Knowledge

Crossing number (graph theory)

Source đź“ť

194:
edges with multiple intersection points. If two edges with a shared endpoint cross, the drawing can be changed locally at the crossing point, leaving the rest of the drawing unchanged, to produce a different drawing with one fewer crossing. And similarly, if two edges cross two or more times, the drawing can be changed locally at two crossing points to make a different drawing with two fewer crossings. However, these constraints are relevant for variant definitions of the crossing number that, for instance, count only the numbers of pairs of edges that cross rather than the number of crossings.
20: 212: 589: 399: 1018:, or an estimate of it is known. In addition, this inequality has algorithmic application. Specifically, Bhat and Leighton used it (for the first time) for deriving an upper bound on the number of edge crossings in a drawing which is obtained by a divide and conquer approximation algorithm for computing 242:
was forced to work in a brick factory, pushing wagon loads of bricks from kilns to storage sites. The factory had tracks from each kiln to each storage site, and the wagons were harder to push at the points where tracks crossed each other, from which Turán was led to ask his brick factory problem:
193:
Some authors add more constraints to the definition of a drawing, for instance that each pair of edges have at most one intersection point (a shared endpoint or crossing). For the crossing number as defined above, these constraints make no difference, because a crossing-minimal drawing cannot have
1357:
is defined to be the minimum number of crossings of a drawing of this type. It is always at least as large as the crossing number, and is larger for some graphs. It is known that, in general, the rectilinear crossing number can not be bounded by a function of the crossing number. The rectilinear
445: 185:
is a mapping from the vertices of the graph to disjoint points in the plane, and from the edges of the graph to curves connecting their two endpoints. No vertex should be mapped onto an edge that it is not an endpoint of, and whenever two edges have curves that intersect (other than at a shared
202:
As of April 2015, crossing numbers are known for very few graph families. In particular, except for a few initial cases, the crossing number of complete graphs, bipartite complete graphs, and products of cycles all remain unknown, although there has been some progress on lower bounds.
267: 73:
if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing.
1154:
algorithms are used, such as the simple algorithm which starts with no edges and continually adds each new edge in a way that produces the fewest additional crossings possible. These algorithms are used in the Rectilinear Crossing Number
584:{\displaystyle {\textrm {cr}}(K_{p})\leq {\frac {1}{4}}\left\lfloor {\frac {p}{2}}\right\rfloor \left\lfloor {\frac {p-1}{2}}\right\rfloor \left\lfloor {\frac {p-2}{2}}\right\rfloor \left\lfloor {\frac {p-3}{2}}\right\rfloor } 190:. A crossing is counted separately for each of these crossing points, for each pair of edges that cross. The crossing number of a graph is then the minimum, over all such drawings, of the number of crossings in a drawing. 1435:(the number of pairs of edges that cross an odd number of times in any drawing). The odd crossing number is at most equal to the pairwise crossing number, which is at most equal to the crossing number. However, by the 394:{\displaystyle {\textrm {cr}}(K_{m,n})\leq \left\lfloor {\frac {n}{2}}\right\rfloor \left\lfloor {\frac {n-1}{2}}\right\rfloor \left\lfloor {\frac {m}{2}}\right\rfloor \left\lfloor {\frac {m-1}{2}}\right\rfloor } 1268: 1866: 85:
asked for a factory plan that minimized the number of crossings between tracks connecting brick kilns to storage sites. Mathematically, this problem can be formalized as asking for the crossing number of a
613:. The conjecture is that there can be no better drawing, so that this formula gives the optimal number of crossings for the complete graphs. An independent formulation of the same conjecture was made by 247:, with the tracks as its edges. A factory layout can be represented as a drawing of this graph, so the problem becomes: what is the minimum possible number of crossings in a drawing of a 935: 243:
how can the kilns, storage sites, and tracks be arranged to minimize the total number of crossings? Mathematically, the kilns and storage sites can be formalized as the vertices of a
1588:
The arrangement of subjects on the diagram, while haphazard in part, is determined largely by trial and error with the aim of minimizing the number of intersecting lines.
1148: 1048: 987: 1016: 862: 833: 782: 1074:
and to near-planar graphs (graphs that become planar after removal of a single edge). A closely related problem, determining the rectilinear crossing number, is
955: 802: 150:
Without further qualification, the crossing number allows drawings in which the edges may be represented by arbitrary curves. A variation of this concept, the
2518: 1321:
design in theoretical computer science. Later, Székely also realized that this inequality yielded very simple proofs of some important theorems in
720:, with 20 vertices. None of the four 7-crossing cubic graphs, with 22 vertices, are well known. The smallest 8-crossing cubic graphs include the 1677: 154:, requires all edges to be straight line segments, and may differ from the crossing number. In particular, the rectilinear crossing number of a 655:
has the minimum number of crossings. That is, if the conjectured formula for the crossing number of the complete graph is correct, then every
804:
is the minimum number of edges whose removal results in a partition of the vertex set into two separated sets so that no set has more than
435:
fascinated by mathematics. They not only formulated this problem but also originated a conjectural formula for this crossing number, which
98:. Turán's conjectured formula for the crossing numbers of complete bipartite graphs remains unproven, as does an analogous formula for the 2579: 1206: 1491:
Purchase, Helen C.; Cohen, Robert F.; James, Murray I. (1995). "Validating graph drawing aesthetics". In Brandenburg, Franz-Josef (ed.).
