Knowledge

Elimination reaction

Source đź“ť

353: 221: 20: 382: 1023: 606: 1011: 602:β-Elimination, with loss of electrofuge and nucleofuge on vicinal carbon atoms, is by far the most common type of elimination. The ability to form a stable product containing a C=C or C=X bond, as well as orbital alignment considerations, strongly favors β-elimination over other elimination processes. However, other types are known, generally for systems where β-elimination cannot occur. 632:, as a reactive intermediate. On the other hand, formic acid undergoes α-elimination to afford the stable products water and carbon monoxide under acidic conditions. α-Elimination may also occur on a metal center, one particularly common result of which is lowering of both the metal oxidation state and coordination number by 2 units in a process known as 647:
In certain special cases, γ- and higher eliminations to form three-membered or larger rings is also possible in both organic and organometallic processes. For instance, certain Pt(II) complexes undergo γ- and δ-elimination to give metallocycles. More recently, γ-silyl elimination of a silylcyclobutyl
790:
In rare cases in which β hydrogens are unavailable but substitution is disfavored, α-elimination to form a carbene can sometimes occur. In particular: (1) Trihalomethanes like chloroform can react with NaOH to form dihalocarbenes (substitution is electronically disfavored). (2) Allyl and benzyl
963:
Kelly, Christopher B.; Colthart, Allison M.; Constant, Brad D.; Corning, Sean R.; Dubois, Lily N. E.; Genovese, Jacqueline T.; Radziewicz, Julie L.; Sletten, Ellen M.; Whitaker, Katherine R. (2011-04-01). "Enabling the Synthesis of Perfluoroalkyl Bicyclobutanes via 1,3 Îł-Silyl Elimination".
59:. The numbers refer not to the number of steps in the mechanism, but rather to the kinetics of the reaction: E2 is bimolecular (second-order) while E1 is unimolecular (first-order). In cases where the molecule is able to stabilize an anion but possesses a poor 557:
2 substitution is hard to achieve when strong bases are used, as alkene products arising from elimination are almost always observed to some degree. On the other hand, clean E2 can be achieved by simply selecting a sterically hindered base (e.g., potassium
446:
being favored. Fluoride is not a good leaving group, so eliminations with fluoride as the leaving group have slower rates than other halogens . There is a certain level of competition between the elimination reaction and
531:> 11, e.g., hydroxide, alkoxide, acetylide), the result is generally elimination by E2, while weaker bases that are still good nucleophiles (e.g., acetate, azide, cyanide, iodide) will give primarily S 593:
2 reaction because in this reaction type the C-H bonds tighten in the transition state. The KIE's for the ethyl (0.99) and isopropyl (1.72) analogues suggest competition between the two reaction modes.
612:
The next most common type of elimination reaction is α-elimination. For a carbon center, the result of α-elimination is the formation of a carbene, which includes "stable carbenes" such as
2452: 928:
Moore, Stephen S.; DiCosimo, Robert; Sowinski, Allan F.; Whitesides, George M. (1981-02-01). "Ring strain in bis(triethylphosphine)-3,3-dimethylplatinacyclobutane is small".
566:
1 almost always result in a product mixture contaminated by some E1 product (again, with the exception of cases where the lack of β hydrogens makes elimination impossible).
826:
Stephanie M. Villano; Shuji Kato; Veronica M. Bierbaum (2006). "Deuterium Kinetic Isotope Effects in Gas-Phase SN2 and E2 Reactions: Comparison of Experiment and Theory".
4667: 754:
Nash, J. J.; Leininger, M. A.; Keyes, K. (April 2008). "Pyrolysis of Aryl Sulfonate Esters in the Absence of Solvent: E1 or E2? A Puzzle for the Organic Laboratory".
644:
refer to processes that result in formation of a metal-carbene complex. In these reactions, it is the carbon adjacent to the metal that undergoes α-elimination.)
791:
chloride can react with lithium tetramethylpiperide (LiTMP) to form vinylcarbene and phenylcarbene, respectively (substitution is sterically disfavored).
403:
Highly substituted carbocations are more stable than methyl or primary substituted cations. Such stability gives time for the two-step E1 mechanism to occur.
553:
In general, with the exception of reactions in which E2 is impossible because β hydrogens are unavailable (e.g. methyl, allyl, and benzyl halides), clean S
514:
2 reaction) to essentially only 1° haloalkanes; 2° haloalkanes generally do not give synthetically useful yields, while 3° haloalkanes fail completely.
3783: 3728: 4496: 502:
For example, when a 3° haloalkane is reacts with an alkoxide, due to strong basic character of the alkoxide and unreactivity of 3° group towards S
172:
conformation with higher energy. The reaction mechanism involving staggered conformation is more favorable for E2 reactions (unlike E1 reactions).
3838: 517:
With strong base, 3° haloalkanes give elimination by E2. With weak bases, mixtures of elimination and substitution products form by competing S
3988: 2622: 352: 4717: 1055: 400:
Highly substituted alkyl halides are bulky, limiting the room for the E2 one-step mechanism; therefore, the two-step E1 mechanism is favored.
4491: 2317: 315:
The reaction usually occurs in the complete absence of a base or the presence of only a weak base (acidic conditions and high temperature).
3593: 1514: 4163: 3363: 2107: 1027: 134:
It is typically undergone by primary substituted alkyl halides, but is possible with some secondary alkyl halides and other compounds.
4328: 4258: 4238: 3733: 2900: 2362: 2781: 2337: 1550: 4083: 4561: 4511: 2915: 1015: 304:
is influenced only by the concentration of the alkyl halide because carbocation formation is the slowest step, as known as the
4018: 4657: 4466: 4123: 4103: 4063: 2870: 1813: 4652: 4582: 4481: 4138: 3993: 3623: 3468: 3078: 2705: 2482: 4732: 4516: 3828: 3318: 2993: 1267: 1144: 3538: 4727: 4441: 4303: 4093: 4058: 1101: 4617: 4556: 4088: 4003: 3973: 3953: 3818: 3813: 3188: 3113: 2756: 2710: 2577: 1838: 1408: 1048: 904: 810: 731: 4722: 4682: 4632: 4308: 4108: 3858: 3788: 2277: 1848: 3923: 2816: 2537: 381: 220: 4476: 4318: 4188: 4183: 3998: 3473: 3383: 2973: 2905: 2796: 2372: 2127: 2052: 1507: 4233: 4816: 4811: 4762: 4647: 4546: 4486: 4133: 3928: 3888: 3863: 3773: 3233: 2267: 2197: 1833: 1763: 1316: 1311: 1121: 871: 148:
Because the E2 mechanism results in the formation of a pi bond, the two leaving groups (often a hydrogen and a
3353: 4752: 4338: 4228: 3848: 3573: 3358: 3303: 3148: 3108: 2940: 2695: 2412: 2262: 1481: 1476: 756: 4712: 4273: 3718: 4821: 4747: 4662: 4637: 4612: 4597: 4521: 4436: 4333: 4293: 4158: 4113: 3878: 3423: 3408: 3273: 3063: 2731: 2487: 2167: 2142: 2112: 1703: 1041: 535:
2. Finally, weakly nucleophilic species (e.g., water, alcohols, carboxylic acids) will give a mixture of S
51:
are removed from a molecule in either a one- or two-step mechanism. The one-step mechanism is known as the
550:
2 when the nucleophile is also unhindered. However, strongly basic and hindered nucleophiles favor E2.
