Knowledge

Electron-beam technology

Source đź“ť

33: 1113: 315:
The kinetic energy is transformed into thermal energy at or near the surface of the material. The resulting heating causes the material to melt and then evaporate. Temperatures in excess of 3500 degrees Celsius can be reached. The vapor from the source condenses onto a substrate, creating a thin film of high-purity material. Film thicknesses from a single atomic layer to many micrometers can be achieved. This technique is used in
216:, texturing, and polishing (with argon gas present). If the electron beam is used to cut a shallow trough in the surface, repeatedly moving it horizontally along the trough at high speeds creates a small pile of ejected melted metal. With repetition, spike structures of up to a millimeter in height can be created. These structures can aid bonding between different materials and modify the surface roughness of the metal. 1125: 172:, the electron beam provides a source of heat that can melt or modify any material. This source of heat or phase transformation is absolutely sterile due to the vacuum and scull of solidified metal around the cold copper crucible walls. This ensures that the purest materials can be produced and refined in electron-beam vacuum furnaces. Rare and 314:
by depositing thin layers of metals onto a backing structure. Electron-beam evaporation uses thermionics emission to create a stream of electrons that are accelerated by a high-voltage cathode and anode arrangement. Electrostatic and magnetic fields focus and direct the electrons to strike a target.
260:
Electron-beam machining is a process in which high-velocity electrons are concentrated into a narrow beam with a very high planar power density. The beam cross-section is then focused and directed toward the work piece, creating heat and vaporizing the material. Electron-beam machining can be used to
375:
Electron beams impinging on metal produce X-rays. The X-rays may be diagnostic, e.g., dental or limb images. Often in these X-ray tubes the metal is a spinning disk so that it doesn't melt; the disk is spun in vacuum via a magnetic motor. The X-rays may also be used to kill cancerous tissue. The
149:
The rapid increase of temperature at the location of impact can quickly melt a target material. In extreme working conditions, the rapid temperature increase can even lead to evaporation, making an electron beam an excellent tool in heating applications, such as welding. Electron beam technology is
194:
Since the beginning of electron-beam welding on an industrial scale at the end of the 1950s, countless electron-beam welders have been designed and are being used worldwide. These welders feature working vacuum chambers ranging from a few liters up to hundreds of cubic meters, with electron guns
337:
and inks without the need for traditional solvent. Electron-beam curing produces a finish similar to that of traditional solvent-evaporation processes, but achieves that finish through a polymerization process. E-beam processing is also used to cross-link polymers to make them more resistant to
237:
is the process of joining materials to make objects from 3D model data, usually by melting powder material layer upon layer. Melting in a vacuum by using a computer-controlled scanning electron beam is highly precise. Electron-beam direct manufacturing (DM) is the first commercially available,
203:
Modern electron-beam welders are usually designed with a computer-controlled deflection system that can traverse the beam rapidly and accurately over a selected area of the work piece. Thanks to the rapid heating, only a thin surface layer of the material is heated. Applications include
261:
accurately cut or bore a wide variety of metals. The resulting surface finish is better and kerf width is narrower than what can be produced by other thermal cutting processes. However, due to high equipment costs, the use of this technology is limited to high-value products.
452:
Nemtanu, M. R., Brasoveanu, M., Ed., Practical Aspects and applications of Electron Beam Irradiation, Transworld Research Network, 37/661(2), Fort P.O., Trivandrum-695 023, Kerala, India
345:
of medical products and aseptic packaging materials for foods, as well as disinfestation, the elimination of live insects from grain, tobacco, and other unprocessed bulk crops.
275:
An electron lithograph is produced by a very finely focused electron beam, which creates micro-structures in the resist that can subsequently be transferred to the
154:
for electron-beam curing of color printing and for the fabrication and modification of polymers, including liquid-crystal films, among many other applications.
757: 246:
The source billet metal is melted by an electron beam while being spun vigorously. Powder is produced as the metal cools when flying off the metal bar.