224:
showing that Turán's brick factory problem with 4 storage sites (yellow spots) and 7 kilns (blue spots) requires 18 crossings (red dots)
1353:
If edges are required to be drawn as straight line segments, rather than arbitrary curves, then some graphs need more crossings. The
685: 610: 2605: 2352: 2781: 2392: 27:
with three crossings. This is the minimum number of crossings among all drawings of this graph, so the graph has crossing number
1085:
On the positive side, there are efficient algorithms for determining whether the crossing number is less than a fixed constant
2465: 2370: 1607:(1994). "The rectilinear crossing number of a complete graph and Sylvester's "four point problem" of geometric probability". 1510: 1696: 659:-chromatic graph has crossing number at least equal to the same formula. The Albertson conjecture is now known to hold for 2661: 229: 78: 1150:
on graphs of bounded degree which use the general and previously developed framework of Bhat and Leighton. In practice
2832: 2449: 1402:
requiring either 7233 or 7234 crossings. Further values are collected by the Rectilinear Crossing Number project.
2847: 2522: 2254: 1079: 871: 2852: 1753: 1609: 957:
has bounded vertex degrees. This fundamental inequality can be used to derive an asymptotic lower bound for
126: 1326: 411:. This bound has been conjectured to be the optimal number of crossings for all complete bipartite graphs. 257:
attempted to solve Turán's brick factory problem; his proof contained an error, but he established a valid
187: 55: 1330: 2559:. Theory and Practice of Combinatorics. North-Holland Mathematics Studies. Vol. 60. pp. 9–12. 2811: 2441: 1288: 1168: 106: 2353:
Graph Drawing, 17th International Symposium, GS 2009, Chicago, IL, USA, September 2009, Revised Papers
1493:
Graph Drawing, Symposium on Graph Drawing, GD '95, Passau, Germany, September 20-22, 1995, Proceedings
2837: 2776: 2487: 2297: 1090: 186:
endpoint) their intersections should form a finite set of proper crossings, where the two curves are
1810:
Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968)
2071: 1436: 689: 248: 244: 87: 1936: 1776: 1532: 1462: 1109: 740: 739:
In 2009, Pegg and Exoo conjectured that the smallest cubic graph with crossing number 13 is the
2842: 2586: 2437: 1767: 1275:
This relation between edges, vertices, and the crossing number was discovered independently by
258: 254: 709: 2699: 1156: 1115: 1075: 424: 169:
points in general position. The problem of determining this number is closely related to the
122: 2753: 2684: 2626: 2564: 2423: 2277: 2234: 2102: 1957: 1875: 1817: 1322: 1021: 960: 638: 432: 170: 992: 838: 807: 758: 8: 2548: 2146: 2005: 1559: 1280: 865: 114: 2603:
Székely, L. A. (1997). "Crossing numbers and hard Erdős problems in discrete geometry".
2485:(2003). "Improved Approximations of Crossings in Graph Drawings and VLSI Layout Areas". 2355:. Lecture Notes in Computer Science. Vol. 5849. Springer-Verlag. pp. 334–344. 1879: 2757: 2630: 2401: 2324: 2306: 2295:(2013). "Adding One Edge to Planar Graphs Makes Crossing Number and 1-Planarity Hard". 2106: 2080: 1981: 1961: 1723: 1705: 1654:
Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS 1998)
1626: 1579: 940: 787: 144: 2552: 2168: 1898: 1861: 1284: 2761: 2461: 2366: 2188: 2184: 2110: 2002: 1903: 1506: 2634: 1965: 2790: 2741: 2711: 2670: 2614: 2496: 2453: 2411: 2356: 2328: 2316: 2263: 2222: 2210: 2180: 2090: 2045: 1945: 1893: 1883: 1785: 1727: 1715: 1657: 1618: 1571: 1541: 1496: 1338: 1063: 642: 620:
Saaty further verified that this formula gives the optimal number of crossings for
182: 2531:
on the Institute for Software Technology at Graz, University of Technology (2009).
2069:(2020). "There are no cubic graphs on 26 vertices with crossing number 10 or 11". 2749: 2680: 2622: 2560: 2482: 2419: 2361: 2343: 2273: 2230: 2125: 2098: 1953: 1857: 1813: 1495:. Lecture Notes in Computer Science. Vol. 1027. Springer. pp. 435–446. 717: 641:, formulated by Michael O. Albertson in 2007, states that, among all graphs with 614: 2544: 1317:
The motivation of Leighton in studying crossing numbers was for applications to
1276: 2729: 2415: 2268: 2249: 2094: 1867:
Proceedings of the National Academy of Sciences of the United States of America
1835: 1805: 1600: 1527: 1406: 701: 439:
published in 1960. Namely, it is known that there always exists a drawing with
436: 420: 239: 162: 159: 155: 99: 82: 2618: 2500: 1719: 1676:
de Klerk, E.; Maharry, J.; Pasechnik, D. V.; Richter, B.; Salazar, G. (2006).
2826: 2206: 2192: 1661: 1456: 1416:
crossings per edge, but not fewer. The graphs that can be drawn with at most
1059: 744: 733: 705: 62: 24: 2543: 2457: 1790: 1771: 1750:
Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures
1741: 1649: 2715: 2387: 2029: 1907: 1745: 1604: 1545: 1174: 713: 235: 70: 40: 19: 1888: 2292: 2066: 1431:(the minimum number of pairs of edges that cross in any drawing) and the 1071: 725: 721: 675: 428: 2745: 2675: 2652: 2050: 2033: 1630: 1583: 1501: 729: 94:
at approximately the same time, in connection with the construction of
2320: 1949: 1439:, whenever one of these numbers is zero, they all are. Schaefer ( 732:, with 24 vertices. The smallest 11-crossing cubic graphs include the 2648: 2010: 1980:
Barát, János; Tóth, Géza (2009). "Towards the Albertson Conjecture".
