Knowledge

Cutting-plane method

Source đź“ť

2476: 20: 915: 197:) and ways to overcome numerical instabilities. Nowadays, all commercial MILP solvers use Gomory cuts in one way or another. Gomory cuts are very efficiently generated from a simplex tableau, whereas many other types of cuts are either expensive or even NP-hard to separate. Among other general cuts for MILP, most notably 1617: 1993: 184:
in the 1950s as a method for solving integer programming and mixed-integer programming problems. However, most experts, including Gomory himself, considered them to be impractical due to numerical instability, as well as ineffective because many rounds of cuts were needed to make progress towards the
321: 338:
be integers and solving the associated relaxed linear programming problem to obtain a basic feasible solution. Geometrically, this solution will be a vertex of the convex polytope consisting of all feasible points. If this vertex is not an integer point then the method finds a hyperplane with the
128:
of the given integer program. The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible region does not contain a line), one can always find an extreme point or a corner point that is optimal. The obtained
670: 339:
vertex on one side and all feasible integer points on the other. This is then added as an additional linear constraint to exclude the vertex found, creating a modified linear program. The new program is then solved and the process is repeated until an integer solution is found.
1392: 1777: 1414: 1789: 219: 1231: 910:{\displaystyle x_{i}+\sum _{j}\lfloor {\bar {a}}_{i,j}\rfloor x_{j}-\lfloor {\bar {b}}_{i}\rfloor ={\bar {b}}_{i}-\lfloor {\bar {b}}_{i}\rfloor -\sum _{j}({\bar {a}}_{i,j}-\lfloor {\bar {a}}_{i,j}\rfloor )x_{j}.} 449: 1126: 1239: 149:. A cut can be added to the relaxed linear program. Then, the current non-integer solution is no longer feasible to the relaxation. This process is repeated until an optimal integer solution is found. 1630: 224: 1779:
is negative for any integer point in the feasible region, and strictly positive for the basic feasible (non integer) solution of the relaxed linear program. Introducing a new slack variable x
1020: 1062: 80: 1612:{\displaystyle {\bar {b}}_{i}-\lfloor {\bar {b}}_{i}\rfloor -\sum _{j}({\bar {a}}_{i,j}-\lfloor {\bar {a}}_{i,j}\rfloor )x_{j}={\bar {b}}_{i}-\lfloor {\bar {b}}_{i}\rfloor >0.} 516: 1988:{\displaystyle x_{k}+\sum _{j}(\lfloor {\bar {a}}_{i,j}\rfloor -{\bar {a}}_{i,j})x_{j}=\lfloor {\bar {b}}_{i}\rfloor -{\bar {b}}_{i},\,x_{k}\geq 0,\,x_{k}{\mbox{ an integer}}.} 627: 585: 160:
can be evaluated efficiently but usual gradient methods for differentiable optimization can not be used. This situation is most typical for the concave maximization of
549: 972: 945: 662: 326:
where A is a matrix and b , c is a vector. The vector x is unknown and is to be found in order to maximize the objective while respecting the linear constraints.
168:
to a structured optimization problem in which formulations with an exponential number of variables are obtained. Generating these variables on demand by means of
152:
Cutting-plane methods for general convex continuous optimization and variants are known under various names: Kelley's method, Kelley–Cheney–Goldstein method, and
2373: 629:
with a bar to denote the last tableau produced by the simplex method. These coefficients are different from the coefficients in the matrix A and the vector b.
316:{\displaystyle {\begin{aligned}{\text{Maximize }}&c^{T}x\\{\text{Subject to }}&Ax\leq b,\\&x\geq 0,\,x_{i}{\text{ all integers}}.\end{aligned}}} 664:
which is not an integer. Rewrite the above equation so that the integer parts are added on the left side and the fractional parts are on the right side:
1131: 198: 2244: 82:. In the context of the Traveling salesman problem on three nodes, this (rather weak) inequality states that every tour must have at least two edges. 2368: 2964: 357: 1397:
must hold for any integer point in the feasible region. Furthermore, non-basic variables are equal to 0s in any basic solution and if
1387:{\displaystyle {\bar {b}}_{i}-\lfloor {\bar {b}}_{i}\rfloor -\sum _{j}({\bar {a}}_{i,j}-\lfloor {\bar {a}}_{i,j}\rfloor )x_{j}\leq 0} 1067: 2862: 2382: 1772:{\displaystyle {\bar {b}}_{i}-\lfloor {\bar {b}}_{i}\rfloor -\sum _{j}({\bar {a}}_{i,j}-\lfloor {\bar {a}}_{i,j}\rfloor )x_{j}} 210: 2237: 1627:
So the inequality above excludes the basic feasible solution and thus is a cut with the desired properties. More precisely,
2943: 2405: 2457: 2318: 977: 2425: 2177: 1025: 469:
s are the nonbasic variables (i.e. the basic solution which is an optimal solution to the relaxed linear program is
2536: 2230: 110: 2475: 2044: 165: 156:. They are popularly used for non-differentiable convex minimization, where a convex objective function and its 2813: 2091:
Gilmore, Paul C; Gomory, Ralph E (1963). "A linear programming approach to the cutting stock problem-Part II".
