Knowledge

Electron tomography

Source πŸ“

96:) are the primary imaging methods for tomography tilt series acquisition. However, there are two issues associated with BF-TEM and HRTEM. First, acquiring an interpretable 3-D tomogram requires that the projected image intensities vary monotonically with material thickness. This condition is difficult to guarantee in BF/HRTEM, where image intensities are dominated by phase-contrast with the potential for multiple contrast reversals with thickness, making it difficult to distinguish voids from high-density inclusions. Second, the contrast transfer function of BF-TEM is essentially a 17: 129: 176:
equal slope tomography (EST) are used to address issues such as image noise, sample drift, and limited data. ADF-STEM tomography has recently been used to directly visualize the atomic structure of screw dislocations in nanoparticles. AET has also been used to find the 3D coordinates of 3,769 atoms
181:(EELS) allows for investigation of electronic states in addition to 3D reconstruction. Challenges to atomic level resolution from electron tomography include the need for better reconstruction algorithms and increased precision of tilt angle required to image defects in non-crystalline samples. 189:
The most popular tilting methods are the single-axis and the dual-axis tilting methods. The geometry of most specimen holders and electron microscopes normally precludes tilting the specimen through a full 180Β° range, which can lead to artifacts in the 3D reconstruction of the target. Standard
63:
is passed through the sample at incremental degrees of rotation around the center of the target sample. This information is collected and used to assemble a three-dimensional image of the target. For biological applications, the typical resolution of ET systems are in the 5–20
190:
single-tilt sample holders have a limited rotation of Β±80Β°, leading to a missing wedge in the reconstruction. A solution is to use needle shaped-samples to allow for full rotation. By using dual-axis tilting, the reconstruction artifacts are reduced by a factor of
104:(ADF-STEM), which is typically used on material specimens, more effectively suppresses phase and diffraction contrast, providing image intensities that vary with the projected mass-thickness of samples up to micrometres thick for materials with low 112:, eliminating the edge-enhancing artifacts common in BF/HRTEM. Thus, provided that the features can be resolved, ADF-STEM tomography can yield a reliable reconstruction of the underlying specimen which is extremely important for its application in 1074:
Xu, Rui; Chen, Chien-Chun; Wu, Li; Scott, M. C.; Theis, W.; Ophus, Colin; Bartels, Matthias; Yang, Yongsoo; Ramezani-Dakhel, Hadi; Sawaya, Michael R.; Heinz, Hendrik; Marks, Laurence D.; Ercius, Peter; Miao, Jianwei (November 2015).
214:
compared to single-axis tilting. However, twice as many images need to be taken. Another method of obtaining a tilt-series is the so-called conical tomography method, in which the sample is tilted, and then rotated a complete turn.
880:
Chen, C. C.; Zhu, C.; White, E. R.; Chiu, C. Y.; Scott, M. C.; Regan, B. C.; Marks, L. D.; Huang, Y.; Miao, J. (2013). "Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution".
156:
techniques cannot always be used to locate the coordinates of individual atoms in disordered materials. AET reconstructions are achieved using the combination of an ADF-STEM tomographic tilt series and
1342:
Van Aarle, W.; Palenstijn, WJ.; De Beenhouwer, J; Alantzis, T; Bals, S; Batenburg, J; Sijbers, J (2015). "The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography".
1238:
Van Aarle, W.; Palenstijn, WJ.; De Beenhouwer, J; Alantzis, T; Bals, S; Batenburg, J; Sijbers, J (2015). "The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography".
616:
Van Aarle, W.; Palenstijn, WJ.; De Beenhouwer, J; Alantzis, T; Bals, S; Batenburg, J; Sijbers, J (2015). "The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography".
212: 100:– information at low spatial frequencies is significantly suppressed – resulting in an exaggeration of sharp features. However, the technique of annular dark-field 342:
R. A. Crowther; D. J. DeRosier; A. Klug (1970). "The Reconstruction of a Three-Dimensional Structure from Projections and its Application to Electron Microscopy".
1023:
Li, H.; Xin, H. L.; Muller, D. A.; Estroff, L. A. (2009). "Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels".
