819: 3790: 3782: 3757: 3728: 3699: 3534: 2589: 2562: 1941: 1737: 1710: 1696: 1692:
system in creating a temperature difference through the application of work to the system.
1563: 1488: 1478: 278: 140: 8: 5490: 5391: 5243: 5207: 4925: 2700: 1995: 1661: 1508: 1270: 292: 258: 253: 166: 5144: 4917: 4856: 4357:
All reversible engines operating between the same heat reservoirs are equally efficient.
4259:
It can be seen from the above diagram that for any cycle operating between temperatures
2732:: A generalized thermodynamic cycle taking place between a hot reservoir at temperature 1503: 482: 5347: 5037: 4960: 4929: 4903: 4876: 4842: 4748: 4717: 3460: 3088: 2704: 2245: 2193: 2152: 2064: 1999: 1784: 1770: 1673: 1597: 1260: 1255: 1208: 824: 777: 692: 645: 557: 510: 440: 424: 311: 263: 248: 238: 47: 41: 2230:), the gas in the engine is in thermal contact with the cold reservoir at temperature 1981: 5510: 5332: 5168: 5117: 5091: 5064: 4978: 4974: 4949:"Effects of dark energy on the efficiency of charged AdS black holes as heat engines" 4933: 4868: 3060:{\displaystyle W=\oint PdV=\oint (dQ-dU)=\oint (TdS-dU)=\oint TdS-\oint dU=\oint TdS} 2174: 1704: 1592: 1553: 1543: 1115: 913: 741: 243: 233: 175: 5176: 5050: 4880: 4589:{\displaystyle \langle T_{C}\rangle ={\frac {1}{\Delta S}}\int _{Q_{\text{out}}}TdS} 4405: 5452: 5158: 5045: 4970: 4921: 4864: 4860: 4513:{\displaystyle \langle T_{H}\rangle ={\frac {1}{\Delta S}}\int _{Q_{\text{in}}}TdS} 4372: 2799:
diagram), in which the thermodynamic state is specified by a point on a graph with
1513: 1498: 1438: 1433: 1250: 1245: 895: 363: 228: 4414:
engine. So, real heat engines are even less efficient than indicated by Equation
5475: 5109: 4948: 4801: 2412:
thermodynamic cycle (no net change in the system and its surroundings per cycle)
1463: 1311: 965: 606: 429: 190: 157: 5060: 5442: 5401: 5386: 5371: 5306: 5296: 5291: 5266: 5105: 5041: 4732: 4376: 2358: 2201: 2144: 2008: 1518: 1288: 388: 268: 205: 195: 63: 33: 2787:
The behavior of a Carnot engine or refrigerator is best understood by using a
5530: 5505: 5421: 5376: 5337: 5311: 5281: 4982: 4728: 4699: 4375:
becomes an inequality rather than an equality. Otherwise, since entropy is a
4334: 2259:) to the cold reservoir so the entropy of the system decreases by the amount 1778: 1689: 1587: 905: 474: 435: 147: 5411: 5406: 5381: 5327: 4872: 2692: 2393: 1931:{\displaystyle W=(T_{H}-T_{C})\Delta S=(T_{H}-T_{C}){\frac {Q_{H}}{T_{H}}}} 1538: 1523: 1473: 956: 4331:
diagram. For this figure, the curve indicates a vapor-liquid equilibrium (
3723:< 0 is the heat taken from the system (heat energy leaving the system), 2353:
because the isothermal compression decreases the multiplicity of the gas.
4784: 4783:
Planck, M. (1945). "equations 39, 40 and 65 in sections §90 & §137".
4439:
as the expression of the Carnot efficiency is still useful. Consider the
4389: 4368: 3752:> 0 is the heat put into the system (heat energy entering the system), 1677: 1493: 301: 5416: 5212: 5000: 4690: 2725: 2401: 2016: 1582: 1528: 5162: 5053: 4371:
of work into heat. In that case, the cycle is not reversible and the
3110:: A Carnot cycle taking place between a hot reservoir at temperature 1774: 180: 2476:{\displaystyle \Delta S_{H}+\Delta S_{C}=\Delta S_{\text{cycle}}=0,} 1965:
is heat transferred from the hot reservoir to the system per cycle.
4965: 4847: 4633:
For the Carnot cycle, or its equivalent, the average value ⟨
4364: 3694:
is the work done by the system (energy exiting the system as work),
2613:
are both smaller in magnitude and in fact are in the same ratio as
1296: 1213: 1005: 413: 185: 5001:"Power, efficiency, and fluctuations in steady-state heat engines" 4908: 4630:⟩, respectively, to estimate the efficiency a heat engine. 5051:
Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (1963).
4440: 4316: 2800: 2192:= 0) between the system (the gas) and its surroundings. It is an 1766: 402: 4894:
N. A. Sinitsyn (2011). "Fluctuation Relation for Heat Engines".
4410:
Carnot realized that, in reality, it is not possible to build a
3250:{\displaystyle W=\oint PdV=\oint TdS=(T_{H}-T_{C})(S_{B}-S_{A})} 3103: 4832: 4118:{\displaystyle Q_{C}=T_{C}(S_{A}-S_{B})=T_{C}\Delta S_{C}<0} 3448:{\displaystyle Q_{C}=T_{C}(S_{A}-S_{B})=T_{C}\Delta S_{C}<0} 2550:{\displaystyle {\frac {Q_{H}}{T_{H}}}=-{\frac {Q_{C}}{T_{C}}}.} 1700: 1668:
in 1824 and expanded upon by others in the 1830s and 1840s. By
4640:⟩ will equal the highest temperature available, namely 3133: 2255:< 0 (negative as leaving from the system, according to the 3929:
can be derived from the expressions above with the entropy:
2750:, the cycle cannot extend outside the temperature band from 2256: 1681: 378: 4017:{\displaystyle Q_{H}=T_{H}(S_{B}-S_{A})=T_{H}\Delta S_{H}} 3347:{\displaystyle Q_{H}=T_{H}(S_{B}-S_{A})=T_{H}\Delta S_{H}} 4661:. For other less efficient thermodynamic cycles, ⟨ 5077: 5104: 4999:
Benenti, Giuliano; Casati, Giulio; Wang, Jiao (2020).
4193:{\displaystyle \Delta S_{C}=S_{A}-S_{B}=-\Delta S_{H}} 3457:
Due to energy conservation, the net heat transferred,
2911:
an upper portion of the cycle and a lower portion. In
2028:
to the gas at a temperature infinitesimally less than
5016:
However, fluctuations make impractical such engines.