2011:
of a nonlinear (convex) program by a finite set of closed half spaces and to solve a sequence of approximating
2921: 2541: 133:
is tested for being an integer solution. If it is not, there is guaranteed to exist a linear inequality that
125: 26: 2857: 2825: 472: 2906: 2531: 2852: 2808: 2701: 2430: 2410: 2064:
Gilmore, Paul C; Gomory, Ralph E (1961). "A linear programming approach to the cutting stock problem".
130: 90: 2620: 590: 2591: 2253: 2024: 169: 2776: 2222: 554: 2638: 2820: 2719: 2435: 2119: 2911: 2896: 2786: 2664: 2313: 2290: 2257: 2194: 2182: 186: 920:
For any integer point in the feasible region, the left side is an integer since all the terms
2800: 2766: 2669: 2611: 2492: 2298: 2278: 2190: 2004: 521: 2219:
Chapter 9 Integer Programming (full text). Bradley, Hax, and Magnanti (Addison-Wesley, 1977)
2847: 2674: 1233:
is negative. Therefore the common value must be less than or equal to 0. So the inequality
950: 923: 640: 161: 8: 2916: 2781: 2734: 2724: 2576: 2564: 2377: 2360: 2265: 114: 2651: 2606: 2596: 2387: 2303: 2160: 2143: 2659: 2337: 2173: 2039: 2739: 2729: 2633: 2510: 2415: 2397: 2350: 2261: 2213: 2155: 2100: 2073: 2034: 190: 2202: 2142:
Marchand, Hugues; Martin, Alexander; Weismantel, Robert; Wolsey, Laurence (2002).
1226:{\displaystyle -\sum _{j}({\bar {a}}_{i,j}-\lfloor {\bar {a}}_{i,j}\rfloor )x_{j}} 2755: 2008: 181: 124:
Cutting plane methods for MILP work by solving a non-integer linear program, the
118: 2743: 2628: 2515: 2449: 2420: 2029: 2012: 1064:
are integers. The right side of this equation is strictly less than 1: indeed,
348: 194: 2958: 2901: 2885: 1783:
for this inequality, a new constraint is added to the linear program, namely
153: 113:(MILP) problems, as well as to solve general, not necessarily differentiable 2839: 2345: 172:
is identical to performing a cutting plane on the respective dual problem.
98: 2104: 2926: 2308: 2077: 157: 138: 87: 97:
is any of a variety of optimization methods that iteratively refine a
2252: 117:
problems. The use of cutting planes to solve MILP was introduced by
189:
and co-workers showed them to be very effective in combination with
19: 2328: 444:{\displaystyle x_{i}+\sum _{j}{\bar {a}}_{i,j}x_{j}={\bar {b}}_{i}} 351:
to solve a linear program produces a set of equations of the form
16:
Optimization technique for solving (mixed) integer linear programs
2648: 106: 2185:(2008). Valid Inequalities for Mixed Integer Linear Programs. 334:
The method proceeds by first dropping the requirement that the x
164:
functions. Another common situation is the application of the
2141: 101:
or objective function by means of linear inequalities, termed
1121:{\displaystyle {\bar {b}}_{i}-\lfloor {\bar {b}}_{i}\rfloor } 342: 141:
of the true feasible set. Finding such an inequality is the
2144:"Cutting planes in integer and mixed integer programming" 23:
The intersection of the unit cube with the cutting plane
1976: 185:
solution. Things turned around when in the mid-1990s
1792: 1633: 1417: 1242: 1134: 1070: 1028: 980: 953: 926: 673: 643: 593: 557: 524: 475: 360: 222: 209:
Let an integer programming problem be formulated (in
