Knowledge

Electrode potential

Source đź“ť

209: 305:
In 1953 in Stockholm IUPAC recognized that either of the conventions is permissible; however, it unanimously recommended that only the magnitude expressed according to the convention (2) be called "the electrode potential". To avoid possible ambiguities, the electrode potential thus defined can also
517:
This follows from the IUPAC definition of the electric potential difference of a galvanic cell, according to which the electric potential difference of a cell is the difference of the potentials of the electrodes on the right and the left of the galvanic cell. When
512: 446: 149: 367:. Proponents of the convention (2) argue that all reported electrode potentials should be consistent with the electrostatic sign of the relative potential difference. 158:
at the working electrode ("reversible potential"), or a potential with a non-zero net reaction on the working electrode but zero net current ("corrosion potential", "
226: 92:
In an electrochemical cell, the cathode and the anode have certain electrode potentials independently and the difference between them is the cell potential:
458: 17: 395: 669: 613: 609: 384: 642:
C.A. Hamel, "The Encyclopedia of Electrochemistry", Reinhold Publishing Corporation, New York-Chapman & Hall Ltd., London, 1964, p. 429–431.
98: 310:. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of 196:
involves this reference electrode with hydrogen ion in an ideal solution having is "zero potential at all temperatures" equivalently to
181:
The value of the electrode potential under non-equilibrium depends on the nature and composition of the contacting phases, and on the
651:
P. van Rysselberghe, "Bericht der Kommission für electrochemische Nomenklatur und Definitionen", Z. Electrochem., 58 (1954), 530–535.
581: 61:
The electrode potential has its origin in the potential difference developed at the interface between the electrode and the
712: 363:
switches sign when a reaction is written in reverse, so too, proponents of the convention (1) argue, should the sign of
246:
in the electrolyte, e.g., by positioning the reference electrode near the surface of the working electrode (e.g., see
389:
Potential of a cell assembled of two electrodes can be determined from the two individual electrode potentials using
197: 85:
due to the transfer of charged species across the interface, specific adsorption of ions at the interface, and
317:
The main difference between the two conventions is that upon reversing the direction of a half-cell reaction
660:
Anson, Fred C. "Common sources of confusion; Electrode Sign Conventions," J. Chem. Educ., 1959, 36, p. 394.
576: 545: 171: 380: 58:. It may also be defined as the potential difference between the charged metallic rods and salt solution. 255: 193: 51: 186: 707: 155: 283: 182: 325:
also switches, whereas in the convention (2) it does not. The logic behind switching the sign of
586: 356:. It is assumed that the half-reaction is balanced by the appropriate SHE half-reaction. Since 251: 159: 528:
is positive, then positive electrical charge flows through the cell from the left electrode (
78: 290: 279: 376: 8: 262:
connected to the working electrode and the negative terminal to the reference electrode.
232: 50:
and another electrode to be characterized. By convention, the reference electrode is the
216:
The measurement is generally conducted using a three-electrode setup (see the drawing):
550: 163: 555: 385:
Electrolytic cell § Anode and cathode definitions depend on charge and discharge