4823:. 7th ed. New York: McGraw-Hill, 2011. p. 299. Print. 4525: 4449: 4292: 4265: 4206: 4131: 4030: 3935: 3882: 3851: 3822: 3793: 3760: 3731: 3702: 3562: 3537: 3483: 3463: 3360: 3265: 3152: 2939: 2828: 2619: 2592: 2565: 2489: 2418: 2323: 2265: 2087: 2067: 1944: 1830: 1807: 1787: 1740: 1713: 1124: 1069: 1014: 974: 848: 827: 801: 780: 752: 716: 695: 669: 648: 617: 581: 560: 534: 513: 485: 4720:
is, ultimately, a theoretical construct based on an
4712:
Carnot heat engine § As a macroscopic construct
4313:, none can exceed the efficiency of a Carnot cycle. 2887:{\displaystyle Q=\int _{A}^{B}dQ=\int _{A}^{B}T\,dS} 4200:, a minus sign appears in the final expression for 5079: 5052: 4588: 4512: 4399: 4305: 4278: 4212: 4192: 4117: 4016: 3921: 3864: 3835: 3806: 3773: 3744: 3715: 3663: 3543: 3521: 3469: 3447: 3346: 3249: 3059: 2886: 2681: 2647: 2605: 2578: 2549: 2475: 2345: 2309: 2131: 2073: 1957: 1930: 1816: 1793: 1753: 1726: 1160: 1105: 1050: 995: 857: 833: 810: 786: 761: 725: 701: 678: 654: 629: 590: 566: 543: 519: 494: 4998: 4702:was based on the principles of the Carnot cycle. 3814:is the absolute temperature of the hot reservoir. 5528: 5086:(3rd ed.). John Wiley & Sons. pp.  2159:) expansion of the gas (isentropic work output). 4689:. This can help illustrate, for example, why a 5059:. Addison-Wesley Publishing Company. pp.  4893: 3922:{\displaystyle \eta =1-{\frac {T_{C}}{T_{H}}}} 2676: 5228: 4705: 1635: 4778: 4776: 4774: 4539: 4526: 4463: 4450: 2658: 2357: 2200: 2143: 2007: 2184:. The entropy remains unchanged as no heat 5235: 5221: 4947:Liu, Hang; Meng, Xin-He (18 August 2017). 2807:) as the horizontal axis and temperature ( 1982:Carnot cycle from The Mechanical Universe 1642: 1628: 40: 5152: 5078:Halliday, David; Resnick, Robert (1978). 4964: 4907: 4846: 4771: 2877: 5242: 4819:Çengel, Yunus A., and Michael A. Boles. 4793: 4315: 4228: 3132: 3102: 2724: 2691: 2392: 2310:{\displaystyle \Delta S_{C}=Q_{C}/T_{C}} 2132:{\displaystyle \Delta S_{H}=Q_{H}/T_{H}} 5397:Homogeneous charge compression ignition 5116:(2nd ed.). W. H. Freeman Company. 5033:Reflections on the Motive Power of Fire 4946: 4821:Thermodynamics: An Engineering Approach 4789:. Dover Publications. pp. 75, 135. 14: 5529: 5130: 4782: 2257:universal convention in thermodynamics 2040:isothermal heat addition or absorption 5216: 5167:American Institute of Physics, 2011. 4799: 2002:, consisting of the following steps: 1688:, or conversely, the efficiency of a 4345:is a formal statement of this fact: 3876:The expression with the temperature 3553: 3117:and a cold reservoir at temperature 2930: 2819: 2739:and a cold reservoir at temperature 2714:and a cold reservoir at temperature 2663:When a Carnot cycle is plotted on a 1672:, it provides an upper limit on the 4940: 4754:Reversible process (thermodynamics) 4248: 3140:: A visualization of a Carnot cycle 3128: 24: 5042:The Steam-Engine and Other Engines 4551: 4475: 4320: 4177: 4132: 4096: 4001: 3426: 3331: 3137: 3107: 2923: 2813: 2729: 2696: 2669: 2451: 2435: 2419: 2400:: A Carnot cycle illustrated on a 2397: 2376: 2370: 2324: 2266: 2226: 2220: 2169: 2163: 2088: 2050: 2044: 1866: 1808: 849: 802: 717: 670: 582: 535: 355:Intensive and extensive properties 25: 5548: 5190: 4809:. Dover Publications. p. 48. 4800:Fermi, E. (1956). "equation 64". 4255:Carnot's theorem (thermodynamics) 4235:heat pump and refrigeration cycle 3477:, is equal to the work performed 2699:: A Carnot cycle as an idealized 2346:{\displaystyle \Delta S_{C}<0} 1976: 1703:in the form of heat between two 1611: 1610: 930:Table of thermodynamic equations 5055:The Feynman Lectures on Physics 4953:The European Physical Journal C 4400:Efficiency of real heat engines 3522:{\displaystyle W=Q=Q_{H}-Q_{C}} 2682:The temperature–entropy diagram 2042:.) During this step (1 to 2 on 1994:A Carnot cycle as an idealized 1406:Maxwell's thermodynamic surface 5135:. AIP Conference Proceedings. 4992: 4975:10.1140/epjc/s10052-017-5134-9 4926:10.1088/1751-8113/44/40/405001 4887: 4865:10.1103/PhysRevLett.121.120601 4826: 4813: 4080: 4054: 3985: 3959: 3410: 3384: 3315: 3289: 3244: 3218: 3215: 3189: 3012: 2991: 2982: 2964: 1901: 1875: 1863: 1837: 1140: 1128: 1085: 1073: 1030: 1018: 990: 978: 13: 1: 4759: 4682:⟩ will be higher than 4433:is an idealization, Equation 4406:Heat Engine § Efficiency 3872:is the minimum system entropy 3843:is the maximum system entropy 1664:proposed by French physicist 1307:Mechanical equivalent of heat 27:Idealized thermodynamic cycle 5199:article on the Carnot cycle. 4668:⟩ will be lower than 4654:⟩ the lowest, namely 4412:thermodynamically reversible 4385:gives the efficiency of any 2748:second law of thermodynamics 2408:In this case, since it is a 2216:(isothermal heat rejection). 