4697: 4642: 4587: 4298: 4218: 4118: 3833: 3798: 3643: 3533: 3248: 3243: 3068: 3028: 2925: 2736: 2700: 2552: 2542: 2397: 2257: 2117: 2067: 2062: 2037: 1997: 1943: 1708: 1698: 1673: 506:
2, only alkene formation by E2 elimination is observed. Thus, elimination by E2 limits the scope of the
4672: 4373: 4178: 3613: 3498: 3178: 3153: 3093: 2950: 2685: 2392: 2172: 2137: 2042: 1733: 1668: 1500: 1446: 1136: 507: 3963: 2227: 4772: 4677: 4531: 4411: 4383: 4353: 4268: 4198: 4153: 4128: 4048: 3948: 3908: 3603: 3223: 3213: 3138: 2662: 2522: 2517: 2497: 2182: 1979: 1958: 1918: 1843: 1173: 1073: 669: 448: 64: 1663: 4737: 4627: 4607: 4471: 4313: 4223: 4193: 4173: 4068: 4023: 3853: 3763: 3693: 3578: 3568: 3398: 2955: 2895: 2860: 2667: 2647: 2607: 2382: 2252: 2217: 2177: 1928: 1768: 1758: 1688: 1403: 330: 309: 202: 4203: 4707: 4566: 4416: 4358: 4283: 4263: 3983: 3933: 3793: 3758: 3698: 3628: 3183: 2930: 2910: 2642: 2562: 2457: 2417: 2387: 2322: 2207: 2192: 2102: 2092: 1753: 1678: 1633: 1451: 1252: 657: 495: 1968: 4446: 4168: 3918: 3898: 3873: 3823: 3738: 3713: 3668: 3638: 3618: 3588: 3553: 3508: 3483: 3458: 3343: 3268: 3048: 2741: 2677: 2477: 2202: 2122: 1808: 1783: 1560: 1555: 1206: 570: 375: 161: 721: 4782: 4368: 4323: 4038: 4008: 3978: 3913: 3893: 3808: 3803: 3768: 3723: 3708: 3703: 3683: 3673: 3608: 3598: 3528: 3478: 2998: 2801: 2377: 2332: 2162: 2152: 1898: 1823: 1618: 1580: 1436: 1368: 1226: 1216: 633: 305: 198: 183: 142: 1828: 4551: 4501: 4451: 4431: 4421: 4278: 4253: 3968: 3958: 3843: 3658: 3653: 3583: 3368: 3168: 3128: 3058: 3023: 2978: 2945: 2811: 2786: 2587: 2547: 2507: 2472: 2402: 2157: 2027: 2002: 1431: 765: 294: 260:
E1 is a model to explain a particular type of chemical elimination reaction. E1 stands for
8: 4757: 4742: 4388: 4363: 4348: 4343: 4073: 4028: 4013: 3903: 3883: 3778: 3663: 3648: 3493: 3438: 3428: 3393: 3158: 3033: 3008: 2920: 2776: 2761: 2746: 2567: 2512: 2282: 2132: 2077: 1948: 1863: 1723: 1648: 1441: 1373: 1358: 1301: 4767: 3418: 2602: 1793: 769: 411:
1 and E1 pathways are competing, the E1 pathway can be favored by increasing the heat.
4506: 4456: 4426: 4288: 4078: 3868: 3753: 3688: 3678: 3443: 3373: 3338: 3333: 3313: 3308: 3253: 3163: 3013: 2875: 2865: 2771: 2557: 2502: 2432: 2352: 2247: 2147: 2082: 2007: 1853: 1718: 1653: 1638: 1466: 1236: 1065: 656:
Many of the concepts and terminology related to elimination reactions were proposed by
542:
For 1° haloalkanes with β-branching, E2 elimination is still generally preferred over S
237: 116: 4243: 3563: 3448: 3413: 3378: 3323: 3278: 3193: 3173: 3123: 3118: 3088: 3073: 2983: 2890: 2826: 2791: 2617: 2492: 2367: 2292: 2272: 2187: 2022: 2017: 1963: 1873: 1778: 1738: 1693: 1575: 1570: 1535: 1461: 1456: 1418: 1363: 1282: 1262: 1198: 989: 981: 945: 910: 900: 877: 867: 844: 828: 806: 737: 727: 690: 524:
The case of 2° haloalkanes is relatively complex. For strongly basic nucleophiles (p
249: 3238: 16:
Reaction where 2 substituents are removed from a molecule in a 1 or 2 step mechanism
4777: 4622: 4592: 4536: 4461: 4393: 4148: 4098: 3943: 3748: 3523: 3518: 3463: 3453: 3228: 3038: 3018: 2988: 2885: 2821: 2806: 2637: 2592: 2582: 2572: 2467: 2447: 2442: 2427: 2422: 2302: 2297: 2237: 2222: 2212: 2057: 2047: 1913: 1903: 1803: 1798: 1773: 1713: 1565: 1524: 1393: 1342: 1296: 973: 937: 836: 773: 699: 578: 471: 396:
E1 eliminations happen with highly substituted alkyl halides for two main reasons.
176: 157: 128: 44: 1893: 825: 573:(KIE) was determined for the gas phase reaction of several alkyl halides with the 4687: 4378: 4213: 4208: 3503: 3488: 3433: 3388: 3348: 3298: 3263: 3258: 3203: 3198: 3133: 3083: 3003: 2831: 2715: 2690: 2652: 2627: 2612: 2597: 2532: 2407: 2357: 2347: 2327: 2287: 2097: 2087: 2072: 1868: 1788: 1658: 1628: 1613: 1608: 1471: 1383: 1332: 625: 613: 582: 341: 216:
mechanism if the base can also act as a nucleophile (true for many common bases).
19: 4692: 4602: 4541: 3633: 3543: 3513: 3288: 3143: 2880: 2657: 2527: 2342: 2312: 2012: 1908: 1683: 1545: 1178: 1167: 153: 1492: 145:, because it's influenced by both the alkyl halide and the base (bimolecular). 4805: 4702: 4403: 4248: 4143: 3938: 3328: 3293: 3283: 3218: 3208: 3098: 2935: 2751: 2462: 2437: 2307: 1953: 1938: 1923: 1818: 1748: 1728: 1643: 1426: 1398: 1306: 1257: 1231: 985: 949: 914: 741: 723:
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd edition
703: 624:) in the presence of strong base is a classic approach for the generation of 431: 301: 285: 165: 138: 60: 32: 1033: 881: 3743: 3103: 2855: 2632: 2232: 2032: 1883: 1878: 1743: 1598: 1378: 1184: 1091: 1081: 993: 848: 460: 452: 319: 209: 86: 24: 2242: 1888: 1858: 1623: 1337: 1272: 717: 491: 480: 393:
is the reaction of tert-butylbromide with potassium ethoxide in ethanol.
279: 48: 28: 941: 620:. For instance, α-elimination the elements of HCl from chloroform (CHCl 4526: 4053: 3403: 617: 275: 977: 840: 777: 1388: 546:
2 for strongly basic nucleophiles. Unhindered 1° haloalkanes favor S
337: 245: 71: 753: 1933: 1603: 589:
2 possible) on the other hand has a KIE of 0.85 consistent with a S
574: 233: 169: 75: 866:. Dougherty, Dennis A., 1952-. Sausalito, CA: University Science. 605: 1593: 1022: 597: 484: 443: 435: 365:
results from antiperiplanar elimination. The presence of product
345: 297:
alkyl halides, but is possible with some secondary alkyl halides.
241: 149: 79: 1010: 927: 439: 82: 179:. It must be strong enough to remove a weakly acidic hydrogen. 1291: 648:
tosylate has been used to prepare strained bicyclic systems.
356:
E1 elimination Nash 2008, antiperiplanar relationship in blue
962: 577:
ion. In accordance with an E2 elimination the reaction with
562:-butoxide). Similarly, attempts to effect substitution by S 467:. Generally, elimination is favored over substitution when 636:. (Confusingly, in organometallic terminology, the terms 336:
There is no antiperiplanar requirement. An example is the
1111: 333:
of slightly larger than 1 (commonly 1 - 1.5) is observed.
85:
proceed through an "internal" elimination mechanism, the
688:
Coleman, G. H.; Johnstone, H. F. (1925). "Cyclohexene".
451:. More precisely, there are competitions between E2 and 326:
because they share a common carbocationic intermediate.
897:
The organometallic chemistry of the transition metals
4668:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
805:(5th ed.). New York: McGraw-Hill. p. 350. 894: 369:
is an indication that an E1 mechanism is occurring.
