Knowledge

Eddy current

Source 📝

2513: 2754: 1085: 2723: 1553: 1040: 1266: 58: 2516: 2515: 2520: 2519: 2514: 2521: 2518: 2562: 1005:(1786–1853), the President of the Council of Ministers of the 2nd French Republic during the brief period 10th May to June 24, 1848 (equivalent to the current position of the French Prime Minister), who was also a mathematician, physicist and astronomer. In 1824 he observed what has been called rotatory magnetism, and that most conductive bodies could be magnetized; these discoveries were completed and explained by 1027:(1819–1868) is credited with having discovered eddy currents. In September 1855, he discovered that the force required for the rotation of a copper disc becomes greater when it is made to rotate with its rim between the poles of a magnet, the disc at the same time becoming heated by the eddy current induced in the metal. The first use of eddy current for non-destructive testing occurred in 1879 when 927:, an eddy current creates a magnetic field that opposes the change in the magnetic field that created it, and thus eddy currents react back on the source of the magnetic field. For example, a nearby conductive surface will exert a drag force on a moving magnet that opposes its motion, due to eddy currents induced in the surface by the moving magnetic field. This effect is employed in 2589:, one can easily observe a very similar effect by rapidly sweeping the magnet over a coin with only a small separation. Depending on the strength of the magnet, identity of the coin, and separation between the magnet and coin, one may induce the coin to be pushed slightly ahead of the magnet – even if the coin contains no magnetic elements, such as the US 2600:, surface eddy currents exactly cancel the field inside the conductor, so no magnetic field penetrates the conductor. Since no energy is lost in resistance, eddy currents created when a magnet is brought near the conductor persist even after the magnet is stationary, and can exactly balance the force of gravity, allowing 1020:, which says that the direction of induced current flow in an object will be such that its magnetic field will oppose the change of magnetic flux that caused the current flow. Eddy currents produce a secondary field that cancels a part of the external field and causes some of the external flux to avoid the conductor. 1631:, producing electric fields that oppose any further accumulation of charge and hence suppressing the eddy currents. The shorter the distance between adjacent laminations (i.e., the greater the number of laminations per unit area, perpendicular to the applied field), the greater the suppression of eddy currents. 1642:, the magnetic field formed by the eddy current will oppose its cause. Thus the wheel will face a force opposing the initial movement of the wheel. The faster the wheels are spinning, the stronger the effect, meaning that as the train slows the braking force is reduced, producing a smooth stopping motion. 2644:. The coin rolls past a stationary magnet, and eddy currents slow its speed. The strength of the eddy currents, and thus the retardation, depends on the conductivity of the coin's metal. Slugs are slowed to a different degree than genuine coins, and this is used to send them into the rejection slot. 2623:
it is possible to generate electromagnetic fields moving in an arbitrary direction. As described in the section above about eddy current brakes, a non-ferromagnetic conductor surface tends to rest within this moving field. When however this field is moving, a vehicle can be levitated and propelled.
2573:
In a varying magnetic field, the induced currents exhibit diamagnetic-like repulsion effects. A conductive object will experience a repulsion force. This can lift objects against gravity, though with continual power input to replace the energy dissipated by the eddy currents. An example application
2546:
within the plates causes a dragging effect analogous to friction, which dissipates the kinetic energy of the car. The same technique is used in electromagnetic brakes in railroad cars and to quickly stop the blades in power tools such as circular saws. Using electromagnets, as opposed to permanent
2525:
Demonstration of Waltenhofen's pendulum, precursor of eddy current brakes. The formation and suppression of eddy currents is here demonstrated by means of this pendulum, a metal plate oscillating between the pole pieces of a strong electromagnet. As soon as a sufficiently strong magnetic field has
2492: 2537:
to slow or stop moving objects. Since there is no contact with a brake shoe or drum, there is no mechanical wear. However, an eddy current brake cannot provide a "holding" torque and so may be used in combination with mechanical brakes, for example, on overhead cranes. Another application is on
1548:
An object or part of an object experiences steady field intensity and direction where there is still relative motion of the field and the object (for example in the center of the field in the diagram), or unsteady fields where the currents cannot circulate due to the geometry of the conductor. In
1075:
is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag
1467:
The magnetic field of the magnet, acting on the electrons moving sideways under the magnet, then exerts a Lorentz force directed to the rear, opposite to the velocity of the metal sheet. The electrons, in collisions with the metal lattice atoms, transfer this force to the sheet, exerting a drag
2517: 1549:
these situations charges collect on or within the object and these charges then produce static electric potentials that oppose any further current. Currents may be initially associated with the creation of static potentials, but these may be transitory and small.
2672:. A typical proximity sensor used for vibration monitoring has a scale factor of 200 mV/mil. Widespread use of such sensors in turbomachinery has led to development of industry standards that prescribe their use and application. Examples of such standards are 2081: 2757:
E-I transformer laminations showing flux paths. The effect of the gap where the laminations are butted together can be mitigated by alternating pairs of E laminations with pairs of I laminations, providing a path for the magnetic flux around the
1506:, the clockwise current causes a magnetic field pointed down, in the same direction as the magnet's field, creating an attractive force between the sheet and the trailing edge of the magnet. Both of these forces oppose the motion of the sheet. 2389: 2337: 2239: 1753: 1444:
toward the rear under the magnet, which circles around through parts of the sheet outside the magnetic field, clockwise to the right and counterclockwise to the left, to the front of the magnet again. The mobile
2147: 1501:
the counterclockwise current creates a magnetic field pointed up, opposing the magnet's field, causing a repulsive force between the sheet and the leading edge of the magnet. In contrast, at the trailing edge
1260:
of the metal sheet. This force accelerates the electron giving it a component of velocity opposite to the sheet. Collisions of these electrons with the atoms of the sheet exert a drag force on the sheet.
1897: 1273:
in this drawing is shown further away from the disk than the South; this is just to leave room to show the currents. In an actual eddy current brake the pole pieces are positioned as close to the disk as
2010: 1995: 1638:. During braking, the metal wheels are exposed to a magnetic field from an electromagnet, generating eddy currents in the wheels. This eddy current is formed by the movement of the wheels. So, by 2668:
Corporation. These sensors are extremely sensitive to very small displacements making them well suited to observe the minute vibrations (on the order of several thousandths of an inch) in modern
2582:. Ferrous metals cling to the magnet, and aluminum (and other non-ferrous conductors) are forced away from the magnet; this can separate a waste stream into ferrous and non-ferrous scrap metal. 1627:. Electrons cannot cross the insulating gap between the laminations and so are unable to circulate on wide arcs. Charges gather at the lamination boundaries, in a process analogous to the 1595:
between them reduces the eddy currents. Although the field and currents are shown in one direction, they actually reverse direction with the alternating current in the transformer winding.