919:Onsager reciprocal relations 7: 5302:Stirling (pseudo/adiabatic) 4742: 4612: 4435: 4422: 4416: 4381: 4351: 3677: 3073: 2900: 2789:temperature–entropy diagram 2688:Temperature–entropy diagram 2677:Properties and significance 2648:{\displaystyle Q_{H}/T_{H}} 1411:Entropy as energy dispersal 1222:"Perpetual motion" machines 1161:{\displaystyle G(T,p)=H-TS} 1106:{\displaystyle A(T,V)=U-TS} 1051:{\displaystyle H(S,p)=U+pV} 10: 5553: 4786:Treatise on Thermodynamics 4709: 4706:As a macroscopic construct 4403: 4252: 3785:of the cold reservoir, and 2685: 858:{\displaystyle \partial T} 811:{\displaystyle \partial V} 726:{\displaystyle \partial p} 679:{\displaystyle \partial V} 591:{\displaystyle \partial T} 544:{\displaystyle \partial S} 5461: 5435: 5360: 5320: 5261: 5250: 5204:Carnot Cycle on Ideal Gas 5178:. Full article (24 pages 2764:. The area in red, | 2659:The pressure–volume graph 2161:For this step (2 to 3 on 2081:of the gas by the amount 1989: 1975: 1970: 1680:during the conversion of 1332:An Inquiry Concerning the 5044:edition 3, page 62, via 2811:) as the vertical axis ( 2218:In this step (3 to 4 on 1817:{\displaystyle \Delta S} 1345:Heterogeneous Substances 762:{\displaystyle \alpha =} 630:{\displaystyle \beta =-} 4896:J. Phys. A: Math. Theor 2665:pressure–volume diagram 2366:Isentropic compression. 4590: 4514: 4339: 4307: 4280: 4214: 4194: 4119: 4018: 3923: 3866: 3837: 3808: 3775: 3746: 3717: 3665: 3545: 3523: 3471: 3449: 3348: 3251: 3141: 3125: 3061: 2888: 2784: 2722: 2649: 2607: 2580: 2551: 2477: 2405: 2362: 2347: 2311: 2205: 2148: 2133: 2075: 2012: 1959: 1932: 1818: 1795: 1755: 1728: 1162: 1107: 1052: 997: 996:{\displaystyle U(S,V)} 859: 835: 812: 788: 763: 727: 703: 680: 656: 631: 592: 568: 545: 521: 496: 475:Specific heat capacity 79:Quantum thermodynamics 4623:⟩ and ⟨ 4591: 4515: 4319: 4308: 4306:{\displaystyle T_{C}} 4281: 4279:{\displaystyle T_{H}} 4229:Reversed Carnot cycle 4215: 4213:{\displaystyle \eta } 4195: 4120: 4019: 3924: 3867: 3865:{\displaystyle S_{A}} 3838: 3836:{\displaystyle S_{B}} 3809: 3807:{\displaystyle T_{H}} 3776: 3774:{\displaystyle T_{C}} 3747: 3745:{\displaystyle Q_{H}} 3718: 3716:{\displaystyle Q_{C}} 3666: 3546: 3544:{\displaystyle \eta } 3524: 3472: 3450: 3349: 3252: 3136: 3106: 3062: 2889: 2728: 2695: 2650: 2608: 2606:{\displaystyle T_{C}} 2581: 2579:{\displaystyle Q_{C}} 2552: 2478: 2396: 2361: 2348: 2312: 2204: 2147: 2134: 2076: 2011: 1960: 1958:{\displaystyle Q_{H}} 1933: 1819: 1796: 1756: 1754:{\displaystyle T_{C}} 1729: 1727:{\displaystyle T_{H}} 1695:In a Carnot cycle, a 1343:On the Equilibrium of 1163: 1108: 1061:Helmholtz free energy 1053: 998: 860: 836: 813: 789: 764: 728: 704: 681: 657: 632: 593: 569: 546: 522: 497: 5537:Thermodynamic cycles 5486:Regenerative cooling 5364:combustion / thermal 5263:Without phase change 5254:combustion / thermal 5244:Thermodynamic cycles 4725:thermodynamic system 4523: 4447: 4290: 4263: 4204: 4129: 4028: 3933: 3880: 3849: 3820: 3791: 3783:absolute temperature 3758: 3729: 3700: 3560: 3535: 3481: 3461: 3358: 3263: 3150: 2937: 2826: 2617: 2590: 2563: 2487: 2416: 2321: 2263: 2157:reversible adiabatic 2085: 2065: 1942: 1828: 1805: 1785: 1738: 1711: 1699:or engine transfers 1678:thermodynamic engine 1356:Motive Power of Fire 1122: 1067: 1012: 972: 924:Bridgman's equations 901:Fundamental relation 846: 825: 799: 778: 750: 714: 693: 667: 646: 615: 579: 558: 532: 511: 483: 5208:Wolfram Mathematica 5145:2011AIPC.1411..327K 4918:2011JPhA...44N5001S 4857:2018PhRvL.121l0601H 2873: 2849: 2701:thermodynamic cycle 1996:thermodynamic cycle 1662:thermodynamic cycle 1334:Source ... Friction 1266:Loschmidt's paradox 458:Material properties 336:Conjugate variables 4749:Carnot heat engine 4718:Carnot heat engine 4586: 4510: 4340: 4303: 4276: 4210: 4190: 4115: 4014: 3919: 3862: 3833: 3804: 3771: 3742: 3713: 3661: 3551:is defined to be: 3541: 3519: 3467: 3445: 3344: 3247: 3142: 3126: 3089:exact differential 3057: 2884: 2859: 2835: 2785: 2723: 2705:Carnot heat engine 2645: 2603: 2576: 2547: 2473: 2406: 2363: 2343: 2307: 2246:isothermal process 2206: 2194:isentropic process 2149: 2129: 2071: 2013: 2000:Carnot heat engine 1955: 1928: 1824:per cycle such as 1814: 1791: 1751: 1724: 1705:thermal reservoirs 1598:Order and disorder 1354:Reflections on the 1261:Heat death paradox 1158: 1103: 1048: 993: 855: 831: 808: 784: 759: 723: 699: 676: 652: 627: 588: 564: 541: 517: 495:{\displaystyle c=} 492: 465:Property databases 441:Reduced properties 425:Chemical potential 389:Functions of state 312:Thermal efficiency 48:Carnot heat engine 5524: 5523: 5501:Vapor-compression 5427:Staged combustion 5356: 5355: 5321:With phase change 5173:978-0-7354-0985-9 5163:10.1063/1.3665247 5123:978-0-7167-1088-2 5097:978-0-471-02456-9 5070:978-0-201-02116-5 5008:Physical Review E 4572: 4558: 4496: 4482: 3917: 3685: 3684: 3659: 3626: 3584: 3470:{\displaystyle Q} 3081: 3080: 2908: 2907: 2542: 2512: 2461: 2175:adiabatic process 2074:{\displaystyle S} 1987: 1986: 1926: 1794:{\displaystyle W} 1676:of any classical 1652: 1651: 1593:Self-organization 1418: 1417: 1116:Gibbs free energy 914:Maxwell relations 872: 871: 868: 867: 834:{\displaystyle V} 787:{\displaystyle 1} 742:Thermal expansion 736: 735: 702:{\displaystyle V} 655:{\displaystyle 1} 601: 600: 567:{\displaystyle N} 520:{\displaystyle T} 448: 447: 364:Process functions 350:Property diagrams 329:System properties 319: 318: 284:Endoreversibility 176:Equation of state 16:(Redirected from 5544: 5496:Vapor absorption 5259: 5258: 5237: 5230: 5223: 5214: 5213: 5166: 5156: 5127: 5110:Kroemer, Herbert 5101: 5085: 5074: 5058: 5046:Internet Archive 5019: 5018: 5005: 4996: 4990: 4989: 4968: 4944: 4938: 4937: 4911: 4891: 4885: 4884: 4850: 4830: 4824: 4817: 4811: 4810: 4808: 4797: 4791: 4790: 4780: 4737:Carnot's theorem 4595: 4593: 4592: 4587: 4576: 4575: 4574: 4573: 4570: 4559: 4557: 4546: 4538: 4537: 4519: 4517: 4516: 4511: 4500: 4499: 4498: 4497: 4494: 4483: 4481: 4470: 4462: 4461: 4373:Clausius theorem 4343:Carnot's theorem 4322: 4312: 4310: 4309: 4304: 