Knowledge

Discrete element method

Source 📝

479:
thermo-mechanical coupling is considered, whereby the thermal properties of an individual element are considered in order to model heat flow through a macroscopic granular or multi-element medium subject to a mechanical loading. Interparticle forces, computed as a part of classical DEM, are used to determined areas of true interparticle contact and thus model the conductive transfer of heat from one solid element to another. A further aspect that is considered in DEM is the gas phase conduction, radiation and convection of heat in the interparticle spaces. To facilitate this, properties of the inter-element gaseous phase need to be considered in terms of pressure, gas conductivity and the mean-free path of gas molecules.
350:. The forces which act on each particle are computed from the initial data and the relevant physical laws and contact models. Generally, a simulation consists of three parts: the initialization, explicit time-stepping, and post-processing. The time-stepping usually requires a nearest neighbor sorting step to reduce the number of possible contact pairs and decrease the computational requirements; this is often only performed periodically. 32: 273: 280:. As proposed in Cundall and Strack (1979), grains interact with linear-elastic forces and Coulomb friction. Grain kinematics evolve through time by temporal integration of their force and torque balance. The collective behavior is self-organizing with discrete shear zones and angles of repose, as characteristic to cohesionless granular materials. 580:
utilized to conduct DEM simulations, due to the large number of computing cores on typical GPUs. In addition GPUs tend to be significantly more energy efficient than conventional computing clusters when conducting DEM simulations i.e. a DEM simulation solved on GPUs requires less energy than when it is solved on a conventional computing cluster.
520:); the same goes for the forces. The force is no longer taken into account after the so-called cut-off distance (usually half the length of a cell), so that a particle is not influenced by the mirror image of the same particle in the other side of the cell. One can now increase the number of particles by simply copying the cells. 176:
Discrete element methods are relatively computationally intensive, which limits either the length of a simulation or the number of particles. Several DEM codes, as do molecular dynamics codes, take advantage of parallel processing capabilities (shared or distributed systems) to scale up the number of
559:
DEM can be used to simulate a wide variety of granular flow and rock mechanics situations. Several research groups have independently developed simulation software that agrees well with experimental findings in a wide range of engineering applications, including adhesive powders, granular flow, and
492:
with the number of particles. This is not acceptable for simulations with large number of particles. A possible way to avoid this problem is to combine some particles, which are far away from the particle under consideration, into one pseudoparticle. Consider as an example the interaction between a
575:
The maximum number of particles, and duration of a virtual simulation is limited by computational power. Typical flows contain billions of particles, but contemporary DEM simulations on large cluster computing resources have only recently been able to approach this scale for sufficiently long time
152:
as well as stateful contact, particle deformation and often complicated geometries (including polyhedra). With advances in computing power and numerical algorithms for nearest neighbor sorting, it has become possible to numerically simulate millions of particles on a single processor. Today DEM is
579:
DEM is computationally demanding, which is the reason why it has not been so readily and widely adopted as continuum approaches in computational engineering sciences and industry. However, the actual program execution times can be reduced significantly when graphical processing units (GPUs) are
253:). The general method was originally developed by Cundall in 1971 to problems in rock mechanics. Williams showed that DEM could be viewed as a generalized finite element method, allowing deformation and fracturing of particles. Its application to geomechanics problems is described in the book 478:
The discrete element method is widely applied for the consideration of mechanical interactions in many-body problems, particularly granular materials. Among the various extensions to DEM, the consideration of heat flow is particularly useful. Generally speaking in Thermal DEM methods, the
563:
DEM allows a more detailed study of the micro-dynamics of powder flows than is often possible using physical experiments. For example, the force networks formed in a granular media can be visualized using DEM. Such measurements are nearly impossible in experiments with small and many
257:. The 1st, 2nd and 3rd International Conferences on Discrete Element Methods have been a common point for researchers to publish advances in the method and its applications. Journal articles reviewing the state of the art have been published by Williams and O'Connnor, 546:
Following the work by Munjiza and Owen, the combined finite-discrete element method has been further developed to various irregular and deformable particles in many applications including pharmaceutical tableting, packaging and flow simulations, and impact analysis.