758:
Xin, H. L.; Ercius, P.; Hughes, K. J.; Engstrom, J. R.; Muller, D. A. (2010). "Three-dimensional imaging of pore structures inside low-ΞΊ dielectrics".
93: 1439: 177:
in a tungsten needle with 19 pm precision and 20,000 atoms in a multiply twinned palladium nanoparticle. The combination of AET with
101: 136:
Atomic level resolution in 3D electron tomography reconstructions has been demonstrated. Reconstructions of crystal defects such as
1132:
Pelz, Philipp M.; Groschner, Catherine; Bruefach, Alexandra; Satariano, Adam; Ophus, Colin; Scott, Mary C. (25 January 2022).
723:; Weyland, M. (2003). "3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography". 402: 269: 169: 1444: 461:
Y. Yang; et al. (2017). "Deciphering chemical order/disorder and material properties at the single-atom level".
178: 522:
Scott, M. C.; Chen, C. C.; Mecklenburg, M.; Zhu, C.; Xu, R.; Ercius, P.; Dahmen, U.; Regan, B. C.; Miao, J. (2012).
120:. In 2010, a 3D resolution of 0.5Β±0.1Γ—0.5Β±0.1Γ—0.7Β±0.2 nm was achieved with a single-axis ADF-STEM tomography. 89: 56: 52: 426:
Mastronarde, D. N. (1997). "Dual-Axis Tomography: An Approach with Alignment Methods That Preserve Resolution".
153: 1434: 244: 984:"Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography" 843: 229: 69: 68:
range, suitable for examining supra-molecular multi-protein structures, although not the secondary and
1381:"Conical electron tomography of a chemical synapse: Polyhedral cages dock vesicles to the active zone" 523: 254: 1189:
Bals, Sara; Goris, Bart; De Backer, Annick; Van Aert, Sandra; Van Tendeloo, Gustaaf (1 July 2016).
936: 239: 165: 193: 40: 1077:"Three-dimensional coordinates of individual atoms in materials revealed by electron tomography" 844:"Electron Tomography in the (S)TEM: From Nanoscale Morphological Analysis to 3D Atomic Imaging" 173: 80:. Recently, atomic resolution in 3D electron tomography reconstructions has been demonstrated. 1379:
Zampighi, G. A.; Fain, N; Zampighi, L. M.; Cantele, F; Lanzavecchia, S; Wright, E. M. (2008).
1298: 1032: 995: 948: 890: 767: 676: 538: 480: 351: 308: 1277:"Nanomaterial datasets to advance tomography in scanning transmission electron microscopy" 655:"Nanomaterial datasets to advance tomography in scanning transmission electron microscopy" 152:
in structures have been achieved. This method is relevant to the physical sciences, where
8: 859: 1302: 1036: 999: 952: 894: 771: 680: 542: 484: 355: 312: 1405: 1380: 1319: 1288: 1276: 1220: 1171: 1145: 1114: 1088: 1056: 914: 824: 697: 666: 654: 562: 504: 470: 408: 367: 324: 298: 249: 117: 736: 1410: 1364: 1324: 1260: 1224: 1215: 1175: 1163: 1106: 1048: 964: 906: 816: 740: 702: 638: 554: 496: 443: 412: 398: 371: 328: 234: 113: 1060: 828: 289:
R. Hovden; D. A. Muller (2020). "Electron tomography for functional nanomaterials".
1400: 1396: 1392: 1359: 1355: 1351: 1314: 1306: 1255: 1251: 1247: 1210: 1202: 1155: 1133: 1118: 1098: 1040: 1003: 956: 918: 898: 855: 806: 775: 732: 692: 684: 633: 629: 625: 596: 566: 546: 508: 488: 435: 390: 359: 316: 149: 97: 16: 264: 109: 141: 137: 44: 601: 584: 394: 20:
Basic principle of tomography: superposition free tomographic cross sections S
1428: 105: 51:, or materials specimens. Electron tomography is an extension of traditional 48: 1159: 1044: 811: 794: 1414: 1328: 1167: 1110: 1076: 1052: 968: 932: 910: 820: 744: 720: 706: 558: 500: 439: 363: 1310: 688: 447: 1206: 1134:"Simultaneous Successive Twinning Captured by Atomic Electron Tomography" 145: 77: 1341: 1237: 902: 615: 550: 492: 320: 1190: 224: 36: 1008: 983: 779: 128: 1102: 960: 580: 161: 158: 65: 1293: 1150: 1093: 939:(2009). "Electron tomography and holography in materials science". 671: 475: 341: 303: 116:. For 3D imaging, the resolution is traditionally described by the 60: 73: 579: 259: 1131: 982:
Ercius, P.; Weyland, M.; Muller, D. A.; Gignac, L. M. (2006).