1710: 1334: 1151: 1070:
problem. In fact the problem remains NP-hard even when restricted to
95: 91: 2226: 1622: 1575: 1263:{\displaystyle \operatorname {cr} (G)\geq {\frac {e^{3}}{29n^{2}}}.} 211: 2734:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
2528: 2450:
Proceedings of the 29th Annual ACM Symposium on Theory of Computing
2406: 2085: 2795: 2311: 1986: 1459:, a planar graph formed by replacing each crossing by a new vertex 181:
For the purposes of defining the crossing number, a drawing of an
1921:
Pan, Shengjun; Richter, R. Bruce (2007). "The crossing number of
1067: 1298:
is the best known to date, and is due to Ackerman. The constant
1058:
In general, determining the crossing number of a graph is hard;
1675: 716:, with 18 vertices. The smallest 6-crossing cubic graph is the 712:, with 16 vertices. The smallest 5-crossing cubic graph is the 708:, with 14 vertices. The smallest 4-crossing cubic graph is the 704:, with 10 vertices. The smallest 3-crossing cubic graph is the 2000: 700:, with 6 vertices. The smallest 2-crossing cubic graph is the 743:
and the smallest cubic graph with crossing number 170 is the
2580:"On topological graphs with at most four crossings per edge" 2153:. Foundations of Computing Series. Cambridge, MA: MIT Press. 2064: 1652:; TĂłth, G. (1998). "Which crossing number is it, anyway?". 1381: 1318: 680: 606: 427:, and appeared in print in 1960. Hill and his collaborator 140: 2205: 1808:(1969). "The decline and fall of Zarankiewicz's theorem". 2167:
Bhatt, Sandeep N.; Leighton, Frank Thomson (1984-04-01).
2390:(2005). "Computing crossing numbers in quadratic time". 1862:"The minimum number of intersections in complete graphs" 1562:(1944). "The graphic presentation of sociometric data". 404:
for the crossing number of the complete bipartite graph
2290: 627:
and Pan and Richter showed that it also is optimal for
2777:"The graph crossing number and its variants: a survey" 1752:. Mathematical Surveys and Monographs. Vol. 152. 419:
The problem of determining the crossing number of the
2345:
Complexity of some geometric and topological problems
1209: 1118: 1024: 995: 963: 943: 874: 841: 810: 790: 761: 750: 678:
with crossing numbers 1–8 and 11 are known (sequence
448: 414: 270: 2169:"A framework for solving VLSI graph layout problems" 2065:
Clancy, Kieran; Haythorpe, Michael; Newcombe, Alex;
1840:
Nabla (Bulletin of the Malayan Mathematical Society)
1748:(2009). "5.1 Crossings—the Brick Factory Problem". 1490: 1427:Other variants of the crossing number include the 1262: 1142: 1042: 1010: 981: 949: 929: 856: 827: 796: 776: 583: 393: 61:is the lowest number of edge crossings of a plane 2436: 1162: 158:is essentially the same as the minimum number of 2824: 2732:(1965). "Ein Sechsfarbenproblem auf der Kugel". 2698:Bienstock, Daniel; Dean, Nathaniel (July 1993). 2480: 1599: 1053: 2602: 2215:SIAM Journal on Algebraic and Discrete Methods 1558: 688:). The smallest 1-crossing cubic graph is the 2697: 2166: 1678:"Improved bounds for the crossing numbers of 2516: 2145: 1812:. Academic Press, New York. pp. 63–69. 1772:"On a Problem of P. Turán Concerning Graphs" 1766: 206: 77:The study of crossing numbers originated in 2247: 2141: 2139: 2137: 2135: 16:Fewest edge crossings in drawing of a graph 2647: 2250:"Crossing number is hard for cubic graphs" 2213:(1983). "Crossing number is NP-complete". 1920: 1740: 90:. The same problem arose independently in 2794: 2700:"Bounds for rectilinear crossing numbers" 2674: 2405: 2360: 2310: 2267: 2084: 2049: 1994: 1985: 1979: 1897: 1887: 1789: 1709: 1500: 930:{\displaystyle cr(G)+n=\Omega (b^{2}(G))} 611:On-line Encyclopedia of Integer Sequences 109:states that, for graphs where the number 2809: 2774: 2768: 2606:Combinatorics, Probability and Computing 2577: 2571: 2446:Computing crossing number in linear time 2341: 2132: 2028: 1830: 1828: 1648: 1444: 1440: 594:crossings. This formula gives values of 210: 18: 2782:The Electronic Journal of Combinatorics 2596: 2539: 2537: 2512: 2510: 2393:Journal of Computer and System Sciences 2241: 2173:Journal of Computer and System Sciences 2126:"Rectilinear Drawings of Famous Graphs" 1644: 1642: 1640: 1287:, and by Leighton . It is known as the 1198:the crossing number is always at least 117:is sufficiently larger than the number 2825: 2728: 2722: 2519:"Rectilinear Crossing Number project" 2386: 2380: 2162: 2160: 2024: 2022: 2001: 1856: 1825: 1526: 2803: 2534: 2507: 2117: 1850: 1697:SIAM Journal on Discrete Mathematics 1669: 1637: 1520: 2662:Discrete and Computational Geometry 2641: 2474: 1838:(1960). "A combinatorial problem". 