1200:
S. J. Antony, D. Chapman, J. Sujatha and T. Barakat (2015). "Interplay between the inclusions of different sizes and their proximity to the wall boundaries on the nature of their stress distribution within the inclusions inside particulate packing".
391:. Note that, because of the overhead from determining nearest neighbor pairs, exact resolution of long-range, compared with particle size, forces can increase computational cost or require specialized algorithms to resolve these interactions. 153:
becoming widely accepted as an effective method of addressing engineering problems in granular and discontinuous materials, especially in granular flows, powder mechanics, ice and rock mechanics. DEM has been extended into the
289:
The fundamental assumption of the method is that the material consists of separate, discrete particles. These particles may have different shapes and properties that influence inter-particle contact. Some examples are:
487:
When long-range forces (typically gravity or the Coulomb force) are taken into account, then the interaction between each pair of particles needs to be computed. Both the number of interactions and cost of computation
981:
Gan, Yixiang; Hernandez, Francisco; Hanaor, Dorian; Annabattula, Ratna; Kamlah, Marc; Pereslavtsev, Pavel (2014). "Thermal Discrete Element Analysis of EU Solid Breeder Blanket Subjected to Neutron Irradiation".
516:
However, simulations in molecular dynamics divide the space in which the simulation take place into cells. Particles leaving through one side of a cell are simply inserted at the other side (periodic
1119:
Gethin, D. T.; Yang, X. S.; Lewis, R. W. (2006). "A two dimensional combined discrete and finite element scheme for simulating the flow and compaction of systems comprising irregular particulates".
715:
Trivino, L.F.; Mohanty, B. (2015). "Assessment of crack initiation and propagation in rock from explosion-induced stress waves and gas expansion by cross-hole seismometry and FEM–DEM method".
497:: The error arising from combining all the stars in the distant galaxy into one point mass is negligible. So-called tree algorithms are used to decide which particles can be combined into one 1397:
Bobet, A.; Fakhimi, A.; Johnson, S.; Morris, J.; Tonon, F.; Yeung, M. Ronald (November 2009). "Numerical Models in Discontinuous Media: Review of Advances for Rock Mechanics Applications".
567:
The general characteristics of force-transmitting contacts in granular assemblies under external loading environments agree with experimental studies using Photo-stress analysis (PSA).
615:
Peng, Z.; Doroodchi, E.; Moghtaderi, B. (2020). "Heat transfer modelling in Discrete Element Method (DEM)-based simulations of thermal processes: Theory and model development".
177:
particles or length of the simulation. An alternative to treating all particles separately is to average the physics across many particles and thereby treat the material as a
250: 1573: 363: 1181:
S.J. Antony (2007). "Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures within structures".
1066:
Lewis, R. W.; Gethin, D. T.; Yang, X. S.; Rowe, R. C. (2005). "A combined finite-discrete element method for simulating pharmaceutical powder tableting".
1612:
Shi, Gen‐Hua (February 1992). "Discontinuous Deformation Analysis: A New Numerical Model For The Statics And Dynamics of Deformable Block Structures".
1470:"Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models)" 384: 1439:
Kafashan, J.; Wiącek, J.; Abd Rahman, N.; Gan, J. (2019). "Two-dimensional particle shapes modelling for DEM simulations in engineering: a review".
1220: 262: 258: 246: 217:
of the granular scale physics, however, are well-documented and should be considered carefully before attempting to use a continuum approach.
1469: 1543:
Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. (July 2007). "Discrete particle simulation of particulate systems: Theoretical developments".
1633:
Williams, John R.; Pentland, Alex P. (February 1992). "Superquadrics and Modal Dynamics For Discrete Elements in Interactive Design".
96: 1682: 428: 346:
A DEM-simulation is started by first generating a model, which results in spatially orienting all particles and assigning an initial
68: 49: 932:"Assessment of blending performance of pharmaceutical powder mixtures in a continuous mixer using Discrete Element Method (DEM)" 265:
et al. (see below). A comprehensive treatment of the combined Finite Element-Discrete Element Method is contained in the book
75: 1663: 1380: 1361: 1312: 1293: 872: 889: 680:
Kafui, K.D.; Thornton, C.; Adams, M.J. (2002). "Discrete particle-continuum fluid modelling of gas–solid fuidised beds".
