Knowledge

Dynamic stall on helicopter rotors

Source 📝

638:
proper turbulence models and transition models should be carefully selected. Furthermore, this method is also sometimes too computationally costly for research purposes as well as the pre-design of a helicopter rotor. On the other hand, to date some semi-empirical models have shown their capability of providing adequate precision, which contains sets of linear and nonlinear equations, based on classical unsteady thin-airfoil theory and parameterized by empirical coefficients. Therefore, a large number of experimental results are demanded to correct the empirical coefficients, and it is foreseeable that these models cannot be generally adapted to a wide range of conditions such as different airfoils, Mach numbers, and so on.
468: 459: 412: 182: 337: 328: 117: 1348: 288: 421: 599: 276: 450: 19: 203:
Although the unsteady mechanism of idealized 2D experiments has already been studied comprehensively, the dynamic stall on a rotor presents strong three-dimensional character differences. According to a well-collected in-flight data by Bousman, the generation location of the DSV is "tightly grouped",
435:
The effect of airfoil geometry on dynamic stall is quite intricate. As is shown in the figure, for a cambered airfoil, the lift stall is delayed and the maximum nose-down pitch moment is significantly reduced. On the other hand, the inception of stall is more abrupt for a sharp leading-edge airfoil.
624:
During forward flight, the blade element of a rotor will encounter a time-varying incident velocity, leading to additional unsteady aerodynamic characters. Several features have been discovered through experiments, for example, depending on the phasing of the velocity variations with respect to the
615:
Lorber et al. found that at the outermost wing station, the existence of the tip vortex gives both the steady and unsteady lift and pitching moment hysteresis loops a more nonlinear quasi-steady behaviour due to an element of steady vortex-induced lift, while for the rest of the wing stations where
193:
Stage 5: the full flow reattachment is achieved as the AoA gradually decreases until it is fairly smaller than the static stall angle. The reasons for the lag are, firstly, the reorganization of the flow from fully separated to reattached, and secondly, the reverse kinematic "induced camber" effect
637:
method. With regard to the latter method, because of the sophisticated flow field during the process of the dynamic stall, the full Navier-Stokes equations and proper models are adopted, and some promising results have been presented in the literature. However, to utilize this method precisely,
128:
experiments, it has been found that the behavior of an airfoil under unsteady motion is quite different from that under quasi-steady motion. Flow separation is less likely to happen on the upper airfoil surface with a larger value of AoA than the latter, which can increase the maximum lift
589:
Based on experimental data, a sweep angle of 30° is able to delay the onset of stall to a higher AoA thanks to the convection of the leading-edge vortex at a lower velocity and reduce the varying rate of lift, pitch moment, and the scale of hysteresis loops.
606:
As the figure suggests, the effect of Reynolds numbers seems to be minor, with a low value of reduced frequency k=0.004, stall overshoot is minimal and most of the hysteresis loop is attributable to a delay in reattachment, rather than vortex shedding.
584: 371:
suggests a delay of the onset of flow separation at higher AoA, and a reduction of airloads overshoots and hysteresis is secured because of the increase of the kinematic induced camber effect. But when reduce frequency is rather low, i.e.
103:
The visualization is considered a vivid method to better understand the aerodynamic principle of the dynamic stall on a helicopter rotor, and the investigation generally starts from the analysis of the unsteady motion on 2D airfoil (see
1082: 877: 174:), provides an additional lift for the airfoil so long as it stays over the upper surface, and also noteworthy increases in nose-down pitching moment (moment break, moment stall) while it moves downstream across the chord. 1167: 305:
The increasing of the mean value of AoA leads to more evident flow separation, higher overshoots of lift and pitch moment, and larger airloads hysteresis, which may ultimately result in deep dynamic stall.
712: 482:
The sweep angle of the flow to a blade element for a helicopter in forward flight can be significant. It is defined as the radial component of the velocity relative to the leading edge of the blade:
1899:
Maresca, Christian A.; Favier, Daniel J.; Rebont, Jean M. (1981-04-01). "Unsteady Aerodynamics of an Aerofoil at High Angle of Incidence Performing Various Linear Oscillations in a Uniform Stream".
65:
so low values of AOA is needed but shock-induced flow separation may happen, while the retreating blade operates at much lower Mach numbers but the high values of AoA result in the stall (also see
1304: 625:
AoA, initiation of LEV shedding and the chordwise convection of LEV appear to be different. However, more works are needed to better understand this problem adopting mathematical models.