1834: 1804: 1798: 1552: 1420:crossings per edge are also called 13: 2430: 2335: 2284: 2199: 2157: 2058: 2019: 1973: 1914: 1484: 1306:, but at the expense of replacing 1093:. It remains difficult for larger 899: 751:Connections to the bisection width 415:Complete graphs and graph coloring 125:, the crossing number is at least 14: 2864: 1734: 1593: 1337:used it to prove upper bounds on 1089:. In other words, the problem is 2123: 1760: 1412:if it can be drawn with at most 197: 2691: 2255:Journal of Combinatorial Theory 1465:, the puzzle that asks whether 1080:existential theory of the reals 669: 1447:) surveys many such variants. 1222: 1216: 1163:The crossing number inequality 1131: 1125: 1037: 1031: 1005: 999: 976: 970: 924: 921: 915: 902: 887: 881: 851: 845: 771: 765: 469: 456: 297: 278: 176: 1: 1754:American Mathematical Society 1610:American Mathematical Monthly 1530:(1977). "A Note of Welcome". 1478: 1474:can be drawn with 0 crossings 1378:1, 3, 9, 19, 36, 62, 102, 153 1348: 1066:showed in 1983 that it is an 596:1, 3, 9, 18, 36, 60, 100, 150 230:Turán's brick factory problem 79:Turán's brick factory problem 2653:"Improved bounds for planar 2362:10.1007/978-3-642-11805-0_32 2185:10.1016/0022-0000(84)90071-0 1054:Complexity and approximation 7: 2657:-sets and related problems" 2529:Rectilinear Crossing Number 1450: 1355:rectilinear crossing number 1310:with the worse constant of 1108:. There are also efficient 152:rectilinear crossing number 69:. For instance, a graph is 10: 2869: 2813:Crossing Numbers of Graphs 2481:Even, Guy; Guha, Sudipto; 2416:10.1016/j.jcss.2003.07.008 2269:10.1016/j.jctb.2005.09.009 2095:10.1007/s00373-020-02204-6 1289:crossing number inequality 1169:Crossing number inequality 1166: 238:, Hungarian mathematician 227: 107:crossing number inequality 2810:Schaefer, Marcus (2018). 2775:Schaefer, Marcus (2014). 2619:10.1017/S0963548397002976 2501:10.1137/S0097539700373520 2488:SIAM Journal on Computing 2342:Schaefer, Marcus (2010). 2298:SIAM Journal on Computing 2151:Complexity Issues in VLSI 1720:10.1137/S0895480104442741 1331:SzemerĂ©di-Trotter theorem 1091:fixed-parameter tractable 207:Complete bipartite graphs 139:. It has applications in 2833:Topological graph theory 2072:Graphs and Combinatorics 2034:"Crossing Number Graphs" 1662:10.1109/SFCS.1998.743512 1429:pairwise crossing number 1110:approximation algorithms 755:The 2/3-bisection width 690:complete bipartite graph 249:complete bipartite graph 245:complete bipartite graph 88:complete bipartite graph 2704:Journal of Graph Theory 2578:Ackerman, Eyal (2013). 2557:Crossing-free subgraphs 2458:10.1145/1250790.1250848 2438:Kawarabayashi, Ken-ichi 2006:"Graph Crossing Number" 1937:Journal of Graph Theory 1791:10.4064/fm-41-1-137-145 1777:Fundamenta Mathematicae 1533:Journal of Graph Theory 1463:Three utilities problem 1143:{\displaystyle cr(G)+n} 433:constructionist artists 165:determined by a set of 2848:Geometric intersection 2716:10.1002/jgt.3190170308 1601:Scheinerman, Edward R. 1546:10.1002/jgt.3190010105 1264: 1144: 1044: 1012: 983: 951: 931: 858: 829: 798: 778: 585: 395: 255:Kazimierz Zarankiewicz 225: 215:An optimal drawing of 36: 1889:10.1073/pnas.52.3.688 1407:local crossing number 1358:crossing numbers for 1265: 1157:distributed computing 1145: 1045: 1043:{\displaystyle cr(G)} 1013: 984: 982:{\displaystyle cr(G)} 952: 932: 859: 830: 799: 779: 648:, the complete graph 586: 396: 214: 22: 2853:NP-complete problems 2452:. pp. 382–390. 