1849:
renders the above equation invalid. However, in any case increased frequency of the same value of field will always increase eddy currents, even with non-uniform field penetration.
2279: 892:
or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be
993:
giving rise to persistent vortices. Somewhat analogously, eddy currents can take time to build up and can persist for very long times in conductors due to their inductance.
908:
and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of
931:
which are used to stop rotating power tools quickly when they are turned off. The current flowing through the resistance of the conductor also dissipates energy as
2612:
in which any magnetic field lines present in the material when it becomes superconducting are expelled, thus the magnetic field in a superconductor is always zero.
1634:
The conversion of input energy to heat is not always undesirable, however, as there are some practical applications. One is in the brakes of some trains known as
2189: 1663: 615: 2487:{\displaystyle \nabla ^{2}\mathbf {H} =\mu _{0}\sigma \left({\frac {\partial \mathbf {M} }{\partial t}}+{\frac {\partial \mathbf {H} }{\partial t}}\right).} 2100: 2656:
to observe the vibration and position of rotating shafts within their bearings. This technology was originally pioneered in the 1930s by researchers at
588: 2730:
Similarly, in magnetic materials of finite conductivity, eddy currents cause the confinement of the majority of the magnetic fields to only a couple
2684: 600: 1855: 1541:
in conductors. The latter can be used for non-destructive testing of materials for geometry features, like micro-cracks. A similar effect is the
1939:
The derivation of a useful equation for modelling the effect of eddy currents in a material starts with the differential, magnetostatic form of
3045: 2677: 1961: 1344:
in the sheet in a counterclockwise direction around the magnetic field lines. This field induces a counterclockwise flow of electric current
3006: 851: 620: 1827:
This equation is valid only under the so-called quasi-static conditions, where the frequency of magnetisation does not result in the
3403: 630: 1660:, etc.) the power lost due to eddy currents per unit mass for a thin sheet or wire can be calculated from the following equation: 3030: 1088:
Forces on an electron in the metal sheet under the magnet, explaining where the drag force on the sheet comes from. The red dot
455: 3242: 1393:) in the metal sheet are moving with the sheet to the right, so the magnetic field exerts a sideways force on them due to the 3316: 3121: 2941: 2914: 2887: 470: 465: 92: 3151: 480: 2593:. Another example involves dropping a strong magnet down a tube of copper – the magnet falls at a dramatically slow pace. 1542: 2569:'s field pattern sweeps to the left, eddy currents are left behind in the metal and this causes the field lines to lean. 2004: 1845:
In very fast-changing fields, the magnetic field does not penetrate completely into the interior of the material. This
1599:
Eddy currents generate resistive losses that transform some forms of energy, such as kinetic energy, into heat. This
2961: 1309:
through a given area of the sheet is changing. In the part of the sheet moving under the leading edge of the magnet
82: 3230: 350: 2785: 1359:
the magnetic field through a given point on the sheet is decreasing as it is moving further away from the magnet,
2076:{\displaystyle \nabla \left(\nabla \cdot \mathbf {H} \right)-\nabla ^{2}\mathbf {H} =\nabla \times \mathbf {J} .} 265: 1611:
and other devices that use changing magnetic fields. Eddy currents are minimized in these devices by selecting
3076:"Benefits and limits of using an acceleration sensor in actively damping high frequent mechanical oscillations" 844: 610: 87: 3358:
Reitz, J. R. (1970). Forces on Moving Magnets due to Eddy Currents. Journal of Applied Physics 41, 2067-2071.
2244: 1337: 889: 625: 330: 35: 2547:
magnets, the strength of the magnetic field can be adjusted and so the magnitude of braking effect changed.
1493:
the counterfields oppose the change in magnetic field through the sheet. At the leading edge of the magnet
2673: 2086: 1355:, in the sheet. This is the eddy current. In the part of the sheet under the trailing edge of the magnet 490: 230: 97: 17: 1940: 1480: 220: 783: 658: 555: 530: 450: 2726:
Lamination of magnetic cores in transformers greatly improves the efficiency by minimising eddy currents
2590: 1531: 1472:
which is consumed overcoming this drag force is dissipated as heat by the currents flowing through the
1282:
in a metal sheet moving through its magnetic field. See the diagram at right. It shows a metal sheet
1222:) The magnetic field acting on this sideways velocity, then exerts a Lorentz force on the particle of 283: 3075: 3063:"Speed Observer Based on Sensor Fusion Combining Ferraris Sensor and Linear Position Encoder Signals" 2556: 893: 837: 798: 325: 315: 255: 250: 190: 3042: 2956:
F. Fiorillo, Measurement and Characterization of Magnetic Materials, Elsevier Academic Press, 2004,
1097:
shows a conduction electron in the sheet right after it has undergone a collision with an atom, and
3398: 2620: 335: 3335: 2753: 1313:
the magnetic field through a given point on the sheet is increasing as it gets nearer the magnet,
916:
of the material. When graphed, these circular currents within a piece of metal look vaguely like
768: 270: 3062: 3002: 1928: 648: 175: 165: 160: 3380: 3272: 1522:. The electromagnetic forces can be used for levitation, creating movement, or to give a strong 773: 743: 3206: 2836: 2696: 2579: 2566: 595: 365: 140: 3308: 3302: 2904: 2931: 2877: 2597: 2543: 1918: 1473: 989: 917: 693: 380: 370: 320: 310: 31: 1305:
of the magnet's north pole N passes down through the sheet. Since the metal is moving, the
1106:
shows the same electron after it has been accelerated by the magnetic field. On average at
1084: 935:
in the material. Thus eddy currents are a cause of energy loss in alternating current (AC)
2790: 2332:{\displaystyle \nabla ^{2}\mathbf {H} =\sigma {\frac {\partial \mathbf {B} }{\partial t}}.} 1461: 964: 881: 818: 718: 683: 435: 300: 200: 185: 120: 1852:
The penetration depth for a good conductor can be calculated from the following equation:
57: 8: 3328: 2716: 2601: 2383: 778: 758: 753: 560: 545: 430: 400: 295: 225: 2660:
using vacuum tube circuitry. In the late 1950s, solid-state versions were developed by
2542:
plates extending from the car are moved between pairs of very strong permanent magnets.
