Knowledge

Empty domain

Source đź“ť

20: 529: 252:"if anything is such that X then it is such that Y". Also, the quantifiers are given their usual objectual readings, so that a positive existential statement has existential import, while a universal one does not.) An analogous case concerns the empty conjunction and the empty disjunction. The semantic clauses for, respectively, conjunctions and disjunctions are given by 243:
In other words, an existential quantification of the open formula φ is true in a model iff there is some element in the domain (of the model) that satisfies the formula; i.e. iff that element has the property denoted by the open formula. A universal quantification of an open formula φ is
483:
Logics whose theorems are valid in every, including the empty, domain were first considered by Jaskowski 1934, Mostowski 1951, Hailperin 1953, Quine 1954, Leonard 1956, and Hintikka 1959. While Quine called such logics "inclusive" logic they are now referred to as
47:
is the empty set having no members. In traditional and classical logic domains are restrictedly non-empty in order that certain theorems be valid. Interpretations with an empty domain are shown to be a trivial case by a convention originating at least in 1927 with
363: 474: 159: 238: 72:. This follows from the idea that existentially quantified statements have existential import (i.e. they imply the existence of something) while universally quantified statements do not. This interpretation reportedly stems from 258: 369: 86: 165: 244:
true in a model iff every element in the domain satisfies that formula. (Note that in the metalanguage, "everything that is such that X is such that Y" is interpreted as a
613: 570: 358:{\displaystyle A\models \phi _{1}\land \dots \land \phi _{n}\iff \forall \phi _{i}(1\leq i\leq n),A\models \phi _{i}} 469:{\displaystyle A\models \phi _{1}\lor \dots \lor \phi _{n}\iff \exists \phi _{i}(1\leq i\leq n),A\models \phi _{i}} 154:{\displaystyle A\models \exists x\phi (x){\text{ iff there is an }}a\in A{\text{ such that }}A\models \phi } 480:
It is easy to see that the empty conjunction is trivially true, and the empty disjunction trivially false.
233:{\displaystyle A\models \forall x\phi (x){\text{ iff every }}a\in A{\text{ is such that }}A\models \phi } 595: 640: 563: 245: 57: 517: 512: 635: 507: 249: 24: 64:. The convention is to assign any formula beginning with a universal quantifier the value 53: 8: 556: 43: 544: 609: 37: 19: 601: 502: 68:
while any formula beginning with an existential quantifier is assigned the value
540: 629: 80:, it follows immediately for the truth conditions for quantified sentences: 497: 77: 73: 49: 605: 485: 528: 536: 76:
in the late 19th century but this is debatable. In modern
372: 261: 168: 89: 468: 357: 232: 153: 627: 56:(though possibly earlier) but oft-attributed to 23:In modern logic only the contradictories in the 564: 571: 557: 412: 408: 301: 297: 18: 628: 593: 523: 27:apply, because domains may be empty. 13: 413: 302: 175: 96: 14: 652: 527: 587: 444: 426: 409: 333: 315: 298: 227: 221: 190: 184: 148: 142: 111: 105: 1: 580: 600:. Harvard University Press. 543:. You can help Knowledge by 16:Concept in first-order logic 7: 491: 116: iff there is an  10: 657: 522: 246:universal generalization 209: is such that  32:red areas are nonempty.) 30:(Black areas are empty, 539:-related article is a 518:Table of logic symbols 513:Triangle of opposition 470: 359: 234: 155: 33: 606:10.4159/9780674042469 594:Quine, W. V. (1951). 