2248:HlinÄ›nĂ˝, P. (2006). 1656:. pp. 617–626. 1560:Bronfenbrenner, Urie 1437:Hanani–Tutte theorem 1207: 1116: 1022: 1011:{\displaystyle b(G)} 993: 961: 941: 872: 857:{\displaystyle b(G)} 839: 835:vertices. Computing 828:{\displaystyle 2n/3} 808: 788: 777:{\displaystyle b(G)} 759: 639:Albertson conjecture 446: 268: 171:happy ending problem 2038:Mathematica Journal 2032:; Exoo, G. (2009). 1880:1964PNAS...52..688S 1756:. pp. 126–127. 1433:odd crossing number 1384:) and values up to 1291:or crossing lemma. 741:Tutte–Coxeter graph 710:Möbius-Kantor graph 423:was first posed by 2746:10.1007/BF02996313 2676:10.1007/PL00009354 2517:Oswin Aichholzer. 2051:10.3888/tmj.11.2-2 2003:Weisstein, Eric W. 1502:10.1007/BFb0021827 1323:incidence geometry 1302:can be lowered to 1260: 1173:For an undirected 1140: 1112:for approximating 1040: 1008: 979: 947: 927: 854: 825: 794: 784:of a simple graph 774: 736:with 28 vertices. 581: 391: 226: 145:incidence geometry 37: 2467:978-1-59593-631-8 2372:978-3-642-11804-3 2321:10.1137/120872310 1950:10.1002/jgt.20249 1512:978-3-540-60723-6 1255: 950:{\displaystyle G} 797:{\displaystyle G} 575: 549: 523: 497: 483: 453: 385: 359: 341: 315: 275: 23:A drawing of the 2860: 2838:Graph invariants 2818: 2817: 2807: 2801: 2800: 2798: 2772: 2766: 2765: 2740:(1–2): 107–117. 2726: 2720: 2719: 2695: 2689: 2688: 2678: 2645: 2639: 2638: 2600: 2594: 2593: 2591: 2585:. Archived from 2584: 2575: 2569: 2568: 2541: 2532: 2526: 2521:. Archived from 2514: 2505: 2504: 2483:Schieber, Baruch 2478: 2472: 2471: 2434: 2428: 2427: 2409: 2384: 2378: 2376: 2364: 2350: 2339: 2333: 2332: 2314: 2305:(5): 1803–1829. 2288: 2282: 2281: 2271: 2245: 2239: 2238: 2203: 2197: 2196: 2164: 2155: 2154: 2143: 2130: 2129: 2121: 2115: 2114: 2088: 2079:(6): 1713–1721. 2062: 2056: 2055: 2053: 2026: 2017: 2016: 2015: 1998: 1992: 1991: 1989: 1977: 1971: 1969: 1933: 1929: 1918: 1912: 1911: 1901: 1891: 1854: 1848: 1847: 1832: 1823: 1821: 1802: 1796: 1795: 1793: 1768:Zarankiewicz, K. 1764: 1758: 1757: 1738: 1732: 1731: 1713: 1673: 1667: 1665: 1646: 1635: 1634: 1605:Wilf, Herbert S. 1597: 1591: 1590: 1556: 1550: 1549: 1524: 1518: 1516: 1504: 1488: 1473: 1423: 1419: 1415: 1411: 1401: 1393:are known, with 1392: 1379: 1375: 1366: 1313: 1309: 1305: 1301: 1297: 1269: 1267: 1266: 1261: 1256: 1254: 1253: 1252: 1239: 1238: 1229: 1197: 1188:edges such that 1187: 1183: 1179: 1149: 1147: 1146: 1141: 1107: 1096: 1088: 1049: 1047: 1046: 1041: 1017: 1015: 1014: 1009: 988: 986: 985: 980: 956: 954: 953: 948: 937:, provided that 936: 934: 933: 928: 914: 913: 863: 861: 860: 855: 834: 832: 831: 826: 821: 803: 801: 800: 795: 783: 781: 780: 775: 699: 683: 665: 658: 654: 647: 643:chromatic number 633: 626: 604: 597: 590: 588: 587: 582: 580: 576: 571: 560: 554: 550: 545: 534: 528: 524: 519: 508: 502: 498: 490: 484: 476: 468: 467: 455: 454: 451: 410: 400: 398: 397: 392: 390: 386: 381: 370: 364: 360: 352: 346: 342: 337: 326: 320: 316: 308: 296: 295: 277: 276: 273: 223: 183:undirected graph 168: 138: 120: 112: 68: 60: 53: 34: 2868: 2867: 2863: 2862: 2861: 2859: 2858: 2857: 2823: 2822: 2821: 2808: 2804: 2773: 2769: 2730:Ringel, Gerhard 2727: 2723: 2696: 2692: 2646: 2642: 2601: 2597: 2589: 2582: 2576: 2572: 2551:; Newborn, M.; 2542: 2535: 2515: 2508: 2479: 2475: 2468: 2435: 2431: 2385: 2381: 2373: 2348: 2340: 2336: 2291:Cabello S. and 2289: 2285: 2246: 2242: 2227:10.1137/0604033 2204: 2200: 2165: 2158: 2144: 2133: 2122: 2118: 2063: 2059: 2027: 2020: 1999: 1995: 1978: 1974: 1931: 1928: 1922: 1919: 1915: 1855: 1851: 1833: 1826: 1806:Guy, Richard K. 1803: 1799: 1765: 1761: 1739: 1735: 1690: 1683: 1674: 1670: 1647: 1638: 1623:10.2307/2975158 1617:(10): 939–943. 