234: 82: 144:
methods for computing the motion and effect of a large number of small particles. Though DEM is very closely related to
1340: 1322:
Williams, J. R.; Hocking, G.; Mustoe, G. G. W. (January 1985). "The Theoretical Basis of the Discrete Element Method".
238: 648:"CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors: Modelling the impact of biomass shrinkage" 115: 431:
is employed to compute the change in the position and the velocity of each particle during a certain time step from
64: 154: 788: 372:, the force of attraction between particles due to their mass, which is only relevant in astronomical simulations. 149: 53: 205:. In the case of liquid-like or gas-like granular flow, the continuum approach may treat the material as a 210: 166: 1284:
Bicanic, Ninad (2004). "Discrete Element Methods". In Stein, Erwin; De Borst; Hughes, Thomas J.R. (eds.).
751: 930:
Behjani, Mohammadreza Alizadeh; Motlagh, Yousef Ghaffari; Bayly, Andrew; Hassanpour, Ali (2019-11-07).
888:
Alizadeh, Mohammadreza; Hassanpour, Ali; Pasha, Mehrdad; Ghadiri, Mojtaba; Bayly, Andrew (2017-09-01).
432: 214: 1504:
Williams, J. R.; O'Connor, R. (December 1999). "Discrete element simulation and the contact problem".
1036: 818:
Williams, J. R.; O'Connor, R. (December 1999). "Discrete element simulation and the contact problem".
1418:
Cundall, P. A.; Strack, O. D. L. (March 1979). "A discrete numerical model for granular assemblies".
967: 595: 527: 414: 89: 1518: 832: 388: 1574:"Discrete particle simulation of particulate systems: A review of major applications and findings" 1351: 510: 226: 42: 1489: 1513: 827: 1234:
He, Yi; Bayly, Andrew E.; Hassanpour, Ali; Muller, Frans; Wu, Ke; Yang, Dongmin (2018-10-01).
1214: 590: 534: 459: 198: 170: 20: 1585: 1552: 1410: 1128: 1085: 1001: 724: 689: 376: 194: 190: 16:
Numerical methods for computing the motion and effect of a large number of small particles
8: 420: 245:) and the finite-discrete element method concurrently developed by several groups (e.g., 178: 1589: 1556: 1132: 1089: 1005: 728: 693: 435:. Then, the new positions are used to compute the forces during the next step, and this 1531: 1456: 1101: 1075: 1017: 991: 959: 845: 628: 517: 447: 145: 141: 1485: 1154:
Chen, Y.; May, I. M. (2009). "Reinforced concrete members under drop-weight impacts".
701: 1659: 1460: 1376: 1357: 1336: 1308: 1289: 1257: 1105: 963: 951: 912: 868: 632: 335: 162: 1535: 1021: 849: 1642: 1621: 1593: 1560: 1523: 1481: 1448: 1427: 1406: 1247: 1199: 1163: 1136: 1093: 1048: 1009: 943: 904: 837: 766: 732: 697: 662: 620: 489: 277: 230: 202: 427:
All these forces are added up to find the total force acting on each particle. An
1656:
Proceedings of the 2nd International Conference on Discrete Element Methods (DEM)
1252: 1235: 1052: 947: 908: 890:"The effect of particle shape on predicted segregation in binary powder mixtures" 736: 647: 466: 453: 408: 1236:"A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces" 1167: 624: 498: 186: 1597: 1564: 1452: 1431: 1140: 770: 666: 1676: 1261: 1037:"Thermal DEM–CFD modeling and simulation of heat transfer through packed bed" 955: 916: 404: 400: 158: 436: 353:
The following forces may have to be considered in macroscopic simulations:
931: 1527: 1013: 841: 148:, the method is generally distinguished by its inclusion of rotational 1324:
NUMETA 1985, Numerical Methods of Engineering, Theory and Applications
793:
NUMETA 1985, Numerical Methods of Engineering, Theory and Applications
1646: 1625: 1097: 276:
Discrete-element simulation with particles arranged after a photo of
1183:
Philosophical Transactions of the Royal Society of London, Series: A
31: 502: 442:
Typical integration methods used in a discrete element method are:
380: 357: 347: 1080: 996: 369: 787:
Williams, J. R.; Hocking, G.; Mustoe, G. G. W. (January 1985).