4302: 4301: 4285: 4283: 4282: 4277: 4275: 4274: 4249:Carnot's theorem 4219: 4217: 4216: 4211: 4199: 4197: 4196: 4191: 4189: 4188: 4170: 4169: 4157: 4156: 4144: 4143: 4124: 4122: 4121: 4116: 4108: 4107: 4095: 4094: 4079: 4078: 4066: 4065: 4053: 4052: 4040: 4039: 4023: 4021: 4020: 4015: 4013: 4012: 4000: 3999: 3984: 3983: 3971: 3970: 3958: 3957: 3945: 3944: 3928: 3926: 3925: 3920: 3918: 3916: 3915: 3906: 3905: 3896: 3871: 3869: 3868: 3863: 3861: 3860: 3842: 3840: 3839: 3834: 3832: 3831: 3813: 3811: 3810: 3805: 3803: 3802: 3780: 3778: 3777: 3772: 3770: 3769: 3751: 3749: 3748: 3743: 3741: 3740: 3722: 3720: 3719: 3714: 3712: 3711: 3693: 3679: 3670: 3668: 3667: 3662: 3660: 3658: 3657: 3648: 3647: 3638: 3627: 3625: 3624: 3615: 3614: 3613: 3601: 3600: 3590: 3585: 3583: 3582: 3570: 3554: 3550: 3548: 3547: 3542: 3528: 3526: 3525: 3520: 3518: 3517: 3505: 3504: 3476: 3474: 3473: 3468: 3454: 3452: 3451: 3446: 3438: 3437: 3425: 3424: 3409: 3408: 3396: 3395: 3383: 3382: 3370: 3369: 3353: 3351: 3350: 3345: 3343: 3342: 3330: 3329: 3314: 3313: 3301: 3300: 3288: 3287: 3275: 3274: 3256: 3254: 3253: 3248: 3243: 3242: 3230: 3229: 3214: 3213: 3201: 3200: 3139: 3129:The Carnot cycle 3109: 3075: 3066: 3064: 3063: 3058: 2931: 2927: 2902: 2893: 2891: 2890: 2885: 2872: 2867: 2848: 2843: 2820: 2772: 2731: 2698: 2654: 2652: 2651: 2646: 2644: 2643: 2634: 2629: 2628: 2612: 2610: 2609: 2604: 2602: 2601: 2585: 2583: 2582: 2577: 2575: 2574: 2559:This is true as 2556: 2554: 2553: 2548: 2543: 2541: 2540: 2531: 2530: 2521: 2513: 2511: 2510: 2501: 2500: 2491: 2482: 2480: 2479: 2474: 2463: 2462: 2459: 2447: 2446: 2431: 2430: 2399: 2352: 2350: 2349: 2344: 2336: 2335: 2316: 2314: 2313: 2308: 2306: 2305: 2296: 2291: 2290: 2278: 2277: 2138: 2136: 2135: 2130: 2128: 2127: 2118: 2113: 2112: 2100: 2099: 2080: 2078: 2077: 2072: 1980: 1979: 1968: 1967: 1964: 1962: 1961: 1956: 1954: 1953: 1937: 1935: 1934: 1929: 1927: 1925: 1924: 1915: 1914: 1905: 1900: 1899: 1887: 1886: 1862: 1861: 1849: 1848: 1823: 1821: 1820: 1815: 1800: 1798: 1797: 1792: 1760: 1758: 1757: 1752: 1750: 1749: 1733: 1731: 1730: 1725: 1723: 1722: 1707:at temperatures 1670:Carnot's theorem 1644: 1637: 1630: 1614: 1613: 1321:Key publications 1302: 1301:("living force") 1251:Brownian ratchet 1246:Entropy and life 1241:Entropy and time 1192: 1191: 1167: 1165: 1164: 1159: 1112: 1110: 1109: 1104: 1057: 1055: 1054: 1049: 1002: 1000: 999: 994: 896:Clausius theorem 891:Carnot's theorem 864: 862: 861: 856: 840: 838: 837: 832: 817: 815: 814: 809: 793: 791: 790: 785: 772: 771: 768: 766: 765: 760: 732: 730: 729: 724: 708: 706: 705: 700: 685: 683: 682: 677: 661: 659: 658: 653: 640: 639: 636: 634: 633: 628: 597: 595: 594: 589: 573: 571: 570: 565: 550: 548: 547: 542: 526: 524: 523: 518: 505: 504: 501: 499: 498: 493: 471: 470: 344: 343: 163: 162: 44: 30: 29: 21: 5552: 5551: 5547: 5546: 5545: 5543: 5542: 5541: 5527: 5526: 5525: 5520: 5457: 5431: 5363: 5352: 5342:Organic Rankine 5316: 5270: 5267:hot air engines 5264: 5253: 5246: 5241: 5193: 5175:. Abstract at: 5154:10.1.1.405.1945 5124: 5114:Thermal Physics 5106:Kittel, Charles 5098: 5071: 5023: 5022: 5003: 4997: 4993: 4945: 4941: 4892: 4888: 4835:Phys. Rev. Lett 4831: 4827: 4818: 4814: 4806: 4798: 4794: 4781: 4772: 4762: 4745: 4735:. As such, per 4714: 4708: 4687: 4680: 4673: 4666: 4659: 4652: 4645: 4638: 4628: 4621: 4608: 4601: 4569: 4565: 4564: 4560: 4550: 4545: 4533: 4529: 4524: 4521: 4520: 4493: 4489: 4488: 4484: 4474: 4469: 4457: 4453: 4448: 4445: 4444: 4408: 4402: 4349:Thus, Equation 4297: 4293: 4291: 4288: 4287: 4270: 4266: 4264: 4261: 4260: 4257: 4251: 4231: 4223: 4205: 4202: 4201: 4184: 4180: 4165: 4161: 4152: 4148: 4139: 4135: 4130: 4127: 4126: 4103: 4099: 4090: 4086: 4074: 4070: 4061: 4057: 4048: 4044: 4035: 4031: 4029: 4026: 4025: 4008: 4004: 3995: 3991: 3979: 3975: 3966: 3962: 3953: 3949: 3940: 3936: 3934: 3931: 3930: 3911: 3907: 3901: 3897: 3895: 3881: 3878: 3877: 3856: 3852: 3850: 3847: 3846: 3827: 3823: 3821: 3818: 3817: 3798: 3794: 3792: 3789: 3788: 3765: 3761: 3759: 3756: 3755: 3736: 3732: 3730: 3727: 3726: 3707: 3703: 3701: 3698: 3697: 3691: 3653: 3649: 3643: 3639: 3637: 3620: 3616: 3609: 3605: 3596: 3592: 3591: 3589: 3578: 3574: 3569: 3561: 3558: 3557: 3536: 3533: 3532: 3531:The efficiency 3513: 3509: 3500: 3496: 3482: 3479: 3478: 3462: 3459: 3458: 3433: 3429: 3420: 3416: 3404: 3400: 3391: 3387: 3378: 3374: 3365: 3361: 3359: 3356: 3355: 3338: 3334: 3325: 3321: 3309: 3305: 3296: 3292: 3283: 3279: 3270: 3266: 3264: 3261: 3260: 3238: 3234: 3225: 3221: 3209: 3205: 3196: 3192: 3151: 3148: 3147: 3131: 3123: 3116: 2938: 2935: 2934: 2921: 2868: 2863: 2844: 2839: 2827: 2824: 2823: 2782: 2778: 2771: 2765: 2763: 2756: 2745: 2738: 2720: 2713: 2703:performed by a 2690: 2684: 2679: 2661: 2639: 2635: 2630: 2624: 2620: 2618: 2615: 2614: 2597: 2593: 2591: 2588: 2587: 2570: 2566: 2564: 2561: 2560: 2536: 2532: 2526: 2522: 2520: 2506: 2502: 2496: 2492: 2490: 2488: 2485: 2484: 2458: 2454: 2442: 2438: 2426: 2422: 2417: 2414: 2413: 2391: 2385: 2331: 2327: 2322: 2319: 2318: 2301: 2297: 2292: 2286: 2282: 2273: 2269: 2264: 2261: 2260: 2254: 2243: 2236: 2215: 2183: 2123: 2119: 2114: 2108: 2104: 2095: 2091: 2086: 2083: 2082: 2066: 2063: 2062: 2060: 2036: 2027: 1998:performed by a 1992: 1977: 1971:External videos 1949: 1945: 1943: 1940: 1939: 1920: 1916: 1910: 1906: 1904: 1895: 1891: 1882: 1878: 1857: 1853: 1844: 1840: 1829: 1826: 1825: 1806: 1803: 