Knowledge

Dot plot (bioinformatics)

Source πŸ“

99:
however the sequences on both axes must be written in the same direction. Also note, that the direction of the sequences on the axes will determine the direction of the line on the dot plot. Once the dots have been plotted, they will combine to form lines. The closeness of the sequences in similarity will determine how close the diagonal line is to what a graph showing a curve demonstrating a
24: 98:
Dot plots compare two sequences by organizing one sequence on the x-axis, and another on the y-axis, of a plot. When the residues of both sequences match at the same location on the plot, a dot is drawn at the corresponding position. Note, that the sequences can be written backwards or forwards,
81:
One way to visualize the similarity between two protein or nucleic acid sequences is to use a similarity matrix, known as a dot plot. These were introduced by Gibbs and McIntyre in 1970 and are two-dimensional matrices that have the sequences of the proteins being compared along the vertical and
103:
is. This relationship is affected by certain sequence features such as frame shifts, direct repeats, and inverted repeats. Frame shifts include insertions, deletions, and mutations. The presence of one of these features, or the presence of multiple features, will cause for multiple lines to be
90:
Some idea of the similarity of the two sequences can be gleaned from the number and length of matching segments shown in the matrix. Identical proteins will obviously have a diagonal line in the center of the matrix. Insertions and deletions between sequences give rise to disruptions in this
82:
horizontal axes. For a simple visual representation of the similarity between two sequences, individual cells in the matrix can be shaded black if residues are identical, so that matching sequence segments appear as runs of diagonal lines across the matrix.
108:
are regions in the sequence with only a few amino acids, which in turn, causes redundancy within that small or limited region. These regions are typically found around the diagonal, and may or may not have a square in the middle of the dot plot.
104:
plotted in a various possibility of configurations, depending on the features present in the sequences. A feature that will cause a very different result on the dot plot is the presence of low-complexity region/regions.
245: 95:' of residues, e.g. a tuple of 3 corresponds to three residues in a row. This is effective because the probability of matching three residues in a row by chance is much lower than single-residue matches. 91:
diagonal. Regions of local similarity or repetitive sequences give rise to further diagonal matches in addition to the central diagonal. One way of reducing this noise is to only shade runs or '
105: 428:
Sonnhammer, E. L.; Durbin, R. (1995-12-29). "A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis".
145: 216:– A Java desktop application which allows the comparison of two sets of DNA/RNA sequences through the creation of an interactive dot plot. 730: 228:– An easy to use, web-based tool to generate dotplots for many species with access to an extensive genome database. Offered by the 241: 235: 176:– Customizable and ambiguity-aware dotplot suite for aesthetics, batch analyses and printing (implemented in Python). 385:
Rice, P.; Longden, I.; Bleasby, A. (June 2000). "EMBOSS: the European Molecular Biology Open Software Suite".
142: 118: 49:
with itself; lines off the main diagonal represent similar or repetitive patterns within the sequence.
210:- Web-based tool to generate (both forward and reverse complement) dot plots from genomic alignments. 735: 295:"The Diagram, a Method for Comparing Sequences. Its Use with Amino Acid and Nucleotide Sequences" 213: 274: 16:
This article is about the biological sequences comparison plot. For the statistical plot, see
17: 219: 229: 38: 8: 264: 136: 100: 702: 677: 638: 611: 362: 335: 311: 294: 66: 62: 46: 522:"FlexiDot: Highly customizable, ambiguity-aware dotplots for visual sequence analyses" 398: 207: 707: 643: 592: 584: 543: 502: 494: 453: 445: 441: 410: 402: 367: 316: 579: 562: 538: 521: 489: 472: 352: 336:"D-GENIES : Dot plot large GENomes in an interactive, efficient and simple way" 697: 689: 633: 623: 574: 533: 484: 437: 394: 357: 347: 306: 167: 158:– R package to rapidly generate dot plots as either traditional or ggplot graphics. 133:– Provides a program allowing you to construct a dot plot with your own sequences. 269: 149: 70: 42: 54: 628: 724: 588: 498: 449: 406: 173: 225: 185: 155: 711: 647: 596: 547: 506: 414: 371: 252: 563:"Gepard: a rapid and sensitive tool for creating dotplots on genome scale" 457: 320: 197: 161: 130: 693: 152:– easy (educational) HTML5 tool to generate dot plots from RNA sequences. 35: 23: 201: 473:"JDotter: a Java interface to multiple dotplots generated by dotter" 127:– Specializes in interactive whole genome dotplots of large genomes 124: 179: 520:
Seibt, Kathrin M.; Schmidt, Thomas; Heitkam, Tony (2018-10-15).
251:
In addition to the tools listed above, the NCBI Blast Server at
139:– Web tool to generate dot plots (and part of the EMBOSS suite). 612:"Split-alignment of genomes finds orthologies more accurately" 92: 32: 561:
Krumsiek, Jan; Arnold, Roland; Rattei, Thomas (2007-04-15).
471:
Brodie, Ryan; Roper, Rachel L.; Upton, Chris (2004-01-22).
678:"YASS: enhancing the sensitivity of DNA similarity search" 609: 242:
General introduction to dot plots with example algorithms
28: 663:
Improved pairwise alignment of genomic DNA. Ph.D. thesis
246:
software tool to create small and medium size dot plots.
204:– Programs to prepare and visualize genomic alignments. 191: 334:
Klopp, Christophe; Cabanettes, FlorΓ©al (2018-02-23).
675: 560: 519: 188:– An open source Java dot plot program for viruses. 665:. Pennsylvania: The Pennsylvania State University. 384: 65:and identifying regions of close similarity after 722: 470: 427: 333: 182:– Dot plot tool suitable for even genome scale. 112: 293:Gibbs, Adrian J.; McIntyre, George A. (1970). 292: 286: 164:– Stand alone program to generate dot plots. 701: 637: 627: 578: 537: 488: 361: 351: 310: 41:(GenBank ID NM_002383), showing regional 253:https://blast.ncbi.nlm.nih.gov/Blast.cgi 61:is a graphical method for comparing two 22: 723: 660: 610:Frith MC. and Kawaguchi R. (2015). 194:for whole-genome "split-alignment". 45:. The main diagonal represents the 13: 312:10.1111/j.1432-1033.1970.tb01046.x 255:includes Dot Plots in its output. 222:– R package to generate dot plots. 14: 747: 238:– Opensource dot plot visualizer. 85: 121:– Contact analysis of dot plots. 731:Statistical charts and diagrams 669: 353:10.7287/peerj.preprints.26567v1 654: 603: 554: 513: 464: 421: 378: 327: 1: 676:Noe L., Kucherov. G. (2005). 580:10.1093/bioinformatics/btm039 539:10.1093/bioinformatics/bty395 490:10.1093/bioinformatics/btg406 399:10.1016/s0168-9525(00)02024-2 280: 442:10.1016/0378-1119(95)00714-8 113:Software to create dot plots 7: 258: 10: 752: 76: 15: 629:10.1186/s13059-015-0670-9 170:– Java version of Dotter. 682:Nucleic Acids Research 661:Harris, R. S. (2007). 275:Self-similarity matrix 106:Low-complexity regions 50: 236:UGENE Dot Plot viewer 26: 18:Dot plot (statistics) 230:comparative genomics 63:biological sequences 47:sequence's alignment 39:transcription factor 265:Protein contact map 101:direct relationship 694:10.1093/nar/gki478 387:Trends in Genetics 148:2016-10-03 at the 69:. It is a type of 67:sequence alignment 51: 532:(20): 3575–3577. 