793:
Miao, J.; Ercius, P.; Billinge, S. J. L. (23 September 2016).
795:"Atomic electron tomography: 3D structures without crystals" 583:; Kisielowski, C. F.; Croitoru, M.; Tendeloo, G. V. (2005). 1378: 1188: 981: 757: 521: 931: 288: 196: 132:
Schematic showing the concept of electron tomography.
123: 1022: 792: 206: 83: 1426: 879: 524:"Electron tomography at 2.4-Γ₯ngstrΓΆm resolution" 168:. Currently, algorithms such as the real-space 59:to collect the data. In the process, a beam of 719: 1073: 385:Frank, Joachim (2006). Frank, Joachim (ed.). 1274: 841: 652: 184: 425: 1404: 1363: 1318: 1292: 1259: 1214: 1149: 1092: 1007: 810: 696: 670: 637: 600: 474: 302: 102:scanning transmission electron microscopy 515: 127: 15: 1191:"Atomic resolution electron tomography" 842:Saghi, Zineb; Midgley, Paul A. (2012). 751: 460: 335: 1427: 873: 585:"Annular Dark Field Tomography in TEM" 88:In the field of biology, bright-field 384: 282: 270:X-ray diffraction computed tomography 860:10.1146/annurev-matsci-070511-155019 848:Annual Review of Materials Research 28:compared with the projected image P 13: 1440:Multidimensional signal processing 1275:B.D.A. Levin; et al. (2016). 653:B.D.A. Levin; et al. (2016). 170:algebraic reconstruction technique 92:(BF-TEM) and high-resolution TEM ( 14: 1456: 179:electron energy loss spectroscopy 39:technique for obtaining detailed 124:Atomic Electron Tomography (AET) 90:transmission electron microscopy 57:transmission electron microscope 53:transmission electron microscopy 1372: 1335: 1268: 1231: 1182: 1125: 1067: 1016: 975: 925: 835: 786: 713: 1397:10.1523/JNEUROSCI.4639-07.2008 1356:10.1016/j.ultramic.2015.05.002 1252:10.1016/j.ultramic.2015.05.002 646: 630:10.1016/j.ultramic.2015.05.002 609: 573: 454: 419: 378: 84:BF-TEM and ADF-STEM tomography 1: 737:10.1016/S0304-3991(03)00105-0 428:Journal of Structural Biology 275: 589:Microscopy and Microanalysis 245:Positron emission tomography 7: 218: 207:{\displaystyle {\sqrt {2}}} 10: 1461: 260:tomviz tomography software 230:Tomographic reconstruction 108:. ADF-STEM also acts as a 1365:10067/1278340151162165141 1261:10067/1278340151162165141 1216:10067/1356900151162165141 639:10067/1278340151162165141 602:10.1017/S143192760550117X 395:10.1007/978-0-387-69008-7 255:X-ray computed tomography 185:Different tilting methods 1445:Condensed matter physics 265:imod tomography software 240:Cryo-electron tomography 33:Electron tomography (ET) 1385:Journal of Neuroscience 1160:10.1021/acsnano.1c07772 1045:10.1126/science.1178583 988:Applied Physics Letters 812:10.1126/science.aaf2157 760:Applied Physics Letters 937:Dunin-Borkowski, R. E. 440:10.1006/jsbi.1997.3919 364:10.1098/rspa.1970.0119 208: 174:fast Fourier transform 133: 29: 1311:10.1038/sdata.2016.41 689:10.1038/sdata.2016.41 344:Proc. R. Soc. Lond. A 209: 131: 19: 1207:10.1557/mrs.2016.138 194: 1435:Electron microscopy 1303:2016NatSD...360041L 1037:2009Sci...326.1244L 1031:(5957): 1244–1247. 