3729:Divinylcyclopropane-cycloheptadiene rearrangement 421:Independent of concentration and basicity of base 4803: 687: 1522: 861: 425: 127:E2 is a single step elimination, with a single 3989:Thermal rearrangement of aromatic hydrocarbons 2623:Thermal rearrangement of aromatic hydrocarbons 598:Elimination reactions other than β-elimination 205:much larger than 1 (commonly 2-6) is observed. 123:The specifics of the reaction are as follows: 4718:Lectka enantioselective beta-lactam synthesis 1978: 1508: 1063: 1049: 55:, and the two-step mechanism is known as the 4497:Inverse electron-demand Diels–Alder reaction 2318:Heterogeneous metal catalyzed cross-coupling 716: 604: 182:In order for the pi bond to be created, the 3839:Lobry de Bruyn–Van Ekenstein transformation 278:: the carbon-halogen bond breaks to give a 1515: 1501: 1056: 1042: 4329:Petrenko-Kritschenko piperidone synthesis 3784:Fritsch–Buttenberg–Wiechell rearrangement 268:It is a two-step process of elimination: 105:, involves a one-step mechanism in which 4492:Intramolecular Diels–Alder cycloaddition 930:Journal of the American Chemical Society 18: 228:An example of this type of reaction in 4804: 4512:Metal-centered cycloaddition reactions 4164:Debus–Radziszewski imidazole synthesis 2108:Bodroux–Chichibabin aldehyde synthesis 1082:Unimolecular nucleophilic substitution 899:(5th ed.). Hoboken, N.J.: Wiley. 494:. Bases with steric bulk, (such as in 101:The E2 mechanism, where E2 stands for 4658:Diazoalkane 1,3-dipolar cycloaddition 4562:Vinylcyclopropane (5+2) cycloaddition 4467:Diazoalkane 1,3-dipolar cycloaddition 4239:Hurd–Mori 1,2,3-thiadiazole synthesis 3734:Dowd–Beckwith ring-expansion reaction 2901:Hurd–Mori 1,2,3-thiadiazole synthesis 1977: 1814:LFER solvent coefficients (data page) 1496: 1092:Bimolecular nucleophilic substitution 1037: 800: 318:E1 reactions are in competition with 264:and has the following specifications 3469:Sharpless asymmetric dihydroxylation 2706:Methoxymethylenetriphenylphosphorane 186:of carbons needs to be lowered from 3594:Allen–Millar–Trippett rearrangement 1145:Electrophilic aromatic substitution 434:is influenced by the reactivity of 374:It is accompanied by carbocationic 113:bonds break to form a double bond ( 13: 4733:Nitrone-olefin (3+2) cycloaddition 4728:Niementowski quinazoline synthesis 4517:Nitrone-olefin (3+2) cycloaddition 4442:Azide-alkyne Huisgen cycloaddition 4304:Niementowski quinazoline synthesis 4059:Azide-alkyne Huisgen cycloaddition 3364:Meerwein–Ponndorf–Verley reduction 2916:Leimgruber–Batcho indole synthesis 1112:Nucleophilic internal substitution 1102:Nucleophilic aromatic substitution 380: 351: 219: 14: 4833: 4557:Trimethylenemethane cycloaddition 4259:Johnson–Corey–Chaykovsky reaction 4124:Cadogan–Sundberg indole synthesis 4104:Bohlmann–Rahtz pyridine synthesis 4064:Baeyer–Emmerling indole synthesis 2871:Cadogan–Sundberg indole synthesis 2363:Johnson–Corey–Chaykovsky reaction 1003: 864:Modern physical organic chemistry 4653:Cook–Heilbron thiazole synthesis 4482:Hexadehydro Diels–Alder reaction 4309:Niementowski quinoline synthesis 4139:Cook–Heilbron thiazole synthesis 4084:Bischler–Möhlau indole synthesis 3994:Tiffeneau–Demjanov rearrangement 3624:Baker–Venkataraman rearrangement 2782:Horner–Wadsworth–Emmons reaction 2453:Mizoroki-Heck vs. Reductive Heck 2338:Horner–Wadsworth–Emmons reaction 1849:Neighbouring group participation 1021: 1009: 197:The C-H bond is weakened in the 4189:Fiesselmann thiophene synthesis 4019:Westphalen–LettrĂ© rearrangement 3999:Vinylcyclopropane rearrangement 3829:Kornblum–DeLaMare rearrangement 3474:Epoxidation of allylic alcohols 3384:Noyori asymmetric hydrogenation 3319:Kornblum–DeLaMare rearrangement 2994:Gallagher–Hollander degradation 1268:Lindemann–Hinshelwood mechanism 956: 498:), are often poor nucleophiles. 385:Scheme 2. E1 reaction mechanism 255: 224:Scheme 1: E2 reaction mechanism 96: 4648:Chichibabin pyridine synthesis 4134:Chichibabin pyridine synthesis 4094:Blum–Ittah aziridine synthesis 3929:Ring expansion and contraction 2198:Cross dehydrogenative coupling 1317:Outer sphere electron transfer 1312:Inner sphere electron transfer 1122:Nucleophilic acyl substitution 921: 888: 855: 819: 794: 784: 747: 710: 681: 474:around the α-carbon increases. 293:E1 typically takes place with 1: 4618:Bischler–Napieralski reaction 4576:Heterocycle forming reactions 4229:Hemetsberger indole synthesis 4089:Bischler–Napieralski reaction 4004:Wagner–Meerwein rearrangement 3974:Sommelet–Hauser rearrangement 3954:Seyferth–Gilbert homologation 3819:Ireland–Claisen rearrangement 3814:Hofmann–Martius rearrangement 3574:2,3-sigmatropic rearrangement 3189:Corey–Winter olefin synthesis 3114:Barton–McCombie deoxygenation 2757:Corey–Winter olefin synthesis 2711:Seyferth–Gilbert homologation 2578:Seyferth–Gilbert homologation 1482:Diffusion-controlled reaction 757:Journal of Chemical Education 675: 581:results in a KIE of 2.3. The 168:transition state which is in 4723:Lehmstedt–Tanasescu reaction 4683:Gabriel–Colman rearrangement 4638:Bucherer carbazole synthesis 4633:Borsche–Drechsel cyclization 4613:Bernthsen acridine synthesis 4598:Bamberger triazine synthesis 4583:Algar–Flynn–Oyamada reaction 4294:Nazarov cyclization reaction 4159:De Kimpe aziridine synthesis 4114:Bucherer carbazole synthesis 4109:Borsche–Drechsel cyclization 3879:Nazarov cyclization reaction 3859:Meyer–Schuster rearrangement 3789:Gabriel–Colman rearrangement 3539:Wolffenstein–Böters reaction 3424:Reduction of nitro compounds 3274:Grundmann aldehyde synthesis 3079:Algar–Flynn–Oyamada reaction 2488:Olefin conversion technology 2483:Nozaki–Hiyama–Kishi reaction 2278:Gabriel–Colman rearrangement 2168:Claisen-Schmidt condensation 2113:Bouveault aldehyde synthesis 895:Crabtree, Robert H. (2009). 