506: 494: 887: 272: 980: 929: 717:
International Journal of Rock Mechanics & Mining Sciences
206: 182: 1035:
Tsory, Tal; Ben-Jacob, Nir; Brosh, Tamir; Levy, Avi (2013).
799: 1438: 1068:
International Journal for Numerical Methods in Engineering
541: 1396: 294:
liquids and solutions, for instance of sugar or proteins;
1399:
Journal of Geotechnical and Geoenvironmental Engineering
189:, the continuum approach usually treats the material as 1233: 1034: 614: 1654:
Williams, John R.; Mustoe, Graham G. W., eds. (1993).
1373:
Computational Granular Dynamics: Models and Algorithms
789:"The Theoretical Basis of the Discrete Element Method" 501:. These algorithms arrange all particles in a tree, a 1321: 1121:
Computer Methods in Applied Mechanics and Engineering
786: 645: 1503: 1467: 817: 576:(simulated time, not actual program execution time). 1065: 56:. Unsourced material may be challenged and removed. 1658:(2nd ed.). Cambridge, MA: IESL Publications. 752:"Discrete numerical model for granular assemblies" 679: 523:Algorithms to deal with long-range force include: 1468:Kawaguchi, T.; Tanaka, T.; Tsuji, Y. (May 1998). 1330: 1156:Proceedings of the ICE - Structures and Buildings 805: 1674: 1632: 1506:Archives of Computational Methods in Engineering 820:Archives of Computational Methods in Engineering 646:Papadikis, K.; Gu, S.; Bridgwater, A.V. (2009). 1370: 1353:Discrete-element modeling of granular materials 1350:Radjai, Farang; Dubois, FrĂ©dĂ©ric, eds. (2011). 1331:Williams, J. R.; Pande, G.; Beer, J.R. (1990). 1118: 750:Cundall, Peter. A.; Strack, Otto D. L. (1979). 225:The various branches of the DEM family are the 1653: 714: 407:attraction or repulsion of particles carrying 1571: 1542: 1417: 749: 550: 417:, when two atoms approach each other closely; 297:bulk materials in storage silos, like cereal; 1572:Zhu, HP; Zhou, ZY; Yang, RY; Yu, AB (2008). 1349: 1219:: CS1 maint: multiple names: authors list ( 1371:Pöschel, Thorsten; Schwager, Thoms (2005). 1305:Numerische Simulation in der MolekĂŒldynamik 1180: 865:The Combined Finite-Discrete Element Method 856: 267:The Combined Finite-Discrete Element Method 1517: 1251: 1079: 995: 831: 617:Progress in Energy and Combustion Science 116:Learn how and when to remove this message 639: 366:, or recoil, when two particles collide; 341: 271: 1302: 1286:Encyclopedia of Computational Mechanics 1283: 1153: 862: 782: 780: 542:Combined finite-discrete element method 439:is repeated until the simulation ends. 395:On a molecular level, we may consider: 1675: 1303:Griebel, Michael; et al. (2003). 