1000:2006ApPhL..88x3116E 953:2009NatMa...8..271M 903:10.1038/nature12009 895:2013Natur.496...74C 772:2010ApPhL..96v3108X 681:2016NatSD...360041L 551:10.1038/nature10934 543:2012Natur.483..444S 493:10.1038/nature21042 485:2017Natur.542...75Y 387:Electron Tomography 356:1970RSPSA.317..319C 321:10.1557/mrs.2020.87 313:2020MRSBu..45..298H 1287:(160041): 160041. 665:(160041): 160041. 250:Crowther criterion 204: 134: 118:Crowther criterion 70:tertiary structure 30: 1087:(11): 1099–1103. 1009:10.1063/1.2213185 805:(6306): aaf2157. 780:10.1063/1.3442496 404:978-0-387-31234-7 350:(1530): 319–340. 235:3D reconstruction 202: 114:materials science 72:of an individual 1452: 1419: 1418: 1408: 1376: 1370: 1369: 1367: 1339: 1333: 1332: 1322: 1296: 1272: 1266: 1265: 1263: 1235: 1229: 1228: 1218: 1186: 1180: 1179: 1153: 1129: 1123: 1122: 1103:10.1038/nmat4426 1096: 1081:Nature Materials 1071: 1065: 1064: 1020: 1014: 1013: 1011: 979: 973: 972: 961:10.1038/nmat2406 941:Nature Materials 929: 923: 922: 877: 871: 870: 868: 866: 839: 833: 832: 814: 790: 784: 783: 755: 749: 748: 731:(3–4): 413–431. 717: 711: 710: 700: 674: 650: 644: 643: 641: 613: 607: 606: 604: 577: 571: 570: 528: 519: 513: 512: 478: 458: 452: 451: 423: 417: 416: 382: 376: 375: 339: 333: 332: 306: 286: 213: 211: 210: 205: 203: 198: 142:grain boundaries 98:high-pass filter 1460: 1459: 1455: 1454: 1453: 1451: 1450: 1449: 1425: 1424: 1423: 1422: 1391:(16): 4151–60. 1377: 1373: 1344:Ultramicroscopy 1340: 1336: 1281:Scientific Data 1273: 1269: 1240:Ultramicroscopy 1236: 1232: 1187: 1183: 1130: 1126: 1072: 1068: 1021: 1017: 980: 976: 930: 926: 889:(7443): 74–77. 878: 874: 864: 862: 840: 836: 791: 787: 756: 752: 725:Ultramicroscopy 718: 714: 659:Scientific Data 651: 647: 618:Ultramicroscopy 614: 610: 578: 574: 537:(7390): 444–7. 526: 520: 516: 469:(7639): 75–79. 459: 455: 424: 420: 405: 383: 379: 340: 336: 287: 283: 278: 221: 197: 195: 192: 191: 187: 138:stacking faults 126: 110:low-pass filter 86: 49:macro-molecular 27: 23: 12: 11: 5: 1458: 1448: 1447: 1442: 1437: 1421: 1420: 1371: 1334: 1267: 1230: 1201:(7): 525–530. 1181: 1144:(1): 588–596. 1124: 1066: 1015: 994:(24): 243116. 974: 947:(4): 271–280. 933:Midgley, P. A. 924: 872: 834: 785: 766:(22): 223108. 750: 721:Midgley, P. A. 712: 645: 608: 572: 514: 453: 434:(3): 343–352. 418: 403: 377: 334: 297:(4): 298–304. 