Knowledge

Coulomb collision

Source đź“ť

1392:'s Radiation Laboratory. They quoted each other’s results in their respective papers. The first reference deals with the mean-field part of the interaction by using perturbation theory in electric field amplitude. Within the same approximations, a more elegant derivation of the collisional transport coefficients was provided, by using the Balescu–Lenard equation (see Sec. 8.4 of and Secs. 7.3 and 7.4 of ). The second reference uses the Rutherford picture of two-body collisions. The calculation of the first reference is correct for impact parameters much larger than the interparticle distance, while those of the second one work in the opposite case. Both calculations are extended to the full range of impact parameters by introducing each a single ad hoc cutoff, and not two as in the above simplified mathematical treatment, but the transport coefficients depend only logarithmically thereon; both results agree and yield the above expression for the diffusion constant. 795: 443:, an electron will have many such encounters simultaneously, with various impact parameters (distance to the ion) and directions. The cumulative effect can be described as a diffusion of the perpendicular momentum. The corresponding diffusion constant is found by integrating the squares of the individual changes in momentum. The rate of collisions with impact parameter between 420:. Fast particles are "slippery" and thus dominate many transport processes. The efficiency of velocity-matched interactions is also the reason that fusion products tend to heat the electrons rather than (as would be desirable) the ions. If an electric field is present, the faster electrons feel less drag and become even faster in a "run-away" process. 552: 1372:
of a full Rutherford deflection. Therefore, the above perturbative theory can also be done by using this full deflection. This makes the calculation correct up to the smallest impact parameters where this full deflection must be used. (ii) The effect of Debye shielding for large impact parameters can
800:
Obviously the integral diverges toward both small and large impact parameters. The divergence at small impact parameters is clearly unphysical since under the assumptions used here, the final perpendicular momentum cannot take on a value higher than the initial momentum. Setting the above estimate
74:
In a plasma, a Coulomb collision rarely results in a large deflection. The cumulative effect of the many small angle collisions, however, is often larger than the effect of the few large angle collisions that occur, so it is instructive to consider the collision dynamics in the limit of small
57:
where the typical kinetic energy of the particles is too large to produce a significant deviation from the initial trajectories of the colliding particles, and the cumulative effect of many collisions is considered instead. The importance of Coulomb collisions was first pointed out by
790:{\displaystyle D_{v\perp }=\int \left({\frac {Ze^{2}}{4\pi \epsilon _{0}}}\right)^{2}\,{\frac {1}{v^{2}b^{2}}}\,nv(2\pi b\,{\mathrm {d} }b)=\left({\frac {Ze^{2}}{4\pi \epsilon _{0}}}\right)^{2}\,{\frac {2\pi n}{v}}\,\int {\frac {{\mathrm {d} }b}{b}}} 380: 1163: 962: 1367:
An N-body treatment accounting for all impact parameters can be performed by taking into account a few simple facts. The main two ones are: (i) The above change in perpendicular velocity is the lowest order approximation in
253: 839: 1075:
by the tendency of electrons to cluster in the neighborhood of the ion and other ions to avoid it. The upper cut-off to the impact parameter should thus be approximately equal to the
544: 1534: 498: 289: 1042: 1000: 1229: 126: 1357: 1331: 1085: 1305:.) The limits of the impact parameter integral are not sharp, but are uncertain by factors on the order of unity, leading to theoretical uncertainties on the order of 1249: 418: 1543: 1453: 1199: 281: 152: 1297: 1002:
as an estimate of the cross section for large-angle collisions. Under some conditions there is a more stringent lower limit due to quantum mechanics, namely the
862: 99: 1277: 1062: 870: 461: 441: 192: 172: 1485:
Escande DF, Elskens Y, Doveil F (2015) Uniform derivation of Coulomb collisional transport thanks to Debye shielding. Journal of Plasma Physics 81, 305810101
1251:. It is the factor by which small-angle collisions are more effective than large-angle collisions. The Coulomb logarithm was introduced independently by 1380:). This cancels the above divergence at large impact parameters. The above Coulomb logarithm turns out to be modified by a constant of order unity. 1442:
Chandrasekhar, S. (1943). Dynamical friction. I. General considerations: the coefficient of dynamical friction. Astrophysical Journal, 97, 255–262.