426:Competition among mechanisms 270:ionization and deprotonation 244:. The reaction products are 63:, a third type of reaction, 7: 4698:Hantzsch pyridine synthesis 4477:Enone–alkene cycloadditions 4299:Nenitzescu indole synthesis 4219:Hantzsch pyridine synthesis 4184:Ferrario–Ackermann reaction 3834:Kowalski ester homologation 3799:Halogen dance rearrangement 3644:Benzilic acid rearrangement 3069:Akabori amino-acid reaction 3029:Von Braun amide degradation 2974:Barbier–Wieland degradation 2926:Nenitzescu indole synthesis 2906:Kharasch–Sosnovsky reaction 2797:Julia–Kocienski olefination 2701:Kowalski ester homologation 2398:Kowalski ester homologation 2373:Julia–Kocienski olefination 2128:Cadiot–Chodkiewicz coupling 2053:Aza-Baylis–Hillman reaction 1998:Acetoacetic ester synthesis 1709:Dynamic binding (chemistry) 1699:Conrotatory and disrotatory 1674:Charge remote fragmentation 1137:Electrophilic substitutions 663: 175:E2 typically uses a strong 10: 4840: 4763:Robinson–Gabriel synthesis 4713:Kröhnke pyridine synthesis 4547:Retro-Diels–Alder reaction 4487:Imine Diels–Alder reaction 4274:Kröhnke pyridine synthesis 3889:Newman–Kwart rearrangement 3864:Mislow–Evans rearrangement 3774:Fischer–Hepp rearrangement 3719:Di-Ď€-methane rearrangement 3499:Stephen aldehyde synthesis 3234:Eschweiler–Clarke reaction 2951:Williamson ether synthesis 2268:Fujiwara–Moritani reaction 2173:Combes quinoline synthesis 2138:Carbonyl olefin metathesis 1839:More O'Ferrall–Jencks plot 1764:Grunwald–Winstein equation 1734:Electron-withdrawing group 1669:Catalytic resonance theory 1447:Energy profile (chemistry) 1409:More O'Ferrall–Jencks plot 1074:Nucleophilic substitutions 801:Carey, Francis A. (2003). 651: 508:Williamson ether synthesis 414:Specific features : 4773:Urech hydantoin synthesis 4753:Pomeranz–Fritsch reaction 4678:Fischer oxazole synthesis 4575: 4412:1,3-Dipolar cycloaddition 4402: 4384:Urech hydantoin synthesis 4354:Reissert indole synthesis 4339:Pomeranz–Fritsch reaction 4269:Knorr quinoline synthesis 4199:Fischer oxazole synthesis 4129:Camps quinoline synthesis 4049:1,3-Dipolar cycloaddition 4037: 3949:Semipinacol rearrangement 3924:Ramberg–Bäcklund reaction 3909:Piancatelli rearrangement 3849:McFadyen–Stevens reaction 3604:Alpha-ketol rearrangement 3552: 3359:McFadyen–Stevens reaction 3304:Kiliani–Fischer synthesis 3224:Elbs persulfate oxidation 3149:Bouveault–Blanc reduction 3109:Baeyer–Villiger oxidation 3047: 2964: 2941:Schotten–Baumann reaction 2844: 2817:Ramberg–Bäcklund reaction 2724: 2696:Kiliani–Fischer synthesis 2676: 2538:Ramberg–Bäcklund reaction 2523:Pinacol coupling reaction 2518:Piancatelli rearrangement 2413:Liebeskind–Srogl coupling 2263:Fujimoto–Belleau reaction 1986: 1980:List of organic reactions 1844:Negative hyperconjugation 1589: 1531: 1477:Michaelis–Menten kinetics 1417: 1351: 1325: 1281: 1245: 1197: 1158: 1135: 1072: 670:E1cB-elimination reaction 449:nucleophilic substitution 164:with lower energy than a 70:, exists. Finally, the 4748:Pictet–Spengler reaction 4663:Einhorn–Brunner reaction 4628:Boger pyridine synthesis 4522:Oxo-Diels–Alder reaction 4437:Aza-Diels–Alder reaction 4334:Pictet–Spengler reaction 4234:Hofmann–Löffler reaction 4224:Hegedus indole synthesis 4194:Fischer indole synthesis 4069:Bartoli indole synthesis 4024:Willgerodt rearrangement 3854:McLafferty rearrangement 3764:Ferrier carbocyclization 3579:2,3-Wittig rearrangement 3569:1,2-Wittig rearrangement 3409:Parikh–Doering oxidation 3399:Oxygen rebound mechanism 3064:Adkins–Peterson reaction 2956:Yamaguchi esterification 2896:Hegedus indole synthesis 2861:Bartoli indole synthesis 2732:Bamford–Stevens reaction 2648:Weinreb ketone synthesis 2608:Stork enamine alkylation 2383:Knoevenagel condensation 2253:Ferrier carbocyclization 2143:Castro–Stephens coupling 1769:Hammett acidity function 1759:Free-energy relationship 1704:Curtin–Hammett principle 1689:Conformational isomerism 1404:Potential energy surface 1283:Electron/Proton transfer 1168:Unimolecular elimination 862:Anslyn, Eric V. (2006). 704:10.15227/orgsyn.005.0033 477:a stronger base is used. 459:and also between E1 and 331:deuterium isotope effect 262:unimolecular elimination 203:deuterium isotope effect 201:and therefore a primary 23:Elimination reaction of 4708:Knorr pyrrole synthesis 4643:Bucherer–Bergs reaction 4588:Allan–Robinson reaction 4567:Wagner-Jauregg reaction 4359:Ring-closing metathesis 4284:Larock indole synthesis 4264:Knorr pyrrole synthesis 4119:Bucherer–Bergs reaction 3984:Stieglitz rearrangement 3964:Skattebøl rearrangement 3934:Ring-closing metathesis 3794:Group transfer reaction 3759:Favorskii rearrangement 3699:Cornforth rearrangement 3629:Bamberger rearrangement 3534:Wolff–Kishner reduction 3354:Markó–Lam deoxygenation 3249:Fleming–Tamao oxidation 3244:Fischer–Tropsch process 2931:Oxymercuration reaction 2911:Knorr pyrrole synthesis 2737:Barton–Kellogg reaction 2643:Wagner-Jauregg reaction 2563:Ring-closing metathesis 2553:Reimer–Tiemann reaction 2543:Rauhut–Currier reaction 2458:Nef isocyanide reaction 2418:Malonic ester synthesis 2388:Knorr pyrrole synthesis 2323:High dilution principle 2258:Friedel–Crafts reaction 2193:Cross-coupling reaction 2118:Bucherer–Bergs reaction 2103:Blanc chloromethylation 2093:Blaise ketone synthesis 2068:Baylis–Hillman reaction 2063:Barton–Kellogg reaction 2038:Allan–Robinson reaction 1944:Woodward–Hoffmann rules 1679:Charge-transfer complex 1452:Transition state theory 1253:Intramolecular reaction 1179:Bimolecular elimination 658:Christopher Kelk Ingold 521:1 and E1 pathways. 496:potassium tert-butoxide 376:rearrangement reactions 103:bimolecular elimination 4673:Feist–Benary synthesis 4447:Bradsher cycloaddition 4417:4+4 Photocycloaddition 4374:Simmons–Smith reaction 4319:Paternò–BĂĽchi reaction 4179:Feist–Benary synthesis 4169:Dieckmann condensation 3919:Pummerer rearrangement 3899:Oxy-Cope rearrangement 3874:Myers allene synthesis 3824:Jacobsen rearrangement 3739:Electrocyclic reaction 3714:Demjanov rearrangement 3669:Buchner ring expansion 3639:Beckmann rearrangement 3619:Aza-Cope rearrangement 3614:Arndt–Eistert reaction 3589:Alkyne zipper reaction 3509:Transfer hydrogenation 3484:Sharpless oxyamination 3459:Selenoxide elimination 3344:Lombardo methylenation 3269:Griesbaum coozonolysis 3179:Corey–Itsuno reduction 3154:Boyland–Sims oxidation 3094:Angeli–Rimini reaction 2742:Boord olefin synthesis 2686:Arndt–Eistert reaction 2678:Homologation reactions 2478:Nitro-Mannich reaction 2393:Kolbe–Schmitt reaction 2203:Cross-coupling partner 2123:Buchner ring expansion 2043:Arndt–Eistert reaction 1809:Kinetic isotope effect 1556:Rearrangement reaction 1246:Unimolecular reactions 1207:Electrophilic addition 1026:Quotations related to 609: 571:kinetic isotope effect 418:Rearrangement possible 386: 361:Only reaction product 357: 225: 162:staggered conformation 36: 4817:Olefination reactions 4812:Elimination reactions 4532:Pauson–Khand reaction 4369:Sharpless epoxidation 4324:Pechmann condensation 4204:Friedländer synthesis 4154:Davis–Beirut reaction 4009:Wallach rearrangement 3979:Stevens rearrangement 3914:Pinacol rearrangement 3894:Overman