1598: 1594: 1576:10.2307/2785096 1557: 1553: 1525: 1521: 1513: 1489: 1485: 1481: 1472: 1466: 1453: 1421: 1417: 1413: 1409: 1400: 1394: 1391: 1385: 1377: 1374: 1368: 1365: 1359: 1351: 1311: 1307: 1303: 1299: 1295: 1283:, Newborn, and 1248: 1244: 1240: 1234: 1230: 1228: 1208: 1205: 1204: 1189: 1185: 1181: 1177: 1171: 1165: 1117: 1114: 1113: 1098: 1094: 1086: 1056: 1023: 1020: 1019: 994: 991: 990: 962: 959: 958: 942: 939: 938: 909: 905: 873: 870: 869: 840: 837: 836: 817: 809: 806: 805: 789: 786: 785: 760: 757: 756: 753: 718:Desargues graph 698: 692: 679: 672: 660: 656: 653: 649: 645: 628: 621: 615:Thomas L. Saaty 605:; see sequence 599: 595: 561: 559: 555: 535: 533: 529: 509: 507: 503: 489: 485: 475: 463: 459: 450: 449: 447: 444: 443: 417: 409: 405: 371: 369: 365: 351: 347: 327: 325: 321: 307: 303: 285: 281: 272: 271: 269: 266: 265: 232: 222: 216: 209: 200: 179: 166: 130: 118: 110: 100:complete graphs 66: 58: 47: 45:crossing number 28: 17: 12: 11: 5: 2866: 2856: 2855: 2850: 2845: 2840: 2835: 2820: 2819: 2802: 2767: 2721: 2710:(3): 333–348. 2690: 2669:(3): 373–382. 2640: 2613:(3): 353–358. 2595: 2592:on 2014-07-14. 2570: 2533: 2525:on 2012-12-30. 2506: 2495:(1): 231–252. 2473: 2466: 2429: 2400:(2): 285–302. 2379: 2371: 2334: 2283: 2262:(4): 455–471. 2240: 2221:(3): 312–316. 2211:Johnson, D. S. 2198: 2179:(2): 300–343. 2156: 2131: 2116: 2057: 2018: 1993: 1972: 1944:(2): 128–134. 1926: 1913: 1874:(3): 688–690. 1849: 1824: 1797: 1759: 1733: 1704:(1): 189–202. 1688: 1681: 1668: 1636: 1592: 1570:(3): 283–289. 1551: 1519: 1511: 1482: 1480: 1477: 1476: 1475: 1470: 1460: 1452: 1449: 1398: 1389: 1372: 1363: 1350: 1347: 1327:Beck's theorem 1273: 1272: 1271: 1270: 1259: 1251: 1247: 1243: 1237: 1233: 1227: 1224: 1221: 1218: 1215: 1212: 1167:Main article: 1164: 1161: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1055: 1052: 1039: 1036: 1033: 1030: 1027: 1007: 1004: 1001: 998: 978: 975: 972: 969: 966: 946: 926: 923: 920: 917: 912: 908: 904: 901: 898: 895: 892: 889: 886: 883: 880: 877: 853: 850: 847: 844: 824: 820: 816: 813: 793: 773: 770: 767: 764: 752: 749: 702:Petersen graph 696: 671: 668: 651: 592: 591: 579: 574: 570: 567: 564: 558: 553: 548: 544: 541: 538: 532: 527: 522: 518: 515: 512: 506: 501: 496: 493: 488: 482: 479: 474: 471: 466: 462: 458: 437:Richard K. Guy 421:complete graph 416: 413: 407: 402: 401: 389: 384: 380: 377: 374: 368: 363: 358: 355: 350: 345: 340: 336: 333: 330: 324: 319: 314: 311: 306: 302: 299: 294: 291: 288: 284: 280: 228:Main article: 220: 208: 205: 199: 196: 178: 175: 163:quadrilaterals 156:complete graph 15: 9: 6: 4: 3: 2: 2865: 2854: 2851: 2849: 2846: 2844: 2843:Graph drawing 2841: 2839: 2836: 2834: 2831: 2830: 2828: 2815: 2814: 2806: 2797: 2796:10.37236/2713 2792: 2788: 2784: 2783: 2778: 2771: 2763: 2759: 2755: 2751: 2747: 2743: 2739: 2736:(in German). 2735: 2731: 2725: 2717: 2713: 2709: 2705: 2701: 2694: 2686: 2682: 2677: 2672: 2668: 2664: 2663: 2658: 2656: 2650: 2644: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2607: 2599: 2588: 2581: 2574: 2566: 2562: 2558: 2554: 2553:SzemerĂ©di, E. 2550: 2546: 2540: 2538: 2530: 2524: 2520: 2513: 2511: 2502: 2498: 2494: 2490: 2489: 2484: 2477: 2469: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2433: 2425: 2421: 2417: 2413: 2408: 2403: 2399: 2395: 2394: 2389: 2383: 2374: 2368: 2363: 2358: 2354: 2347: 2346: 2338: 2330: 2326: 2322: 2318: 2313: 2308: 2304: 2300: 2299: 2294: 2287: 2279: 2275: 2270: 2265: 2261: 2257: 2256: 2251: 2244: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2202: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2163: 2161: 2152: 2148: 2142: 2140: 2138: 2136: 2127: 2120: 2112: 2108: 2104: 2100: 2096: 2092: 2087: 2082: 2078: 2074: 2073: 2068: 2061: 2052: 2047: 2043: 2039: 2035: 2031: 2025: 2023: 2013: 2012: 2007: 2004: 1997: 1988: 1983: 1976: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1938: 1925: 1917: 1909: 1905: 1900: 1895: 1890: 1885: 1881: 1877: 1873: 1869: 1868: 1863: 1859: 1853: 1845: 1841: 1837: 1831: 1829: 1819: 1815: 1811: 1807: 1801: 1792: 1787: 1783: 1779: 1778: 1773: 1769: 1763: 1755: 1751: 1747: 1746:Sharir, Micha 1743: 1737: 1729: 1725: 1721: 1717: 1712: 1707: 1703: 1699: 1698: 1693: 1691: 1684: 1672: 1663: 1659: 1655: 1651: 1645: 1643: 1641: 1632: 1628: 1624: 1620: 1616: 1612: 1611: 1606: 1602: 