2003:
on both sides of this equation and then using a common vector calculus identity for the
2795: 2605: 2534: 2530: 2507: 2000: 1635: 1523: 948: 928: 653: 393: 195: 155: 1432:
is toward the rear of the diagram (to the left when facing in the direction of motion
896:
within nearby stationary conductors by a time-varying magnetic field created by an AC
475: 3312: 2957: 2937: 2910: 2883: 2812: 2806: 2800: 2653: 1944: 1645: 1519: 1186: 960: 713: 2699:(NDE) and condition monitoring of a large variety of metallic structures, including 2687:, is a contactless sensor that uses eddy currents to measure relative acceleration. 1526:
effect. Eddy currents can also have undesirable effects, for instance power loss in
1002: 3250: 3079: 3043:"Ferraris Acceleration Sensor - Principle and Field of Application in Servo Drives" 2851: 2818: 2661: 2657: 2565:
A cross section through a linear motor placed above a thick aluminium slab. As the
1616: 1279: 877: 865: 813: 728: 688: 678: 565: 520: 503: 420: 355: 125: 49: 2722: 2186:, and assuming isotropic homogeneous conductivity, the equation can be written as 1024: 3129: 3049: 2824: 2637: 2609: 1608: 1552: 1498: 1410: 1209:
this force gives the electron a component of velocity in the sideways direction (
1190: 1028: 1006: 748: 673: 668: 535: 410: 375: 235: 135: 3300: 3159: 2875: 788: 27:
Loops of electric current induced within conductors by a changing magnetic field
2777: 2700: 2669: 1469: 1446: 1386: 1341: 984: 952: 944: 885: 708: 703: 525: 415: 340: 290: 240: 213: 170: 145: 115: 108: 3096: 3011: 1483:
each of the circular currents in the sheet creates a counter magnetic field (
1039: 3392: 2747: 2665: 2616: 2370: 1639: 1612: 1600: 1490: 1394: 1306: 1265: 1150: 1017: 924: 897: 823: 808: 793: 733: 445: 360: 345: 260: 245: 150: 3083: 2990:
Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
2929: 1080:
are counter magnetic fields generated by the circular motion of the charges.
963:
furnaces and equipment, and to detect cracks and flaws in metal parts using
2735: 2575: 2234:{\displaystyle -\nabla ^{2}\mathbf {H} =\sigma \nabla \times \mathbf {E} .} 2152: 1748:{\displaystyle P={\frac {\pi ^{2}{B_{\text{p}}}^{2}d^{2}f^{2}}{6k\rho D}},} 956: 803: 698: 663: 605: 540: 460: 425: 180: 1518:
generate heat as well as electromagnetic forces. The heat can be used for
2876:
Israel D. Vagner; B.I. Lembrikov; Peter Rudolf Wyder (17 November 2003).
2843: 2743: 2712: 2641: 1840: 1828: 1808: 1657: 1628: 1624: 1604: 1575: 1538: 1527: 1515: 1385:
Another equivalent way to understand the current is to see that the free
940: 913: 901: 723: 575: 405: 67: 1656:
Under certain assumptions (uniform material, uniform magnetic field, no
1382:, inducing a second eddy current in a clockwise direction in the sheet. 2731: 440: 3181: 2586: 2561: 1013: 763: 738: 550: 72: 3359: 3301:
Fitzgerald, A. E.; Kingsley, Charles Jr.; Umans, Stephen D. (1983).
2142:{\displaystyle -\nabla ^{2}\mathbf {H} =\nabla \times \mathbf {J} .} 2739: 1831:; that is, the electromagnetic wave fully penetrates the material. 1489:). Another way to understand the drag force is to see that due to 1450: 1390: 936: 515: 510: 130: 959:
to minimize them. Eddy currents are also used to heat objects in
3016: 1820: 951:, and other AC machinery, requiring special construction such as 485: 3381:
Eddy Current Separator Cogelme for non-ferrous metals separation
2526:
been switched on, the pendulum is stopped on entering the field.
1799:
is a constant equal to 1 for a thin sheet and 2 for a thin wire,
1648:
makes use of eddy currents to provide heating of metal objects.
2625: 2539: 1530:. In this application, they are minimized with thin plates, by 905: 570: 77: 2703:
tubes, aircraft fuselage, and aircraft structural components.
1892:{\displaystyle \delta ={\frac {1}{\sqrt {\pi f\mu \sigma }}},} 1620: 980: 3061:
Jian Wang, Paul Vanherck, Jan Swevers, Hendrik Van Brussel.
2585:
With a very strong handheld magnet, such as those made from
1031:
used the principles to conduct metallurgical sorting tests.
3231:
Coating Thickness Measurement with Electromagnetic Methods
932: 909: 1783:
is the thickness of the sheet or diameter of the wire (m),
2930:
Howard Johnson; Howard W. Johnson; Martin Graham (2003).
2640:, eddy currents are used to detect counterfeit coins, or 1623:) or by using thin sheets of magnetic material, known as 1990:{\displaystyle \nabla \times \mathbf {H} =\mathbf {J} .} 2882:. Springer Science & Business Media. pp. 73–. 2734:
of the surface of the material. This effect limits the
1615:
materials that have low electrical conductivity (e.g.,
1545:, which is caused by externally induced eddy currents. 1476:
of the metal, so the metal gets warm under the magnet.
1468:
force on the sheet proportional to its velocity. The
1142:) of the magnet's North pole N is directed down in the 3325: 2604:. Superconductors also exhibit a separate inherently 1403:
of the charges is to the right and the magnetic field
1189:. Since the electron has a negative charge, from the 2392: 2282: 2192: 2103: 2013: 1964: 1858: 1666: 1651: 3364: 3182:"Zappi - Eddy Current Conductivity Meter - Products" 1247:. From the right hand rule, this is directed in the 2933:
High-speed Signal Propagation: Advanced Black Magic
2550: 1537:Self-induced eddy currents are responsible for the 1534:of conductors or other details of conductor shape. 3327: 2869: 2695:Eddy current techniques are commonly used for the 2486: 2331: 2233: 2141: 2075: 1989: 1891: 1747: 1460:) so their motion is opposite in direction to the 1269:Eddy current brake. The North magnetic pole piece 3326:Sears, Francis Weston; Zemansky, Mark W. (1955). 3031:Hendo Hoverboards - World's first REAL hoverboard 2923: 2647: 2533:use the drag force created by eddy currents as a 1115:the electron has the same velocity as the sheet ( 987:, causing localised areas of turbulence known as 3390: 2848:Safety hazard and defect detection applications 1292:under a stationary magnet. The magnetic field 904:, for example, or by relative motion between a 2683:A Ferraris acceleration sensor, also called a 1001:The first person to observe eddy currents was 3273:"Eddy Current Separator for metal separation" 845: 2936:. Prentice Hall Professional. pp. 80–. 3307:(4th ed.). Mc-Graw-Hill, Inc. p.  2782:Conductivity meters for non-magnetic metals 2652:Eddy currents are used in certain types of 2631: 2902: 2501: 852: 838: 56: 3334:(2nd ed.). Addison-Wesley. pp.  1149:direction. The magnetic field exerts a 2909:. Butterworth-Heinemann. pp. 570–. 2896: 2752: 2721: 2711:Eddy currents are the root cause of the 2619:with electronic switching comparable to 2560: 2511: 1551: 1514:Eddy currents in conductors of non-zero 1264: 1083: 1058:as it moves to the right under a magnet 1038: 3383:– Information and video in Cogelme site 2982: 1764:is the power lost per unit mass (W/kg), 601:Electromagnetism and special relativity 14: 3391: 2879:Electrodynamics of Magnetoactive Media 2386:. The diffusion equation therefore is 2180:in terms of a material's conductivity 1570:within a solid iron transformer core. 1413:the Lorentz force on positive charges 979:comes from analogous currents seen in 3365:Krawczyk, Andrzej; J. A. Tegopoulos. 3349: 2973: 2762: 2690: 1934: 621:Maxwell equations in curved spacetime 3367:Numerical Modelling of Eddy Currents 2803:(electromechanical induction meters) 2786:Eddy current adjustable-speed drives 1254:direction, opposite to the velocity 1054:induced in a conductive metal plate 912:, and inversely proportional to the 34:. For the Australian rock band, see 1453:, actually have a negative charge ( 24: 3343: 3207:"Institut Dr. Foerster: SIGMATEST" 2992:, San Diego: Academic Press, 1998. 2538:some roller coasters, where heavy 2467: 2457: 2442: 2432: 2394: 2317: 2307: 2284: 2217: 2197: 2125: 2108: 2059: 2042: 2022: 2014: 1965: 1943:, providing an expression for the 1652:Power dissipation of eddy currents 1286:moving to the right with velocity 25: 3415: 3374: 3360:https://doi.org/10.1063/1.1659166 970: 2551:Repulsive effects and levitation 2461: 2436: 2404: 2311: 2294: 2224: 2207: 2168:, which relates current density 2132: 2118: 2066: 2052: 2029: 1980: 1972: 1603:reduces efficiency of iron-core 1132:direction. The magnetic field ( 3404:Mechanical biological treatment 3265: 3235: 3224: 3199: 3174: 3144: 3122:"zipSTOP Zip Line Brake System" 3114: 3089: 3074:J. Fassnacht and P. Mutschler. 3068: 3055: 2978:(2nd ed.). pp. 387–8. 2903:Walt Boyes (25 November 2009). 2706: 2596:In a perfect conductor with no 2496: 2243:Using the differential form of 1811:of the material (Ί m), and 1775:is the peak magnetic field (T), 30:For the comic-book series, see 3035: 3024: 2995: 2967: 2950: 2906:Instrumentation Reference Book 2830:Coating thickness measurements 2648:Vibration and position sensing 1952:surrounding a current density 1905:is the penetration depth (m), 1834: 1034: 888:in the conductor according to 13: 1: 3352:The Analysis of Eddy Currents 2857: 1509: 626:Relativistic electromagnetism 36:Eddy Current Suppression Ring 2833:Sheet resistance measurement 2674:American Petroleum Institute 2628:but is not bound to a rail. 1574:Making the core out of thin 7: 1921:of the material (H/m), and 1409:is directed down, from the 920:or whirlpools in a liquid. 10: 3420: 3354:. Oxford University Press. 2697:nondestructive examination 2554: 2505: 1838: 1619:or iron powder mixed with 1438:). This causes a current 1340:, this creates a circular 1338:Faraday's law of induction 1278:A magnet induces circular 996: 890:Faraday's law of induction 351:LiĂŠnard–Wiechert potential 29: 3152:"Our Patented Technology" 2768:Rock climbing auto belays 2557:electrodynamic suspension 2087:Gauss's law for magnetism 1397:. Since the velocity 1076:force on the sheet. The 616:Mathematical descriptions 326:Electromagnetic radiation 316:Electromagnetic induction 256:Magnetic vector potential 251:Magnetic scalar potential 2632:Identification of metals 2624:This is comparable to a 2621:electronic speed control 2578:from other metals in an 1193:this is directed in the 953:laminated magnetic cores 3247:www.nagy-instruments.de 3084:10.1109/IAS.2001.955949 2715:in conductors carrying 2676:(API) Standard 670 and 2502:Electromagnetic braking 1931:of the material (S/m). 