1223: 66: 805: 488: 61:, the advancing and retreating blades almost reach their operation limits whereas flows are still attached to the blade surfaces. That is, the advancing blades operate at high 909: 163:
Stage 1: the AoA exceeds the static stall angle but the flow separation is delayed due to the reduction of adverse pressure gradients produced by the kinematics of pitch rate.
1372:
One significant advantage of the model is that it uses relatively few empirical coefficients, with all but four at each Mach number being derived from static airfoil data.
129:
coefficient to a certain extent. Three primary unsteady phenomena have been identified to contribute to the delay in the onset of flow separation under unsteady condition:
1009: 775: 745: 50:(AOA) of blade elements varies intensively due to time-dependent blade flapping, cyclic pitch and wake inflow. For example, during forward flight at the velocity close to 956: 396: 314:
The amplitude of oscillation is also an important parameter for the stall behaviour of an airfoil. With a larger oscillating angle, deep dynamic stall tends to occur.
976: 1334: 166:
Stage 2: flow separation and the formation of a vortex disturbance is cast-off from the leading edge region of the airfoil. This vortex, called leading edge vortex (
144:
By virtue of a kinematic induced camber effect, a positive pitch rate further decreases the leading edge pressure and pressure gradients for a given value of lift;
133:
During the condition where the AoA is increasing with respect to time, the unsteadiness of the flow resulting from circulation that is shed into the wake at the
929: 369: 42:
occurs at relatively low flight speed, the dynamic stall on a helicopter rotor emerges at high airspeeds or/and during manoeuvres with high load factors of
1014: 1842:
Pierce, G. Alvin; Kunz, Donald L.; Malone, John B. (1978-04-01). "The Effect of Varying Freestream Velocity on Airfoil Dynamic Stall Characteristics".
812: 1819:
Lorber, Peter; Covino, Jr., Alfred; Carta, Franklin (1991-06-24). "Dynamic stall experiments on a swept three-dimensional wing incompressible flow".
1661:
Khalifa, Nabil M.; Rezaei, Amir S.; Taha, Haithem E. (2021). "Comparing the performance of different turbulence models in predicting dynamic stall".
1362:
Attached flow model for the unsteady (linear) airloads (with compressibility effects included) using the compressible indicial response functions;
1089: 1869:
Favier, D.; Agnes, A.; Barbi, C.; Maresca, C. (September 1988). "Combined translation/pitch motion - A new airfoil dynamic stall simulation".
190:
Stage 4: full separation of the flow on the upper surface of the airfoil can be observed, accompanied by the peak of nose-down pitch moment.
1463:
McCroskey, W. J.; Fisher, Richard K. (1972-01-01). "Detailed Aerodynamic Measurements on a Model Rotor in the Blade Stall Regime".
2047: 1787: 655: 1942: 1978: 1678: 1506: 1228: 2020: 2118:
Tyler, Joseph C.; Leishman, J. Gordon (1992-07-01). "Analysis of Pitch and Plunge Effects on Unsteady Airfoil Behavior".
1702:
Green, R. B.; Galbraith, R. A. McD. (August 1995). "Dynamic recovery to fully attached aerofoil flow from deep stall".
1355:
The model was initially developed by Beddoes and Leishman&Beddoes and refined by Leishman and Tyler&Leishman.
633:
There are mainly two types of mathematical models to predict the dynamic stall behaviour: semi-empirical models and
2151: 177:
Stage 3: a steep decrease of the lift coefficient (lift break, lift stall) occurs as the DSV passes into the wake.
1806:
The influence of sweep on the aerodynamic loading of an oscillating NACA 0012 airfoil. Volume 1: Technical report
204:
where lift overshoots and large nose-down pitching moments are featured and can be classified into three groups.
147:
In response to the external pressure gradients, there are also additional unsteady effects that occur within the
467: 1172: 458: 411: 641:
Here, two typical semi-empirical methods are presented to give insights into the modelling of dynamic stall.
1788:
An experimental investigation of the influence of a range of aerofoil design features on dynamic stall onset
1549:
Carta, Franklin O. (October 1971). "Effect of Unsteady Pressure Gradient Reduction on Dynamic Stall Delay".
1011:
derived from Theodorsen's theory at the appropriate reduced frequency of the forcing and a reference angle
634: 1961:
Dumlupinar, Ercan; Murthy, V (2011-06-27). "Investigation of Dynamic Stall of Airfoils and Wings by CFD".
978:
function is empirical, depends on geometry and Mach number and is different for lift and pitching moment.
579:{\displaystyle \Lambda =\arctan {\frac {U_{R}}{U_{T}}}=\arctan {\frac {\mu \cos {\psi }}{r+\sin {\psi }}}} 181: 780: 1737:
Bousman, William G. (1998-10-01). "A Qualitative Examination of Dynamic Stall from Flight Test Data".