708: 360:, when two particles touch each other; 777: 673: 482: 54:adding citations to reliable sources 25: 1611: 1333:Numerical Methods in Rock Mechanics 608: 505:in the two-dimensional case and an 255:Numerical Methods in Rock Mechanics 242: 235:generalized discrete element method 233:and Otto D. L. Strack in 1979, the 13: 1411:10.1061/(ASCE)GT.1943-5606.0000133 310:Typical industries using DEM are: 239:discontinuous deformation analysis 14: 1694: 220: 1683:Numerical differential equations 155:Extended Discrete Element Method 30: 1272: 1227: 1193: 1174: 1147: 1112: 1059: 1028: 974: 923: 881: 806:Williams, Pande & Beer 1990 375:attractive potentials, such as 284: 41:needs additional citations for 811: 743: 473: 185:-like granular behavior as in 1: 1486:10.1016/S0032-5910(97)03366-4 984:Fusion Science and Technology 702:10.1016/S0009-2509(02)00140-9 601: 314:Agriculture and food handling 306:Blocky or jointed rock masses 1578:Chemical Engineering Science 1545:Chemical Engineering Science 1253:10.1016/j.powtec.2018.07.043 1053:10.1016/j.powtec.2013.04.013 948:10.1016/j.powtec.2019.10.102 909:10.1016/j.powtec.2017.06.059 737:10.1016/j.ijrmms.2015.03.036 682:Chemical Engineering Science 655:Chemical Engineering Journal 211:computational fluid dynamics 7: 584: 300:granular matter, like sand; 10: 1699: 1326:. Rotterdam: A.A. Balkema. 1168:10.1680/stbu.2009.162.1.45 795:. Rotterdam: A.A. Balkema. 625:10.1016/j.pecs.2020.100847 551:Advantages and limitations 18: 1598:10.1016/j.ces.2008.08.006 1565:10.1016/j.ces.2006.12.089 1453:10.1007/s10035-019-0935-1 1432:10.1680/geot.1979.29.1.47 1141:10.1016/j.cma.2005.10.025 771:10.1680/geot.1979.29.1.47 667:10.1016/j.cej.2009.01.036 596:Movable Cellular Automata 65:"Discrete element method" 1635:Engineering Computations 1614:Engineering Computations 389:electrostatic attraction 140:, is any of a family of 19:Not to be confused with 433:Newton's laws of motion 332:Pharmaceutical industry 227:distinct element method 197:and models it with the 138:distinct element method 130:discrete element method 1356:. London: Wiley-ISTE. 1288:. Vol. 1. Wiley. 863:Munjiza, Ante (2004). 619:. 79, 100847: 100847. 490:increase quadratically 460:symplectic integrators 281: 1335:. Chichester: Wiley. 867:. Chichester: Wiley. 591:Compaction simulation 535:fast multipole method 528:Barnes–Hut simulation 342:Outline of the method 275: 199:finite element method 21:finite element method 1375:. Berlin: Springer. 1307:. Berlin: Springer. 560:jointed rock masses. 303:powders, like toner. 50:improve this article 1590:2008ChEnS..63.5728Z 1557:2007ChEnS..62.3378Z 1133:2006CMAME.195.5552G 1090:2005IJNME..62..853L 1006:2014FuST...66...83G 729:2015IJRMM..77..287T 694:2002ChEnS..57.2395K 518:boundary conditions 493:star and a distant 421:van der Waals force 1528:10.1007/BF02818917 1014:10.13182/FST13-727 842:10.1007/BF02818917 429:integration method 364:contact plasticity 329:Mineral processing 282: 181:. In the case of 150:degrees-of-freedom 146:molecular dynamics 1665:978-0-918062-88-8 1584:(23): 5728–5770. 1551:(13): 3378–3396. 1474:Powder Technology 1405:(11): 1547–1561. 1382:978-3-540-21485-4 1363:978-1-84821-260-2 1314:978-3-540-41856-6 1295:978-0-470-84699-5 1240:Powder Technology 1203:Powder Technology 1041:Powder Technology 936:Powder Technology 897:Powder Technology 874:978-0-470-84199-0 688:(13): 2395–2410. 