1503:
Rosenbluth, M. N., MacDonald, W. M. and Judd, D. L. 1957 Fokker-Planck equation for an inverse-square force. Phys. Rev. 107, 1–6.
1540: 1462: 1389: 17: 197: 804: 1388:
In the 1950s, transport due to collisions in non-magnetized plasmas was simultaneously studied by two groups at
503: 1494:
Gasiorowicz, S., Neuman, M. and Riddell, R. J. Jr. 1956 Dynamics of ionized media. Phys. Rev. 101, 922–934
375:{\displaystyle \Delta m_{\text{e}}v_{\perp }\approx {\frac {Ze^{2}}{4\pi \epsilon _{0}}}\,{\frac {1}{vb}}} 1256: 466: 1562: 1521:
Hazeltine, R. D. and Waelbroeck, F. L. 2004 The Framework of Plasma Physics. Boulder: Westview Press
1009: 1201:
thus yields the logarithm of the ratio of the upper and lower cut-offs. This number is known as the
1374: 1158:{\displaystyle \lambda _{\text{D}}={\sqrt {\frac {\epsilon _{0}kT_{\text{e}}}{n_{\text{e}}e^{2}}}}} 1072: 970: 1512:
Balescu, R. 1997 Statistical Dynamics: Matter Out of Equilibrium. London: Imperial College Press.
1208: 104: 1336: 63: 1308: 283:. The product of these expressions divided by the mass is the change in perpendicular velocity: 1234: 1401: 388: 1301: 1362: 957:{\displaystyle b_{0}={\frac {Ze^{2}}{4\pi \epsilon _{0}}}\,{\frac {1}{m_{\text{e}}v^{2}}}} 8: 1567: 1176: 258: 131: 1282: 844: 81: 1262: 1047: 446: 426: 177: 157: 43: 35: 62:
in 1936, who also derived the corresponding kinetic equation which is known as the
54: 1547: 1065: 50: 39: 1556: 1424:
Landau, L.D. (1936). "Kinetic equation for the case of coulomb interaction".
1333:. For this reason it is often justified to simply take the convenient choice 1377: 1076: 1003: 1363:
Mathematical treatment for plasmas accounting for all impact parameters
1252: 59: 47: 255:
at the closest approach and the duration of the encounter is about
1359:. The analysis here yields the scalings and orders of magnitude. 1259:
in 1943. For many plasmas of interest it takes on values between
864:, we find the lower cut-off to the impact parameter to be about 69: 1461:. The Office of Naval Research. pp. 31 ff. Archived from 1373:
be accommodated by using a Debye-shielded Coulomb potential (
46:, the resulting trajectories of the colliding particles is a 38:
between two charged particles interacting through their own
1299:. (For convenient formulas, see pages 34 and 35 of the 27:
Binary elastic collision between two charged particles
1339: 1311: 1285: 1265: 1237: 1211: 1179: 1088: 1071:
At large impact parameters, the charge of the ion is