885: 116: 1347: 34:, which can cause the onset of large torsional airloads and vibrations on the rotor blades. Unlike 2014:
A Mathematical Model of Unsteady Aerodynamics and Radial Flow for Application to Helicopter Rotors
984: 750: 720: 336: 327: 88:
High blade structural loads, which may result in excessive vibrations and blade structural damage;
2156: 934: 649:
The model was initially developed by Gross&Harris and Gormont, the basic idea is as follows:
1401: 1396: 1339:
A comprehensive analysis of a helicopter rotor using this model is presented in the reference.
981:
The airloads coefficients are constructed from static data using an equivalent angle of attack
375: 287: 70: 39: 420: 961: 598: 1603:
McAlister, K. W.; Carr, L. W. (1979-09-01). "Water Tunnel Visualizations of Dynamic Stall".
1309: 159:
The development process of dynamic stall on 2D airfoil can be summarized in several stages:
1711: 1358:
The model consists of three distinct sub-systems for describing the dynamic stall physics:
105: 2064:
Leishman, J. G.; Beddoes, T. S. (1989-07-01). "A Semi-Empirical Model for Dynamic Stall".
398:, the vortex-shedding phenomenon is not likely to happen, so does the deep dynamic stall. 8: 35: 1715: 1576:
Ericsson, Lars E.; Reding, J. Peter (1972-01-01). "Dynamic Stall of Helicopter Blades".
81:
The effect of dynamic stall limits the helicopter performance in several ways such as:
2038: 1684: 914: 354: 275: 1974: 1688: 1674: 1641:
Analysis of the development of dynamic stall based on oscillating airfoil experiments
1502: 1406: 1077:{\displaystyle \alpha _{r}=\alpha \pm \gamma {\sqrt {{\dot {\alpha }}c/V_{\infty }}}} 255: 232: 2127: 2100: 2073: 1998:. Proceedings of the 25th annual national forum of the American Helicopter Society. 1966: 1908: 1878: 1851: 1824: 1746: 1719: 1666: 1612: 1585: 1558: 1531: 1472: 1445: 1411: 1391: 31: 1416: 872:{\displaystyle \Delta \alpha _{D}=\gamma {\sqrt {{\dot {\alpha }}c/V_{\infty }}}} 152: 47: 1436:
Tarzanin, F. J. (1972-04-01). "Prediction of Control Loads Due to Blade Stall".
449: 2013: 148: 1927: 1805: 1765: 1764:
Mcalister, Kenneth W.; Carr, Lawremce W.; Mccroskey, William J. (1978-01-01).
1640: 1639:
Carr, Lawremce W.; Mcalister, Kenneth W.; Mccroskey, William J. (1977-01-01).
151:, including the existence of flow reversals in the absence of any significant 2145: 1928:
Dynamic stall of an oscillating wing. Part 1: Evaluation of turbulence models
1365:
Separated flow model for the nonlinear airloads (Kirchhoff-Helmholtz theory);
134: 616:
oscillations below stall, there is no particular difference from 2-D cases.
1522:
Ericsson, Lars Eric (September 1967). "Comment on unsteady airfoil stall".
1162:{\displaystyle C_{L}={\frac {\alpha _{eq}}{\alpha _{r}}}C_{L}(\alpha _{r})} 141:
and adverse pressure gradients compared to the steady case at the same AoA;
138: 2104: 2091:
Leishman, J. G. (1989-07-01). "Modeling Sweep Effects on Dynamic Stall".
1912: 1476: 125: 62: 2077: 1970: 1828: 1750: 1670: 2131: 1926:
Srinivasan, G. R.; Ekaterinaris, J. A.; Mccroskey, W. J. (1993-08-09).
1855: 1589: 1449: 1386: 1381: 222: 43: 18: 1804:
St.hilaire, A.O.; Carta, F.O.; Fink, M.R.; Jepson, W.D. (1979-05-01).
1616: 228:
The same order of the viscous zone thickness as the airfoil thickness;
1996:
Prediction of inflight stalled airloads from oscillating airfoil data
1944:
CFD study of three-dimensional dynamic stall various planform shapes
1882: 1723: 1562: 1535: 91:
Control system loads, manoeuvre capability, and handling qualities;
1368:
Dynamic stall model for the leading edge vortex-induced airloads.
194:
on the leading edge pressure gradient by the negative pitch rate.