1596: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1555: 1547: 1543: 1539: 1535: 1534: 1529: 1523: 1514: 1508: 1503: 1498: 1494: 1487: 1483: 1469: 1464: 1461: 1458: 1457:Planarization 1455: 1454: 1448: 1446: 1442: 1438: 1434: 1430: 1425: 1408: 1403: 1397: 1388: 1383: 1371: 1362: 1356: 1346: 1344: 1342: 1336: 1332: 1328: 1324: 1320: 1315: 1294:The constant 1292: 1290: 1286: 1282: 1278: 1257: 1249: 1245: 1241: 1235: 1231: 1225: 1219: 1213: 1210: 1203: 1202: 1201: 1200: 1199: 1196: 1192: 1184:vertices and 1176: 1170: 1160: 1158: 1153: 1137: 1134: 1128: 1122: 1119: 1111: 1105: 1101: 1092: 1083: 1081: 1077: 1073: 1069: 1065: 1061: 1051: 1034: 1028: 1025: 1002: 996: 973: 967: 964: 944: 918: 910: 906: 896: 893: 890: 884: 878: 875: 867: 848: 842: 822: 818: 814: 811: 791: 768: 762: 748: 746: 745:Tutte 12-cage 742: 737: 735: 734:Coxeter graph 731: 727: 723: 719: 715: 711: 707: 706:Heawood graph 703: 695: 691: 687: 682: 677: 674:The smallest 667: 663: 644: 640: 635: 631: 624: 618: 616: 612: 608: 602: 577: 572: 568: 565: 562: 556: 551: 546: 542: 539: 536: 530: 525: 520: 516: 513: 510: 504: 499: 494: 491: 486: 480: 477: 472: 464: 460: 442: 441: 440: 438: 434: 430: 426: 422: 412: 387: 382: 378: 375: 372: 366: 361: 356: 353: 348: 343: 338: 334: 331: 328: 322: 317: 312: 309: 304: 300: 292: 289: 286: 282: 264: 263: 262: 260: 256: 252: 250: 246: 241: 237: 231: 219: 213: 204: 198:Special cases 195: 191: 189: 184: 174: 172: 164: 161: 157: 153: 148: 146: 142: 137: 133: 128: 124: 116: 108: 103: 101: 97: 93: 89: 84: 80: 75: 72: 65:of the graph 64: 57: 51: 46: 42: 32: 26: 25:Heawood graph 21: 2816:. CRC Press. 2812: 2805: 2786: 2780: 2770: 2737: 2733: 2724: 2707: 2703: 2693: 2666: 2660: 2654: 2643: 2610: 2604: 2598: 2587:the original 2573: 2556: 2523:the original 2492: 2486: 2476: 2445: 2432: 2397: 2391: 2382: 2344: 2337: 2302: 2296: 2286: 2259: 2258:. Series B. 2253: 2243: 2218: 2214: 2207:Garey, M. R. 2201: 2176: 2172: 2150: 2147:Leighton, T. 2119: 2076: 2070: 2067:Pegg, Ed Jr. 2060: 2041: 2037: 2009: 1996: 1975: 1941: 1935: 1923: 1916: 1871: 1865: 1852: 1843: 1839: 1809: 1800: 1781: 1775: 1762: 1749: 1736: 1711:math/0404142 1701: 1695: 1686: 1679: 1671: 1653: 1614: 1608: 1595: 1587: 1567: 1563: 1554: 1537: 1531: 1522: 1492: 1486: 1467: 1432: 1428: 1426: 1405:A graph has 1404: 1395: 1386: 1369: 1360: 1354: 1352: 1340: 1316: 1293: 1274: 1194: 1190: 1175:simple graph 1172: 1103: 1099: 1084: 1072:cubic graphs 1057: 868:proved that 864:is NP-hard. 754: 738: 714:Pappus graph 693: 676:cubic graphs 673: 670:Cubic graphs 661: 636: 629: 622: 619: 603:= 5, ..., 12 600: 593: 425:Anthony Hill 418: 403: 253: 236:World War II 233: 217: 201: 192: 180: 151: 149: 135: 131: 127:proportional 104: 76: 49: 44: 41:graph theory 38: 30: 2549:Chvátal, V. 2442:Reed, Bruce 2030:Pegg, E. T. 1858:Saaty, T.L. 1784:: 137–145. 1742:Pach, János 726:McGee graph 722:Nauru graph 429:John Ernest 259:upper bound 177:Definitions 143:design and 81:, in which 2827:Categories 2649:Dey, T. K. 2407:cs/0009010 2086:1804.10336 1836:Guy, R. K. 1564:Sociometry 1479:References 1349:Variations 1339:geometric 1325:, such as 1097:, such as 730:cage graph 188:transverse 96:sociograms 2762:123286264 2545:Ajtai, M. 2388:Grohe, M. 2312:1203.5944 2193:0022-0000 2124:Exoo, G. 2111:253889498 2011:MathWorld 1987:0909.0413 1528:Turán, P. 1424:-planar. 1335:Tamal Dey 1285:SzemerĂ©di 1226:≥ 1214:⁡ 1159:project. 1152:heuristic 900:Ω 728:or (3,7)- 617:in 1964. 566:− 540:− 514:− 473:≤ 431:were two 376:− 332:− 301:≤ 240:Pál Turán 92:sociology 83:Pál Turán 2789:. DS21. 2651:(1998). 2635:36602807 2555:(1982). 2444:(2007). 2293:Mohar B. 2149:(1983). 1966:37155969 1908:16591215 1860:(1964). 1846:: 68–72. 1770:(1954). 1650:Pach, J. 1451:See also 1367:through 1329:and the 1078:for the 1076:complete 866:Leighton 724:and the 632:= 11, 12 578:⌋ 557:⌊ 552:⌋ 531:⌊ 526:⌋ 505:⌊ 500:⌋ 487:⌊ 388:⌋ 367:⌊ 362:⌋ 349:⌊ 344:⌋ 323:⌊ 318:⌋ 305:⌊ 123:vertices 2754:0187232 2685:1608878 2627:1464571 2565:0806962 2424:2059096 2329:6535755 2278:2232384 2235:0711340 2103:4163409 1958:2350621 1876:Bibcode 1818:0253931 1728:1509054 1631:2975158 1584:2785096 1540:: 7–9. 