743: 716: 715: 705: 688:(2): W540–W543. 673: 667: 666: 658: 652: 651: 641: 631: 607: 601: 600: 582: 573:(8): 1026–1028. 558: 552: 551: 541: 517: 511: 510: 492: 468: 462: 461: 425: 419: 418: 382: 376: 375: 365: 355: 331: 325: 324: 314: 290: 751: 750: 746: 745: 744: 742: 741: 740: 721: 720: 719: 674: 670: 659: 655: 608: 604: 559: 555: 518: 514: 469: 465: 436:(1–2): GC1–10. 426: 422: 383: 379: 332: 328: 299:Eur. J. Biochem 291: 287: 283: 270:Recurrence plot 261: 150:Wayback Machine 115: 88: 79: 71:recurrence plot 43:self-similarity 21: 12: 11: 5: 749: 739: 738: 736:Bioinformatics 733: 718: 717: 668: 653: 602: 567:Bioinformatics 553: 526:Bioinformatics 512: 483:(2): 279–281. 477:Bioinformatics 463: 420: 393:(6): 276–277. 377: 326: 284: 282: 279: 278: 277: 272: 267: 260: 257: 249: 248: 239: 233: 232:platform CoGe. 223: 217: 211: 205: 195: 189: 183: 177: 171: 165: 159: 153: 140: 134: 128: 122: 114: 111: 87: 86:Interpretation 84: 78: 75: 55:bioinformatics 31:dot plot of a 9: 6: 4: 3: 2: 748: 737: 734: 732: 729: 728: 726: 713: 709: 704: 699: 695: 691: 687: 683: 679: 672: 664: 657: 649: 645: 640: 635: 630: 625: 621: 617: 613: 606: 598: 594: 590: 586: 581: 576: 572: 568: 564: 557: 549: 545: 540: 535: 531: 527: 523: 516: 508: 504: 500: 496: 491: 486: 482: 478: 474: 467: 459: 455: 451: 447: 443: 439: 435: 431: 424: 416: 412: 408: 404: 400: 396: 392: 388: 381: 373: 369: 364: 359: 354: 349: 345: 341: 337: 330: 322: 318: 313: 308: 304: 300: 296: 289: 285: 276: 273: 271: 268: 266: 263: 262: 256: 254: 247: 243: 240: 237: 234: 231: 227: 224: 221: 218: 215: 212: 209: 206: 203: 199: 196: 193: 190: 187: 184: 181: 178: 175: 172: 169: 166: 163: 160: 157: 154: 151: 147: 144: 141: 138: 135: 132: 129: 126: 123: 120: 117: 116: 110: 107: 102: 96: 94: 83: 74: 72: 68: 64: 60: 56: 48: 44: 40: 37: 34: 30: 25: 19: 685: 681: 671: 662: 656: 619: 615: 605: 570: 566: 556: 529: 525: 515: 480: 476: 466: 433: 429: 423: 390: 386: 380: 343: 339: 329: 302: 298: 288: 250: 97: 89: 80: 58: 52: 616:Genome Biol 305:(1): 1–11. 214:re-DOT-able 36:zinc finger 725:Categories 622:(1): 106. 281:References 137:dotmatcher 589:1367-4803 499:1367-4803 450:0378-1119 407:0168-9525 346:: e4958. 186:Genomdiff 712:15980530 648:25994148 597:17309896 548:29762645 507:14734323 415:10827456 372:29888139 259:See also 174:Flexidot 146:Archived 125:D-Genies 59:dot plot 703:1160238 639:4464727 458:8566757 363:5991294 321:5456129 168:JDotter 156:dotplot 143:Dotplot 77:History 710:  700:  646:  636:  595:  587:  546:  505:  497:  456:  448:  413:  405:  370:  360:  319:  244:and a 226:SynMap 220:seqinr 180:Gepard 162:Dotter 131:Dotlet 119:ANACON 93:tuples 340:PeerJ 200:and 198:lastz 33:human 708:PMID 644:PMID 593:PMID 585:ISSN 544:PMID 503:PMID 495:ISSN 454:PMID 446:ISSN 430:Gene 411:PMID 403:ISSN 368:PMID 317:PMID 208:yass 192:LAST 698:PMC 690:doi 634:PMC 624:doi 575:doi 534:doi 485:doi 438:doi 434:167 395:doi 358:PMC 348:doi 307:doi 202:laj 53:In 29:DNA 727:: 706:. 696:. 686:33 684:. 680:. 642:. 632:. 620:16 618:. 614:. 591:. 583:. 571:23 569:. 565:. 542:. 530:34 528:. 524:. 501:. 493:. 481:20 479:. 475:. 452:. 444:. 432:. 409:. 401:. 391:16 389:. 366:. 356:. 342:. 338:. 315:. 303:16 301:. 297:. 73:. 57:a 27:A 714:. 692:: 650:. 626:: 599:. 577:: 550:. 536:: 509:. 487:: 460:. 440:: 417:. 397:: 374:. 350:: 344:6 323:. 309:: 20:.

Index

Dot plot (statistics)

DNA
human
zinc finger
transcription factor
self-similarity
sequence's alignment
bioinformatics
biological sequences
sequence alignment
recurrence plot
tuples
direct relationship
Low-complexity regions
ANACON
D-Genies
Dotlet
dotmatcher
Dotplot
Archived
Wayback Machine
dotplot
Dotter
JDotter
Flexidot
Gepard
Genomdiff
LAST
lastz

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