1925: 1634: 1632: 1630: 1628: 1626: 707:{\displaystyle \alpha _{DS}=\alpha _{SS}+\Delta \alpha _{D}} 251:
Extension of the viscous zone to the order of airfoil chord;
1941:
Spentzos, A.; Barakos, G.N.; Badcock, K.J.; Richards, B.E.
1940: 1894: 1892: 1821:
22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference
1757: 1803: 1623: 198: 51: 1889: 1868: 1501:(2nd ed.). Cambridge: Cambridge University Press. 185:
Rotor map of dynamic stall locations for all conditions
1818: 1763: 1638: 644: 1312: 1299:{\displaystyle C_{M}=(0.25-x_{CP})C_{L}(\alpha _{r})} 1231: 1175: 1092: 1017: 987: 964: 937: 917: 888: 815: 783: 753: 723: 658: 491: 378: 357: 1954: 2057: 1898: 120:
The events of dynamic stall on the NACA0012 airfoil
1766:Dynamic stall experiments on the NACA 0012 airfoil 1456: 1328: 1298: 1217: 1161: 1076: 1003: 970: 950: 923: 903: 871: 799: 769: 739: 706: 652:The onset of dynamic stall is assumed to occur at 578: 390: 363: 2111: 2046:. Prediction of Aerodynamic Loads on Rotorcraft. 1660: 1569: 1351:Flowchart of Leishman-Beddoes dynamic stall model 248:High deviations of airloads and large hysteresis; 2143: 1960: 1841: 1596: 111: 2063: 1862: 1462: 85:The maximum forward flight velocity and thrust; 2007: 2005: 1919: 1797: 1701: 1575: 1492: 1490: 1488: 1486: 2117: 1602: 245:Domination of the vortex-shedding phenomenon; 2084: 1934: 1835: 610: 345:Effect of reduced frequency on dynamic stall 293:Effect of oscillating angle on dynamic stall 2030: 2002: 1515: 1483: 1429: 602:Effect of Reynolds numbers on dynamic stall 429:Effect of airfoil geometry on dynamic stall 2120:Journal of the American Helicopter Society 2093:Journal of the American Helicopter Society 2066:Journal of the American Helicopter Society 1901:Journal of the American Helicopter Society 1844:Journal of the American Helicopter Society 1812: 1739:Journal of the American Helicopter Society 1578:Journal of the American Helicopter Society 1465:Journal of the American Helicopter Society 1438:Journal of the American Helicopter Society 1342: 1993: 1987: 1963:29th AIAA Applied Aerodynamics Conference 1779: 261:Rapid overshoots of airloads after stall. 137:of the airfoil causes a reduction in the 2090: 1542: 1521: 1496: 1435: 1346: 1218:{\displaystyle C_{D}=C_{D}(\alpha _{r})} 619: 597: 180: 115: 17: 2011: 1736: 2144: 1994:Gross, David W.; Franklin, D. Harris. 747:is the critical AoA of dynamic stall, 476:Effect of sweep angle on dynamic stall 254:Less sensitivity to airfoil geometry, 212: 199:Dynamic stall in the rotor environment 1785: 1548: 1499:Principles of helicopter aerodynamics 239: 221:Low deviations of airloads and small 76: 30:is one of the hazardous phenomena on 436:More information is available here. 351:A higher value of reduced frequency 317: 309: 2053:from the original on June 24, 2021. 2036: 2026:from the original on June 24, 2021. 645:Boeing-Vertol Gamma Function Method 401: 281:Effect of mean AoA on dynamic stall 13: 2040:Representation of airfoil behavior 1067: 943: 862: 816: 800:{\displaystyle \Delta \alpha _{D}} 784: 691: 593: 492: 14: 2168: 2012:Gormont, Ronald E. (1973-05-01). 1950:. 30th European Rotorcraft Forum. 