1929:electrical conductivity 1911:is the frequency (Hz), 1823:of the material (kg/m). 166:Electrostatic induction 161:Electrostatic discharge 3156:Head Rush Technologies 3126:Head Rush Technologies 3101:Head Rush Technologies 2976:Electromagnetic Fields 2837:Eddy current separator 2821:(displacement sensors) 2759: 2727: 2636:In some coin-operated 2608:phenomenon called the 2580:eddy current separator 2570: 2567:linear induction motor 2527: 2488: 2333: 2235: 2143: 2077: 1991: 1893: 1791:is the frequency (Hz), 1749: 1596: 1578:parallel to the field 1481:Ampère's circuital law 1275: 1262: 1081: 1062:. The magnetic field 596:Electromagnetic tensor 3350:Stoll, R. L. (1974). 2756: 2725: 2564: 2544:Electrical resistance 2524: 2489: 2334: 2236: 2144: 2078: 1992: 1919:magnetic permeability 1894: 1750: 1555: 1268: 1087: 1042: 589:Covariant formulation 381:Synchrotron radiation 321:Electromagnetic pulse 311:Electromagnetic field 32:Eddy Current (comics) 3211:www.foerstergroup.de 3097:"TRUBLUE Auto Belay" 3048:27 July 2014 at the 3012:"Eddy Current Tubes" 2839:for metal separation 2827:(detection of coins) 2791:Eddy-current testing 2390: 2373:of the material and 2280: 2190: 2101: 2011: 1962: 1856: 1664: 1462:conventional current 965:eddy-current testing 631:Stress–energy tensor 556:Reluctance (complex) 301:Displacement current 2717:alternating current 2602:magnetic levitation 2531:Eddy current brakes 2384:vacuum permeability 1636:eddy current brakes 929:eddy current brakes 546:Magnetomotive force 431:Electromotive force 401:Alternating current 336:Jefimenko equations 296:Cyclotron radiation 3330:University Physics 3304:Electric Machinery 3295:General references 2974:Wangsness, Roald. 2801:Electricity meters 2796:Eddy current brake 2763:Other applications 2760: 2728: 2691:Structural testing 2606:quantum mechanical 2571: 2528: 2508:Eddy current brake 2484: 2329: 2231: 2174:to electric field 2139: 2073: 1987: 1935:Diffusion equation 1889: 1745: 1597: 1449:in the metal, the 1276: 1263: 1082: 874:Foucault's current 394:Electrical network 231:Gauss magnetic law 196:Static electricity 156:Electric potential 3318:978-0-07-021145-2 3243:"Ohm/sq & OD" 3041:Bernhard Hiller. 2943:978-0-13-084408-8 2916:978-0-08-094188-2 2889:978-3-540-43694-2 2813:induction cooking 2807:Induction heating 2774:Free fall devices 2654:proximity sensors 2574:is separation of 2522: 2474: 2449: 2324: 1945:magnetizing field 1884: 1883: 1740: 1695: 1646:Induction heating 1520:induction heating 1280:electric currents 1187:electron's charge 1023:French physicist 961:induction heating 862: 861: 561:Reluctance (real) 531:Gyrator–capacitor 476:Resonant cavities 366:Maxwell equations 16:(Redirected from 3411: 3370: 3355: 3339: 3333: 3322: 3288: 3287: 3285: 3283: 3269: 3263: 3262: 3260: 3258: 3249:. Archived from 3239: 3233: 3228: 3222: 3221: 3219: 3217: 3203: 3197: 3196: 3194: 3192: 3178: 3172: 3171: 3169: 3167: 3158:. Archived from 3148: 3142: 3141: 3139: 3137: 3128:. Archived from 3118: 3112: 3111: 3109: 3107: 3093: 3087: 3072: 3066: 3059: 3053: 3039: 3033: 3028: 3022: 3021: 2999: 2993: 2986: 2980: 2979: 2971: 2965: 2954: 2948: 2947: 2927: 2921: 2920: 2900: 2894: 2893: 2873: 2863:Online citations 2852:Magnetic damping 2825:Vending machines 2819:Proximity sensor 2662:Donald E. Bently 2658:General Electric 2638:vending machines 2523: 2493: 2491: 2490: 2485: 2480: 2476: 2475: 2473: 2465: 2464: 2455: 2450: 2448: 2440: 2439: 2430: 2420: 2419: 2407: 2402: 2401: 2381: 2368: 2362: 2338: 2336: 2335: 2330: 2325: 2323: 2315: 2314: 2305: 2297: 2292: 2291: 2275: 2274: 2272: 2271: 2265: 2262: 2240: 2238: 2237: 2232: 2227: 2210: 2205: 2204: 2185: 2179: 2173: 2167: 2148: 2146: 2145: 2140: 2135: 2121: 2116: 2115: 2096: 2082: 2080: 2079: 2074: 2069: 2055: 2050: 2049: 2037: 2033: 2032: 2005:curl of the curl 1996: 1994: 1993: 1988: 1983: 1975: 1957: 1951: 1926: 1916: 1910: 1904: 1898: 1896: 1895: 1890: 1885: 1870: 1866: 1818: 1806: 1798: 1790: 1782: 1774: 1763: 1754: 1752: 1751: 1746: 1741: 1739: 1725: 1724: 1723: 1714: 1713: 1704: 1703: 1698: 1697: 1696: 1693: 1685: 1684: 1674: 1591:with insulation 1588: 1586: 1567: 1565: 1543:proximity effect 1487: 1459: 1443: 1437: 1431: 1408: 1402: 1381: 1379: 1377: 1376: 1371: 1368: 1352: 1350: 1335: 1333: 1331: 1330: 1325: 1322: 1302: 1300: 1291: 1259: 1253: 1246: 1217: 1208: 1199: 1184: 1178: 1153:on the electron 1148: 1137: 1131: 1120: 1114: 1105: 1096: 1079: 1072: 1070: 1051: 1049: 878:electric current 866:electromagnetism 854: 847: 840: 521:Electric machine 504:Magnetic circuit 466:Parallel circuit 456:Network analysis 421:Electric current 356:London equations 201:Triboelectricity 191:Potential energy 60: 50:Electromagnetism 41: 40: 21: 3419: 3418: 3414: 3413: 3412: 3410: 3409: 3408: 3399:Electrodynamics 3389: 3388: 3377: 3346: 3344:Further reading 3319: 3292: 3291: 3281: 3279: 3277:www.cogelme.com 3271: 3270: 3266: 3256: 3254: 3253:on 4 March 2016 3241: 3240: 3236: 3229: 3225: 3215: 3213: 3205: 3204: 3200: 3190: 3188: 3180: 3179: 3175: 3165: 3163: 3162:on 8 March 2016 3150: 3149: 3145: 3135: 3133: 3120: 3119: 3115: 3105: 3103: 3095: 3094: 3090: 3073: 3069: 3060: 