1802: 1786: 1783: 1782: 1745: 1741: 1739: 1736: 1735: 1718: 1714: 1712: 1709: 1708: 1648: 1603: 1602: 1578: 1570: 1569: 1568: 1428: 1420: 1419: 1398: 1384: 1359: 1355: 1348: 1344: 1337: 1333: 1300: 1293: 1275: 1256:Maxwell's demon 1218: 1189: 1188: 1172: 1171: 1170: 1123: 1120: 1119: 1118: 1068: 1065: 1064: 1063: 1013: 1010: 1009: 1008: 973: 970: 969: 968: 966:Internal energy 961: 946: 936: 935: 910: 885: 875: 874: 873: 847: 844: 843: 826: 823: 822: 800: 797: 796: 779: 776: 775: 751: 748: 747: 715: 712: 711: 694: 691: 690: 668: 665: 664: 647: 644: 643: 616: 613: 612: 607:Compressibility 580: 577: 576: 559: 556: 555: 533: 530: 529: 512: 509: 508: 484: 481: 480: 460: 450: 449: 430:Particle number 383: 342: 331: 321: 320: 279:Irreversibility 191:State of matter 158:Isolated system 143: 133: 132: 131: 106: 96: 95: 91:Non-equilibrium 83: 58: 50: 28: 23: 22: 15: 12: 11: 5: 5550: 5540: 5539: 5522: 5521: 5519: 5518: 5513: 5508: 5503: 5498: 5493: 5488: 5483: 5478: 5473: 5467: 5465: 5459: 5458: 5456: 5455: 5450: 5445: 5439: 5437: 5433: 5432: 5430: 5429: 5424: 5419: 5414: 5409: 5404: 5399: 5394: 5389: 5384: 5379: 5374: 5368: 5366: 5358: 5357: 5354: 5353: 5351: 5350: 5345: 5335: 5330: 5324: 5322: 5318: 5317: 5315: 5314: 5309: 5304: 5299: 5294: 5289: 5284: 5279: 5273: 5271: 5262: 5256: 5248: 5247: 5240: 5239: 5232: 5225: 5217: 5211: 5210: 5202:S. M. Blinder 5200: 5192: 5191:External links 5189: 5188: 5187: 5186: 5185: 5139:(1): 327–350. 5133:AIP Conf. Proc 5128: 5122: 5102: 5096: 5075: 5069: 5048: 5035: 5031:Carnot, Sadi, 5027: 5021: 5020: 4991: 4939: 4902:(40): 405001. 4886: 4841:(12): 120601. 4825: 4812: 4803:Thermodynamics 4792: 4769: 4768: 4767: 4766: 4761: 4758: 4757: 4756: 4751: 4744: 4741: 4710:Main article: 4707: 4704: 4685: 4678: 4675:, and ⟨ 4671: 4664: 4657: 4650: 4647:, and ⟨ 4643: 4636: 4626: 4619: 4606: 4599: 4585: 4582: 4579: 4568: 4563: 4556: 4553: 4549: 4544: 4541: 4536: 4532: 4528: 4509: 4506: 4503: 4492: 4487: 4480: 4477: 4473: 4468: 4465: 4460: 4456: 4452: 4443:temperatures, 4431:Carnot's cycle 4401: 4398: 4377:state function 4300: 4296: 4273: 4269: 4253:Main article: 4250: 4247: 4230: 4227: 4209: 4187: 4183: 4179: 4176: 4173: 4168: 4164: 4160: 4155: 4151: 4147: 4142: 4138: 4134: 4114: 4111: 4106: 4102: 4098: 4093: 4089: 4085: 4082: 4077: 4073: 4069: 4064: 4060: 4056: 4051: 4047: 4043: 4038: 4034: 4011: 4007: 4003: 3998: 3994: 3990: 3987: 3982: 3978: 3974: 3969: 3965: 3961: 3956: 3952: 3948: 3943: 3939: 3914: 3910: 3904: 3900: 3894: 3891: 3888: 3885: 3874: 3873: 3859: 3855: 3844: 3830: 3826: 3815: 3801: 3797: 3786: 3768: 3764: 3753: 3739: 3735: 3724: 3710: 3706: 3695: 3683: 3682: 3673: 3671: 3656: 3652: 3646: 3642: 3636: 3633: 3630: 3623: 3619: 3612: 3608: 3604: 3599: 3595: 3588: 3581: 3577: 3573: 3568: 3565: 3540: 3516: 3512: 3508: 3503: 3499: 3495: 3492: 3489: 3486: 3466: 3444: 3441: 3436: 3432: 3428: 3423: 3419: 3415: 3412: 3407: 3403: 3399: 3394: 3390: 3386: 3381: 3377: 3373: 3368: 3364: 3341: 3337: 3333: 3328: 3324: 3320: 3317: 3312: 3308: 3304: 3299: 3295: 3291: 3286: 3282: 3278: 3273: 3269: 3246: 3241: 3237: 3233: 3228: 3224: 3220: 3217: 3212: 3208: 3204: 3199: 3195: 3191: 3188: 3185: 3182: 3179: 3176: 3173: 3170: 3167: 3164: 3161: 3158: 3155: 3130: 3127: 3121: 3114: 3079: 3078: 3069: 3067: 3056: 3053: 3050: 3047: 3044: 3041: 3038: 3035: 3032: 3029: 3026: 3023: 3020: 3017: 3014: 3011: 3008: 3005: 3002: 2999: 2996: 2993: 2990: 2987: 2984: 2981: 2978: 2975: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2945: 2942: 2906: 2905: 2896: 2894: 2883: 2880: 2876: 2871: 2866: 2862: 2858: 2855: 2852: 2847: 2842: 2838: 2834: 2831: 2780: 2769: 2761: 2754: 2743: 2736: 2718: 2711: 2686:Main article: 2683: 2680: 2678: 2675: 2660: 2657: 2642: 2638: 2633: 2627: 2623: 2600: 2596: 2573: 2569: 2546: 2539: 2535: 2529: 2525: 2519: 2516: 2509: 2505: 2499: 2495: 2472: 2469: 2466: 2457: 2453: 2450: 2445: 2441: 2437: 2434: 2429: 2425: 2421: 2390: 2389: 2383: 2355: 2342: 2339: 2334: 2330: 2326: 2304: 2300: 2295: 2289: 2285: 2281: 2276: 2272: 2268: 2252: 2241: 2234: 2213: 2198: 2181: 2141: 2126: 2122: 2117: 2111: 2107: 2103: 2098: 2094: 2090: 2070: 2058: 2032: 2023: 2004: 1991: 1988: 1985: 1984: 1973: 1972: 1952: 1948: 1923: 1919: 1913: 1909: 1903: 1898: 1894: 1890: 1885: 1881: 1877: 1874: 1871: 1868: 1865: 1860: 1856: 1852: 1847: 1843: 1839: 1836: 1833: 1813: 1810: 1790: 1748: 1744: 1721: 1717: 1650: 1649: 1647: 1646: 1639: 1632: 1624: 1621: 1620: 1619: 1618: 1605: 1604: 1601: 1600: 1595: 1590: 1585: 1579: 1576: 1575: 1572: 1571: 1567: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1436: 1430: 1429: 1426: 1425: 1422: 1421: 1416: 1415: 1414: 1413: 1408: 1400: 1399: 1397: 1396: 1393: 1389: 1386: 1385: 1383: 1382: 1377: 1375:Thermodynamics 1371: 1368: 1367: 1363: 1362: 1361: 1360: 1351: 1349: 1340: 1338: 1329: 1324: 1323: 1317: 1316: 1315: 1314: 1309: 1304: 1292: 1291: 1289:Caloric theory 1285: 1282: 1281: 1277: 1276: 1274: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1237: 1234: 1233: 1227: 1226: 1225: 1224: 1217: 1216: 1211: 1206: 1200: 1197: 1196: 1190: 1187: 1186: 1183: 1179: 1178: 1177: 1174: 1173: 1169: 1168: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1113: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1058: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1003: 992: 989: 986: 983: 980: 977: 962: 960: 959: 954: 948: 947: 942: 941: 938: 937: 934: 933: 926: 921: 916: 