1336:is the center point of rotation. 958:is the free-stream velocity. The 231:Sensitivity to airfoil geometry, 904:{\displaystyle {\dot {\alpha }}} 466: 457: 448: 419: 410: 335: 326: 286: 274: 98: 1730: 1695: 911:is the time derivative of AoA, 94:Helicopter dynamic performance. 67:advancing blade compressibility 1654: 1293: 1280: 1267: 1245: 1212: 1199: 1156: 1143: 439: 1: 1605:Journal of Fluids Engineering 1422: 112:Dynamic stall for 2D airfoils 1497:Leishman, J. Gordon (2006). 1004:{\displaystyle \alpha _{eq}} 770:{\displaystyle \alpha _{SS}} 740:{\displaystyle \alpha _{DS}} 635:computational fluid dynamics 628: 7: 1375: 951:{\displaystyle V_{\infty }} 300: 170:) or dynamic stall vortex ( 10: 2173: 1786:Wilby, P.G. (1984-08-28). 265: 611:Three-dimensional effects 391:{\displaystyle k<0.05} 931:is the blade chord, and 777:is static stall AoA and 207: 2152:Helicopter aerodynamics 1663:AIAA Scitech 2021 Forum 1343:Leishman-Beddoes Method 971:{\displaystyle \gamma } 1402:retreating blade stall 1397:Stall (fluid dynamics) 1352: 1330: 1329:{\displaystyle x_{CP}} 1300: 1219: 1163: 1078: 1005: 972: 952: 925: 905: 873: 801: 771: 741: 708: 603: 580: 392: 365: 218:Minor flow separation; 186: 121: 71:retreating blade stall 59:velocity, never exceed 23: 1350: 1331: 1301: 1220: 1164: 1079: 1006: 973: 953: 926: 906: 874: 802: 772: 742: 709: 620:Time-varying velocity 601: 581: 393: 366: 184: 119: 21: 2105:10.4050/JAHS.34.3.18 1913:10.4050/JAHS.26.2.40 1477:10.4050/JAHS.17.1.20 1310: 1229: 1173: 1090: 1015: 985: 962: 935: 915: 886: 813: 781: 751: 721: 656: 489: 376: 355: 106:Blade element theory 22:Dynamic stall region 2078:10.4050/JAHS.34.3.3 1971:10.2514/6.2011-3511 1871:Journal of Aircraft 1829:10.2514/6.1991-1795 1751:10.4050/JAHS.43.279 1716:1995AIAAJ..33.1433G 1671:10.2514/6.2021-1651 1551:Journal of Aircraft 1524:Journal of Aircraft 213:Light dynamic stall 36:fixed-wing aircraft 2132:10.4050/JAHS.37.69 1856:10.4050/JAHS.23.27 1590:10.4050/JAHS.17.11 1450:10.4050/JAHS.17.33 1353: 1326: 1296: 1215: 1159: 1074: 1001: 968: 948: 921: 901: 869: 797: 767: 737: 704: 604: 576: 388: 361: 240:Deep dynamic stall 187: 122: 77:Performance limits 24: 1980:978-1-62410-145-8 1680:978-1-62410-609-5 1617:10.1115/1.3448981 1508:978-0-521-85860-1 1407:Reduced frequency 1131: 1072: 1051: 924:{\displaystyle c} 898: 867: 846: 574: 526: 364:{\displaystyle k} 318:Reduced frequency 310:Oscillating angle 256:reduced frequency 233:reduced frequency 32:helicopter rotors 2164: 2136: 2135: 2115: 2109: 2108: 2088: 2082: 2081: 2061: 2055: 2054: 2052: 2045: 2034: 2028: 2027: 2025: 2018: 2009: 2000: 1999: 1991: 1985: 1984: 1958: 1952: 1951: 1949: 1938: 1932: 1931: 1923: 1917: 1916: 1896: 1887: 1886: 1866: 1860: 1859: 1839: 1833: 1832: 1816: 1810: 1809: 1801: 1795: 1794: 1792: 1783: 1777: 1776: 1774: 1773: 1761: 1755: 1754: 1734: 1728: 1727: 1710:(8): 1433–1440. 