280: 279: 277: 274: 273: 272: 267: 262: 257: 252: 247: 242: 237: 232: 227: 220: 217: 201: 186: 183: 172:(ART) and the 166:reconstruction 125: 122: 85: 82: 43:structures of 25: 21: 9: 6: 4: 3: 2: 1457: 1446: 1443: 1441: 1438: 1436: 1433: 1432: 1430: 1416: 1412: 1407: 1402: 1398: 1394: 1390: 1386: 1382: 1375: 1366: 1361: 1357: 1353: 1349: 1345: 1338: 1330: 1326: 1321: 1316: 1312: 1308: 1304: 1300: 1295: 1290: 1286: 1282: 1278: 1271: 1262: 1257: 1253: 1249: 1245: 1241: 1234: 1226: 1222: 1217: 1212: 1208: 1204: 1200: 1196: 1192: 1185: 1177: 1173: 1169: 1165: 1161: 1157: 1152: 1147: 1143: 1139: 1135: 1128: 1120: 1116: 1112: 1108: 1104: 1100: 1095: 1090: 1086: 1082: 1078: 1070: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1019: 1010: 1005: 1001: 997: 993: 989: 985: 978: 970: 966: 962: 958: 954: 950: 946: 942: 938: 934: 928: 920: 916: 912: 908: 904: 900: 896: 892: 888: 884: 876: 861: 857: 853: 849: 845: 838: 830: 826: 822: 818: 813: 808: 804: 800: 796: 789: 781: 777: 773: 769: 765: 761: 754: 746: 742: 738: 734: 730: 726: 722: 716: 708: 704: 699: 694: 690: 686: 682: 678: 673: 668: 664: 660: 656: 649: 640: 635: 631: 627: 623: 619: 612: 603: 598: 594: 590: 586: 582: 576: 568: 564: 560: 556: 552: 548: 544: 540: 536: 532: 525: 518: 510: 506: 502: 498: 494: 490: 486: 482: 477: 472: 468: 464: 457: 449: 445: 441: 437: 433: 429: 422: 414: 410: 406: 400: 396: 392: 388: 381: 373: 369: 365: 361: 357: 353: 349: 345: 338: 330: 326: 322: 318: 314: 310: 305: 300: 296: 292: 285: 281: 271: 268: 266: 263: 261: 258: 256: 253: 251: 248: 246: 243: 241: 238: 236: 233: 231: 228: 226: 223: 222: 216: 199: 182: 180: 175: 171: 167: 163: 160: 155: 151: 147: 143: 139: 130: 121: 119: 115: 111: 107: 106:atomic number 103: 99: 95: 91: 81: 79: 75: 71: 67: 62: 58: 54: 50: 46: 42: 38: 34: 18: 1388: 1384: 1374: 1347: 1343: 1337: 1284: 1280: 1270: 1243: 1239: 1233: 1198: 1195:MRS Bulletin 1194: 1184: 1141: 1137: 1127: 1084: 1080: 1069: 1028: 1024: 1018: 991: 987: 977: 944: 940: 927: 886: 882: 875: 863:. Retrieved 851: 847: 837: 802: 798: 788: 763: 759: 753: 728: 724: 715: 662: 658: 648: 621: 617: 611: 592: 588: 575: 534: 530: 517: 466: 462: 456: 431: 427: 421: 386: 380: 347: 343: 337: 294: 291:MRS Bulletin 290: 284: 188: 146:dislocations 135: 87: 45:sub-cellular 32: 31: 865:13 December 78:polypeptide 55:and uses a 1429:Categories 1294:1606.02938 1151:2109.06954 1094:1505.05938 672:1606.02938 476:1607.02051 304:2006.01652 276:References 225:Tomography 162:algorithms 37:tomography 1350:: 35–47. 1246:: 35–47. 1225:139058353 1176:237513855 854:: 59–79. 624:: 35–47. 413:241282825 372:122980366 329:216522865 159:iterative 61:electrons 1415:18417694 1329:27272459 1168:34783237 1138:ACS Nano 1111:26390325 1061:40526826 1053:19965470 969:19308086 911:23535594 829:30174421 821:27708010 745:12871805 707:27272459 581:Bals, S. 559:22437612 501:28150758 219:See also 150:twinning 1406:3844767 1320:4896123 1299:Bibcode 1119:5455024 1033:Bibcode 1025:Science 996:Bibcode 949:Bibcode 919:4410909 