740: 735: 884: 587: 874: 477: 287:
uses electron beams with diameters ranging from two nanometers up to hundreds of nanometers. The electron lithograph is also used to produce
359:
An electron microscope uses a controlled beam of electrons to illuminate a specimen and produce a magnified image. Two common types are the
777: 750: 685: 745: 141:. This concentration of energy in a small volume of matter can be precisely controlled electronically, which brings many advantages. 176:
can be produced or refined in small-volume vacuum furnaces. For mass production of steels, large furnaces with capacity measured in
889: 399: 17: 705: 829: 695: 642: 442:
Visser, A.: Werkstoffabtrag durch Elektronen-und Photonenstrahlen; Verlag <Technische Rundschau>, Blaue Reihe, Heft 104
279:
material, often by etching. It was originally developed for manufacturing integrated circuits and is also used for creating
1129: 1084: 812: 797: 723: 229: 834: 667: 520: 470: 416: 76: 54: 47: 822: 817: 715: 690: 657: 364: 894: 879: 859: 1089: 662: 597: 505: 98: 1079: 839: 802: 647: 446: 288: 276: 150:
used in cable-isolation treatment, in electron lithography of sub-micrometer and nano-dimensional images, in
102: 1117: 677: 463: 360: 342: 864: 782: 307: 270: 1043: 869: 328: 133:
to form a fine beam. Where the beam collides with solid-state matter, electrons are converted into
41: 792: 728: 602: 561: 255: 1151: 982: 213: 209: 205: 58: 987: 807: 225: 189: 163: 992: 551: 284: 8: 957: 942: 849: 844: 787: 652: 634: 566: 556: 500: 486: 354: 396: 1028: 607: 571: 972: 967: 436:
Von Dobeneck, D.: Electron Beam Welding – Examples of 30 Years of Job-Shop Experience
319:, optics, and material research, and to produce solar cells and many other products. 173: 1059: 922: 854: 316: 292: 151: 291:(CGH). Maskless electron lithography has found wide usage in photomask making for 977: 403: 932: 546: 280: 138: 130: 126: 93:
has provided the basis for a variety of novel and specialized applications in
1145: 1008: 952: 612: 296: 94: 1069: 1033: 927: 917: 592: 541: 169: 439:
elfik.isibrno.cz/en : Electron beam welding (in Czech and/or English)
1013: 947: 937: 238:
large-scale, fully programmable means of achieving near net shape parts.
234: 177: 180:
and electron-beam power in megawatts exist in industrialized countries.
1094: 1074: 515: 510: 311: 106: 455: 962: 617: 377: 1064: 530: 118: 302: 1018: 700: 1038: 122: 445:
Klein, J., Ed., Welding: Processes, Quality and Applications,
334: 1023: 134: 433:
Schultz, H.: Electron beam welding, Abington Publishing
417:"Development of Electron Beam Systems and Technologies" 299:
components, and research and development activities.
310:
takes place in a vacuum and produces a thin film of
1143: 303:Physical-vapor-deposition solar-cell production 885:Serial block-face scanning electron microscopy 588:Detectors for transmission electron microscopy 471: 370: 333:Electron-beam curing is a method of curing 322: 478: 464: 338:thermal, mechanical or chemical stresses. 241: 219: 77:Learn how and when to remove this message 449:, N.Y., Chapters 1 and 2, pp. 1–166 380:machine is an infamous example of this. 341:E-beam processing has been used for the 40:This article includes a list of general 485: 348: 14: 1144: 459: 198: 195:carrying power of up to 100 kW. 1124: 26: 24: 230:Electron-beam freeform fabrication 46:it lacks sufficient corresponding 25: 1163: 521:Timeline of microscope technology 1123: 1112: 1111: 365:transmission electron microscope 31: 880:Precession electron diffraction 427: 144: 409: 390: 264: 99:microelectromechanical systems 13: 1: 447:Nova Science Publishers, Inc. 383: 103:nanoelectromechanical systems 361:scanning electron microscope 289:computer-generated holograms 249: 112: 89:Since the mid-20th