1382:A014540 1281:Chvátal 1068:NP-hard 1064:Johnson 989:, when 684:in the 681:A110507 609:in the 607:A000241 234:During 63:drawing 2760:  2752:  2683:  2633:  2625:  2563:  2527:, and 2464:  2422:  2369:  2327:  2276:  2233:  2191:  2109:  2101:  1964:  1956:  1906:  1899:300329 1896:  1816:  1726:  1629:  1582:  1509:  1333:, and 1193:> 7 160:convex 71:planar 43:, the 2758:S2CID 2631:S2CID 2590:(PDF) 2583:(PDF) 2402:arXiv 2349:(PDF) 2325:S2CID 2307:arXiv 2107:S2CID 2081:arXiv 2044:(2). 1982:arXiv 1962:S2CID 1724:S2CID 1706:arXiv 1627:JSTOR 1580:JSTOR 1343:-sets 1277:Ajtai 1180:with 1060:Garey 115:edges 56:graph 54:of a 33:) = 3 2787:1000 2462:ISBN 2367:ISBN 2189:ISSN 1904:PMID 1685:and 1507:ISBN 1445:2018 1441:2014 1376:are 1319:VLSI 1062:and 1050:. 686:OEIS 664:≤ 16 637:The 625:≤ 10 598:for 141:VLSI 105:The 2791:doi 2742:doi 2712:doi 2671:doi 2615:doi 2497:doi 2454:doi 2412:doi 2357:doi 2317:doi 2264:doi 2223:doi 2181:doi 2091:doi 2046:doi 1946:doi 1934:". 1932:100 1930:is 1894:PMC 1884:doi 1786:doi 1716:doi 1682:m,n 1658:doi 1619:doi 1615:101 1572:doi 1542:doi 1497:doi 1471:3,3 1380:, ( 1106:|/2 1102:= | 697:3,3 408:m,n 261:of 221:4,7 129:to 121:of 113:of 48:cr( 39:In 29:cr( 2829:: 2785:. 2779:. 2756:. 2750:MR 2748:. 2738:29 2708:17 2706:. 2702:. 2681:MR 2679:. 2667:19 2665:. 2659:. 2629:. 2623:MR 2621:. 2609:. 2561:MR 2547:; 2536:^ 2509:^ 2493:32 2491:. 2460:. 2448:. 2440:; 2420:MR 2418:. 2410:. 2398:68 2396:. 2365:. 2351:. 2323:. 2315:. 2303:42 2301:. 2274:MR 2272:. 2260:96 2252:. 2231:MR 2229:. 2217:. 2209:; 2187:. 2177:28 2175:. 2171:. 2159:^ 2134:^ 2105:. 2099:MR 2097:. 2089:. 2077:36 2075:. 2042:11 2040:. 2036:. 2021:^ 2008:. 1960:. 1954:MR 1952:. 1942:56 1940:. 1927:11 1902:. 1892:. 1882:. 1872:52 1870:. 1864:. 1842:. 1827:^ 1814:MR 1782:41 1780:. 1774:. 1744:; 1722:. 1714:. 1702:20 1700:. 1694:. 1639:^ 1625:. 1613:. 1603:; 1586:. 1578:. 1566:. 1536:. 1505:. 1443:, 1399:28 1390:27 1373:12 1345:. 1314:. 1312:64 1308:29 1296:29 1279:, 1242:29 1211:cr 1082:. 747:. 666:. 634:. 452:cr 274:cr 251:? 173:. 147:. 102:. 2799:. 2793:: 2764:. 2744:: 2718:. 2714:: 2687:. 2673:: 2655:k 2637:. 2617:: 2611:6 2567:. 2503:. 2499:: 2470:. 2456:: 2426:. 2414:: 2404:: 2377:. 2375:. 2359:: 2331:. 2319:: 2309:: 2280:. 2266:: 2237:. 2225:: 2219:4 2195:. 2183:: 2128:. 2113:. 2093:: 2083:: 2054:. 2048:: 2014:. 1990:. 1984:: 1970:. 1968:. 1948:: 1924:K 1910:. 1886:: 1878:: 1844:7 1822:. 1820:. 1794:. 1788:: 1730:. 1718:: 1708:: 1692:" 1689:n 1687:K 1680:K 1666:. 1664:. 1660:: 1633:. 1621:: 1574:: 1568:7 1548:. 1544:: 1538:1 1517:. 1515:. 1499:: 1468:K 1422:k 1418:k 1414:k 1410:k 1396:K 1387:K 1370:K 1364:5 1361:K 1341:k 1304:4 1300:7 1258:. 1250:2 1246:n 1236:3 1232:e 1223:) 1220:G 1217:( 1195:n 1191:e 1186:e 1182:n 1178:G 1138:n 1135:+ 1132:) 1129:G 1126:( 1123:r 1120:c 1104:V 1100:k 1095:k 1087:k 1038:) 1035:G 1032:( 1029:r 1026:c 1006:) 1003:G 1000:( 997:b 977:) 974:G 971:( 968:r 965:c 945:G 925:) 922:) 919:G 916:( 911:2 907:b 903:( 897:= 894:n 891:+ 888:) 885:G 882:( 879:r 876:c 852:) 849:G 846:( 843:b 823:3 819:/ 815:n 812:2 792:G 772:) 769:G 766:( 763:b 694:K 662:n 657:n 652:n 650:K 646:n 630:p 623:p 601:p 573:2 569:3 563:p 547:2 543:2 537:p 521:2 517:1 511:p 495:2 492:p 481:4 478:1 470:) 465:p 461:K 457:( 406:K 383:2 379:1 373:m 357:2 354:m 339:2 335:1 329:n 313:2 310:n 298:) 293:n 290:, 287:m 283:K 279:( 218:K 167:n 136:n 134:/ 132:e 119:n 111:e 67:G 59:G 52:) 50:G 35:. 31:G

Index


Heawood graph
graph theory
graph
drawing
planar
Turán's brick factory problem
Pál Turán
complete bipartite graph
sociology
sociograms
complete graphs
crossing number inequality
edges
vertices
proportional
VLSI
incidence geometry
complete graph
convex
quadrilaterals
happy ending problem
undirected graph
transverse

Turán's brick factory problem
World War II
Pál Turán
complete bipartite graph
complete bipartite graph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