891:Bibcode 799:Science 768:Bibcode 698:4896123 677:Bibcode 567:1600103 539:Bibcode 509:4464276 481:Bibcode 448:9441937 352:Bibcode 309:Bibcode 154:cryo-EM 74:protein 1413:  1403:  1327:  1317:  1223:  1174:  1166:  1117:  1109:  1059:  1051:  967:  917:  909:  883:Nature 827:  819:  743:  705:  695:  565:  557:  531:Nature 507:  499:  463:Nature 446:  411:  401:  370:  327:  148:, and 1289:arXiv 1221:S2CID 1172:S2CID 1146:arXiv 1115:S2CID 1089:arXiv 1057:S2CID 915:S2CID 825:S2CID 667:arXiv 563:S2CID 527:(PDF) 505:S2CID 471:arXiv 409:S2CID 368:S2CID 325:S2CID 299:arXiv 94:HRTEM 35:is a 24:and S 1411:PMID 1325:PMID 1164:PMID 1107:PMID 1049:PMID 965:PMID 907:PMID 867:2022 817:PMID 741:PMID 703:PMID 555:PMID 497:PMID 444:PMID 399:ISBN 164:for 1401:PMC 1393:doi 1360:hdl 1352:doi 1348:157 1315:PMC 1307:doi 1256:hdl 1248:doi 1244:157 1211:hdl 1203:doi 1156:doi 1099:doi 1041:doi 1029:326 1004:doi 957:doi 899:doi 887:496 856:doi 807:doi 803:353 776:doi 733:doi 693:PMC 685:doi 634:hdl 626:doi 622:157 597:doi 547:doi 535:483 489:doi 467:542 436:doi 432:120 391:doi 360:doi 348:317 317:doi 76:or 1431:: 1409:. 1399:. 1389:28 1387:. 1383:. 1358:. 1346:. 1323:. 1313:. 1305:. 1297:. 1283:. 1279:. 1254:. 1242:. 1219:. 1209:. 1199:41 1197:. 1193:. 1170:. 1162:. 1154:. 1142:16 1140:. 1136:. 1113:. 1105:. 1097:. 1085:14 1083:. 1079:. 1055:. 1047:. 1039:. 1027:. 1002:. 992:88 990:. 986:. 963:. 955:. 943:. 935:; 913:. 905:. 897:. 885:. 852:42 850:. 846:. 823:. 815:. 801:. 797:. 774:. 764:96 762:. 739:. 729:96 727:. 701:. 691:. 683:. 675:. 661:. 657:. 632:. 620:. 595:. 593:11 591:. 587:. 561:. 553:. 545:. 533:. 529:. 503:. 495:. 487:. 479:. 465:. 442:. 430:. 407:. 397:. 389:. 366:. 358:. 346:. 323:. 315:. 307:. 295:45 293:. 144:, 140:, 66:nm 47:, 41:3D 1417:. 1395:: 1368:. 1362:: 1354:: 1331:. 1309:: 1301:: 1291:: 1285:3 1264:. 1258:: 1250:: 1227:. 1213:: 1205:: 1178:. 1158:: 1148:: 1121:. 1101:: 1091:: 1063:. 1043:: 1035:: 1012:. 1006:: 998:: 971:. 959:: 951:: 945:8 921:. 901:: 893:: 869:. 858:: 831:. 809:: 782:. 778:: 770:: 747:. 735:: 709:. 687:: 679:: 669:: 663:3 642:. 636:: 628:: 605:. 599:: 569:. 549:: 541:: 511:. 491:: 483:: 473:: 450:. 438:: 415:. 393:: 374:. 362:: 354:: 331:. 319:: 311:: 301:: 200:2 26:2 22:1

Index


tomography
3D
sub-cellular
macro-molecular
transmission electron microscopy
transmission electron microscope
electrons
nm
tertiary structure
protein
polypeptide
transmission electron microscopy
HRTEM
high-pass filter
scanning transmission electron microscopy
atomic number
low-pass filter
materials science
Crowther criterion

stacking faults
grain boundaries
dislocations
twinning
cryo-EM
iterative
algorithms
reconstruction
algebraic reconstruction technique

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