rearrangement 3809:Hofmann rearrangement 3804:Hayashi rearrangement 3769:Ferrier rearrangement 3724:Dimroth rearrangement 3709:Curtius rearrangement 3704:Criegee rearrangement 3684:Claisen rearrangement 3674:Carroll rearrangement 3609:Amadori rearrangement 3599:Allylic rearrangement 3479:Sharpless epoxidation 3214:Dess–Martin oxidation 3139:Bohn–Schmidt reaction 2999:Hofmann rearrangement 2802:Kauffmann olefination 2725:Olefination reactions 2663:Wurtz–Fittig reaction 2498:Palladium–NHC complex 2378:Kauffmann olefination 2333:Homologation reaction 2183:Corey–House synthesis 2163:Claisen rearrangement 1959:Yukawa–Tsuno equation 1919:Swain–Lupton equation 1899:Spherical aromaticity 1834:Möbius–HĂĽckel concept 1619:Aromatic ring current 1581:Substitution reaction 1437:Rate-determining step 1369:Reactive intermediate 1227:Free-radical addition 1217:Nucleophilic addition 1160:Elimination reactions 1016:Elimination reactions 634:reductive elimination 608: 384: 355: 312:apply (unimolecular). 306:rate-determining step 223: 208:E2 competes with the 199:rate determining step 22: 4738:Paal–Knorr synthesis 4608:Barton–Zard reaction 4552:Staudinger synthesis 4502:Ketene cycloaddition 4472:Diels–Alder reaction 4452:Cheletropic reaction 4432:Alkyne trimerisation 4314:Paal–Knorr synthesis 4279:Kulinkovich reaction 4254:Jacobsen epoxidation 4174:Diels–Alder reaction 3969:Smiles rearrangement 3959:Sigmatropic reaction 3844:Lossen rearrangement 3694:Corey–Fuchs reaction 3659:Boekelheide reaction 3654:Bergmann degradation 3584:Achmatowicz reaction 3369:Methionine sulfoxide 3169:Clemmensen reduction 3129:Bergmann degradation 3059:Acyloin condensation 3024:Strecker degradation 2979:Bergmann degradation 2946:Ullmann condensation 2812:Peterson olefination 2787:Hydrazone iodination 2767:Elimination reaction 2668:Zincke–Suhl reaction 2588:Sonogashira coupling 2548:Reformatsky reaction 2508:Peterson olefination 2473:Nierenstein reaction 2403:Kulinkovich reaction 2218:Diels–Alder reaction 2178:Corey–Fuchs reaction 2158:Claisen condensation 2028:Alkyne trimerisation 2003:Acyloin condensation 1969:ÎŁ-bishomoaromaticity 1929:Thorpe–Ingold effect 1541:Elimination reaction 1432:Equilibrium constant 1028:Elimination reaction 1018:at Wikimedia Commons 483:increases (increase 310:first-order kinetics 156:. An antiperiplanar 41:elimination reaction 4822:Reaction mechanisms 4758:Prilezhaev reaction 4743:Pellizzari reaction 4422:(4+3) cycloaddition 4389:Van Leusen reaction 4364:Robinson annulation 4349:Pschorr cyclization 4344:Prilezhaev reaction 4074:Bergman cyclization 4029:Wolff rearrangement 4014:Weerman degradation 3904:Pericyclic reaction 3884:Neber rearrangement 3779:Fries rearrangement 3664:Brook rearrangement 3649:Bergman cyclization 3494:Staudinger reaction 3439:Rosenmund reduction 3429:Reductive amination 3394:Oppenauer oxidation 3184:Corey–Kim oxidation 3159:Cannizzaro reaction 3034:Weerman degradation 3009:Isosaccharinic acid 2921:Mukaiyama hydration 2777:Hofmann elimination 2762:Dehydrohalogenation 2747:Chugaev elimination 2568:Robinson annulation 2513:Pfitzinger reaction 2283:Gattermann reaction 2228:Wulff–Dötz reaction 2208:Dakin–West reaction 2133:Carbonyl allylation 2078:Bergman cyclization 1864:Kennedy J. P. Orton 1784:Hammond's postulate 1754:Flippin–Lodge angle 1724:Electromeric effect 1649:Beta-silicon effect 1634:Baker–Nathan effect 1442:Reaction coordinate 1374:Radical (chemistry) 1359:Elementary reaction 1302:Grotthuss mechanism 1066:reaction mechanisms 942:10.1021/ja00394a043 770:2008JChEd..85..552N 726:, New York: Wiley, 490:the base is a poor 288:of the carbocation. 232:is the reaction of 4507:McCormack reaction 4457:Conia-ene reaction 4289:Madelung synthesis 4079:Biginelli reaction 3869:Mumm rearrangement 3754:Favorskii reaction 3689:Cope rearrangement 3679:Chan rearrangement 3444:Rubottom oxidation 3374:Miyaura borylation 3339:Lipid peroxidation 3334:Lindgren oxidation 3314:Kornblum oxidation 3309:Kolbe electrolysis 3254:Fukuyama reduction 3164:Carbonyl reduction 3014:Marker degradation 2876:Diazonium compound 2866:Boudouard reaction 2845:Carbon-heteroatom 2772:Grieco elimination 2558:Rieche formylation 2503:Passerini reaction 2433:Meerwein arylation 2353:Hydroxymethylation 2248:Favorskii reaction 2148:Chan rearrangement 2083:Biginelli reaction 2008:Aldol condensation 1854:2-Norbornyl cation 1829:Möbius aromaticity 1824:Markovnikov's rule 1719:Effective molarity 1664:BĂĽrgi–Dunitz angle 1654:Bicycloaromaticity 1467:Arrhenius equation 1237:Oxidative addition 1199:Addition reactions 610: 387: 358: 238:potassium ethoxide 226: 37: 4799: 4798: 4795: 4794: 4791: 4790: 4783:Wohl–Aue reaction 4427:6+4 Cycloaddition 4244:Iodolactonization 3564:1,2-rearrangement 3529:Wohl–Aue reaction 3449:Sabatier reaction 3414:Pinnick oxidation 3379:Mozingo reduction 3324:Leuckart reaction 3279:Haloform reaction 3194:Criegee oxidation 3174:Collins oxidation 3124:Benkeser reaction 3119:Bechamp reduction 3089:Andrussow process 3074:Alcohol oxidation 2984:Edman degradation 2891:Haloform reaction 2840: 2839: 2827:Takai olefination 2792:Julia olefination 2618:Takai olefination 2493:Olefin metathesis 2368:Julia olefination 2293:Grignard reaction 2273:Fukuyama coupling 2188:Coupling reaction 2153:Chan–Lam coupling 2023:Alkyne metathesis 2018:Alkane metathesis 1874:Phosphaethynolate 1779:George S. Hammond 1739:Electronic effect 1694:Conjugated system 1576:Stereospecificity 1571:Stereoselectivity 1536:Addition reaction 1525:organic reactions 1490: 1489: 1462:Activated complex 1457:Activation energy 1419:Chemical kinetics 1364:Reaction dynamics 1263:Photodissociation 1014:Media related to 978:10.1021/ol200121f 841:10.1021/ja057491d 829:J. Am. Chem. Soc. 803:Organic Chemistry 778:10.1021/ed085p552 691:Organic Syntheses 569:In one study the 250:potassium bromide 4829: 4778:Wenker synthesis 4768:StollĂ© synthesis 4623:Bobbitt reaction 4593:Auwers synthesis 4537:Povarov reaction 4462:Cyclopropanation 4400: 4399: 4394:Wenker synthesis 4149:Darzens reaction 4099:Bobbitt reaction 3944:Schmidt reaction 3749:Enyne metathesis 3524:Whiting reaction 3519:Wharton reaction 3464:Shapiro reaction 3454:Sarett oxidation 3419:PrĂ©vost reaction 3229:Emde degradation 3039:Wohl degradation 3019:Ruff degradation 2989:Emde degradation 2886:Grignard reagent 2822:Shapiro reaction 2807:McMurry reaction 2674: 2673: 2638:Ullmann reaction 2603:StollĂ© synthesis 2593:Stetter reaction 2583:Shapiro reaction 2573:Sakurai reaction 2468:Negishi coupling 2448:Minisci reaction 2443:Michael reaction 2428:McMurry reaction 2423:Mannich reaction 2303:Hammick reaction 2298:Grignard reagent 2238:Enyne metathesis 2223:Doebner reaction 2213:Darzens reaction 2058:Barbier reaction 2048:Auwers synthesis 1975: 1974: 1949:Woodward's rules 1914:Superaromaticity 1904:Spiroaromaticity 1804:Inductive effect 1799:Hyperconjugation 1774:Hammett equation 1714:Edwards equation 1566:Regioselectivity 1517: 1510: 1503: 1494: 1493: 1394:Collision theory 1343:Matrix isolation 1297:Harpoon reaction 1174:E1cB-elimination 1058: 1051: 1044: 1035: 1034: 1025: 1013: 998: 997: 972:(7): 1646–1649. 