471: 360: 235: 195: iff every  156: 130: such that  22: 508:Square of opposition 370: 259: 250:material conditional 166: 87: 25:square of opposition 597:Mathematical Logic 466: 355: 230: 151: 62:Mathematical Logic 34: 615:978-0-674-04246-9 552: 551: 210: 196: 131: 117: 38:first-order logic 648: 620: 619: 591: 573: 566: 559: 531: 524: 475: 473: 472: 467: 465: 464: 425: 424: 407: 406: 388: 387: 364: 362: 361: 356: 354: 353: 314: 313: 296: 295: 277: 276: 239: 237: 236: 231: 211: 208: 197: 194: 160: 158: 157: 152: 132: 129: 118: 115: 656: 655: 651: 650: 649: 647: 646: 645: 641:Predicate logic 626: 625: 624: 623: 616: 592: 588: 583: 578: 577: 503:Logical hexagon 494: 460: 456: 420: 416: 402: 398: 383: 379: 371: 368: 367: 349: 345: 309: 305: 291: 287: 272: 268: 260: 257: 256: 207: 193: 167: 164: 163: 128: 114: 88: 85: 84: 31: 29: 28: 17: 12: 11: 5: 654: 644: 643: 638: 622: 621: 614: 585: 584: 582: 579: 576: 575: 568: 561: 553: 550: 549: 532: 521: 520: 515: 510: 505: 500: 493: 490: 478: 477: 463: 459: 455: 452: 449: 446: 443: 440: 437: 434: 431: 428: 423: 419: 415: 411: 405: 401: 397: 394: 391: 386: 382: 378: 375: 365: 352: 348: 344: 341: 338: 335: 332: 329: 326: 323: 320: 317: 312: 308: 304: 300: 294: 290: 286: 283: 280: 275: 271: 267: 264: 241: 240: 229: 226: 223: 220: 217: 214: 206: 203: 200: 192: 189: 186: 183: 180: 177: 174: 171: 161: 150: 147: 144: 141: 138: 135: 127: 124: 121: 113: 110: 107: 104: 101: 98: 95: 92: 15: 9: 6: 4: 3: 2: 653: 642: 639: 637: 634: 633: 631: 617: 611: 607: 603: 599: 598: 590: 586: 574: 569: 567: 562: 560: 555: 554: 548: 546: 542: 538: 533: 530: 526: 525: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 495: 489: 487: 481: 461: 457: 453: 450: 447: 441: 438: 435: 432: 429: 421: 417: 403: 399: 395: 392: 389: 384: 380: 376: 373: 366: 350: 346: 342: 339: 336: 330: 327: 324: 321: 318: 310: 306: 292: 288: 284: 281: 278: 273: 269: 265: 262: 255: 254: 253: 251: 247: 224: 218: 215: 212: 204: 201: 198: 187: 181: 178: 172: 169: 162: 145: 139: 136: 133: 125: 122: 119: 108: 102: 99: 93: 90: 83: 82: 81: 79: 75: 71: 67: 63: 59: 55: 51: 46: 45: 39: 26: 21: 596: 589: 545:expanding it 534: 498:Logical cube 482: 479: 242: 78:model theory 74:George Boole 69: 65: 61: 41: 35: 636:Logic stubs 54:Schönfinkel 630:Categories 581:References 486:free logic 458:ϕ 454:⊨ 439:≤ 433:≤ 418:ϕ 414:∃ 410:⟺ 400:ϕ 396:∨ 393:⋯ 390:∨ 381:ϕ 377:⊨ 347:ϕ 343:⊨ 328:≤ 322:≤ 307:ϕ 303:∀ 299:⟺ 289:ϕ 285:∧ 282:⋯ 279:∧ 270:ϕ 266:⊨ 219:ϕ 216:⊨ 202:∈ 182:ϕ 176:∀ 173:⊨ 140:ϕ 137:⊨ 123:∈ 103:ϕ 97:∃ 94:⊨ 70:falsehood 492:See also 248:of the 58:Quine's 50:Bernays 612:  66:truth, 44:domain 42:empty 40:, the 537:logic 535:This 60:1951 610:ISBN 541:stub 52:and 602:doi 36:In 632:: 608:. 488:. 618:. 604:: 572:e 565:t 558:v 547:. 476:. 462:i 451:A 448:, 445:) 442:n 436:i 430:1 427:( 422:i 404:n 385:1 374:A 351:i 340:A 337:, 334:) 331:n 325:i 319:1 316:( 311:i 293:n 274:1 263:A 228:] 225:a 222:[ 213:A 205:A 199:a 191:) 188:x 185:( 179:x 170:A 149:] 146:a 143:[ 134:A 126:A 120:a 112:) 109:x 106:( 100:x 91:A

Index


square of opposition
first-order logic
domain
Bernays
Schönfinkel
Quine's
George Boole
model theory
universal generalization
material conditional
free logic
Logical cube
Logical hexagon
Square of opposition
Triangle of opposition
Table of logic symbols
Stub icon
logic
stub
expanding it
v
t
e
Mathematical Logic
doi
10.4159/9780674042469
ISBN
978-0-674-04246-9
Categories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