29: 2765: 2197:(2007). Revival of the Gomory Cuts in the 1990s. 632: 1987: 1771: 1611: 1386: 1225: 1120: 1056: 1014: 966: 939: 909: 656: 621: 579: 543: 510: 443: 315: 74: 2007:. The underlying principle is to approximate the 2956: 2118:Boyd, S.; Vandenberghe, L. (18 September 2003). 2117: 1015:{\displaystyle \lfloor {\bar {a}}_{i,j}\rfloor } 1057:{\displaystyle \lfloor {\bar {b}}_{i}\rfloor } 2238: 2090: 2063: 2003:Cutting plane methods are also applicable in 105:. Such procedures are commonly used to find 2799: 2170:Nonlinear Programming: Analysis and Methods. 1916: 1894: 1847: 1819: 1753: 1725: 1678: 1656: 1600: 1578: 1537: 1509: 1462: 1440: 1362: 1334: 1287: 1265: 1207: 1179: 1115: 1093: 1051: 1029: 1009: 981: 888: 860: 813: 791: 763: 741: 725: 697: 2277: 2245: 2231: 343:Step 1: solving the relaxed linear program 2491: 2159: 1964: 1944: 1404:is not an integer for the basic solution 290: 2479:Optimization computes maxima and minima. 2120:"Localization and Cutting-plane Methods" 18: 2563: 75:{\displaystyle x_{1}+x_{2}+x_{3}\geq 2} 2957: 1998: 2883: 2699: 2675:Principal pivoting algorithm of Lemke 2562: 2490: 2276: 2226: 2201:, Vol. 149 (2007), pp. 63–66. 511:{\displaystyle x_{i}={\bar {b}}_{i}} 2965:Optimization algorithms and methods 13: 2884: 2474: 2319:Successive parabolic interpolation 14: 2976: 2700: 2639:Projective algorithm of Karmarkar 2214:"Integer Programming" Section 9.8 2207: 2634:Ellipsoid algorithm of Khachiyan 2537:Sequential quadratic programming 2374:Broyden–Fletcher–Goldfarb–Shanno 2217:Applied Mathematical Programming 633:Step 2: Find a linear constraint 622:{\displaystyle {\bar {a}}_{i,j}} 180:Cutting planes were proposed by 111:mixed integer linear programming 2187:Mathematical Programming Ser. B 329: 204: 2592:Reduced gradient (Frank–Wolfe) 2111: 2084: 2057: 1929: 1904: 1878: 1860: 1829: 1816: 1756: 1735: 1704: 1694: 1666: 1641: 1588: 1563: 1540: 1519: 1488: 1478: 1450: 1425: 1365: 1344: 1313: 1303: 1275: 1250: 1210: 1189: 1158: 1148: 1128:is strictly less than 1 while 1103: 1078: 1039: 991: 891: 870: 839: 829: 801: 776: 751: 707: 637:Consider now a basic variable 601: 580:{\displaystyle {\bar {b}}_{i}} 565: 496: 429: 391: 145:, and such an inequality is a 1: 2922:Spiral optimization algorithm 2542:Successive linear programming 2199:Annals of Operations Research 2161:10.1016/s0166-218x(01)00348-1 2050: 1622: 2660:Simplex algorithm of Dantzig 2532:Augmented Lagrangian methods 2148:Discrete Applied Mathematics 461:is a basic variable and the 7: 2045:Dantzig–Wolfe decomposition 2018: 166:Dantzig–Wolfe decomposition 10: 2981: 175: 2939: 2892: 2879: 2863:Push–relabel maximum flow 2838: 2754: 2712: 2708: 2695: 2665:Revised simplex algorithm 2647: 2619: 2605: 2575: 2571: 2558: 2524: 2503: 2499: 2486: 2472: 2448: 2396: 2359: 2336: 2327: 2289: 2285: 2272: 2168:Avriel, Mordecai (2003). 551:). We write coefficients 170:delayed column generation 2388:Symmetric rank-one (SR1) 2369:Berndt–Hall–Hall–Hausman 2912:Parallel metaheuristics 2720:Approximation algorithm 2431:Powell's dog leg method 2383:Davidon–Fletcher–Powell 2279:Unconstrained nonlinear 544:{\displaystyle x_{j}=0} 201:dominates Gomory cuts. 2897:Evolutionary algorithm 2480: 2123:(course lecture notes) 2025:Benders' decomposition 1989: 1773: 1613: 1388: 1227: 1122: 1058: 1016: 968: 941: 911: 658: 623: 581: 545: 512: 445: 317: 83: 76: 2670:Criss-cross algorithm 2493:Constrained nonlinear 2478: 2299:Golden-section search 2105:10.1287/opre.11.6.863 2005:nonlinear programming 1990: 1774: 1614: 1389: 1228: 1123: 1059: 1017: 969: 967:{\displaystyle x_{j}} 942: 940:{\displaystyle x_{i}} 912: 659: 657:{\displaystyle x_{i}} 624: 582: 546: 513: 446: 318: 137:the optimum from the 77: 22: 2587:Cutting-plane method 2189:, (2008) 112:3–44. 