330: 220: 679: 623: 686: 674: 627: 618: 507:{\displaystyle \Delta V_{\text{cell}}=E_{\text{red,cathode}}+E_{\text{oxy,anode}}.} 353: 247: 31: 441:{\displaystyle \Delta V_{\text{cell}}=E_{\text{red,cathode}}-E_{\text{red,anode}}} 239:
In case of non-zero net current on the electrode, it is essential to minimize the
192:
An operational assumption for determinations of the electrode potentials with the
591: 560: 294: 174:
for a given electroactive species by extrapolation of the measured values to the
162:"), or a potential with a non-zero net current on the working electrode (like in 270:
Historically, two conventions for sign for the electrode potential have formed:
275: 175: 258:. The potential measurements are performed with the positive terminal of the 701: 678:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 622:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 565: 370: 86: 43: 690: 631: 259: 240: 167: 82: 65:. It is common, for instance, to speak of the electrode potential of the 62: 208: 298: 47: 144:{\displaystyle E_{\text{cell}}=E_{\text{cathode}}-E_{\text{anode}}.} 570: 533: 243: 89:/orientation of polar molecules, including those of the solvent. 39: 529: 55: 314:
for a half-cell reaction when it is written as a reduction.
212:
Three-electrode setup for measurement of electrode potential
170:). Reversible potentials can be sometimes converted to the 371:
Potential difference of a cell assembled of two electrodes
329:
is to maintain the correct sign relationship with the
461: 398: 101: 27:
Electromotive force of a cell built of two electrodes
200:
of hydrogen ion is also "zero at all temperatures".
506: 440: 143: 54:(SHE). It is defined to have a potential of zero 699: 235:(standard hydrogen electrode or an equivalent). 321:, according to the convention (1) the sign of 154:The electrode potential may be either that at 72: 381:Electrochemical cell § Cell potential 348:is the number of electrons involved and 301:" (sometimes referred to as "European"). 286:" (sometimes referred to as "American"), 207: 14: 700: 582:Table of standard electrode potentials 308:Gibbs–Stockholm electrode potential 265: 77:Electrode potential appears at the 24: 18:Electrochemical corrosion potential 680:electric potential difference, ΔV 675:Compendium of Chemical Terminology 636: 619:Compendium of Chemical Terminology 462: 399: 25: 724: 377:Galvanic cell § Cell voltage 46:built from a standard reference 183:kinetics of electrode reactions 663: 654: 645: 603: 203: 198:standard enthalpy of formation 13: 1: 597: 577:Standard electrode potential 546:Absolute electrode potential 172:standard electrode potential 7: 539: 194:standard hydrogen electrode 52:standard hydrogen electrode 10: 729: 713:Electrochemical potentials 532:) to the right electrode ( 374: 81:between an electrode and 73:Origin and interpretation 691:10.1351/goldbook.E01934 632:10.1351/goldbook.E01956 624:electrode potential, E 587:Thermodynamic activity 508: 442: 252:supporting electrolyte 213: 187:Butler–Volmer equation 185:at the interface (see 145: 509: 448:however , it depends. 