1699: 1693: 1692: 1658: 1652: 1651: 1649: 1648: 1636: 1621: 1620: 1600: 1594: 1593: 1573: 1567: 1566: 1546: 1540: 1539: 1519: 1513: 1512: 1494: 1481: 1480: 1460: 1454: 1453: 1433: 1412:Lift coefficient 1392:Helicopter rotor 1335: 1333: 1332: 1327: 1325: 1324: 1305: 1303: 1302: 1297: 1292: 1291: 1279: 1278: 1266: 1265: 1241: 1240: 1224: 1222: 1221: 1216: 1211: 1210: 1198: 1197: 1185: 1184: 1168: 1166: 1165: 1160: 1155: 1154: 1142: 1141: 1132: 1130: 1129: 1120: 1119: 1107: 1102: 1101: 1083: 1081: 1080: 1075: 1073: 1071: 1070: 1061: 1053: 1052: 1044: 1041: 1027: 1026: 1010: 1008: 1007: 1002: 1000: 999: 977: 975: 974: 969: 957: 955: 954: 949: 947: 946: 930: 928: 927: 922: 910: 908: 907: 902: 900: 899: 891: 878: 876: 875: 870: 868: 866: 865: 856: 848: 847: 839: 836: 828: 827: 806: 804: 803: 798: 796: 795: 776: 774: 773: 768: 766: 765: 746: 744: 743: 738: 736: 735: 713: 711: 710: 705: 703: 702: 687: 686: 671: 670: 585: 583: 582: 577: 575: 573: 572: 554: 553: 538: 527: 525: 524: 515: 514: 505: 470: 461: 452: 423: 414: 402:Airfoil geometry 397: 395: 394: 389: 370: 368: 367: 362: 339: 330: 290: 278: 258:and Mach number; 235:and Mach number. 2172: 2171: 2167: 2166: 2165: 2163: 2162: 2161: 2142: 2141: 2140: 2139: 2116: 2112: 2089: 2085: 2062: 2058: 2050: 2043: 2037:Beddoes, T. S. 2035: 2031: 2023: 2016: 2010: 2003: 1992: 1988: 1981: 1959: 1955: 1947: 1939: 1935: 1924: 1920: 1897: 1890: 1883:10.2514/3.45663 1867: 1863: 1840: 1836: 1817: 1813: 1802: 1798: 1790: 1784: 1780: 1771: 1769: 1762: 1758: 1735: 1731: 1724:10.2514/3.12565 1700: 1696: 1681: 1659: 1655: 1646: 1644: 1637: 1624: 1601: 1597: 1574: 1570: 1563:10.2514/3.59179 1557:(10): 839–841. 1547: 1543: 1536:10.2514/3.43872 1520: 1516: 1509: 1495: 1484: 1461: 1457: 1434: 1430: 1425: 1417:Angle of attack 1378: 1345: 1317: 1313: 1311: 1308: 1307: 1287: 1283: 1274: 1270: 1258: 1254: 1236: 1232: 1230: 1227: 1226: 1206: 1202: 1193: 1189: 1180: 1176: 1174: 1171: 1170: 1150: 1146: 1137: 1133: 1125: 1121: 1112: 1108: 1106: 1097: 1093: 1091: 1088: 1087: 1066: 1062: 1057: 1043: 1042: 1040: 1022: 1018: 1016: 1013: 1012: 992: 988: 986: 983: 982: 963: 960: 959: 942: 938: 936: 933: 932: 916: 913: 912: 890: 889: 887: 884: 883: 861: 857: 852: 838: 837: 835: 823: 819: 814: 811: 810: 791: 787: 782: 779: 778: 758: 754: 752: 749: 748: 728: 724: 722: 719: 718: 698: 694: 679: 675: 663: 659: 657: 654: 653: 647: 631: 622: 613: 596: 594:Reynolds number 568: 555: 549: 539: 537: 520: 516: 510: 506: 504: 490: 487: 486: 480: 479: 478: 477: 473: 472: 471: 463: 462: 454: 453: 442: 433: 432: 431: 430: 426: 425: 424: 416: 415: 404: 377: 374: 373: 356: 353: 352: 349: 348: 347: 346: 342: 341: 340: 332: 331: 320: 312: 303: 298: 297: 296: 295: 294: 291: 283: 282: 279: 268: 242: 215: 210: 201: 153:flow separation 114: 101: 79: 55: 48:angle of attack 38:, of which the 12: 11: 5: 2170: 2160: 2159: 2157:Fluid dynamics 2154: 2138: 2137: 2110: 2083: 2056: 2029: 2001: 1986: 1979: 1953: 1933: 1918: 1888: 1877:(9): 805–814. 1861: 1834: 1811: 1796: 1778: 1768:(Report). NASA 1756: 1745:(4): 279–295. 1729: 1694: 1679: 1653: 1643:(Report). NASA 1622: 1611:(3): 376–380. 1595: 1568: 1541: 1530:(5): 478–480. 