909: 908: 903: 898: 893: 887: 886: 881: 880: 877: 876: 870: 869: 866: 865: 854: 851: 841: 830: 819: 818: 807: 804: 794: 783: 769: 758: 755: 745: 738: 737: 734: 733: 722: 719: 709: 698: 687: 686: 675: 672: 662: 651: 637: 626: 623: 620: 610: 603: 602: 599: 598: 587: 584: 574: 563: 552: 551: 540: 537: 527: 516: 502: 491: 488: 478: 469: 468: 467: 461: 456: 455: 452: 451: 446: 445: 444: 443: 438: 433: 422: 411: 392: 391: 385: 384: 382: 381: 376: 370: 367: 366: 360: 359: 358: 357: 352: 333: 332: 327: 326: 323: 322: 317: 316: 315: 314: 309: 304: 296: 295: 289: 288: 287: 286: 281: 276: 271: 269:Free expansion 266: 261: 256: 251: 246: 241: 236: 231: 223: 222: 216: 215: 214: 213: 208: 206:Control volume 203: 198: 196:Phase (matter) 193: 188: 183: 178: 170: 169: 161: 160: 155: 150: 144: 139: 138: 135: 134: 130: 129: 124: 119: 114: 108: 107: 102: 101: 98: 97: 94: 93: 82: 81: 76: 71: 66: 60: 59: 56: 55: 52: 51: 46:The classical 45: 37: 36: 34:Thermodynamics 26: 9: 6: 4: 3: 2: 5549: 5538: 5535: 5534: 5532: 5517: 5514: 5512: 5509: 5507: 5504: 5502: 5499: 5497: 5494: 5492: 5491:Transcritical 5489: 5487: 5484: 5482: 5479: 5477: 5474: 5472: 5471:Hampson–Linde 5469: 5468: 5466: 5464: 5463:Refrigeration 5460: 5454: 5451: 5449: 5446: 5444: 5441: 5440: 5438: 5434: 5428: 5425: 5423: 5420: 5418: 5415: 5413: 5410: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5392:Gas-generator 5390: 5388: 5385: 5383: 5380: 5378: 5377:Brayton/Joule 5375: 5373: 5370: 5369: 5367: 5365: 5359: 5349: 5346: 5343: 5339: 5336: 5334: 5331: 5329: 5326: 5325: 5323: 5319: 5313: 5310: 5308: 5305: 5303: 5300: 5298: 5295: 5293: 5290: 5288: 5285: 5283: 5282:Brayton/Joule 5280: 5278: 5275: 5274: 5272: 5268: 5260: 5257: 5255: 5249: 5245: 5238: 5233: 5231: 5226: 5224: 5219: 5218: 5215: 5209: 5205: 5201: 5198: 5195: 5194: 5183: 5180: 5177: 5174: 5170: 5164: 5160: 5155: 5150: 5146: 5142: 5138: 5134: 5129: 5125: 5119: 5115: 5111: 5107: 5103: 5099: 5093: 5089: 5084: 5083: 5076: 5072: 5066: 5062: 5057: 5056: 5049: 5047: 5043: 5039: 5036: 5034: 5030: 5029: 5028: 5025: 5024: 5017: 5013: 5009: 5002: 4995: 4988: 4984: 4980: 4976: 4972: 4967: 4962: 4958: 4954: 4950: 4943: 4935: 4931: 4927: 4923: 4919: 4915: 4910: 4905: 4901: 4897: 4890: 4882: 4878: 4874: 4870: 4866: 4862: 4858: 4854: 4849: 4844: 4840: 4836: 4829: 4822: 4816: 4805: 4804: 4796: 4788: 4787: 4779: 4777: 4775: 4770: 4764: 4763: 4755: 4752: 4750: 4747: 4746: 4740: 4738: 4734: 4730: 4729:diesel engine 4726: 4723: 4719: 4713: 4703: 4701: 4700:diesel engine 4696: 4692: 4688: 4681: 4674: 4667: 4660: 4653: 4646: 4639: 4631: 4629: 4622: 4615: 4614: 4609: 4602: 4583: 4580: 4577: 4566: 4561: 4554: 4547: 4542: 4534: 4530: 4507: 4504: 4501: 4490: 4485: 4478: 4471: 4466: 4458: 4454: 4442: 4438: 4437: 4432: 4427: 4425: 4424: 4419: 4418: 4413: 4407: 4397: 4393: 4391: 4388: 4384: 4383: 4378: 4374: 4370: 4366: 4361: 4358: 4354: 4353: 4348: 4344: 4337: 4336: 4335:Rankine cycle 4330: 4326: 4318: 4314: 4298: 4294: 4271: 4267: 4256: 4246: 4244: 4240: 4236: 4226: 4221: 4207: 4185: 4181: 4174: 4171: 4166: 4162: 4158: 4153: 4149: 4145: 4140: 4136: 4112: 4109: 4104: 4100: 4091: 4087: 4083: 4075: 4071: 4067: 4062: 4058: 4049: 4045: 4041: 4036: 4032: 4009: 4005: 3996: 3992: 3988: 3980: 3976: 3972: 3967: 3963: 3954: 3950: 3946: 3941: 3937: 3912: 3908: 3902: 3898: 3892: 3889: 3886: 3883: 3857: 3853: 3845: 3828: 3824: 3816: 3799: 3795: 3787: 3784: 3766: 3762: 3754: 3737: 3733: 3725: 3708: 3704: 3696: 3690: 3689: 3688: 3681: 3674: 3672: 3654: 3650: 3644: 3640: 3634: 3631: 3628: 3621: 3617: 3610: 3606: 3602: 3597: 3593: 3586: 3579: 3575: 3571: 3566: 3563: 3556: 3555: 3552: 3538: 3529: 3514: 3510: 3506: 3501: 3497: 3493: 3490: 3487: 3484: 3464: 3455: 3442: 3439: 3434: 3430: 3421: 3417: 3413: 3405: 3401: 3397: 3392: 3388: 3379: 3375: 3371: 3366: 3362: 3339: 3335: 3326: 3322: 3318: 3310: 3306: 3302: 3297: 3293: 3284: 3280: 3276: 3271: 3267: 3257: 3239: 3235: 3231: 3226: 3222: 3210: 3206: 3202: 3197: 3193: 3186: 3183: 3180: 3177: 3174: 3171: 3168: 3165: 3162: 3159: 3156: 3153: 3145: 3135: 3120: 3113: 3105: 3101: 3098: 3094: 3090: 3086: 3077: 3070: 3068: 3054: 3051: 3048: 3045: 3042: 3039: 3036: 3033: 3030: 3027: 3024: 3021: 3018: 3015: 3009: 3006: 3003: 3000: 2997: 2994: 2988: 2985: 2979: 2976: 2973: 2970: 2967: 2961: 2958: 2955: 2952: 2949: 2946: 2943: 2940: 2933: 2932: 2929: 2926: 2925: 2918: 2914: 2904: 2897: 2895: 2881: 2878: 2874: 2869: 2864: 2860: 2856: 2853: 2850: 2845: 2840: 2836: 2832: 2829: 2822: 2821: 2818: 2816: 2815: 2810: 2806: 2802: 2798: 2794: 2790: 2776: 2768: 2760: 2753: 2749: 2742: 2735: 2727: 2717: 2710: 2706: 2702: 2694: 2689: 2674: 2672: 2671: 2666: 2656: 2640: 2636: 2631: 2625: 2621: 2598: 2594: 2571: 2567: 2557: 2544: 2537: 2533: 2527: 2523: 2517: 2514: 2507: 2503: 2497: 2493: 2470: 2467: 2464: 2455: 2448: 2443: 2439: 2432: 2427: 2423: 2411: 2403: 2395: 2388: 2386: 2379: 2378: 2373: 2372: 2367: 2360: 2356: 2354: 2340: 2337: 2332: 2328: 2302: 2298: 2293: 2287: 2283: 2279: 2274: 2270: 2258: 2251: 2247: 2240: 2233: 2229: 2228: 2223: 2222: 2217: 2212: 2203: 2199: 2197: 2195: 2191: 2187: 2180: 2176: 2172: 2171: 2166: 2165: 2160: 2158: 2154: 2146: 2142: 2140: 2124: 2120: 2115: 2109: 2105: 2101: 2096: 2092: 2068: 2057: 2053: 2052: 2047: 2046: 2041: 2037: 2035: 2031: 2026: 2022: 2018: 2010: 2006: 2005: 2003: 2001: 1997: 1983: 1974: 1969: 1966: 1950: 1946: 1921: 1917: 1911: 1907: 1896: 1892: 1888: 1883: 1879: 