2172:Dover Publications. 2078:10.1287/opre.9.6.849 1790: 1631: 1415: 1240: 1132: 1068: 1026: 978: 951: 924: 671: 641: 591: 555: 522: 473: 358: 220: 95:cutting-plane method 27: 2917:Simulated annealing 2735:Integer programming 2725:Dynamic programming 2565:Convex optimization 2426:Levenberg–Marquardt 2093:Operations Research 2066:Operations Research 1999:Convex optimization 115:convex optimization 2597:Subgradient method 2481: 2406:Conjugate gradient 2314:Nelder–Mead method 2195:CornuĂ©jols, GĂ©rard 2183:CornuĂ©jols, GĂ©rard 1985: 1980: 1815: 1769: 1693: 1609: 1477: 1384: 1302: 1223: 1147: 1118: 1054: 1012: 964: 937: 907: 828: 696: 654: 619: 577: 541: 508: 441: 383: 313: 311: 303: all integers 143:separation problem 84: 72: 2952: 2951: 2935: 2934: 2875: 2874: 2871: 2870: 2834: 2833: 2795: 2794: 2691: 2690: 2687: 2686: 2683: 2682: 2554: 2553: 2550: 2549: 2470: 2469: 2466: 2465: 2444: 2443: 2040:Column generation 1979: 1932: 1907: 1863: 1832: 1806: 1738: 1707: 1684: 1669: 1644: 1591: 1566: 1522: 1491: 1468: 1453: 1428: 1347: 1316: 1293: 1278: 1253: 1192: 1161: 1138: 1106: 1081: 1042: 994: 873: 842: 819: 804: 779: 754: 710: 687: 604: 568: 499: 432: 394: 374: 304: 254: 230: 187:GĂ©rard CornuĂ©jols 126:linear relaxation 2972: 2881: 2880: 2797: 2796: 2763: 2762: 2740:Branch and bound 2730:Greedy algorithm 2710: 2709: 2697: 2696: 2617: 2616: 2573: 2572: 2560: 2559: 2501: 2500: 2488: 2487: 2436:Truncated Newton 2351:Wolfe conditions 2334: 2333: 2287: 2286: 2274: 2273: 2247: 2240: 2233: 2224: 2223: 2165: 2163: 2154:(1–3): 387–446. 2134: 2133: 2131: 2129: 2124: 2115: 2109: 2108: 2088: 2082: 2081: 2061: 2035:Branch and bound 1994: 1992: 1991: 1986: 1981: 1978: an integer 1977: 1974: 1973: 1954: 1953: 1940: 1939: 1934: 1933: 1925: 1915: 1914: 1909: 1908: 1900: 1890: 1889: 1877: 1876: 1865: 1864: 1856: 1846: 1845: 1834: 1833: 1825: 1814: 1802: 1801: 1778: 1776: 1775: 1770: 1768: 1767: 1752: 1751: 1740: 1739: 1731: 1721: 1720: 1709: 1708: 1700: 1692: 1677: 1676: 1671: 1670: 1662: 1652: 1651: 1646: 1645: 1637: 1618: 1616: 1615: 1610: 1599: 1598: 1593: 1592: 1584: 1574: 1573: 1568: 1567: 1559: 1552: 1551: 1536: 1535: 1524: 1523: 1515: 1505: 1504: 1493: 1492: 1484: 1476: 1461: 1460: 1455: 1454: 1446: 1436: 1435: 1430: 1429: 1421: 1393: 1391: 1390: 1385: 1377: 1376: 1361: 1360: 1349: 1348: 1340: 1330: 1329: 1318: 1317: 1309: 1301: 1286: 1285: 1280: 1279: 1271: 1261: 1260: 1255: 1254: 1246: 1232: 1230: 1229: 1224: 1222: 1221: 1206: 1205: 1194: 1193: 1185: 1175: 1174: 1163: 1162: 1154: 1146: 1127: 1125: 1124: 1119: 1114: 1113: 1108: 1107: 1099: 1089: 1088: 1083: 1082: 1074: 1063: 1061: 1060: 1055: 1050: 1049: 1044: 1043: 1035: 1021: 1019: 1018: 1013: 1008: 1007: 996: 995: 987: 973: 971: 970: 965: 963: 962: 946: 944: 943: 938: 936: 935: 916: 914: 913: 908: 903: 902: 887: 886: 875: 874: 866: 856: 855: 844: 843: 835: 827: 812: 811: 806: 805: 797: 787: 786: 781: 780: 772: 762: 761: 756: 755: 747: 737: 736: 724: 723: 712: 711: 703: 695: 683: 682: 663: 