3056: 3050:Wayback Machine 3040: 3036: 3029: 3025: 3010: 3007:Wayback Machine 3000: 2996: 2987: 2983: 2972: 2968: 2955: 2951: 2944: 2928: 2924: 2917: 2901: 2897: 2890: 2874: 2870: 2860: 2778:Metal detectors 2771:Zip line brakes 2765: 2709: 2693: 2685:Ferraris sensor 2650: 2634: 2610:Meissner effect 2559: 2553: 2512: 2510: 2504: 2499: 2466: 2460: 2456: 2454: 2441: 2435: 2431: 2429: 2428: 2424: 2415: 2411: 2403: 2397: 2393: 2391: 2388: 2387: 2380: 2374: 2364: 2352: 2342: 2341:By definition, 2316: 2310: 2306: 2304: 2293: 2287: 2283: 2281: 2278: 2277: 2266: 2263: 2257: 2256: 2254: 2248: 2223: 2206: 2200: 2196: 2191: 2188: 2187: 2181: 2175: 2169: 2156: 2131: 2117: 2111: 2107: 2102: 2099: 2098: 2090: 2065: 2051: 2045: 2041: 2028: 2021: 2017: 2012: 2009: 2008: 1979: 1971: 1963: 1960: 1959: 1953: 1947: 1937: 1922: 1912: 1906: 1900: 1865: 1857: 1854: 1853: 1843: 1837: 1814: 1802: 1794: 1786: 1778: 1773: 1767: 1759: 1726: 1719: 1715: 1709: 1705: 1699: 1692: 1688: 1687: 1686: 1680: 1676: 1675: 1673: 1665: 1662: 1661: 1654: 1609:electric motors 1582: 1581: 1563: 1562: 1512: 1499:right hand rule 1485: 1454: 1447:charge carriers 1439: 1433: 1414: 1411:right hand rule 1404: 1398: 1387:charge carriers 1372: 1369: 1364: 1363: 1361: 1360: 1348: 1347: 1326: 1323: 1318: 1317: 1315: 1314: 1296: 1295: 1287: 1255: 1248: 1240: 1229: 1223: 1216: 1210: 1207: 1201: 1200:direction. At 1194: 1191:right hand rule 1180: 1164: 1158: 1143: 1133: 1126: 1116: 1113: 1107: 1104: 1098: 1095: 1089: 1077: 1066: 1065: 1047: 1046: 1037: 1029:David E. Hughes 1007:Michael Faraday 999: 973: 945:electric motors 880:induced within 876:) is a loop of 858: 829: 828: 644: 636: 635: 591: 581: 580: 536:Induction motor 506: 496: 495: 411:Current density 396: 386: 385: 376:Poynting vector 286: 284:Electrodynamics 276: 275: 271:Right-hand rule 236:Magnetic dipole 226:Biot–Savart law 216: 206: 205: 141:Electric dipole 136:Electric charge 111: 39: 28: 23: 22: 15: 12: 11: 5: 3417: 3407: 3406: 3401: 3385: 3384: 3376: 3375:External links 3373: 3372: 3371: 3362: 3356: 3345: 3342: 3341: 3340: 3323: 3317: 3297: 3296: 3290: 3289: 3264: 3234: 3223: 3198: 3173: 3143: 3132:on 6 June 2017 3113: 3088: 3067: 3054: 3034: 3023: 2994: 2981: 2966: 2949: 2942: 2922: 2915: 2895: 2888: 2867: 2866: 2865: 2864: 2859: 2856: 2855: 2854: 2849: 2846: 2840: 2834: 2831: 2828: 2822: 2816: 2809: 2804: 2798: 2793: 2788: 2783: 2780: 2775: 2772: 2769: 2764: 2761: 2748:magnetic cores 2708: 2705: 2701:heat exchanger 2692: 2689: 2670:turbomachinery 2649: 2646: 2633: 2630: 2617:electromagnets 2555:Main article: 2552: 2549: 2506:Main article: 2503: 2500: 2498: 2495: 2483: 2479: 2472: 2469: 2463: 2459: 2453: 2447: 2444: 2438: 2434: 2427: 2423: 2418: 2414: 2410: 2406: 2400: 2396: 2378: 2350: 2328: 2322: 2319: 2313: 2309: 2303: 2300: 2296: 2290: 2286: 2230: 2226: 2222: 2219: 2216: 2213: 2209: 2203: 2199: 2195: 2138: 2134: 2130: 2127: 2124: 2120: 2114: 2110: 2106: 2072: 2068: 2064: 2061: 2058: 2054: 2048: 2044: 2040: 2036: 2031: 2027: 2024: 2020: 2016: 1986: 1982: 1978: 1974: 1970: 1967: 1936: 1933: 1888: 1882: 1879: 1876: 1873: 1869: 1864: 1861: 1839:Main article: 1836: 1833: 1825: 1824: 1812: 1800: 1792: 1784: 1776: 1771: 1765: 1744: 1738: 1735: 1732: 1729: 1722: 1718: 1712: 1708: 1702: 1691: 1683: 1679: 1672: 1669: 1653: 1650: 1559:Eddy currents 1511: 1508: 1470:kinetic energy 1342:electric field 1301:, green arrows 1238: 1227: 1214: 1205: 1162: 1111: 1102: 1093: 1043:Eddy currents 1036: 1033: 1003:François Arago 998: 995: 985:fluid dynamics 972: 971:Origin of term 969: 886:magnetic field 884:by a changing 860: 859: 857: 856: 849: 842: 834: 831: 830: 827: 826: 821: 816: 811: 806: 801: 796: 791: 786: 781: 776: 771: 766: 761: 756: 751: 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 676: 671: 666: 661: 656: 651: 645: 642: 641: 638: 637: 634: 633: 628: 623: 618: 613: 611:Four-potential 608: 603: 598: 592: 587: 586: 583: 582: 579: 578: 573: 568: 563: 558: 553: 548: 543: 538: 533: 528: 526:Electric motor 523: 518: 513: 507: 502: 501: 498: 497: 494: 493: 488: 483: 481:Series circuit 478: 473: 468: 463: 458: 453: 451:Kirchhoff laws 448: 443: 438: 433: 428: 423: 418: 416:Direct current 413: 408: 403: 397: 392: 391: 388: 387: 384: 383: 378: 373: 371:Maxwell tensor 368: 363: 358: 353: 348: 343: 341:Larmor formula 338: 333: 328: 323: 318: 313: 308: 303: 298: 293: 291:Bremsstrahlung 287: 282: 281: 278: 277: 274: 273: 268: 263: 258: 253: 248: 243: 241:Magnetic field 238: 233: 228: 223: 217: 214:Magnetostatics 212: 211: 208: 207: 204: 203: 198: 193: 188: 183: 178: 173: 168: 163: 158: 153: 148: 146:Electric field 143: 138: 133: 128: 123: 118: 116:Charge density 112: 109:Electrostatics 107: 106: 103: 102: 101: 100: 95: 90: 85: 80: 75: 70: 62: 61: 53: 52: 46: 45: 44:Articles about 26: 9: 6: 4: 3: 2: 3416: 3405: 3402: 3400: 3397: 3396: 3394: 3387: 3382: 3379: 3378: 3368: 3363: 3361: 3357: 3353: 3348: 3347: 3337: 3332: 3331: 3324: 3320: 3314: 3310: 3306: 3305: 3299: 3298: 3294: 3293: 3278: 3274: 3268: 3252: 3248: 3244: 3238: 3232: 3227: 3212: 3208: 3202: 3187: 3183: 3177: 3161: 3157: 3153: 3147: 3131: 3127: 3123: 3117: 3102: 3098: 3092: 3085: 3081: 