1872: 1869: 1858: 1854: 1850: 1845: 1841: 1834: 1831: 1811: 1788: 1780: 1779:refrigeration 1776: 1772: 1768: 1764: 1746: 1742: 1719: 1715: 1706: 1702: 1698: 1693: 1691: 1690:refrigeration 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1654: 1645: 1640: 1638: 1633: 1631: 1626: 1625: 1623: 1622: 1617: 1609: 1608: 1607: 1606: 1599: 1596: 1594: 1591: 1589: 1588:Self-assembly 1586: 1584: 1581: 1580: 1574: 1573: 1565: 1562: 1560: 1559:van der Waals 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1484:von Helmholtz 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1431: 1424: 1423: 1412: 1409: 1407: 1404: 1403: 1402: 1401: 1394: 1391: 1390: 1388: 1387: 1381: 1378: 1376: 1373: 1372: 1370: 1369: 1365: 1364: 1358: 1357: 1350: 1347: 1346: 1339: 1336: 1335: 1328: 1327: 1326: 1325: 1322: 1319: 1318: 1313: 1310: 1308: 1305: 1303: 1299: 1295: 1294: 1290: 1287: 1286: 1284: 1283: 1279: 1278: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1236: 1235: 1232: 1229: 1228: 1223: 1220: 1219: 1215: 1212: 1210: 1207: 1205: 1202: 1201: 1199: 1198: 1194: 1193: 1184: 1181: 1180: 1176: 1175: 1155: 1152: 1149: 1146: 1143: 1137: 1134: 1131: 1125: 1117: 1114: 1100: 1097: 1094: 1091: 1088: 1082: 1079: 1076: 1070: 1062: 1059: 1045: 1042: 1039: 1036: 1033: 1027: 1024: 1021: 1015: 1007: 1004: 987: 984: 981: 975: 967: 964: 963: 958: 955: 953: 950: 949: 945: 940: 939: 932: 931: 927: 925: 922: 920: 917: 915: 912: 911: 907: 906:Ideal gas law 904: 902: 899: 897: 894: 892: 889: 888: 884: 879: 878: 852: 842: 828: 821: 820: 805: 795: 781: 774: 773: 770: 756: 753: 746: 743: 740: 739: 720: 710: 696: 689: 688: 673: 663: 649: 642: 641: 638: 624: 621: 618: 611: 608: 605: 604: 585: 575: 561: 554: 553: 538: 528: 514: 507: 506: 503: 489: 486: 479: 476: 473: 472: 466: 463: 462: 459: 454: 453: 442: 439: 437: 436:Vapor quality 434: 432: 431: 426: 423: 421: 420: 415: 412: 409: 405: 404: 399: 396: 395: 394: 393: 390: 387: 386: 380: 377: 375: 372: 371: 369: 368: 365: 362: 361: 356: 353: 351: 348: 347: 346: 345: 341: 337: 330: 325: 324: 313: 310: 308: 305: 303: 300: 299: 298: 297: 294: 291: 290: 285: 282: 280: 277: 275: 274:Reversibility 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 226: 225: 224: 221: 218: 217: 212: 209: 207: 204: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 173: 172: 171: 168: 165: 164: 159: 156: 154: 151: 149: 148:Closed system 146: 145: 142: 137: 136: 128: 125: 123: 120: 118: 115: 113: 110: 109: 105: 100: 99: 92: 88: 85: 84: 80: 77: 75: 72: 70: 67: 65: 62: 61: 54: 53: 49: 43: 39: 38: 35: 32: 31: 19: 5348:Regenerative 5286: 5277:Bell Coleman 5197:Hyperphysics 5136: 5132: 5113: 5081: 5054: 5038:Ewing, J. A. 5015: 5011: 5007: 4994: 4986: 4956: 4952: 4942: 4899: 4895: 4889: 4838: 4834: 4828: 4820: 4815: 4802: 4795: 4785: 4721: 4715: 4683: 4676: 4669: 4662: 4655: 4648: 4641: 4634: 4632: 4624: 4617: 4611: 4610:in Equation 4604: 4597: 4434: 4430: 4428: 4421: 4415: 4409: 4394: 4380: 4362: 4356: 4350: 4346: 4342: 4341: 4332: 4328: 4324: 4258: 4242: 4238: 4232: 4222: 3875: 3686: 3675: 3530: 3456: 3258: 3146: 3143: 3118: 3111: 3096: 3092: 3084: 3082: 3071: 2922: 2916: 2912: 2909: 2898: 2812: 2808: 2804: 2796: 2792: 2786: 2774: 2766: 2758: 2751: 2740: 2733: 2715: 2708: 2668: 2662: 2558: 2407: 2381: 2375: 2374:, D to A on 2369: 2365: 2364: 2249: 2238: 2231: 2225: 2224:, C to D on 2219: 2210: 2208: 2207: 2189: 2185: 2178: 2168: 2167:, B to C in 2162: 2151: 2150: 2055: 2049: 2048:, A to B in 2043: 2039: 2033: 2029: 2024: 2020: 2015: 2014: 1993: 1694: 1660:is an ideal 1658:Carnot cycle 1657: 1655: 1653: 1449:CarathĂ©odory 1380:Heat engines 1352: 1341: 1330: 1312:Motive power 1297: 957:Free entropy 928: 428: 427: / 417: 416: / 408:introduction 401: 400: / 339: 302:Heat engines 89: / 18:Engine cycle 5516:Ionocaloric 5511:Vuilleumier 5333:Hygroscopic 5206:powered by 5181:), also at 4695:regenerator 4616:by ⟨ 4390:heat engine 4369:dissipation 4367:leading to 2368:(4 to 1 on 2188:transfers ( 1666:Sadi Carnot 1271:Synergetics 952:Free energy 398:Temperature 259:Quasistatic 254:Isenthalpic 211:Instruments 201:Equilibrium 153:Open system 87:Equilibrium 69:Statistical 5481:Pulse tube 5453:Mixed/dual 5061:Chapter 44 4966:1704.04363 4959:(8): 556. 4848:1805.00848 4760:References 4404:See also: 4387:reversible 2410:reversible 2402:PV diagram 2153:Isentropic 2017:Isothermal 1763:reversible 1674:efficiency 1583:Nucleation 1427:Scientists 1231:Philosophy 944:Potentials 307:Heat pumps 264:Polytropic 249:Isentropic 239:Isothermal 5476:Kleemenko 5362:Internal 5149:CiteSeerX 4983:1434-6052 4934:119261929 4909:1111.7014 4722:idealized 4562:∫ 4552:Δ 4540:⟩ 4527:⟨ 4486:∫ 4476:Δ 4464:⟩ 4451:⟨ 4429:Although 4208:η 4178:Δ 4175:− 4159:− 4133:Δ 4097:Δ 4068:− 4002:Δ 3973:− 3893:− 3884:η 3635:− 3603:− 3564:η 3539:η 3507:− 3427:Δ 3398:− 3332:Δ 3303:− 3232:− 3203:− 3175:∮ 3160:∮ 3046:∮ 3034:∮ 3031:− 3019:∮ 3004:− 2989:∮ 2974:− 2962:∮ 2947:∮ 2861:∫ 2837:∫ 2746:. By the 2518:− 2452:Δ 2436:Δ 2420:Δ 2325:Δ 2267:Δ 2089:Δ 1889:− 1867:Δ 1851:− 1809:Δ 1775:heat pump 1771:conserved 1564:Waterston 1514:von Mayer 1469:de Donder 1459:Clapeyron 1439:Boltzmann 1434:Bernoulli 1395:Education 1366:Timelines 1150:− 1095:− 883:Equations 850:∂ 803:∂ 754:α 718:∂ 671:∂ 625:− 619:β 583:∂ 536:∂ 244:Adiabatic 234:Isochoric 220:Processes 181:Ideal gas 64:Classical 5531:Category 5443:Combined 5402:Humphrey 5387:Expander 5372:Atkinson 5307:Stoddard 5297:Stirling 5292:Ericsson 5252:External 5112:(1980). 