1514: 1507: 1482: 1455: 1427: 1426: 1424: 1421: 1420: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1377: 1374: 1370: 1369: 1366: 1363: 1344: 1341: 1323: 1320: 1316: 1295: 1290: 1286: 1282: 1277: 1273: 1269: 1264: 1261: 1257: 1253: 1250: 1247: 1244: 1239: 1235: 1214: 1209: 1205: 1201: 1196: 1192: 1188: 1183: 1179: 1158: 1153: 1149: 1145: 1140: 1136: 1128: 1124: 1118: 1115: 1111: 1105: 1100: 1096: 1069: 1065: 1060: 1056: 1050: 1047: 1039: 1036: 1033: 1030: 1025: 1021: 998: 995: 991: 967: 945: 941: 920: 897: 894: 864: 860: 855: 851: 845: 842: 834: 831: 826: 822: 818: 794: 790: 786: 764: 761: 757: 734: 731: 727: 701: 697: 693: 690: 685: 682: 678: 674: 669: 666: 662: 646: 643: 630: 627: 621: 618: 612: 609: 595: 592: 587: 586: 571: 567: 564: 561: 558: 552: 548: 545: 542: 536: 533: 530: 523: 519: 513: 509: 503: 500: 497: 494: 475: 474: 465: 464: 456: 455: 447: 446: 445: 444: 443: 441: 438: 428: 427: 418: 417: 409: 408: 407: 406: 405: 403: 400: 387: 384: 381: 360: 344: 343: 334: 333: 325: 324: 323: 322: 321: 319: 316: 311: 308: 302: 299: 292: 285: 284: 280: 273: 272: 271: 270: 269: 267: 264: 263: 262: 259: 252: 249: 246: 241: 238: 237: 236: 229: 226: 219: 214: 211: 209: 206: 200: 197: 196: 195: 191: 179: 178: 175: 164: 157: 156: 149:boundary layer 145: 142: 113: 110: 100: 97: 96: 95: 92: 89: 86: 78: 75: 53: 9: 6: 4: 3: 2: 2169: 2158: 2155: 2153: 2150: 2149: 2147: 2133: 2129: 2125: 2121: 2114: 2106: 2102: 2098: 2094: 2087: 2079: 2075: 2071: 2067: 2060: 2049: 2042: 2041: 2033: 2022: 2015: 2008: 2006: 1997: 1990: 1982: 1976: 1972: 1968: 1964: 1957: 1946: 1945: 1937: 1929: 1922: 1914: 1910: 1906: 1902: 1895: 1893: 1884: 1880: 1876: 1872: 1865: 1857: 1853: 1849: 1845: 1838: 1830: 1826: 1822: 1815: 1807: 1800: 1789: 1782: 1767: 1760: 1752: 1748: 1744: 1740: 1733: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1690: 1686: 1682: 1676: 1672: 1668: 1664: 1657: 1642: 1635: 1633: 1631: 1629: 1627: 1618: 1614: 1610: 1606: 1599: 1591: 1587: 1583: 1579: 1572: 1564: 1560: 1556: 1552: 1545: 1537: 1533: 1529: 1525: 1518: 1510: 1504: 1500: 1493: 1491: 1489: 1487: 1478: 1474: 1470: 1466: 1459: 1451: 1447: 1443: 1439: 1432: 1428: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1379: 1373: 1367: 1364: 1361: 1360: 1359: 1356: 1349: 1340: 1337: 1321: 1318: 1314: 1288: 1284: 1275: 1271: 1262: 1259: 1255: 1251: 1248: 1242: 1237: 1233: 1207: 1203: 1194: 1190: 1186: 1181: 1177: 1151: 1147: 1138: 1134: 1126: 1122: 1116: 1113: 1109: 1103: 1098: 1094: 1085: 1063: 1058: 1054: 1048: 1045: 1037: 1034: 1031: 1028: 1023: 1019: 996: 993: 989: 979: 965: 939: 918: 895: 892: 880: 858: 853: 849: 843: 840: 832: 829: 824: 820: 808: 792: 788: 762: 759: 755: 732: 729: 725: 715: 699: 695: 688: 683: 680: 676: 672: 667: 664: 660: 650: 642: 639: 636: 626: 617: 608: 600: 591: 569: 565: 562: 559: 556: 550: 546: 543: 540: 534: 531: 528: 521: 517: 511: 507: 501: 498: 495: 485: 484: 483: 469: 460: 451: 437: 422: 413: 399: 385: 382: 379: 358: 338: 329: 315: 307: 289: 277: 260: 257: 253: 250: 247: 244: 243: 234: 230: 227: 224: 220: 217: 216: 205: 192: 189: 188: 183: 176: 173: 169: 165: 162: 161: 160: 154: 150: 146: 143: 140: 136: 135:trailing edge 132: 131: 130: 127: 118: 109: 107: 99:Flow topology 93: 90: 87: 84: 83: 82: 74: 72: 68: 64: 60: 56: 49: 45: 41: 37: 33: 29: 28:dynamic stall 20: 16: 2126:(3): 69–82. 2123: 2119: 2113: 2099:(3): 18–29. 