511:three-dimensional 483:Long-range forces 336:Powder metallurgy 163:chemical reaction 136:), also called a 126: 125: 118: 100: 1690: 1669: 1650: 1647:10.1108/eb023852 1629: 1626:10.1108/eb023855 1601: 1568: 1539: 1521: 1500: 1498: 1497: 1488:. Archived from 1464: 1435: 1414: 1386: 1367: 1346: 1327: 1318: 1299: 1266: 1265: 1255: 1231: 1225: 1224: 1218: 1210: 1197: 1191: 1190: 1178: 1172: 1171: 1151: 1145: 1144: 1116: 1110: 1109: 1098:10.1002/nme.1287 1083: 1063: 1057: 1056: 1032: 1026: 1025: 999: 978: 972: 971: 966:. Archived from 927: 921: 920: 894: 885: 879: 878: 860: 854: 853: 835: 815: 809: 803: 797: 796: 784: 775: 774: 756: 747: 741: 740: 712: 706: 705: 677: 671: 670: 661:(1–3): 417–427. 652: 643: 637: 636: 612: 448:Verlet algorithm 278:Peter A. Cundall 231:Peter A. Cundall 203:mesh free method 165:and coupling to 121: 114: 110: 107: 101: 99: 58: 34: 26: 1698: 1697: 1693: 1692: 1691: 1689: 1688: 1687: 1673: 1672: 1666: 1495: 1493: 1441:Granular Matter 1383: 1364: 1343: 1315: 1296: 1275: 1270: 1269: 1232: 1228: 1212: 1211: 1198: 1194: 1179: 1175: 1152: 1148: 1127:(41–43): 5552. 1117: 1113: 1064: 1060: 1033: 1029: 979: 975: 970:on 21 Feb 2020. 928: 924: 892: 886: 882: 875: 861: 857: 816: 812: 804: 800: 785: 778: 754: 748: 744: 713: 709: 678: 674: 650: 644: 640: 613: 609: 604: 587: 553: 544: 485: 476: 467:leapfrog method 454:velocity Verlet 415:Pauli repulsion 409:electric charge 385:liquid bridging 344: 287: 223: 213:. Drawbacks to 122: 111: 105: 102: 59: 57: 47: 35: 24: 17: 12: 11: 5: 1696: 1686: 1685: 1671: 1670: 1664: 1651: 1641:(2): 115–127. 1630: 1620:(2): 157–168. 1603: 1602: 1569: 1540: 1519:10.1.1.49.9391 1512:(4): 279–304. 1501: 1480:(2): 129–138. 1465: 1436: 1415: 1388: 1387: 1381: 1368: 1362: 1347: 1342:978-0471920212 1341: 1328: 1319: 1313: 1300: 1294: 1274: 1271: 1268: 1267: 1226: 1209:: 286, 98–106. 1192: 1173: 1146: 1111: 1058: 1027: 973: 922: 880: 873: 855: 833:10.1.1.49.9391 826:(4): 279–304. 810: 798: 776: 742: 707: 672: 638: 606: 605: 603: 600: 599: 598: 593: 586: 583: 582: 581: 577: 571:Disadvantages 569: 568: 565: 561: 552: 549: 543: 540: 539: 538: 531: 499:pseudoparticle 484: 481: 475: 472: 471: 470: 463: 457: 451: 425: 424: 418: 412: 393: 392: 373: 367: 361: 343: 340: 339: 338: 333: 330: 327: 324: 321: 318: 315: 308: 307: 304: 301: 298: 295: 286: 283: 222: 221:The DEM family 219: 215:homogenization 195:elasto-plastic 187:soil mechanics 173:into account. 