661: 660: 655: 653: 652: 628: 626: 625: 620: 618: 617: 606: 605: 597: 586: 584: 583: 578: 576: 575: 570: 569: 561: 550: 548: 547: 542: 534: 533: 517: 515: 514: 509: 507: 506: 501: 500: 492: 485: 484: 450: 448: 447: 442: 440: 439: 434: 433: 425: 418: 417: 408: 407: 396: 395: 387: 382: 370: 369: 322: 320: 319: 314: 312: 305: 302: 300: 299: 276: 255: 253:Subject to  252: 243: 242: 231: 228: 199:lift-and-project 191:branch-and-bound 81: 79: 78: 73: 65: 64: 52: 51: 39: 38: 2980: 2979: 2975: 2974: 2973: 2971: 2970: 2969: 2955: 2954: 2953: 2948: 2931: 2888: 2867: 2830: 2791: 2768: 2757: 2750: 2704: 2679: 2643: 2610: 2601: 2578: 2567: 2546: 2520: 2516:Penalty methods 2511:Barrier methods 2495: 2482: 2462: 2458:Newton's method 2440: 2392: 2355: 2323: 2304:Powell's method 2281: 2268: 2251: 2210: 2138: 2137: 2127: 2125: 2122: 2116: 2112: 2089: 2085: 2062: 2058: 2053: 2021: 2013:linear programs 2009:feasible region 2001: 1975: 1969: 1965: 1949: 1945: 1935: 1924: 1923: 1922: 1910: 1899: 1898: 1897: 1885: 1881: 1866: 1855: 1854: 1853: 1835: 1824: 1823: 1822: 1810: 1797: 1793: 1791: 1788: 1787: 1782: 1763: 1759: 1741: 1730: 1729: 1728: 1710: 1699: 1698: 1697: 1688: 1672: 1661: 1660: 1659: 1647: 1636: 1635: 1634: 1632: 1629: 1628: 1625: 1594: 1583: 1582: 1581: 1569: 1558: 1557: 1556: 1547: 1543: 1525: 1514: 1513: 1512: 1494: 1483: 1482: 1481: 1472: 1456: 1445: 1444: 1443: 1431: 1420: 1419: 1418: 1416: 1413: 1412: 1402: 1372: 1368: 1350: 1339: 1338: 1337: 1319: 1308: 1307: 1306: 1297: 1281: 1270: 1269: 1268: 1256: 1245: 1244: 1243: 1241: 1238: 1237: 1217: 1213: 1195: 1184: 1183: 1182: 1164: 1153: 1152: 1151: 1142: 1133: 1130: 1129: 1109: 1098: 1097: 1096: 1084: 1073: 1072: 1071: 1069: 1066: 1065: 1045: 1034: 1033: 1032: 1027: 1024: 1023: 997: 986: 985: 984: 979: 976: 975: 958: 954: 952: 949: 948: 931: 927: 925: 922: 921: 898: 894: 876: 865: 864: 863: 845: 834: 833: 832: 823: 807: 796: 795: 794: 782: 771: 770: 769: 757: 746: 745: 744: 732: 728: 713: 702: 701: 700: 691: 678: 674: 672: 669: 668: 648: 644: 642: 639: 638: 635: 607: 596: 595: 594: 592: 589: 588: 571: 560: 559: 558: 556: 553: 552: 529: 525: 523: 520: 519: 502: 491: 490: 489: 480: 476: 474: 471: 470: 466: 459: 435: 424: 423: 422: 413: 409: 397: 386: 385: 384: 378: 365: 361: 359: 356: 355: 345: 337: 332: 310: 309: 301: 295: 291: 274: 273: 256: 251: 248: 247: 238: 234: 232: 227: 223: 221: 218: 217: 207: 178: 162:Lagrangian dual 119:Ralph E. Gomory 60: 56: 47: 43: 34: 30: 28: 25: 24: 17: 12: 11: 5: 2978: 2968: 2967: 2950: 2949: 2947: 2946: 2940: 2937: 2936: 2933: 2932: 2930: 2929: 2924: 2919: 2914: 2909: 2904: 2899: 2893: 2890: 2889: 2886:Metaheuristics 2877: 2876: 2873: 2872: 2869: 2868: 2866: 2865: 2860: 2858:Ford–Fulkerson 2855: 2850: 2844: 2842: 2836: 2835: 2832: 2831: 2829: 2828: 2826:Floyd–Warshall 2823: 2818: 2817: 2816: 2805: 2803: 2793: 2792: 2790: 2789: 2784: 2779: 2773: 2771: 2760: 2752: 2751: 2749: 2748: 2747: 2746: 2732: 2727: 2722: 2716: 2714: 2706: 2705: 2693: 2692: 2689: 2688: 2685: 2684: 2681: 2680: 2678: 2677: 2672: 2667: 2662: 2656: 2654: 2645: 2644: 2642: 2641: 2636: 2631: 2629:Affine scaling 2625: 2623: 2621:Interior point 2614: 2603: 2602: 2600: 2599: 2594: 2589: 2583: 2581: 2569: 2568: 2556: 2555: 2552: 2551: 2548: 2547: 2545: 2544: 2539: 2534: 2528: 2526: 2525:Differentiable 