Knowledge

Tokamak sawtooth

Source 📝

306:
a much more rapid drop in the central plasma temperature of hot tokamaks than predicted by the resistive reconnection in the Kadomtsev model. Some insight into fast sawtooth crashes was provided by numerical simulations using more sophisticated model equations and by the Wesson model. Another discrepancy found was that the central safety factor was observed to be significantly less than unity immediately after some sawtooth crashes. Two notable explanations for this are incomplete reconnection and rapid rearrangement of flux immediately after a relaxation.
65: 265:. As the flux in the core is reconnected, an island grows on the side of the core opposite the reconnection layer. The island replaces the core when the core has completely reconnected so that the final state has closed nested flux surfaces, and the center of the island is the new magnetic axis. In the final state, the safety factor is greater than unity everywhere. The process flattens temperature and density profiles in the core. 31: 377:
In large tokamaks with larger Lundquist numbers, sawtooth relaxations are observed to occur much faster than predicted by the resistive Kadomtsev model. Simulations using two-fluid model equations or non-ideal terms in Ohm's law besides the resistive term, such as the Hall and electron inertia terms,
305:
The Kadomtsev picture of sawtoothing in a resistive MHD model was very successful at describing many properties of the sawtooth in early tokamak experiments. However as measurements became more accurate and tokamak plasmas got hotter, discrepancies appeared. One discrepancy is that relaxations caused
369:
The first results of a numerical simulation that provided verification of the Kadomtsev model were published in 1976. This simulation demonstrated a single Kadomtsev-like sawtooth relaxation. In 1987 the first results of a simulation demonstrating repeated, quasi-periodic sawtooth relaxations was
314:
The Wesson model offers an explanation fast sawtooth crashes in hot tokamaks. Wesson's model describes a sawtooth relaxation based on the non-linear evolution of the quasi-interchange (QI) mode. The nonlinear evolution of the QI does not involve much reconnection, so it does not have Sweet-Parker
268:
After a relaxation, the flattened temperature and safety factor profiles become peaked again as the core reheats on the energy confinement time scale, and the central safety factor drops below unity again as the current density resistively diffuses back into the core. In this way, the sawtooth
68:
Magnetic reconnection during a numerical resistive MHD simulation of a sawtooth relaxation. The arrows showing the direction of the flow are overlaid on top of a plot of the toroidal current density. The size of the arrows corresponds to the magnitude of the flow
80:, first reported in 1974. The relaxations occur quasi-periodically and cause a sudden drop in the temperature and density in the center of the plasma. A soft-xray pinhole camera pointed toward the plasma core during sawtooth activity will produce a 235:. The mode amplitude will grow exponentially until it saturates, significantly distorting the equilibrium fields, and enters the nonlinear phase of evolution. In the nonlinear evolution, the plasma core inside the 386:
Large, hot tokamaks with significant populations of fast particles sometimes see so called "giant sawteeth". Giant sawteeth are much larger relaxations and may cause disruptions. They are a concern for
679:
Tian-Peng, Ma; Li-Qun, Hu; Bao-Nian, Wan; Huai-Lin, Ruan; Xiang, Gao; et al. (2005-09-23). "Study of sawtooth oscillations on the HT-7 tokamak using 2D tomography of soft x-ray signal".
370:
published. Results from resistive MHD simulations of repeated sawtoothing generally give reasonably accurate crash times and sawtooth period times for smaller tokamaks with relatively small
955:
Campbell, D. J.; Start, D. F. H.; Wesson, J. A.; Bartlett, D. V.; Bhatnagar, V. P.; et al. (1988-05-23). "Stabilization of Sawteeth with Additional Heating in the JET Tokamak".
315:
scaling and the crash can proceed much faster in high temperature, low resistivity plasmas given a resistive MHD model. However more accurate experimental methods for measuring
300: 359: 58: 416: 132: 92:
which effectively limits the pressure gradient at the plasma edge and the fishbone instability which effectively limits the density and pressure of fast particles.
259: 233: 207: 158: 435:
von Goeler, S.; Stodiek, W.; Sauthoff, N. (1974-11-11). "Studies of Internal Disruptions and m=1 Oscillations in Tokamak Discharges with Soft—X-Ray Tecniques".
333: 181: 1017: 34:
The safety factor profile shortly before and shortly after a sawtooth relaxation in a numerical resistive MHD simulation. After the relaxation,
361:
as needed by Wesson's description of the sawtooth. Nevertheless, Wesson-like relaxations have been observed experimentally on occasion.
418:
drops well below unity during the long period of stabilization, until instability is triggered, and the resulting crash is very large.
335:
profiles in tokamaks were developed later. It was found that the profiles during sawtoothing discharges are not necessarily flat with
378:
can account for the fast crash times observed in hot tokamaks. These models can allow much faster reconnection at low resistivity.
84:. Sawteeth effectively limit the amplitude of the central current density. The Kadomtsev model of sawteeth is a classic example of 104:(MHD) description of the plasma. If the amplitude of the current density in the plasma core is high enough so that the central 17: 262: 391:. In hot tokamaks, under some circumstances, minority hot particle species can stabilize the sawtooth instability. 906: 100:
An often cited description of the sawtooth relaxation is that by Kadomtsev. The Kadomtsev model uses a resistive
765:
Denton, Richard E.; Drake, J. F.; Kleva, Robert G. (1987). "The m=1 convection cell and sawteeth in tokamaks".
105: 183:
is the poloidal mode number. This instability may be the internal kink mode, resistive internal kink mode or
209:
tearing mode. The eigenfunction of each of these instabilities is a rigid displacement of the region inside
1012: 508:
Beidler, M. T.; Cassak, P. A. (2011-12-13). "Model for Incomplete Reconnection in Sawtooth Crashes".
160: 809: 272: 577:
Biskamp, D.; Drake, J. F. (1994-08-15). "Dynamics of the Sawtooth Collapse in Tokamak Plasmas".
338: 85: 859: 37: 964: 921: 871: 774: 731: 688: 637: 586: 527: 444: 394: 110: 101: 8: 238: 212: 186: 137: 89: 968: 925: 875: 778: 735: 692: 641: 590: 531: 448: 840: 661: 559: 517: 318: 166: 700: 649: 988: 980: 937: 887: 832: 828: 790: 747: 704: 665: 653: 610: 602: 551: 543: 460: 972: 929: 879: 844: 824: 782: 739: 696: 645: 594: 563: 539: 535: 452: 371: 77: 976: 456: 743: 598: 1006: 984: 941: 891: 836: 794: 751: 722:
Sykes, A.; Wesson, J. A. (1976-07-19). "Relaxation Instability in Tokamaks".
708: 657: 606: 547: 464: 81: 992: 614: 555: 88:. Other repeated relaxation oscillations occurring in tokamaks include the 64: 905:
Halpern, Federico D.; Lßtjens, Hinrich; Luciani, Jean-François (2011).
933: 883: 786: 73:
A sawtooth is a relaxation that is commonly observed in the core of
522: 74: 907:"Diamagnetic thresholds for sawtooth cycling in tokamak plasmas" 678: 860:"Nonlinear studies of m=1 modes in high‐temperature plasmas" 954: 477:
Kadomtsev, BB. (1975). Disruptive instability in tokamaks,
388: 30: 434: 60:
and the q profile has a broader, more square-like shape.
904: 397: 341: 321: 275: 241: 215: 189: 169: 140: 113: 40: 628:Wesson, J A (1986-01-01). "Sawtooth oscillations". 963:(21). American Physical Society (APS): 2148–2151. 443:(20). American Physical Society (APS): 1201–1203. 410: 353: 327: 294: 253: 227: 201: 175: 152: 126: 52: 269:relaxation occurs repeatedly with average period 1004: 764: 810:"Numerical simulations of sawteeth in tokamaks" 730:(3). American Physical Society (APS): 140–143. 585:(7). American Physical Society (APS): 971–974. 516:(25). American Physical Society (APS): 255002. 507: 807: 576: 721: 1018:Science and technology in the Soviet Union 521: 27:Relaxation in the core of tokamak plasmas 63: 29: 857: 494:(1976). Resistive Internal Kink Modes, 364: 14: 1005: 627: 808:Vlad, G.; Bondeson, A. (1989-07-01). 630:Plasma Physics and Controlled Fusion 864:Physics of Fluids B: Plasma Physics 24: 95: 25: 1029: 870:(11). AIP Publishing: 3469–3472. 687:(10). IOP Publishing: 2061–2067. 381: 823:(7). IOP Publishing: 1139–1152. 773:(5). AIP Publishing: 1448–1451. 496:Soviet Journal of Plasma Physics 479:Soviet Journal of Plasma Physics 948: 898: 851: 801: 636:(1A). IOP Publishing: 243–248. 309: 920:(10). AIP Publishing: 102501. 758: 715: 672: 621: 570: 540:10.1103/physrevlett.107.255002 501: 484: 471: 428: 13: 1: 421: 263:resistive reconnection layer 7: 977:10.1103/physrevlett.60.2148 701:10.1088/1009-1963/14/10/023 650:10.1088/0741-3335/28/1a/022 457:10.1103/physrevlett.33.1201 295:{\displaystyle \tau _{saw}} 10: 1034: 829:10.1088/0029-5515/29/7/006 744:10.1103/physrevlett.37.140 599:10.1103/physrevlett.73.971 354:{\displaystyle q\approx 1} 261:surface is driven into a 90:edge localized mode (ELM) 163:will be unstable, where 957:Physical Review Letters 858:Aydemir, A. Y. (1992). 724:Physical Review Letters 579:Physical Review Letters 510:Physical Review Letters 481:, vol. 1, pp. 389--391. 437:Physical Review Letters 498:, vol. 2, pp. 533-535. 412: 355: 329: 296: 255: 229: 203: 177: 154: 128: 70: 61: 54: 53:{\displaystyle q>1} 18:Draft:Tokamak sawtooth 413: 411:{\displaystyle q_{0}} 356: 330: 297: 256: 230: 204: 178: 155: 129: 127:{\displaystyle q_{0}} 86:magnetic reconnection 67: 55: 33: 395: 365:Numerical simulation 339: 319: 273: 239: 213: 187: 167: 138: 111: 82:sawtooth-like signal 38: 969:1988PhRvL..60.2148C 926:2011PhPl...18j2501H 876:1992PhFlB...4.3469A 779:1987PhFl...30.1448D 736:1976PhRvL..37..140S 693:2005ChPhy..14.2061M 642:1986PPCF...28..243W 591:1994PhRvL..73..971B 532:2011PhRvL.107y5002B 449:1974PhRvL..33.1201V 254:{\displaystyle q=1} 228:{\displaystyle q=1} 202:{\displaystyle m=1} 153:{\displaystyle m=1} 102:magnetohydrodynamic 914:Physics of Plasmas 408: 351: 325: 292: 251: 225: 199: 173: 150: 134:is below unity, a 124: 71: 62: 50: 934:10.1063/1.3646305 767:Physics of Fluids 372:Lundquist numbers 328:{\displaystyle q} 176:{\displaystyle m} 16:(Redirected from 1025: 1013:Plasma phenomena 997: 996: 952: 946: 945: 911: 902: 896: 895: 884:10.1063/1.860355 855: 849: 848: 814: 805: 799: 798: 787:10.1063/1.866258 762: 756: 755: 719: 713: 712: 676: 670: 669: 625: 619: 618: 574: 568: 567: 525: 505: 499: 488: 482: 475: 469: 468: 432: 417: 415: 414: 409: 407: 406: 360: 358: 357: 352: 334: 332: 331: 326: 301: 299: 298: 293: 291: 290: 260: 258: 257: 252: 234: 232: 231: 226: 208: 206: 205: 200: 182: 180: 179: 174: 161:linear eigenmode 159: 157: 156: 151: 133: 131: 130: 125: 123: 122: 59: 57: 56: 51: 21: 1033: 1032: 1028: 1027: 1026: 1024: 1023: 1022: 1003: 1002: 1001: 1000: 953: 949: 909: 903: 899: 856: 852: 812: 806: 802: 763: 759: 720: 716: 681:Chinese Physics 677: 673: 626: 622: 575: 571: 506: 502: 489: 485: 476: 472: 433: 429: 424: 402: 398: 396: 393: 