124: 123: 38: 36: 29: 15: 9: 6: 4: 3: 2: 1695: 1684: 1681: 1680: 1678: 1667: 1661: 1657: 1652: 1648: 1644: 1640: 1636: 1631: 1627: 1623: 1619: 1615: 1610: 1609: 1608: 1607: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1541: 1537: 1533: 1529: 1525: 1520: 1515: 1511: 1507: 1502: 1492:on 2007-09-30 1491: 1487: 1483: 1479: 1475: 1471: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1437: 1433: 1429: 1425: 1421: 1416: 1412: 1408: 1404: 1400: 1395: 1394: 1393: 1392: 1384: 1378: 1374: 1369: 1365: 1359: 1355: 1354: 1348: 1344: 1338: 1334: 1329: 1325: 1320: 1316: 1310: 1306: 1301: 1297: 1291: 1287: 1282: 1281: 1280: 1279: 1263: 1259: 1254: 1249: 1245: 1241: 1237: 1230: 1222: 1216: 1208: 1204: 1196: 1188: 1184: 1177: 1169: 1165: 1161: 1157: 1150: 1142: 1138: 1134: 1130: 1126: 1122: 1115: 1107: 1103: 1099: 1095: 1091: 1087: 1082: 1077: 1073: 1069: 1062: 1054: 1050: 1046: 1042: 1038: 1031: 1023: 1019: 1015: 1011: 1007: 1003: 998: 993: 989: 985: 977: 969: 965: 961: 957: 953: 949: 945: 941: 937: 933: 926: 918: 914: 910: 906: 902: 898: 891: 884: 876: 870: 866: 859: 851: 847: 843: 839: 834: 829: 825: 821: 814: 807: 802: 794: 790: 783: 781: 772: 768: 764: 760: 753: 746: 738: 734: 730: 726: 722: 718: 711: 703: 699: 695: 691: 687: 683: 676: 668: 664: 660: 656: 649: 642: 634: 630: 626: 622: 618: 611: 607: 597: 594: 592: 589: 588: 578: 574: 573: 572: 566: 562: 558: 557: 556: 548: 536: 532: 529: 526: 525: 524: 521: 519: 514: 512: 508: 504: 500: 496: 491: 480: 468: 464: 461: 458: 455: 452: 449: 445: 444: 443: 440: 438: 434: 430: 422: 419: 416: 413: 410: 406: 405:electrostatic 402: 401:Coulomb force 398: 397: 396: 390: 386: 382: 378: 374: 371: 368: 365: 362: 359: 356: 355: 354: 351: 349: 337: 334: 331: 328: 325: 322: 319: 316: 313: 312: 311: 305: 302: 299: 296: 293: 292: 291: 279: 274: 270: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 218: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 174: 172: 168: 164: 160: 159:heat transfer 156: 151: 147: 143: 139: 135: 131: 120: 117: 109: 106:November 2019 98: 95: 91: 88: 84: 81: 77: 74: 70: 67: â€“  66: 62: 61:Find sources: 55: 51: 45: 44: 39:This article 37: 33: 28: 27: 22: 1655: 1638: 1634: 1617: 1613: 1605: 1604: 1581: 1577: 1548: 1544: 1509: 1505: 1494:. Retrieved 1490:the original 1477: 1473: 1444: 1440: 1426:(1): 47–65. 1423: 1420:GĂ©otechnique 1419: 1402: 1398: 1390: 1389: 1372: 1352: 1332: 1323: 1304: 1285: 1277: 1276: 1273:Bibliography 1243: 1239: 1229: 1215:cite journal 1206: 1202: 1195: 1189:: 2879–2891. 1186: 1182: 1176: 1159: 1155: 1149: 1124: 1120: 1114: 1071: 1067: 1061: 1044: 1040: 1030: 990:(1): 83–90. 987: 983: 976: 968:the original 939: 935: 925: 900: 896: 883: 864: 858: 823: 819: 813: 801: 792: 765:(1): 47–65. 762: 759:GĂ©otechnique 758: 745: 720: 716: 710: 685: 681: 675: 658: 654: 641: 616: 610: 570: 554: 545: 522: 515: 486: 477: 441: 426: 394: 352: 345: 309: 288: 285:Applications 266: 254: 229:proposed by 224: 175: 137: 133: 129: 127: 112: 103: 93: 86: 79: 72: 60: 48:Please help 43:verification 40: 1606:Proceedings 1246:: 548–562. 903:: 313–322. 723:: 287–299. 555:Advantages 474:Thermal DEM 323:Oil and gas 1496:2005-08-23 1391:Periodical 1074:(7): 853. 602:References 564:particles. 320:Detergents 76:newspapers 1514:CiteSeerX 1461:199383188 1447:(3): 80. 1262:0032-5910 1162:: 45–56. 1106:122962022 1081:0706.4406 1047:: 52–60. 