2522: 2521: 2519: 2518: 2513: 2507: 2505: 2497: 2496: 2484: 2483: 2473: 2471: 2468: 2467: 2464: 2463: 2461: 2460: 2454: 2452: 2446: 2445: 2442: 2441: 2439: 2438: 2433: 2428: 2423: 2418: 2413: 2408: 2402: 2400: 2394: 2393: 2391: 2390: 2385: 2380: 2371: 2365: 2363: 2357: 2356: 2354: 2353: 2348: 2342: 2340: 2331: 2325: 2324: 2322: 2321: 2316: 2311: 2306: 2301: 2295: 2293: 2283: 2282: 2270: 2269: 2250: 2249: 2242: 2235: 2227: 2221: 2220: 2209: 2208:External links 2206: 2205: 2204: 2192: 2180: 2166: 2136: 2135: 2110: 2099:(6): 863–888. 2083: 2072:(6): 849–859. 2055: 2054: 2052: 2049: 2048: 2047: 2042: 2037: 2032: 2030:Branch and cut 2027: 2020: 2017: 2000: 1997: 1996: 1995: 1984: 1972: 1968: 1963: 1960: 1957: 1952: 1948: 1943: 1938: 1931: 1928: 1921: 1918: 1913: 1906: 1903: 1896: 1893: 1888: 1884: 1880: 1875: 1872: 1869: 1862: 1859: 1852: 1849: 1844: 1841: 1838: 1831: 1828: 1821: 1818: 1813: 1809: 1805: 1800: 1796: 1780: 1766: 1762: 1758: 1755: 1750: 1747: 1744: 1737: 1734: 1727: 1724: 1719: 1716: 1713: 1706: 1703: 1696: 1691: 1687: 1683: 1680: 1675: 1668: 1665: 1658: 1655: 1650: 1643: 1640: 1624: 1621: 1620: 1619: 1608: 1605: 1602: 1597: 1590: 1587: 1580: 1577: 1572: 1565: 1562: 1555: 1550: 1546: 1542: 1539: 1534: 1531: 1528: 1521: 1518: 1511: 1508: 1503: 1500: 1497: 1490: 1487: 1480: 1475: 1471: 1467: 1464: 1459: 1452: 1449: 1442: 1439: 1434: 1427: 1424: 1400: 1395: 1394: 1383: 1380: 1375: 1371: 1367: 1364: 1359: 1356: 1353: 1346: 1343: 1336: 1333: 1328: 1325: 1322: 1315: 1312: 1305: 1300: 1296: 1292: 1289: 1284: 1277: 1274: 1267: 1264: 1259: 1252: 1249: 1220: 1216: 1212: 1209: 1204: 1201: 1198: 1191: 1188: 1181: 1178: 1173: 1170: 1167: 1160: 1157: 1150: 1145: 1141: 1137: 1117: 1112: 1105: 1102: 1095: 1092: 1087: 1080: 1077: 1053: 1048: 1041: 1038: 1031: 1011: 1006: 1003: 1000: 993: 990: 983: 961: 957: 934: 930: 918: 917: 906: 901: 897: 893: 890: 885: 882: 879: 872: 869: 862: 859: 854: 851: 848: 841: 838: 831: 826: 822: 818: 815: 810: 803: 800: 793: 790: 785: 778: 775: 768: 765: 760: 753: 750: 743: 740: 735: 731: 727: 722: 719: 716: 709: 706: 699: 694: 690: 686: 681: 677: 651: 647: 634: 631: 616: 613: 610: 603: 600: 574: 567: 564: 540: 537: 532: 528: 505: 498: 495: 488: 483: 479: 464: 457: 452: 451: 438: 431: 428: 421: 416: 412: 406: 403: 400: 393: 390: 381: 377: 373: 368: 364: 349:simplex method 344: 341: 335: 331: 328: 324: 323: 308: 298: 294: 289: 286: 283: 280: 277: 275: 272: 269: 266: 263: 260: 257: 250: 249: 246: 241: 237: 233: 229:Maximize  226: 225: 211:canonical form 206: 203: 195:branch-and-cut 177: 174: 154:bundle methods 71: 68: 63: 59: 55: 50: 46: 42: 37: 33: 15: 9: 6: 4: 3: 2: 2977: 2966: 2963: 2962: 2960: 2945: 2942: 2941: 2938: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2902:Hill climbing 2900: 2898: 2895: 2894: 2891: 2887: 2882: 2878: 2864: 2861: 2859: 2856: 2854: 2851: 2849: 2846: 2845: 2843: 2841: 2840:Network flows 2837: 2827: 2824: 2822: 2819: 2815: 2812: 2811: 2810: 2807: 2806: 2804: 2802: 2801:Shortest path 2798: 2788: 2785: 2783: 2780: 2778: 2775: 2774: 2772: 2770: 2769:spanning tree 2764: 2761: 2759: 2753: 2745: 2741: 2738: 2737: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2717: 2715: 2711: 2707: 2703: 2702:Combinatorial 2698: 2694: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2657: 