3077: 3071: 3064: 3058: 3051: 3047: 3044: 3038: 3032: 3027: 3019: 3018: 3013: 3008: 3004: 2998: 2991: 2985: 2977: 2970: 2963: 2962:0-12-257251-3 2959: 2953: 2945: 2939: 2935: 2934: 2926: 2918: 2912: 2908: 2907: 2899: 2891: 2885: 2881: 2880: 2872: 2868: 2862: 2861: 2853: 2850: 2847: 2845: 2841: 2838: 2835: 2832: 2829: 2826: 2823: 2820: 2817: 2814: 2810: 2808: 2805: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2781: 2779: 2776: 2773: 2770: 2767: 2766: 2755: 2751: 2749: 2745: 2741: 2737: 2733: 2724: 2720: 2718: 2714: 2704: 2702: 2698: 2688: 2686: 2681: 2679: 2675: 2671: 2667: 2666:Bently Nevada 2663: 2659: 2655: 2645: 2643: 2639: 2629: 2627: 2622: 2618: 2613: 2611: 2607: 2603: 2599: 2594: 2592: 2588: 2583: 2581: 2577: 2576:aluminum cans 2568: 2563: 2558: 2548: 2545: 2541: 2536: 2532: 2509: 2494: 2481: 2477: 2470: 2451: 2445: 2425: 2421: 2416: 2412: 2408: 2398: 2385: 2377: 2372: 2371:magnetization 2367: 2360: 2356: 2349: 2345: 2339: 2326: 2320: 2301: 2298: 2288: 2276:, this gives 2270: 2261: 2252: 2246: 2245:Faraday's law 2241: 2228: 2220: 2214: 2211: 2201: 2193: 2184: 2178: 2172: 2166: 2163: 2159: 2154: 2149: 2136: 2128: 2122: 2112: 2104: 2094: 2088: 2083: 2070: 2062: 2056: 2046: 2038: 2034: 2025: 2018: 2006: 2002: 1997: 1984: 1976: 1968: 1956: 1950: 1946: 1942: 1932: 1930: 1925: 1920: 1915: 1909: 1903: 1886: 1880: 1877: 1874: 1871: 1867: 1862: 1859: 1850: 1848: 1842: 1832: 1830: 1822: 1817: 1813: 1810: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1770: 1766: 1762: 1758: 1757: 1756: 1742: 1736: 1733: 1730: 1727: 1720: 1716: 1710: 1706: 1700: 1689: 1681: 1677: 1670: 1667: 1659: 1649: 1647: 1643: 1641: 1637: 1632: 1630: 1626: 1622: 1618: 1614: 1613:magnetic core 1610: 1606: 1602: 1601:Joule heating 1594: 1590: 1585: 1577: 1573: 1569: 1558: 1554: 1550: 1546: 1544: 1540: 1535: 1533: 1529: 1525: 1521: 1517: 1507: 1505: 1500: 1496: 1492: 1488: 1482: 1477: 1475: 1471: 1465: 1463: 1457: 1452: 1448: 1442: 1436: 1429: 1425: 1421: 1417: 1412: 1407: 1401: 1396: 1395:Lorentz force 1392: 1388: 1383: 1375: 1367: 1358: 1354: 1343: 1339: 1329: 1321: 1312: 1308: 1307:magnetic flux 1304: 1299: 1290: 1285: 1281: 1272: 1267: 1258: 1252: 1244: 1237: 1233: 1226: 1221: 1213: 1204: 1198: 1192: 1188: 1183: 1176: 1172: 1168: 1161: 1156: 1152: 1151:Lorentz force 1147: 1141: 1136: 1130: 1124: 1119: 1110: 1101: 1092: 1086: 1074: 1069: 1061: 1057: 1053: 1041: 1032: 1030: 1026: 1025:LĂŠon Foucault 1021: 1019: 1015: 1010: 1009:(1791–1867). 1008: 1004: 994: 992: 991: 986: 982: 978: 968: 967:instruments. 966: 962: 958: 957:ferrite cores 954: 950: 946: 942: 938: 934: 930: 926: 921: 919: 915: 911: 907: 903: 899: 898:electromagnet 895: 891: 887: 883: 879: 875: 872:(also called 871: 867: 855: 850: 848: 843: 841: 836: 835: 833: 832: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 670: 667: 665: 662: 660: 657: 655: 652: 650: 647: 646: 640: 639: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 593: 590: 585: 584: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 509: 508: 505: 500: 499: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 459: 457: 454: 452: 449: 447: 446:Joule heating 444: 442: 439: 437: 434: 432: 429: 427: 424: 422: 419: 417: 414: 412: 409: 407: 404: 402: 399: 398: 395: 390: 389: 382: 379: 377: 374: 372: 369: 367: 364: 362: 361:Lorentz force 359: 357: 354: 352: 349: 347: 344: 342: 339: 337: 334: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 288: 285: 280: 279: 272: 269: 267: 264: 262: 261:Magnetization 259: 257: 254: 252: 249: 247: 246:Magnetic flux 244: 242: 239: 237: 234: 232: 229: 227: 224: 222: 219: 218: 215: 210: 209: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 151:Electric flux 149: 147: 144: 142: 139: 137: 134: 132: 129: 127: 124: 122: 119: 117: 114: 113: 110: 105: 104: 99: 96: 94: 91: 89: 88:Computational 86: 84: 81: 79: 76: 74: 71: 69: 66: 65: 64: 63: 59: 55: 54: 51: 48: 47: 43: 42: 37: 33: 19: 3386: 3366: 3351: 3329: 3303: 3280:. Retrieved 3276: 3267: 3255:. Retrieved 3251:the original 3246: 3237: 3226: 3214:. Retrieved 3210: 3201: 3189:. Retrieved 3186:zappitec.com 3185: 3176: 3164:. Retrieved 3160:the original 3155: 3146: 3134:. Retrieved 3130:the original 3125: 3116: 3104:. Retrieved 3100: 3091: 3070: 3057: 3037: 3026: 3015: 3003:Ghostarchive 3001:Archived at 2997: 2989: 2984: 2975: 2969: 2952: 2932: 2925: 2905: 2898: 2878: 2871: 2844:speedometers 2744:transformers 2736:flux linkage 2729: 2710: 2707:Skin effects 2694: 2682: 2651: 2635: 2614: 2595: 2584: 2572: 2529: 2497:Applications 2375: 2365: 2358: 2354: 2347: 2343: 2340: 2268: 2259: 2250: 2242: 2182: 2176: 2170: 2164: 2161: 2157: 2150: 2092: 2084: 1998: 1954: 1948: 1941:Ampère's Law 1938: 1923: 1913: 1907: 1901: 1851: 1846: 1844: 1826: 1815: 1803: 1795: 1787: 1779: 1768: 1760: 1655: 1644: 1633: 1605:transformers 1598: 1592: 1583: 1579: 1571: 1560: 1556: 1547: 1536: 1528:transformers 1513: 1504:(right side) 1503: 1494: 1484: 1478: 1466: 1455: 1440: 1434: 1427: 1423: 1419: 1415: 1405: 1399: 1384: 1373: 1365: 1357:(right side) 1356: 1345: 1327: 1319: 1310: 1297: 1293: 1288: 1283: 1277: 1270: 1256: 1250: 1242: 1235: 1231: 1224: 1219: 1211: 1202: 1196: 1181: 1174: 