960: 954: 953: 925: 919: 918: 892: 886: 885: 859: 853: 852: 823: 817: 816: 798: 792: 788: 782: 781: 751: 745: 744: 714: 708: 707: 685: 585:reaction (only S 579:t-butyl chloride 472:steric hindrance 158:transition state 129:transition state 45:organic reaction 4839: 4838: 4832: 4831: 4830: 4828: 4827: 4826: 4802: 4801: 4800: 4787: 4688:Gewald reaction 4571: 4398: 4379:Skraup reaction 4214:Graham reaction 4209:Gewald reaction 4040: 4033: 3555: 3548: 3504:Swern oxidation 3489:Stahl oxidation 3434:Riley oxidation 3389:Omega oxidation 3349:Luche reduction 3299:Jones oxidation 3264:Glycol cleavage 3259:Ganem oxidation 3204:Davis oxidation 3199:Dakin oxidation 3134:Birch reduction 3084:Amide reduction 3050: 3043: 3004:Hooker reaction 2966: 2960: 2848: 2846: 2836: 2832:Wittig reaction 2720: 2716:Wittig reaction 2691:Hooker reaction 2672: 2653:Wittig reaction 2628:Thorpe reaction 2613:Suzuki reaction 2598:Stille reaction 2533:Quelet reaction 2408:Kumada coupling 2358:Ivanov reaction 2348:Hydrovinylation 2328:Hiyama coupling 2288:Glaser coupling 2098:Blaise reaction 2088:Bingel reaction 2073:Benary reaction 1990: 1988: 1982: 1973: 1869:Passive binding 1789:Homoaromaticity 1639:Baldwin's rules 1614:Antiaromaticity 1609:Anomeric effect 1585: 1527: 1521: 1491: 1486: 1472:Eyring equation 1413: 1384:Stereochemistry 1347: 1333:Solvent effects 1321: 1277: 1241: 1222: 1212: 1193: 1188: 1154: 1150: 1131: 1127: 1117: 1107: 1097: 1087: 1068: 1062: 1006: 1001: 966:Organic Letters 961: 957: 926: 922: 907: 893: 889: 874: 860: 856: 824: 820: 813: 799: 795: 789: 785: 752: 748: 734: 715: 711: 686: 682: 678: 666: 654: 631: 626:dichlorocarbene 623: 614:carbon monoxide 600: 592: 588: 583:methyl chloride 565: 556: 549: 545: 538: 534: 530: 520: 513: 505: 464: 456: 428: 410: 342:sulfonate ester 323: 258: 234:isobutylbromide 213: 107:carbon-hydrogen 99: 90: 68: 17: 12: 11: 5: 4837: 4836: 4825: 4824: 4819: 4814: 4797: 4796: 4793: 4792: 4789: 4788: 4786: 4785: 4780: 4775: 4770: 4765: 4760: 4755: 4750: 4745: 4740: 4735: 4730: 4725: 4720: 4715: 4710: 4705: 4700: 4695: 4693:Hantzsch ester 4690: 4685: 4680: 4675: 4670: 4665: 4660: 4655: 4650: 4645: 4640: 4635: 4630: 4625: 4620: 4615: 4610: 4605: 4603:Banert cascade 4600: 4595: 4590: 4585: 4579: 4577: 4573: 4572: 4570: 4569: 4564: 4559: 4554: 4549: 4544: 4542:Prato reaction 4539: 4534: 4529: 4524: 4519: 4514: 4509: 4504: 4499: 4494: 4489: 4484: 4479: 4474: 4469: 4464: 4459: 4454: 4449: 4444: 4439: 4434: 4429: 4424: 4419: 4414: 4408: 4406: 4397: 4396: 4391: 4386: 4381: 4376: 4371: 4366: 4361: 4356: 4351: 4346: 4341: 4336: 4331: 4326: 4321: 4316: 4311: 4306: 4301: 4296: 4291: 4286: 4281: 4276: 4271: 4266: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4226: 4221: 4216: 4211: 4206: 4201: 4196: 4191: 4186: 4181: 4176: 4171: 4166: 4161: 4156: 4151: 4146: 4141: 4136: 4131: 4126: 4121: 4116: 4111: 4106: 4101: 4096: 4091: 4086: 4081: 4076: 4071: 4066: 4061: 4056: 4051: 4045: 4043: 4035: 4034: 4032: 4031: 4026: 4021: 4016: 4011: 4006: 4001: 3996: 3991: 3986: 3981: 3976: 3971: 3966: 3961: 3956: 3951: 3946: 3941: 3936: 3931: 3926: 3921: 3916: 3911: 3906: 3901: 3896: 3891: 3886: 3881: 3876: 3871: 3866: 3861: 3856: 3851: 3846: 3841: 3836: 3831: 3826: 3821: 3816: 3811: 3806: 3801: 3796: 3791: 3786: 3781: 3776: 3771: 3766: 3761: 3756: 3751: 3746: 3741: 3736: 3731: 3726: 3721: 3716: 3711: 3706: 3701: 3696: 3691: 3686: 3681: 3676: 3671: 3666: 3661: 3656: 3651: 3646: 3641: 3636: 3634:Banert cascade 3631: 3626: 3621: 3616: 3611: 3606: 3601: 3596: 3591: 3586: 3581: 3576: 3571: 3566: 3560: 3558: 3554:Rearrangement 3550: 3549: 3547: 3546: 3544:Zinin reaction 3541: 3536: 3531: 3526: 3521: 3516: 3514:Wacker process 3511: 3506: 3501: 3496: 3491: 3486: 3481: 3476: 3471: 3466: 3461: 3456: 3451: 3446: 3441: 3436: 3431: 3426: 3421: 3416: 3411: 3406: 3401: 3396: 3391: 3386: 3381: 3376: 3371: 3366: 3361: 3356: 3351: 3346: 3341: 3336: 3331: 3326: 3321: 3316: 3311: 3306: 3301: 3296: 3291: 3289:Hydrogenolysis 3286: 3281: 3276: 3271: 3266: 3261: 3256: 3251: 3246: 3241: 3239:Étard reaction 3236: 3231: 3226: 3221: 3216: 3211: 3206: 3201: 3196: 3191: 3186: 3181: 3176: 3171: 3166: 3161: 3156: 3151: 3146: 3144:Bosch reaction 3141: 3136: 3131: 3126: 3121: 3116: 3111: 3106: 3101: 3096: 3091: 3086: 3081: 3076: 3071: 3066: 3061: 3055: 3053: 3049:Organic redox 3045: 3044: 3042: 3041: 3036: 3031: 3026: 3021: 3016: 3011: 3006: 3001: 2996: 2991: 2986: 2981: 2976: 2970: 2968: 2962: 2961: 2959: 2958: 2953: 2948: 2943: 2938: 2933: 2928: 2923: 2918: 2913: 2908: 2903: 2898: 2893: 2888: 2883: 2881:Esterification 2878: 2873: 2868: 2863: 2858: 2852: 2850: 2842: 2841: 2838: 2837: 2835: 2834: 2829: 2824: 2819: 2814: 2809: 2804: 2799: 2794: 2789: 2784: 2779: 2774: 2769: 2764: 2759: 2754: 2749: 2744: 2739: 2734: 2728: 2726: 2722: 2721: 2719: 2718: 2713: 2708: 2703: 2698: 2693: 2688: 2682: 2680: 2671: 2670: 2665: 2660: 2658:Wurtz reaction 2655: 2650: 2645: 2640: 2635: 2630: 2625: 2620: 2615: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2545: 2540: 2535: 2530: 2528:Prins reaction 2525: 2520: 2515: 2510: 2505: 2500: 2495: 2490: 2485: 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2445: 2440: 2435: 2430: 2425: 2420: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2370: 2365: 2360: 2355: 2350: 2345: 2343:Hydrocyanation 2340: 2335: 2330: 2325: 2320: 2315: 2313:Henry reaction 2310: 2305: 2300: 2295: 2290: 2285: 2280: 2275: 2270: 2265: 2260: 2255: 2250: 2245: 2240: 2235: 2230: 2225: 2220: 2215: 2210: 2205: 2200: 2195: 2190: 2185: 2180: 2175: 2170: 2165: 2160: 2155: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2115: 2110: 2105: 2100: 2095: 2090: 2085: 2080: 2075: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2035: 2030: 2025: 2020: 2015: 2013:Aldol reaction 2010: 2005: 2000: 1994: 1992: 1987:Carbon-carbon 1984: 1983: 1972: 1971: 1966: 1964:Zaitsev's rule 1961: 