2655: 2653: 2650: 2646: 2640: 2637: 2635: 2632: 2630: 2627: 2626: 2624: 2622: 2618: 2615: 2613: 2608: 2604: 2598: 2595: 2593: 2590: 2588: 2585: 2584: 2582: 2580: 2574: 2570: 2566: 2561: 2557: 2543: 2540: 2538: 2535: 2533: 2530: 2529: 2527: 2523: 2517: 2514: 2512: 2509: 2508: 2506: 2502: 2498: 2494: 2489: 2485: 2477: 2459: 2456: 2455: 2453: 2451: 2447: 2437: 2434: 2432: 2429: 2427: 2424: 2422: 2419: 2417: 2414: 2412: 2409: 2407: 2404: 2403: 2401: 2399: 2398:Other methods 2395: 2389: 2386: 2384: 2381: 2379: 2375: 2372: 2370: 2367: 2366: 2364: 2362: 2358: 2352: 2349: 2347: 2344: 2343: 2341: 2339: 2335: 2332: 2330: 2326: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2296: 2294: 2292: 2288: 2284: 2280: 2275: 2271: 2267: 2263: 2259: 2255: 2248: 2243: 2241: 2236: 2234: 2229: 2228: 2225: 2218: 2215: 2212: 2211: 2203: 2200: 2196: 2193: 2191: 2188: 2184: 2181: 2179: 2178:0-486-43227-0 2175: 2171: 2167: 2162: 2157: 2153: 2149: 2145: 2140: 2139: 2121: 2114: 2106: 2102: 2098: 2094: 2087: 2079: 2075: 2071: 2067: 2060: 2056: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2022: 2016: 2014: 2010: 2006: 1982: 1970: 1966: 1961: 1958: 1955: 1950: 1946: 1941: 1936: 1926: 1919: 1911: 1901: 1891: 1886: 1882: 1873: 1870: 1867: 1857: 1850: 1842: 1839: 1836: 1826: 1811: 1807: 1803: 1798: 1794: 1786: 1785: 1784: 1764: 1760: 1748: 1745: 1742: 1732: 1722: 1717: 1714: 1711: 1701: 1689: 1685: 1681: 1673: 1663: 1653: 1648: 1638: 1606: 1603: 1595: 1585: 1575: 1570: 1560: 1553: 1548: 1544: 1532: 1529: 1526: 1516: 1506: 1501: 1498: 1495: 1485: 1473: 1469: 1465: 1457: 1447: 1437: 1432: 1422: 1411: 1410: 1409: 1407: 1403: 1381: 1378: 1373: 1369: 1357: 1354: 1351: 1341: 1331: 1326: 1323: 1320: 1310: 1298: 1294: 1290: 1282: 1272: 1262: 1257: 1247: 1236: 1235: 1234: 1218: 1214: 1202: 1199: 1196: 1186: 1176: 1171: 1168: 1165: 1155: 1143: 1139: 1135: 1110: 1100: 1090: 1085: 1075: 1046: 1036: 1004: 1001: 998: 988: 959: 955: 932: 928: 904: 899: 895: 883: 880: 877: 867: 857: 852: 849: 846: 836: 824: 820: 816: 808: 798: 788: 783: 773: 766: 758: 748: 738: 733: 729: 720: 717: 714: 704: 692: 688: 684: 679: 675: 667: 666: 665: 649: 645: 630: 614: 611: 608: 598: 572: 562: 538: 535: 530: 526: 503: 493: 486: 481: 477: 468: 460: 436: 426: 419: 414: 410: 404: 401: 398: 388: 379: 375: 371: 366: 362: 354: 353: 352: 350: 340: 327: 306: 296: 292: 287: 284: 281: 278: 270: 267: 264: 261: 258: 244: 239: 235: 216: 215: 214: 212: 202: 200: 196: 192: 188: 183: 173: 171: 167: 163: 159: 155: 150: 148: 144: 140: 136: 132: 127: 122: 120: 116: 112: 109:solutions to 108: 104: 100: 96: 92: 89: 69: 66: 61: 57: 53: 48: 44: 40: 35: 31: 21: 2907:Local search 2853:Edmonds–Karp 2809:Bellman–Ford 2586: 2579:minimization 2411:Gauss–Newton 2361:Quasi–Newton 2346:Trust region 2254:Optimization 2216: 2198: 2186: 2169: 2151: 2147: 2126:. Retrieved 2113: 2096: 2092: 2086: 2069: 2065: 2059: 2002: 1626: 1405: 1398: 1396: 919: 636: 462: 455: 453: 346: 333: 330:General idea 325: 208: 205:Gomory's cut 182:Ralph Gomory 179: 151: 146: 142: 134: 123: 102: 99:feasible set 94: 91:optimization 88:mathematical 85: 2927:Tabu search 2338:Convergence 2309:Line search 158:subgradient 139:convex hull 2758:algorithms 2266:heuristics 2258:Algorithms 2051:References 1623:Conclusion 347:Using the 2713:Paradigms 2612:quadratic 