century, 7: 295:, low-volume production of 157: 10: 1168: 865:Immune electron microscopy 783:Annular dark-field imaging 598:Everhart–Thornley detector 397:Electron Beam Applications 352: 326: 268: 253: 223: 187: 183: 161: 1107: 1052: 1019:Hitachi High-Technologies 1001: 910: 903: 770: 714: 676: 633: 626: 580: 529: 493: 371:Medical Radiation Therapy 308:Physical vapor deposition 271:Electron-beam lithography 1044:Thermo Fisher Scientific 870:Geometric phase analysis 758:Aberration-Corrected TEM 329:Electron-beam processing 323:Curing and sterilization 91:electron-beam technology 18:Electron beam technology 793:Charge contrast imaging 603:Field electron emission 256:Electron-beam machining 242:Metal powder production 61:more precise citations. 983:Thomas Eugene Everhart 235:Additive manufacturing 220:Additive manufacturing 125:can be manipulated by 988:Vernon Ellis Cosslett 808:Dark-field microscopy 226:Electron-beam melting 190:Electron-beam welding 164:Electron-beam furnace 993:Vladimir K. Zworykin 643:Correlative light EM 552:Electron diffraction 349:Electron microscopes 285:Electron lithographs 958:Manfred von Ardenne 943:Gerasimos Danilatos 850:Electron tomography 845:Electron holography 788:Cathodoluminescence 567:Secondary electrons 557:Electron scattering 501:Electron microscopy 487:Electron microscopy 355:Electron microscope 1080:Digital Micrograph 686:Environmental SEM 608:Field emission gun 572:X-ray fluorescence 402:2016-10-22 at the 199:Surface treatments 1139: 1138: 1103: 1102: 973:Nestor J. Zaluzec 968:Maximilian Haider 766: 765: 174:refractory metals 87: 86: 79: 16:(Redirected from 1159: 1127: 1126: 1115: 1114: 923:Bodo von Borries 908: 907: 668:Photoemission EM 631: 630: 480: 473: 466: 457: 456: 421: 420: 413: 407: 394: 317:microelectronics 293:photolithography 152:microelectronics 82: 75: 71: 68: 62: 57:this article by 48:inline citations 35: 34: 27: 21: 1167: 1166: 1162: 1161: 1160: 1158: 1157: 1156: 1142: 1141: 1140: 1135: 1099: 1048: 997: 978:Ondrej Krivanek 899: 762: 710: 672: 658:Liquid-Phase EM 622: 581:Instrumentation 576: 534: 525: 489: 484: 430: 425: 424: 415: 414: 410: 404:Wayback Machine 395: 391: 386: 373: 357: 351: 331: 325: 305: 283:architectures. 273: 267: 258: 252: 244: 232: 224:Main articles: 222: 201: 192: 186: 166: 160: 147: 131:magnetic fields 115: 97:manufacturing, 83: 72: 66: 63: 53:Please help to 52: 36: 32: 23: 22: 15: 12: 11: 5: 1165: 1155: 1154: 1137: 1136: 1134: 1133: 1121: 1108: 1105: 1104: 1101: 1100: 1098: 1097: 1092: 1087: 1085:Direct methods 1082: 1077: 1072: 1067: 1062: 1056: 1054: 1050: 1049: 1047: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1005: 1003: 999: 998: 996: 995: 990: 985: 980: 975: 970: 965: 960: 955: 950: 945: 940: 935: 933:Ernst G. Bauer 930: 925: 920: 914: 912: 905: 901: 900: 898: 897: 892: 887: 882: 877: 872: 867: 862: 857: 852: 847: 842: 837: 832: 827: 826: 825: 815: 810: 805: 800: 795: 790: 785: 780: 774: 772: 768: 767: 764: 763: 761: 760: 755: 754: 753: 743: 738: 733: 732: 731: 720: 718: 712: 711: 709: 708: 703: 698: 693: 688: 682: 680: 674: 673: 671: 670: 665: 660: 655: 650: 645: 639: 637: 628: 624: 623: 621: 620: 615: 610: 605: 600: 595: 590: 584: 582: 578: 577: 575: 574: 569: 564: 559: 554: 549: 547:Bremsstrahlung 544: 538: 536: 527: 526: 524: 523: 518: 513: 508: 503: 497: 495: 491: 490: 483: 482: 475: 468: 460: 454: 453: 450: 443: 440: 437: 434: 429: 426: 423: 422: 408: 388: 387: 385: 382: 372: 369: 363:(SEM) and the 353:Main article: 350: 347: 327:Main article: 324: 321: 304: 301: 281:nanotechnology 269:Main article: 266: 263: 254:Main article: 251: 248: 243: 240: 221: 218: 200: 197: 188:Main article: 185: 182: 162:Main article: 159: 156: 146: 143: 139:kinetic energy 114: 111: 85: 84: 39: 37: 30: 9: 6: 4: 