392: 384: 367: 340: 337: 336: 320: 317: 316: 312: 280: 276: 274: 271: 270: 240: 237: 236: 214: 211: 210: 188: 185: 184: 168: 165: 164: 139: 136: 135: 118: 114: 112: 109: 108: 98: 96:Kadomtsev model 39: 36: 35: 28: 23: 22: 15: 12: 11: 5: 1031: 1021: 1020: 1015: 999: 998: 947: 897: 850: 817:Nuclear Fusion 800: 757: 714: 671: 620: 569: 500: 483: 470: 426: 425: 423: 420: 405: 401: 383: 382:Giant sawteeth 380: 366: 363: 350: 347: 344: 324: 311: 308: 289: 286: 283: 279: 250: 247: 244: 224: 221: 218: 198: 195: 192: 172: 149: 146: 143: 121: 117: 97: 94: 49: 46: 43: 26: 9: 6: 4: 3: 2: 1030: 1019: 1016: 1014: 1011: 1010: 1008: 994: 990: 986: 982: 978: 974: 970: 966: 962: 958: 951: 943: 939: 935: 931: 927: 923: 919: 915: 908: 901: 893: 889: 885: 881: 877: 873: 869: 865: 861: 854: 846: 842: 838: 834: 830: 826: 822: 818: 811: 804: 796: 792: 788: 784: 780: 776: 772: 768: 761: 753: 749: 745: 741: 737: 733: 729: 725: 718: 710: 706: 702: 698: 694: 690: 686: 682: 675: 667: 663: 659: 655: 651: 647: 643: 639: 635: 631: 624: 616: 612: 608: 604: 600: 596: 592: 588: 584: 580: 573: 565: 561: 557: 553: 549: 545: 541: 537: 533: 529: 524: 519: 515: 511: 504: 497: 493: 487: 480: 474: 466: 462: 458: 454: 450: 446: 442: 438: 431: 427: 419: 403: 399: 390: 379: 375: 373: 362: 348: 345: 342: 322: 307: 303: 287: 284: 281: 277: 266: 264: 248: 245: 242: 222: 219: 216: 196: 193: 190: 170: 162: 147: 144: 141: 119: 115: 107: 106:safety factor 103: 93: 91: 87: 83: 79: 76: 66: 47: 44: 41: 32: 19: 960: 956: 950: 917: 913: 900: 867: 863: 853: 820: 816: 803: 770: 766: 760: 727: 723: 717: 684: 680: 674: 633: 629: 623: 582: 578: 572: 513: 509: 503: 495: 491: 486: 478: 473: 440: 436: 430: 385: 376: 368: 313: 310:Wesson model 304: 267: 99: 72: 1007:Categories 490:Coppi, B. 422:References 985:0031-9007 942:1070-664X 892:0899-8221 837:0029-5515 795:0031-9171 752:0031-9007 709:1009-1963 666:250841622 658:0741-3335 607:0031-9007 548:0031-9007 523:1111.0590 465:0031-9007 346:≈ 278:τ 69:velocity. 993:10038272 615:10057587 556:22243083 965:Bibcode 922:Bibcode 872:Bibcode 845:3904646 775:Bibcode 732:Bibcode 689:Bibcode 638:Bibcode 587:Bibcode 564:3077047 528:Bibcode 445:Bibcode 78:plasmas 75:tokamak 991:  983:  940:  890:  843:  835:  793:  750:  707:  664:  656:  613:  605:  562:  554:  546:  492:et al. 463:  910:(PDF) 841:S2CID 813:(PDF) 662:S2CID 560:S2CID 518:arXiv 989:PMID 981:ISSN 938:ISSN 888:ISSN 833:ISSN 791:ISSN 748:ISSN 705:ISSN 654:ISSN 611:PMID 603:ISSN 552:PMID 544:ISSN 461:ISSN 389:ITER 45:> 973:doi 930:doi 880:doi 825:doi 783:doi 740:doi 697:doi 646:doi 595:doi 536:doi 514:107 453:doi 1009:: 987:. 979:. 971:. 961:60 959:. 936:. 928:. 918:18 916:. 912:. 886:. 878:. 866:. 862:. 839:. 831:. 821:29 819:. 815:. 789:. 781:. 771:30 769:. 746:. 738:. 728:37 726:. 703:. 695:. 685:14 683:. 660:. 652:. 644:. 634:28 632:. 609:. 601:. 593:. 583:73 581:. 558:. 550:. 542:. 534:. 526:. 512:. 459:. 451:. 441:33 439:. 374:. 302:. 995:. 975:: 967:: 944:. 932:: 924:: 894:. 882:: 874:: 868:4 847:. 827:: 797:. 785:: 777:: 754:. 742:: 734:: 711:. 699:: 691:: 668:. 648:: 640:: 617:. 597:: 589:: 566:. 538:: 530:: 520:: 467:. 455:: 447:: 404:0 400:q 349:1 343:q 323:q 288:w 285:a 282:s 249:1 246:= 243:q 223:1 220:= 217:q 197:1 194:= 191:m 171:m 148:1 145:= 142:m 120:0 116:q 48:1 42:q 20:)

Index

Draft:Tokamak sawtooth


tokamak
plasmas
sawtooth-like signal
magnetic reconnection
edge localized mode (ELM)
magnetohydrodynamic
safety factor
linear eigenmode
resistive reconnection layer
Lundquist numbers
ITER
Bibcode
1974PhRvL..33.1201V
doi
10.1103/physrevlett.33.1201
ISSN
0031-9007
arXiv
1111.0590
Bibcode
2011PhRvL.107y5002B
doi
10.1103/physrevlett.107.255002
ISSN
0031-9007
PMID
22243083

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