4881:52943273 4873:30296120 4743:See also 4691:reheater 4365:friction 4321:Figure 6 4125:. Since 3138:Figure 5 3108:Figure 4 2924:Figure 1 2814:Figure 2 2730:Figure 3 2697:Figure 2 2670:Figure 1 2398:Figure 1 2377:Figure 2 2371:Figure 1 2227:Figure 2 2221:Figure 1 2170:Figure 2 2164:Figure 1 2051:Figure 2 2045:Figure 1 1938:, where 1616:Category 1554:Thompson 1464:Clausius 1444:Bridgman 1298:Vis viva 1280:Theories 1214:Gas laws 1006:Enthalpy 414:Pressure 229:Isobaric 186:Real gas 74:Chemical 57:Branches 5506:Siemens 5422:Scuderi 5338:Rankine 5141:Bibcode 5088:541–548 5082:Physics 5040:(1910) 5026:Sources 4914:Bibcode 4853:Bibcode 4441:average 3781:is the 2801:entropy 1767:entropy 1539:Smeaton 1534:Rankine 1524:Onsager 1509:Maxwell 1504:Massieu 1209:Entropy 1204:General 1195:History 1185:Culture 1182:History 406: ( 403:Entropy 340:italics 141:Systems 5412:Miller 5407:Lenoir 5382:Diesel 5328:Kalina 5312:Manson 5287:Carnot 5171:  5151:  5120:  5094:  5067:  4981:  4932:  4879:  4871:  3687:where 3087:is an 3083:Since 1990:Stages 1765:, and 1701:energy 1697:system 1529:Planck 1519:Nernst 1494:Kelvin 1454:Carnot 744:  609:  477:  419:Volume 334:Note: 293:Cycles 122:Second 112:Zeroth 5436:Mixed 5014:(4). 5004:(PDF) 4961:arXiv 4930:S2CID 4904:arXiv 4877:S2CID 4843:arXiv 4807:(PDF) 4765:Notes 4693:or a 2460:cycle 1684:into 1577:Other 1544:Stahl 1499:Lewis 1489:Joule 1479:Gibbs 1474:Duhem 167:State 127:Third 117:First 5448:HEHC 5417:Otto 5169:ISBN 5137:1411 5118:ISBN 5092:ISBN 5065:ISBN 4979:ISSN 4869:PMID 4733:work 4716:The 4603:and 4333:See 4286:and 4110:< 4024:and 3440:< 2586:and 2483:or, 2338:< 1734:and 1686:work 1682:heat 1549:Tait 379:Heat 374:Work 104:Laws 5159:doi 5012:102 4971:doi 4922:doi 4861:doi 4839:121 4571:out 2757:to 1777:or 1769:is 1392:Art 338:in 5533:: 5157:. 5147:. 5108:; 5090:. 5063:. 5010:. 5006:. 4985:. 4977:. 4969:. 4957:77 4955:. 4951:. 4928:. 4920:. 4912:. 4900:44 4898:. 4875:. 4867:. 4859:. 4851:. 4837:. 4773:^ 4495:in 4392:. 4220:. 3085:dU 2779:Q 2655:. 2317:. 2196:. 2139:. 1656:A 5344:) 5340:( 5269:) 5265:( 5236:e 5229:t 5222:v 5184:. 5165:. 5161:: 5143:: 5126:. 5100:. 5073:. 4973:: 4963:: 4936:. 4924:: 4916:: 4906:: 4883:. 4863:: 4855:: 4845:: 4686:C 4684:T 4679:C 4677:T 4672:H 4670:T 4665:H 4663:T 4658:C 4656:T 4651:C 4649:T 4644:H 4642:T 4637:H 4635:T 4627:C 4625:T 4620:H 4618:T 4613:3 4607:C 4605:T 4600:H 4598:T 4584:S 4581:d 4578:T 4567:Q 4555:S 4548:1 4543:= 4535:C 4531:T 4508:S 4505:d 4502:T 4491:Q 4479:S 4472:1 4467:= 4459:H 4455:T 4436:3 4423:3 4417:3 4382:3 4352:3 4329:S 4327:– 4325:T 4299:C 4295:T 4272:H 4268:T 4243:V 4241:– 4239:P 4186:H 4182:S 4172:= 4167:B 4163:S 4154:A 4150:S 4146:= 4141:C 4137:S 4113:0 4105:C 4101:S 4092:C 4088:T 4084:= 4081:) 4076:B 4072:S 4063:A 4059:S 4055:( 4050:C 4046:T 4042:= 4037:C 4033:Q 4010:H 4006:S 3997:H 3993:T 3989:= 3986:) 3981:A 3977:S 3968:B 3964:S 3960:( 3955:H 3951:T 3947:= 3942:H 3938:Q 3913:H 3909:T 3903:C 3899:T 3890:1 3887:= 3858:A 3854:S 3829:B 3825:S 3800:H 3796:T 3767:C 3763:T 3738:H 3734:Q 3709:C 3705:Q 3692:W 3680:) 3678:3 3676:( 3655:H 3651:T 3645:C 3641:T 3632:1 3629:= 3622:H 3618:Q 3611:C 3607:Q 3598:H 3594:Q 3587:= 3580:H 3576:Q 3572:W 3567:= 3515:C 3511:Q 3502:H 3498:Q 3494:= 3491:Q 3488:= 3485:W 3465:Q 3443:0 3435:C 3431:S 3422:C 3418:T 3414:= 3411:) 3406:B 3402:S 3393:A 3389:S 3385:( 3380:C 3376:T 3372:= 3367:C 3363:Q 3340:H 3336:S 3327:H 3323:T 3319:= 3316:) 3311:A 3307:S 3298:B 3294:S 3290:( 3285:H 3281:T 3277:= 3272:H 3268:Q 3245:) 3240:A 3236:S 3227:B 3223:S 3219:( 3216:) 3211:C 3207:T 3198:H 3194:T 3190:( 3187:= 3184:S 3181:d 3178:T 3172:= 3169:V 3166:d 3163:P 3157:= 3154:W 3124:. 3122:C 3119:T 3115:H 3112:T 3097:S 3095:– 3093:T 3076:) 3074:2 3072:( 3055:S 3052:d 3049:T 3043:= 3040:U 3037:d 3028:S 3025:d 3022:T 3016:= 3013:) 3010:U 3007:d 3001:S 2998:d 2995:T 2992:( 2986:= 2983:) 2980:U 2977:d 2971:Q 2968:d 2965:( 2959:= 2956:V 2953:d 2950:P 2944:= 2941:W 2917:S 2915:- 2913:T 2903:) 2901:1 2899:( 2882:S 2879:d 2875:T 2870:B 2865:A 2857:= 2854:Q 2851:d 2846:B 2841:A 2833:= 2830:Q 2809:T 2805:S 2803:( 2797:S 2795:– 2793:T 2791:( 2781:C 2775:W 2770:C 2767:Q 2762:H 2759:T 2755:C 2752:T 2744:C 2741:T 2737:H 2734:T 2719:C 2716:T 2712:H 2709:T 2667:( 2641:H 2637:T 2632:/ 2626:H 2622:Q 2599:C 2595:T 2572:C 2568:Q 2545:. 2538:C 2534:T 2528:C 2524:Q 2515:= 2508:H 2504:T 2498:H 2494:Q 2471:, 2468:0 2465:= 2456:S 2449:= 2444:C 2440:S 2433:+ 2428:H 2424:S 2384:H 2382:T 2341:0 2333:C 2329:S 2303:C 2299:T 2294:/ 2288:C 2284:Q 2280:= 2275:C 2271:S 2253:C 2250:Q 2242:C 2239:T 2235:C 2232:T 2214:C 2211:T 2190:Q 2186:Q 2182:C 2179:T 2155:( 2125:H 2121:T 2116:/ 2110:H 2106:Q 2102:= 2097:H 2093:S 2069:S 2059:H 2056:Q 2034:H 2030:T 2025:H 2021:T 1951:H 1947:Q 1922:H 1918:T 1912:H 1908:Q 1902:) 1897:C 1893:T 1884:H 1880:T 1876:( 1873:= 1870:S 1864:) 1859:C 1855:T 1846:H 1842:T 1838:( 1835:= 1832:W 1812:S 1789:W 1747:C 1743:T 1720:H 1716:T 1643:e 1636:t 1629:v 1156:S 1153:T 1147:H 1144:= 1141:) 1138:p 1135:, 1132:T 1129:( 1126:G 1101:S 1098:T 1092:U 1089:= 1086:) 1083:V 1080:, 1077:T 1074:( 1071:A 1046:V 1043:p 1040:+ 1037:U 1034:= 1031:) 1028:p 1025:, 1022:S 1019:( 1016:H 991:) 988:V 985:, 982:S 979:( 976:U 853:T 829:V 806:V 782:1 757:= 721:p 697:V 674:V 650:1 622:= 586:T 562:N 539:S 515:T 490:= 487:c 410:) 20:)

Index

Engine cycle
Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