3: 2: 1164: 1153: 1152:Electron beam 1150: 1149: 1147: 1132: 1131: 1122: 1120: 1119: 1110: 1109: 1106: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1057: 1055: 1051: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1009:Carl Zeiss AG 1007: 1006: 1004: 1002:Manufacturers 1000: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 953:James Hillier 951: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 924: 921: 919: 916: 915: 913: 909: 906: 902: 896: 893: 891: 888: 886: 883: 881: 878: 876: 873: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 841: 838: 836: 833: 831: 828: 824: 821: 820: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 775: 773: 769: 759: 756: 752: 749: 748: 747: 744: 742: 739: 737: 734: 730: 727: 726: 725: 722: 721: 719: 717: 713: 707: 706:Ultrafast SEM 704: 702: 699: 697: 694: 692: 689: 687: 684: 683: 681: 679: 675: 669: 666: 664: 663:Low-energy EM 661: 659: 656: 654: 651: 649: 646: 644: 641: 640: 638: 636: 632: 629: 625: 619: 616: 614: 613:Magnetic lens 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 585: 583: 579: 573: 570: 568: 565: 563: 562:Kikuchi lines 560: 558: 555: 553: 550: 548: 545: 543: 540: 539: 537: 532: 528: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 498: 496: 492: 488: 481: 476: 474: 469: 467: 462: 461: 458: 451: 448: 444: 441: 438: 435: 432: 431: 418: 412: 405: 401: 398: 393: 389: 381: 379: 368: 366: 362: 356: 346: 344: 343:sterilization 339: 336: 330: 320: 318: 313: 309: 300: 298: 297:semiconductor 294: 290: 286: 282: 278: 272: 262: 257: 247: 239: 236: 231: 227: 217: 215: 211: 207: 196: 191: 181: 179: 175: 171: 165: 155: 153: 142: 140: 136: 132: 128: 124: 120: 110: 108: 104: 100: 96: 95:semiconductor 92: 81: 78: 70: 67:November 2011 60: 56: 50: 49: 43: 38: 29: 28: 19: 1128: 1116: 1070:EM Data Bank 1034:Nion Company 928:Dennis Gabor 918:Albert Crewe 696:Confocal SEM 593:Electron gun 542:Auger effect 428:Bibliography 411: 392: 374: 358: 340: 332: 306: 274: 259: 245: 233: 202: 193: 167: 148: 145:Applications 116: 90: 88: 73: 64: 45: 1014:FEI Company 948:Harald Rose 938:Ernst Ruska 627:Microscopes 535:with matter 533:interaction 312:solar cells 265:Lithography 178:metric tons 59:introducing 1095:Multislice 911:Developers 771:Techniques 516:Microscope 511:Micrograph 384:References 107:microscopy 42:references 963:Max Knoll 618:Stigmator 378:Therac-25 277:substrate 250:Machining 214:tempering 210:annealing 206:hardening 119:electrons 113:Mechanism 1146:Category 1118:Category 1065:CrysTBox 1053:Software 724:Cryo-TEM 531:Electron 400:Archived 158:Furnaces 127:electric 1130:Commons 778:4D STEM 751:4D STEM 729:Cryo-ET 701:SEM-XRF 691:CryoSEM 648:Cryo-EM 506:History 367:(TEM). 184:Welding 55:improve 1075:EMsoft 1060:CASINO 1039:TESCAN 904:Others 803:cryoEM 494:Basics 335:paints 170:vacuum 123:vacuum 105:, and 44:, but 1029:Leica 875:PINEM 741:HRTEM 736:EFTEM 168:In a 121:in a 117:Free 1090:IUCr 1024:JEOL 895:WBDF 890:WDXS 840:EBIC 835:EELS 830:ECCI 818:EBSD 798:CBED 746:STEM 228:and 135:heat 129:and 860:FEM 855:FIB 823:TKD 813:EDS 716:TEM 678:SEM 653:EMP 137:or 1148:: 635:EM 212:, 208:, 109:. 101:, 479:e 472:t 465:v 419:. 406:. 80:) 74:( 69:) 65:( 51:. 20:)

Index

Electron beam technology
references
inline citations
improve
introducing
Learn how and when to remove this message
semiconductor
microelectromechanical systems
nanoelectromechanical systems
microscopy
electrons
vacuum
electric
magnetic fields
heat
kinetic energy
microelectronics
Electron-beam furnace
vacuum
refractory metals
metric tons
Electron-beam welding
hardening
annealing
tempering
Electron-beam melting
Electron-beam freeform fabrication
Additive manufacturing
Electron-beam machining
Electron-beam lithography

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