1956: 1951: 1946: 1941: 1936: 1931: 1926: 1921: 1916: 1911: 1909:Steric effects 1906: 1901: 1896: 1891: 1886: 1881: 1876: 1871: 1866: 1861: 1856: 1851: 1846: 1841: 1836: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1686: 1681: 1676: 1671: 1666: 1661: 1656: 1651: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1590: 1587: 1586: 1584: 1583: 1578: 1573: 1568: 1563: 1561:Redox reaction 1558: 1553: 1548: 1546:Polymerization 1543: 1538: 1532: 1529: 1528: 1520: 1519: 1512: 1505: 1497: 1488: 1487: 1485: 1484: 1479: 1474: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1423: 1421: 1415: 1414: 1412: 1411: 1406: 1401: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1355: 1353: 1352:Related topics 1349: 1348: 1346: 1345: 1340: 1335: 1329: 1327: 1326:Medium effects 1323: 1322: 1320: 1319: 1314: 1309: 1304: 1299: 1294: 1288: 1286: 1279: 1278: 1276: 1275: 1270: 1265: 1260: 1255: 1249: 1247: 1243: 1242: 1240: 1239: 1234: 1229: 1224: 1220: 1214: 1210: 1203: 1201: 1195: 1194: 1192: 1191: 1186: 1182: 1176: 1171: 1164: 1162: 1156: 1155: 1153: 1152: 1148: 1141: 1139: 1133: 1132: 1130: 1129: 1125: 1119: 1115: 1109: 1105: 1099: 1095: 1089: 1085: 1078: 1076: 1070: 1069: 1061: 1060: 1053: 1046: 1038: 1032: 1031: 1019: 1005: 1004:External links 1002: 1000: 999: 955: 936:(4): 948–949. 920: 905: 887: 872: 854: 835:(3): 736–737. 818: 811: 793: 783: 746: 732: 709: 679: 677: 674: 673: 672: 665: 662: 660:in the 1920s. 653: 650: 629: 621: 599: 596: 590: 586: 563: 554: 547: 543: 536: 532: 528: 518: 511: 503: 500: 499: 488: 478: 475: 462: 454: 427: 424: 423: 422: 419: 408: 405: 404: 401: 389:An example in 379: 378: 371: 370: 350: 349: 334: 327: 321: 316: 313: 298: 291: 290: 289: 283: 257: 254: 248:, ethanol and 218: 217: 211: 206: 195: 180: 173: 154:antiperiplanar 146: 135: 132: 111:carbon-halogen 98: 95: 88: 66: 15: 9: 6: 4: 3: 2: 4835: 4834: 4823: 4820: 4818: 4815: 4813: 4810: 4809: 4807: 4784: 4781: 4779: 4776: 4774: 4771: 4769: 4766: 4764: 4761: 4759: 4756: 4754: 4751: 4749: 4746: 4744: 4741: 4739: 4736: 4734: 4731: 4729: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4709: 4706: 4704: 4703:Herz reaction 4701: 4699: 4696: 4694: 4691: 4689: 4686: 4684: 4681: 4679: 4676: 4674: 4671: 4669: 4666: 4664: 4661: 4659: 4656: 4654: 4651: 4649: 4646: 4644: 4641: 4639: 4636: 4634: 4631: 4629: 4626: 4624: 4621: 4619: 4616: 4614: 4611: 4609: 4606: 4604: 4601: 4599: 4596: 4594: 4591: 4589: 4586: 4584: 4581: 4580: 4578: 4574: 4568: 4565: 4563: 4560: 4558: 4555: 4553: 4550: 4548: 4545: 4543: 4540: 4538: 4535: 4533: 4530: 4528: 4525: 4523: 4520: 4518: 4515: 4513: 4510: 4508: 4505: 4503: 4500: 4498: 4495: 4493: 4490: 4488: 4485: 4483: 4480: 4478: 4475: 4473: 4470: 4468: 4465: 4463: 4460: 4458: 4455: 4453: 4450: 4448: 4445: 4443: 4440: 4438: 4435: 4433: 4430: 4428: 4425: 4423: 4420: 4418: 4415: 4413: 4410: 4409: 4407: 4405: 4404:Cycloaddition 4401: 4395: 4392: 4390: 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4370: 4367: 4365: 4362: 4360: 4357: 4355: 4352: 4350: 4347: 4345: 4342: 4340: 4337: 4335: 4332: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4250: 4249:Isay reaction 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4220: 4217: 4215: 4212: 4210: 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4190: 4187: 4185: 4182: 4180: 4177: 4175: 4172: 4170: 4167: 4165: 4162: 4160: 4157: 4155: 4152: 4150: 4147: 4145: 4144:Cycloaddition 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4125: 4122: 4120: 4117: 4115: 4112: 4110: 4107: 4105: 4102: 4100: 4097: 4095: 4092: 4090: 4087: 4085: 4082: 4080: 4077: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4050: 4047: 4046: 4044: 4042: 4039:Ring forming 4036: 4030: 4027: 4025: 4022: 4020: 4017: 4015: 4012: 4010: 4007: 4005: 4002: 4000: 3997: 3995: 3992: 3990: 3987: 3985: 3982: 3980: 3977: 3975: 3972: 3970: 3967: 3965: 3962: 3960: 3957: 3955: 3952: 3950: 3947: 3945: 3942: 3940: 3939:Rupe reaction 3937: 3935: 3932: 3930: 3927: 3925: 3922: 3920: 3917: 3915: 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3895: 3892: 3890: 3887: 3885: 3882: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3840: 3837: 3835: 3832: 3830: 3827: 3825: 3822: 3820: 3817: 3815: 3812: 3810: 3807: 3805: 3802: 3800: 3797: 3795: 3792: 3790: 3787: 3785: 3782: 3780: 3777: 3775: 3772: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3752: 3750: 3747: 3745: 3742: 3740: 3737: 3735: 3732: 3730: 3727: 3725: 3722: 3720: 3717: 3715: 3712: 3710: 3707: 3705: 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3625: 3622: 3620: 3617: 3615: 3612: 3610: 3607: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3587: 3585: 3582: 3580: 3577: 3575: 3572: 3570: 3567: 3565: 3562: 3561: 3559: 3557: 3551: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3375: 3372: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3330: 3329:Ley oxidation 3327: 3325: 3322: 3320: 3317: 3315: 3312: 3310: 3307: 3305: 3302: 3300: 3297: 3295: 3294:Hydroxylation 3292: 3290: 3287: 3285: 3284:Hydrogenation 3282: 3280: 3277: 3275: 3272: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3235: 3232: 3230: 3227: 3225: 3222: 3220: 3219:DNA oxidation 3217: 3215: 3212: 3210: 3209:Deoxygenation 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3175: 3172: 3170: 3167: 3165: 3162: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3105: 3102: 3100: 3099:Aromatization 3097: 3095: 3092: 3090: 3087: 3085: 3082: 3080: 3077: 3075: 3072: 3070: 3067: 3065: 3062: 3060: 3057: 3056: 3054: 3052: 3046: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2977: 2975: 2972: 2971: 2969: 2963: 2957: 2954: 2952: 2949: 2947: 2944: 2942: 2939: 2937: 2936:Reed reaction 2934: 2932: 2929: 2927: 2924: 2922: 2919: 2917: 2914: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2853: 2851: 2847:bond forming 2843: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2763: 2760: 2758: 2755: 2753: 2752:Cope reaction 2750: 2748: 2745: 2743: 2740: 2738: 2735: 2733: 2730: 2729: 2727: 2723: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2683: 2681: 2679: 2675: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2539: 2536: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2463:Nef synthesis 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2438:Methylenation 2436: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2308:Heck reaction 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2234: 2231: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1995: 1993: 1989:bond forming 1985: 1981: 