1170: 1166: 1159: 1155:(pink arrow) 1154: 1145: 1139: 1134: 1128: 1122: 1117: 1108: 1099: 1090: 1067: 1063: 1059: 1055: 1044: 1022: 1011: 1000: 988: 977:eddy current 976: 974: 941:transformers 922: 873: 870:eddy current 869: 863: 606:Four-current 541:Linear motor 426:Electrolysis 306:Eddy current 305: 266:Permeability 186:Polarization 181:Permittivity 18:Eddy-current 2842:Mechanical 2732:skin depths 2713:skin effect 2007:results in 1999:Taking the 1847:skin effect 1841:Skin effect 1835:Skin effect 1829:skin effect 1809:resistivity 1658:skin effect 1629:Hall effect 1625:laminations 1576:laminations 1539:skin effect 1516:resistivity 1495:(left side) 1486:blue arrows 1311:(left side) 1220:black arrow 1140:green arrow 1123:black arrow 1078:blue arrows 1035:Explanation 914:resistivity 902:transformer 576:Transformer 406:Capacitance 331:Faraday law 126:Coulomb law 68:Electricity 3393:Categories 2964:, page. 31 2858:References 2598:resistance 1640:Lenz's law 1532:lamination 1510:Properties 1491:Lenz's law 1474:resistance 1018:Lenz's law 949:generators 925:Lenz's law 882:conductors 643:Scientists 491:Waveguides 471:Resistance 441:Inductance 221:Ampère law 2811:Cooking ( 2740:inductors 2587:neodymium 2468:∂ 2458:∂ 2443:∂ 2433:∂ 2422:σ 2413:μ 2395:∇ 2318:∂ 2308:∂ 2302:σ 2285:∇ 2221:× 2218:∇ 2215:σ 2198:∇ 2194:− 2153:Ohm's law 2129:× 2126:∇ 2109:∇ 2105:− 2063:× 2060:∇ 2043:∇ 2039:− 2026:⋅ 2023:∇ 2015:∇ 1969:× 1966:∇ 1881:σ 1878:μ 1872:π 1860:δ 1734:ρ 1678:π 1451:electrons 1391:electrons 1274:possible. 1125:) in the 1014:Emil Lenz 1012:In 1834, 975:The term 937:inductors 799:Steinmetz 729:Kirchhoff 714:Jefimenko 709:Hopkinson 694:Helmholtz 689:Heaviside 551:Permeance 436:Impedance 176:Insulator 171:Gauss law 121:Conductor 98:Phenomena 93:Textbooks 73:Magnetism 3078:. 2001. 3046:Archived 3005:and the 2363:, where 1617:ferrites 1336:. From 1179:, where 824:Wiechert 779:Poynting 669:Einstein 516:DC motor 511:AC motor 346:Lenz law 131:Electret 3216:28 June 3166:8 March 3136:8 March 3106:8 March 3017:YouTube 2746:having 2382:is the 2369:is the 2273:⁠ 2255:⁠ 1927:is the 1917:is the 1821:density 1819:is the 1807:is the 1587:, green 1572:(right) 1524:braking 1497:by the 1479:Due to 1464:shown. 1378:⁠ 1362:⁠ 1332:⁠ 1316:⁠ 1185:is the 1071:, green 1016:stated 997:History 894:induced 809:Thomson 784:Ritchie 774:Poisson 759:Neumann 754:Maxwell 749:Lorentz 744:LiĂŠnard 674:Faraday 659:Coulomb 486:Voltage 461:Ohm law 83:History 3315:  2960:  2940:  2913:  2886:  2680:7919. 2626:maglev 2615:Using 2540:copper 2151:Using 1899:where 1755:where 1557:(left) 1458:< 0 1380:< 0 1334:> 0 990:eddies 918:eddies 906:magnet 794:Singer 789:Savart 769:Ørsted 734:Larmor 724:Kelvin 679:Fizeau 649:Ampère 571:Stator 78:Optics 3338:–618. 3282:8 May 3257:8 May 3191:8 May 2642:slugs 2591:penny 2535:brake 2097:, so 2085:From 1621:resin 1566:, red 1351:, red 1271:(top) 1050:, red 981:water 868:, an 819:Weber 814:Volta 804:Tesla 719:Joule 704:Hertz 699:Henry 684:Gauss 566:Rotor 3313:ISBN 3284:2016 3259:2016 3218:2018 3193:2022 3168:2016 3138:2016 3108:2016 2958:ISBN 2938:ISBN 2911:ISBN 2884:ISBN 2758:gap. 2742:and 2249:∇ × 2091:∇ ⋅ 2001:curl 1607:and 947:and 933:heat 910:flux 739:Lenz 664:Davy 654:Biot 3336:616 3080:doi 2988:G. 2738:in 2678:ISO 2664:at 2253:= − 2095:= 0 1593:(C) 1284:(C) 1230:= − 1165:= − 1157:of 1060:(N) 1056:(C) 983:in 955:or 923:By 900:or 864:In 764:Ohm 3395:: 3311:. 3309:20 3275:. 3245:. 3209:. 3184:. 3154:. 3124:. 3099:. 3014:. 3009:: 2750:. 2719:. 2357:+ 2346:= 2247:, 2160:= 2155:, 2089:, 1958:: 1426:× 1418:= 1374:dt 1366:dB 1328:dt 1320:dB 1241:× 1218:, 1173:× 1138:, 1121:, 943:, 939:, 3369:. 3321:. 3286:. 3261:. 3220:. 3195:. 3170:. 3140:. 3110:. 3086:. 3082:: 3065:. 3052:. 3020:. 2946:. 2919:. 2892:. 2815:) 2482:. 2478:) 2471:t 2462:H 2452:+ 2446:t 2437:M 2426:( 2417:0 2409:= 2405:H 2399:2 2379:0 2376:Îź 2366:M 2361:) 2359:M 2355:H 2353:( 2351:0 2348:Îź 2344:B 2327:. 2321:t 2312:B 2299:= 2295:H 2289:2 2269:t 2267:∂ 2264:/ 2260:B 2258:∂ 2251:E 2229:. 2225:E 2212:= 2208:H 2202:2 2183:σ 2177:E 2171:J 2165:E 2162:σ 2158:J 2137:. 2133:J 2123:= 2119:H 2113:2 2093:H 2071:. 2067:J 2057:= 2053:H 2047:2 2035:) 2030:H 2019:( 1985:. 1981:J 1977:= 1973:H 1955:J 1949:H 1924:σ 1914:Îź 1908:f 1902:δ 1887:, 1875:f 1868:1 1863:= 1816:D 1804:ρ 1796:k 1788:f 1780:d 1772:p 1769:B 1761:P 1743:, 1737:D 1731:k 1728:6 1721:2 1717:f 1711:2 1707:d 1701:2 1694:p 1690:B 1682:2 1671:= 1668:P 1589:) 1584:B 1580:( 1568:) 1564:I 1561:( 1456:q 1441:I 1435:v 1430:) 1428:B 1424:v 1422:( 1420:q 1416:F 1406:B 1400:v 1389:( 1370:/ 1353:) 1349:I 1346:( 1324:/ 1303:) 1298:B 1294:( 1289:v 1257:v 1251:x 1249:− 1245:) 1243:B 1239:2 1236:v 1234:( 1232:e 1228:2 1225:F 1215:2 1212:v 1206:2 1203:e 1197:z 1195:+ 1182:e 1177:) 1175:B 1171:v 1169:( 1167:e 1163:1 1160:F 1146:y 1144:− 1135:B 1129:x 1127:+ 1118:v 1112:1 1109:e 1103:2 1100:e 1094:1 1091:e 1073:) 1068:B 1064:( 1052:) 1048:I 1045:( 853:e 846:t 839:v 38:. 20:)

Index

Eddy-current
Eddy Current (comics)
Eddy Current Suppression Ring
Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy
Static electricity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