443: 254:of sufficiently high 211: 146: 571:Potential difference 459: 396: 99: 233:reference electrode 87:specific adsorption 36:electrode potential 682:of a galvanic cell 551:Electric potential 504: 452:or, equivalently, 438: 306:be referred to as 214: 164:galvanic corrosion 141: 556:Galvani potential 498: 485: 472: 435: 422: 409: 333:change, given by 331:Gibbs free energy 250:), or by using a 227:counter electrode 221:working electrode 135: 122: 109: 16:(Redirected from 720: 708:Electrochemistry 693: 667: 661: 658: 652: 649: 643: 640: 634: 607: 527: 513: 511: 510: 505: 500: 499: 496: 487: 486: 483: 474: 473: 470: 447: 445: 444: 439: 437: 436: 433: 424: 423: 420: 411: 410: 407: 366: 362: 354:Faraday constant 351: 347: 343: 328: 324: 313: 266:Sign conventions 248:Luggin capillary 150: 148: 147: 142: 137: 136: 133: 124: 123: 120: 111: 110: 107: 68: 32:electrochemistry 21: 728: 727: 723: 722: 721: 719: 718: 717: 698: 697: 696: 668: 664: 659: 655: 650: 646: 641: 637: 608: 604: 600: 592:Volta potential 561:Nernst equation 542: 526: 519: 495: 491: 482: 478: 469: 465: 460: 457: 456: 432: 428: 419: 415: 406: 402: 397: 394: 393: 387: 373: 364: 357: 349: 345: 334: 326: 322: 311: 268: 206: 160:mixed potential 132: 128: 119: 115: 106: 102: 100: 97: 96: 75: 66: 28: 23: 22: 15: 12: 11: 5: 726: 716: 715: 710: 695: 694: 662: 653: 644: 635: 601: 599: 596: 595: 594: 589: 584: 579: 574: 568: 563: 558: 553: 548: 541: 538: 524: 515: 514: 503: 494: 490: 481: 477: 468: 464: 450: 449: 431: 427: 418: 414: 405: 401: 372: 369: 303: 302: 287: 267: 264: 237: 236: 230: 224: 205: 202: 176:standard state 152: 151: 140: 131: 127: 118: 114: 105: 74: 71: 69:redox couple. 26: 9: 6: 4: 3: 2: 725: 714: 711: 709: 706: 705: 703: 692: 688: 684: 683: 677: 676: 671: 666: 657: 648: 639: 633: 629: 625: 621: 620: 615: 611: 606: 602: 593: 590: 588: 585: 583: 580: 578: 575: 572: 569: 567: 566:Overpotential 564: 562: 559: 557: 554: 552: 549: 547: 544: 543: 537: 535: 531: 523: 501: 492: 488: 479: 475: 466: 455: 454: 453: 429: 425: 416: 412: 403: 392: 391: 390: 386: 382: 378: 368: 361: 355: 342: 338: 332: 320: 315: 309: 300: 296: 292: 288: 285: 281: 277: 273: 272: 271: 263: 261: 257: 253: 249: 245: 242: 234: 231: 228: 225: 222: 219: 218: 217: 210: 201: 199: 195: 190: 188: 184: 179: 177: 173: 169: 165: 161: 157: 138: 129: 125: 116: 112: 103: 95: 94: 93: 90: 88: 84: 80: 70: 64: 59: 57: 53: 49: 45: 44:galvanic cell 41: 37: 33: 19: 681: 673: 665: 656: 647: 638: 617: 605: 521: 516: 451: 388: 359: 340: 336: 318: 316: 307: 304: 289:convention " 274:convention " 269: 260:electrometer 256:conductivity 238: 215: 191: 180: 153: 91: 76: 60: 35: 29: 484:red,cathode 421:red,cathode 204:Measurement 168:voltammetry 156:equilibrium 83:electrolyte 63:electrolyte 702:Categories 598:References 375:See also: 319:as written 573:(voltage) 497:oxy,anode 463:Δ 434:red,anode 426:− 400:Δ 299:Stockholm 126:− 79:interface 48:electrode 540:See also 534:cathode 352:is the 295:Ostwald 284:Latimer 244:IR-drop 121:cathode 40:voltage 38:is the 383:, and 344:where 276:Nernst 670:IUPAC 614:IUPAC 610:IUPAC 530:anode 291:Gibbs 280:Lewis 241:ohmic 134:anode 56:volts 42:of a 525:cell 471:cell 408:cell 108:cell 687:doi 685:". 628:doi 626:". 536:). 341:nFE 339:= – 189:). 166:or 67:M/M 30:In 704:: 672:, 616:, 612:, 379:, 178:. 34:, 689:: 630:: 522:V 520:Δ 502:. 493:E 489:+ 480:E 476:= 467:V 430:E 417:E 413:= 404:V 365:E 360:G 358:Δ 350:F 346:n 337:G 335:Δ 327:E 323:E 312:E 297:– 293:– 282:– 278:– 229:, 223:, 139:. 130:E 117:E 113:= 104:E 20:)

Index

Electrochemical corrosion potential
electrochemistry
voltage
galvanic cell
electrode
standard hydrogen electrode
volts
electrolyte
interface
electrolyte
specific adsorption
equilibrium
mixed potential
galvanic corrosion
voltammetry
standard electrode potential
standard state
kinetics of electrode reactions
Butler–Volmer equation
standard hydrogen electrode
standard enthalpy of formation

working electrode
counter electrode
reference electrode
ohmic
IR-drop
Luggin capillary
supporting electrolyte
conductivity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