1976: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1954:Y-aromaticity 1952: 1950: 1947: 1945: 1942: 1940: 1939:Walsh diagram 1937: 1935: 1932: 1930: 1927: 1925: 1924:Taft equation 1922: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1894:ÎŁ-aromaticity 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1819:Marcus theory 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1794:HĂĽckel's rule 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1749:Evelyn effect 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1729:Electron-rich 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1644:Bema Hapothle 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1591: 1588: 1582: 1579: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1557: 1554: 1552: 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1533: 1530: 1526: 1518: 1513: 1511: 1506: 1504: 1499: 1498: 1495: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1427:Rate equation 1425: 1424: 1422: 1420: 1416: 1410: 1407: 1405: 1402: 1400: 1399:Arrow pushing 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1356: 1354: 1350: 1344: 1341: 1339: 1336: 1334: 1331: 1330: 1328: 1324: 1318: 1315: 1313: 1310: 1308: 1307:Marcus theory 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1289: 1287: 1284: 1280: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1258:Isomerization 1256: 1254: 1251: 1250: 1248: 1244: 1238: 1235: 1233: 1232:Cycloaddition 1230: 1228: 1225: 1218: 1215: 1208: 1205: 1204: 1202: 1200: 1196: 1190: 1183: 1180: 1177: 1175: 1172: 1169: 1166: 1165: 1163: 1161: 1157: 1146: 1143: 1142: 1140: 1138: 1134: 1123: 1120: 1113: 1110: 1103: 1100: 1093: 1090: 1083: 1080: 1079: 1077: 1075: 1071: 1067: 1059: 1054: 1052: 1047: 1045: 1040: 1039: 1036: 1029: 1024: 1020: 1017: 1012: 1008: 1007: 995: 991: 987: 983: 979: 975: 971: 967: 959: 951: 947: 943: 939: 935: 931: 924: 916: 912: 908: 906:9780470257623 902: 898: 891: 883: 879: 875: 869: 865: 858: 850: 846: 842: 838: 834: 831: 830: 822: 814: 812:0-07-242458-3 808: 804: 797: 787: 779: 775: 771: 767: 763: 759: 758: 750: 743: 739: 735: 733:9780471854722 729: 725: 724: 719: 713: 705: 701: 697: 693: 692: 684: 680: 671: 668: 667: 661: 659: 649: 645: 643: 642:α-abstraction 639: 638:α-elimination 635: 627: 619: 615: 607: 603: 595: 584: 580: 576: 572: 567: 561: 551: 540: 527: 522: 515: 509: 497: 493: 489: 486: 482: 479: 476: 473: 470: 469: 468: 466: 458: 450: 445: 441: 437: 433: 432:reaction rate 420: 417: 416: 415: 412: 402: 399: 398: 397: 394: 392: 383: 377: 373: 372: 368: 364: 360: 359: 354: 347: 343: 340:of a certain 339: 335: 332: 328: 325: 317: 314: 311: 308:. Therefore, 307: 303: 302:reaction rate 299: 296: 292: 287: 286:deprotonation 284: 282:intermediate. 281: 277: 274: 273: 271: 267: 266: 265: 263: 253: 251: 247: 243: 239: 235: 231: 222: 215: 207: 204: 200: 196: 193: 189: 185: 184:hybridization 181: 178: 174: 171: 167: 166:synperiplanar 163: 159: 155: 152:) need to be 151: 147: 144: 140: 139:reaction rate 136: 133: 130: 126: 125: 124: 121: 119: 118: 112: 108: 104: 94: 92: 84: 81: 77: 73: 69: 62: 61:leaving group 58: 54: 50: 47:in which two 46: 43:is a type of 42: 34: 33:sulfuric acid 30: 26: 21: 3744:Ene reaction 3104:Autoxidation 2965:Degradation 2856:Azo coupling 2766: 2633:Ugi reaction 2233:Ene reaction 2033:Alkynylation 1884:Polyfluorene 1879:Polar effect 1744:Electrophile 1659:Bredt's rule 1629:Baird's rule 1599:Alpha effect 1540: 1379:Molecularity 1159: 1030:at Wikiquote 969: 965: 958: 933: 929: 923: 896: 890: 863: 857: 832: 827: 821: 802: 796: 786: 761: 755: 749: 722: 718:March, Jerry 712: 695: 689: 683: 655: 646: 641: 637: 611: 601: 568: 559: 552: 541: 525: 523: 516: 501: 429: 413: 406: 395: 390: 388: 366: 362: 329:A secondary 269: 261: 259: 256:E1 mechanism 229: 227: 191: 187: 143:second order 122: 114: 110: 106: 102: 100: 97:E2 mechanism 56: 52: 49:substituents 40: 38: 25:cyclohexanol 2243:Ethenolysis 1889:Ring strain 1859:Nucleophile 1684:Clar's rule 1624:Aromaticity 1338:Cage effect 1273:RRKM theory 1189:elimination 618:isocyanides 492:nucleophile 481:temperature 324:1 reactions 280:carbocation 57:E1 reaction 53:E2 reaction 29:cyclohexene 4806:Categories 4527:Ozonolysis 4054:Annulation 3404:Ozonolysis 1523:Topics in 873:1891389319 764:(4): 552. 676:References 539:1 and E1. 276:Ionization 214:2 reaction 4041:reactions 3556:reactions 3051:reactions 2967:reactions 2849:reactions 1991:reactions 1389:Catalysis 1285:reactions 986:1523-7060 950:0002-7863 915:268790870 742:642506595 338:pyrolysis 246:isobutene 91:mechanism 72:pyrolysis 1934:Vinylogy 1604:Annulene 1551:Reagents 994:21366262 882:55600610 849:16417360 720:(1985), 664:See also 575:chlorate 436:halogens 391:scheme 2 295:tertiary 230:scheme 1 170:eclipsed 76:xanthate 35:and heat 1594:A value 766:Bibcode 652:History 485:entropy 444:bromide 346:menthol 242:ethanol 150:halogen 117:Pi bond 80:acetate 1064:Basic 992:  984:  948:  913:  903:  880:  870:  847:  809:  740:  730:  698:: 33. 628:, :CCl 440:iodide 83:esters 1292:Redox 1128:Acyl) 510:(an S 236:with 31:with 1181:(E2) 1170:(E1) 990:PMID 982:ISSN 946:ISSN 911:OCLC 901:ISBN 878:OCLC 868:ISBN 845:PMID 807:ISBN 738:OCLC 728:ISBN 640:and 560:tert 442:and 430:The 407:If S 300:The 177:base 160:has 137:The 115:C=C 109:and 78:and 1151:Ar) 1108:Ar) 974:doi 938:doi 934:103 837:doi 833:128 774:doi 700:doi 616:or 344:of 240:in 190:to 141:is 120:). 74:of 39:An 27:to 4808:: 1219:(A 1209:(A 1147:(S 1124:(S 1118:i) 1114:(S 1104:(S 1098:2) 1094:(S 1088:1) 1084:(S 988:. 980:. 970:13 968:. 944:. 932:. 909:. 876:. 843:. 772:. 762:85 760:. 736:, 694:. 529:aH 438:, 272:. 252:. 192:sp 188:sp 93:. 67:CB 65:E1 1516:e 1509:t 1502:v 1223:) 1221:N 1213:) 1211:E 1187:i 1185:E 1149:E 1126:N 1116:N 1106:N 1096:N 1086:N 1057:e 1050:t 1043:v 996:. 976:: 952:. 940:: 917:. 884:. 851:. 839:: 815:. 780:. 776:: 768:: 706:. 702:: 696:5 630:2 622:3 591:N 587:N 564:N 555:N 548:N 544:N 537:N 533:N 526:K 519:N 512:N 504:N 487:) 465:1 463:N 461:S 457:2 455:N 453:S 409:N 367:B 363:A 348:: 322:N 320:S 212:N 210:S 194:. 131:. 89:i 87:E

Index


cyclohexanol
cyclohexene
sulfuric acid
organic reaction
substituents
leaving group
E1CB
pyrolysis
xanthate
acetate
esters
Ei mechanism
Pi bond
transition state
reaction rate
second order
halogen
antiperiplanar
transition state
staggered conformation
synperiplanar
eclipsed
base
hybridization
rate determining step
deuterium isotope effect
SN2 reaction
Scheme 1: E2 reaction mechanism
isobutylbromide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