2096: 2092: 2086: 2069: 2065: 2059: 2039: 2032: 1995: 1989: 1962: 1956: 1943: 1936: 1921: 1907:(2): 40–45. 1904: 1900: 1874: 1870: 1864: 1850:(2): 27–33. 1847: 1843: 1837: 1820: 1814: 1799: 1781: 1770:. Retrieved 1759: 1742: 1738: 1732: 1707: 1704:AIAA Journal 1703: 1697: 1662: 1656: 1645:. Retrieved 1608: 1604: 1598: 1584:(1): 11–19. 1581: 1577: 1571: 1554: 1550: 1544: 1527: 1523: 1517: 1498: 1471:(1): 20–30. 1468: 1464: 1458: 1444:(2): 33–46. 1441: 1437: 1431: 1371: 1357: 1354: 1338: 1086: 1084:as follows: 980: 881: 809: 807:is given by 716: 651: 648: 640: 632: 623: 614: 605: 588: 481: 434: 350: 313: 304: 202: 171: 167: 158: 123: 102: 80: 63:Mach numbers 58: 27: 25: 15: 2072:(3): 3–17. 440:Sweep angle 126:wind tunnel 46:, when the 44:helicopters 2146:Categories 2019:(Report). 1772:2013-09-03 1647:2013-09-03 1423:References 1387:Rotorcraft 1382:helicopter 223:hysteresis 1930:(Report). 1808:(Report). 1793:(Report). 1689:234321807 1285:α 1252:− 1204:α 1148:α 1123:α 1110:α 1068:∞ 1049:˙ 1046:α 1038:γ 1035:± 1032:α 1020:α 990:α 966:γ 944:∞ 896:˙ 893:α 863:∞ 844:˙ 841:α 833:γ 821:α 817:Δ 789:α 785:Δ 756:α 726:α 696:α 692:Δ 677:α 661:α 629:Modelling 570:ψ 566:⁡ 551:ψ 547:⁡ 541:μ 535:⁡ 502:⁡ 493:Λ 2048:Archived 2021:Archived 1665:: 1651. 1376:See also 1306:, where 301:Mean AoA 1712:Bibcode 266:Factors 1977:  1687:  1677:  1505:  882:where 717:where 532:arctan 499:arctan 2051:(PDF) 2044:(PDF) 2024:(PDF) 2017:(PDF) 1948:(PDF) 1791:(PDF) 1685:S2CID 208:Types 40:stall 1975:ISBN 1675:ISBN 1503:ISBN 1249:0.25 386:0.05 383:< 139:lift 69:and 26:The 2128:doi 2101:doi 2074:doi 1967:doi 1909:doi 1879:doi 1852:doi 1825:doi 1747:doi 1720:doi 1667:doi 1613:doi 1609:101 1586:doi 1559:doi 1532:doi 1473:doi 1446:doi 563:sin 544:cos 172:DSV 168:LEV 124:By 108:). 73:). 2148:: 2124:37 2122:. 2097:34 2095:. 2070:34 2068:. 2004:^ 1973:. 1965:. 1905:26 1903:. 1891:^ 1875:25 1873:. 1848:23 1846:. 1823:. 1743:43 1741:. 1718:. 1708:33 1706:. 1683:. 1673:. 1625:^ 1607:. 1582:17 1580:. 1553:. 1526:. 1485:^ 1469:17 1467:. 1442:17 1440:. 1225:, 1169:, 879:, 714:, 57:, 54:NE 2134:. 2130:: 2107:. 2103:: 2080:. 2076:: 1983:. 1969:: 1915:. 1911:: 1885:. 1881:: 1858:. 1854:: 1831:. 1827:: 1775:. 1753:. 1749:: 1726:. 1722:: 1714:: 1691:. 1669:: 1650:. 1619:. 1615:: 1592:. 1588:: 1565:. 1561:: 1555:8 1538:. 1534:: 1528:4 1511:. 1479:. 1475:: 1452:. 1448:: 1322:P 1319:C 1315:x 1294:) 1289:r 1281:( 1276:L 1272:C 1268:) 1263:P 1260:C 1256:x 1246:( 1243:= 1238:M 1234:C 1213:) 1208:r 1200:( 1195:D 1191:C 1187:= 1182:D 1178:C 1157:) 1152:r 1144:( 1139:L 1135:C 1127:r 1117:q 1114:e 1104:= 1099:L 1095:C 1064:V 1059:/ 1055:c 1029:= 1024:r 997:q 994:e 940:V 919:c 859:V 854:/ 850:c 830:= 825:D 793:D 763:S 760:S 733:S 730:D 700:D 689:+ 684:S 681:S 673:= 668:S 665:D 560:+ 557:r 529:= 522:T 518:U 512:R 508:U 496:= 380:k 359:k 225:; 155:. 52:V

Index


helicopter rotors
fixed-wing aircraft
stall
helicopters
angle of attack
VNE
Mach numbers
advancing blade compressibility
retreating blade stall
Blade element theory

wind tunnel
trailing edge
lift
boundary layer
flow separation

hysteresis
reduced frequency
reduced frequency








Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.