997:1406.4199 964:209718900 956:0032-5910 942:: 73–81. 917:0032-5910 828:CiteSeerX 633:218967044 179:continuum 142:numerical 1677:Category 1536:16642399 1022:51903434 850:16642399 585:See also 503:quadtree 381:adhesion 377:cohesion 358:friction 348:velocity 317:Chemical 243:Shi 1992 209:and use 1586:Bibcode 1553:Bibcode 1129:Bibcode 1086:Bibcode 1002:Bibcode 725:Bibcode 690:Bibcode 509:in the 370:gravity 259:Bicanic 247:Munjiza 241:(DDA) ( 191:elastic 157:taking 90:scholar 1662:  1534:  1516:  1459:  1379:  1360:  1339:  1311:  1292:  1260:  1104:  1020:  962:  954:  915:  871:  848:  830:  631:  513:case. 507:octree 495:galaxy 403:, the 326:Mining 261:, and 237:, the 92:  85:  78:  71:  63:  1532:S2CID 1457:S2CID 1102:S2CID 1076:arXiv 1018:S2CID 992:arXiv 960:S2CID 893:(PDF) 846:S2CID 755:(PDF) 651:(PDF) 629:S2CID 263:Bobet 207:fluid 201:or a 183:solid 97:JSTOR 83:books 1660:ISBN 1377:ISBN 1358:ISBN 1337:ISBN 1309:ISBN 1290:ISBN 1278:Book 1258:ISSN 1221:link 952:ISSN 913:ISSN 869:ISBN 533:the 465:the 446:the 437:loop 399:the 251:Owen 249:and 169:and 69:news 1643:doi 1622:doi 1594:doi 1561:doi 1524:doi 1482:doi 1449:doi 1428:doi 1407:doi 1403:135 1248:doi 1244:338 1207:286 1187:356 1164:doi 1160:162 1137:doi 1125:195 1094:doi 1049:doi 1045:244 1010:doi 944:doi 940:366 905:doi 901:319 838:doi 767:doi 733:doi 698:doi 663:doi 659:149 621:doi 193:or 171:FEM 167:CFD 134:DEM 52:by 1679:: 1637:. 1616:. 1592:. 1582:63 1580:. 1576:. 1559:. 1549:62 1547:. 1530:. 1522:. 1508:. 1478:96 1476:. 1472:. 1455:. 1445:21 1443:. 1424:29 1422:. 1401:. 1256:. 1242:. 1238:. 1217:}} 1213:{{ 1205:. 1185:. 1158:. 1135:. 1123:. 1100:. 1092:. 1084:. 1072:62 1070:. 1043:. 1039:. 1016:. 1008:. 1000:. 988:66 986:. 958:. 950:. 938:. 934:. 911:. 899:. 895:. 844:. 836:. 822:. 791:. 779:^ 763:29 761:. 757:. 731:. 721:77 719:. 696:. 686:57 684:. 657:. 653:. 627:. 387:, 383:, 379:, 269:. 161:, 128:A 1668:. 1649:. 1645:: 1639:9 1628:. 1624:: 1618:9 1600:. 1596:: 1588:: 1567:. 1563:: 1555:: 1538:. 1526:: 1510:6 1499:. 1484:: 1463:. 1451:: 1434:. 1430:: 1413:. 1409:: 1385:. 1366:. 1345:. 1317:. 1298:. 1264:. 1250:: 1223:) 1170:. 1166:: 1143:. 1139:: 1131:: 1108:. 1096:: 1088:: 1078:: 1055:. 1051:: 1024:. 1012:: 1004:: 994:: 946:: 919:. 907:: 877:. 852:. 840:: 824:6 808:. 773:. 769:: 739:. 735:: 727:: 704:. 700:: 692:: 669:. 665:: 635:. 623:: 537:. 530:, 469:. 462:, 456:, 450:, 423:. 411:; 132:( 119:) 113:( 108:) 104:( 94:· 87:· 80:· 73:· 46:. 23:.

Index

finite element method

verification
improve this article
adding citations to reliable sources
"Discrete element method"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
numerical
molecular dynamics
degrees-of-freedom
Extended Discrete Element Method
heat transfer
chemical reaction
CFD
FEM
continuum
solid
soil mechanics
elastic
elasto-plastic
finite element method
mesh free method
fluid
computational fluid dynamics
homogenization

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