2329:Gradients 2291:Functions 1956:≥ 1930:¯ 1920:− 1917:⌋ 1905:¯ 1895:⌊ 1861:¯ 1851:− 1848:⌋ 1830:¯ 1820:⌊ 1808:∑ 1754:⌋ 1736:¯ 1726:⌊ 1723:− 1705:¯ 1686:∑ 1682:− 1679:⌋ 1667:¯ 1657:⌊ 1654:− 1642:¯ 1601:⌋ 1589:¯ 1579:⌊ 1576:− 1564:¯ 1538:⌋ 1520:¯ 1510:⌊ 1507:− 1489:¯ 1470:∑ 1466:− 1463:⌋ 1451:¯ 1441:⌊ 1438:− 1426:¯ 1379:≤ 1363:⌋ 1345:¯ 1335:⌊ 1332:− 1314:¯ 1295:∑ 1291:− 1288:⌋ 1276:¯ 1266:⌊ 1263:− 1251:¯ 1208:⌋ 1190:¯ 1180:⌊ 1177:− 1159:¯ 1140:∑ 1136:− 1116:⌋ 1104:¯ 1094:⌊ 1091:− 1079:¯ 1052:⌋ 1040:¯ 1030:⌊ 1010:⌋ 992:¯ 982:⌊ 889:⌋ 871:¯ 861:⌊ 858:− 840:¯ 821:∑ 817:− 814:⌋ 802:¯ 792:⌊ 789:− 777:¯ 764:⌋ 752:¯ 742:⌊ 739:− 726:⌋ 708:¯ 698:⌊ 689:∑ 602:¯ 566:¯ 497:¯ 430:¯ 392:¯ 376:∑ 282:≥ 265:≤ 135:separates 67:≥ 2959:Category 2944:Software 2821:Dijkstra 2652:exchange 2450:Hessians 2416:Gradient 2019:See also 193:(called 2787:Kruskal 2777:BorĹŻvka 2767:Minimum 2504:General 2262:methods 176:History 131:optimum 107:integer 2649:Basis- 2607:Linear 2577:Convex 2421:Mirror 2378:L-BFGS 2264:, and 2176:  2128:27 May 454:where 213:) as: 93:, the 2848:Dinic 2756:Graph 2814:SPFA 2782:Prim 2376:and 2174:ISBN 2130:2022 1604:> 587:and 518:and 103:cuts 2744:cut 2609:and 2156:doi 2152:123 2101:doi 2074:doi 147:cut 86:In 2961:: 2260:, 2256:: 2150:. 2146:. 2097:11 2095:. 2068:. 2015:. 1607:0. 1408:, 1022:, 974:, 947:, 121:. 2742:/ 2246:e 2239:t 2232:v 2164:. 2158:: 2132:. 2107:. 2103:: 2080:. 2076:: 2070:9 1983:. 1971:k 1967:x 1962:, 1959:0 1951:k 1947:x 1942:, 1937:i 1927:b 1912:i 1902:b 1892:= 1887:j 1883:x 1879:) 1874:j 1871:, 1868:i 1858:a 1843:j 1840:, 1837:i 1827:a 1817:( 1812:j 1804:+ 1799:k 1795:x 1781:k 1765:j 1761:x 1757:) 1749:j 1746:, 1743:i 1733:a 1718:j 1715:, 1712:i 1702:a 1695:( 1690:j 1674:i 1664:b 1649:i 1639:b 1596:i 1586:b 1571:i 1561:b 1554:= 1549:j 1545:x 1541:) 1533:j 1530:, 1527:i 1517:a 1502:j 1499:, 1496:i 1486:a 1479:( 1474:j 1458:i 1448:b 1433:i 1423:b 1406:x 1401:i 1399:x 1382:0 1374:j 1370:x 1366:) 1358:j 1355:, 1352:i 1342:a 1327:j 1324:, 1321:i 1311:a 1304:( 1299:j 1283:i 1273:b 1258:i 1248:b 1219:j 1215:x 1211:) 1203:j 1200:, 1197:i 1187:a 1172:j 1169:, 1166:i 1156:a 1149:( 1144:j 1111:i 1101:b 1086:i 1076:b 1047:i 1037:b 1005:j 1002:, 999:i 989:a 960:j 956:x 933:i 929:x 905:. 900:j 896:x 892:) 884:j 881:, 878:i 868:a 853:j 850:, 847:i 837:a 830:( 825:j 809:i 799:b 784:i 774:b 767:= 759:i 749:b 734:j 730:x 721:j 718:, 715:i 705:a 693:j 685:+ 680:i 676:x 650:i 646:x 615:j 612:, 609:i 599:a 573:i 563:b 539:0 536:= 531:j 527:x 504:i 494:b 487:= 482:i 478:x 467:' 465:j 463:x 458:i 456:x 437:i 427:b 420:= 415:j 411:x 405:j 402:, 399:i 389:a 380:j 372:+ 367:i 363:x 336:i 307:. 297:i 293:x 288:, 285:0 279:x 271:, 268:b 262:x 259:A 245:x 240:T 236:c 70:2 62:3 58:x 54:+ 49:2 45:x 41:+ 36:1 32:x

Index


mathematical
optimization
feasible set
integer
mixed integer linear programming
convex optimization
Ralph E. Gomory
linear relaxation
optimum
convex hull
bundle methods
subgradient
Lagrangian dual
Dantzig–Wolfe decomposition
delayed column generation
Ralph Gomory
Gérard Cornuéjols
branch-and-bound
branch-and-cut
lift-and-project
canonical form
simplex method
nonlinear programming
feasible region
linear programs
Benders' decomposition
Branch and cut
Branch and bound
Column generation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