1050: 1012: 973: 873: 847: 807: 555: 506: 469: 449: 429: 391: 292: 261: 200: 180: 160: 134: 107: 84: 1351: 1325: 1291: 1271: 1243: 1223: 1193: 1157: 1056: 1036: 994: 956: 856: 833: 789: 538: 492: 455: 435: 412: 385:Note that the deflection angle is proportional to 374: 275: 247: 186: 166: 146: 120: 93: 1554: 423:In passing through a field of ions with density 248:{\displaystyle Ze^{2}/4\pi \epsilon _{0}b^{2}} 834:{\displaystyle \Delta m_{\text{e}}v_{\perp }} 70:Simplified mathematical treatment for plasmas 924: 764: 745: 676: 657: 627: 356: 546:, so the diffusion constant is given by 539:{\displaystyle nv(2\pi b\mathrm {d} b)} 14: 1555: 1423: 78:We can consider an electron of charge 53:. This type of collision is common in 1451: 1419: 1417: 1168: 154:and much larger mass at a distance 128:passing a stationary ion of charge 24: 1390:University of California, Berkeley 1218: 808: 773: 679: 526: 480: 293: 25: 1579: 1528: 1414: 493:{\displaystyle (b+\mathrm {d} b)} 1037:{\displaystyle h/m_{\text{e}}v} 1515: 1506: 1497: 1488: 1479: 1445: 1436: 687: 664: 533: 513: 487: 470: 13: 1: 1541:NRL Plasma Formulary 2013 ed. 1407: 995:{\displaystyle \pi b_{0}^{2}} 194:. The perpendicular force is 1224:{\displaystyle \ln \Lambda } 1205:and is designated by either 121:{\displaystyle m_{\text{e}}} 7: 1395: 1352:{\displaystyle \lambda =10} 10: 1584: 1383: 1326:{\displaystyle 1/\lambda } 1257:Subrahmanyan Chandrasekhar 1244:{\displaystyle \lambda } 413:{\displaystyle 1/v^{2}} 64:Landau kinetic equation 1353: 1327: 1293: 1273: 1245: 1225: 1195: 1159: 1058: 1038: 996: 958: 858: 835: 791: 540: 494: 457: 437: 414: 376: 277: 249: 188: 168: 148: 122: 95: 1535:Effects of Ionization 1402:Rutherford scattering 1354: 1328: 1294: 1274: 1246: 1226: 1196: 1160: 1059: 1039: 1004:de Broglie wavelength 997: 959: 859: 836: 792: 541: 495: 458: 438: 415: 377: 278: 250: 189: 169: 149: 123: 96: 1455:NRL Plasma formulary 1426:Phys. Z. Sowjetunion 1337: 1309: 1302:NRL Plasma formulary 1283: 1263: 1235: 1209: 1177: 1086: 1048: 1010: 971: 871: 845: 805: 553: 504: 467: 447: 427: 389: 290: 259: 198: 178: 158: 132: 105: 82: 1452:Huba, J.D. (2016). 1194:{\displaystyle 1/b} 991: 276:{\displaystyle b/v} 147:{\displaystyle +Ze} 1546:2016-12-23 at the 1349: 1323: 1292:{\displaystyle 15} 1289: 1269: 1241: 1221: 1191: 1155: 1054: 1034: 992: 977: 954: 857:{\displaystyle mv} 854: 831: 787: 536: 490: 453: 433: 410: 372: 273: 245: 184: 164: 144: 118: 94:{\displaystyle -e} 91: 44:inverse-square law 1272:{\displaystyle 5} 1203:Coulomb logarithm 1169:Coulomb logarithm 1153: 1152: 1138: 1126: 1096: 1057:{\displaystyle h} 1028: 1006:of the electron, 952: 938: 922: 818: 785: 762: 733: 655: 615: 456:{\displaystyle b} 436:{\displaystyle n} 370: 354: 303: 187:{\displaystyle v} 167:{\displaystyle b} 115: 36:elastic collision 32:Coulomb collision 18:Coulomb logarithm 16:(Redirected from 1575: 1563:Plasma phenomena 1537:by Gordon Emslie 1522: 1519: 1513: 1510: 1504: 1501: 1495: 1492: 1486: 1483: 1477: 1476: 1474: 1473: 1467: 1460: 1449: 1443: 1440: 1434: 1433: 1421: 1375:Screening effect 1358: 1356: 1355: 1350: 1332: 1330: 1329: 1324: 1319: 1298: 1296: 1295: 1290: 1278: 1276: 1275: 1270: 1250: 1248: 1247: 1242: 1230: 1228: 1227: 1222: 1200: 1198: 1197: 1192: 1187: 1173:The integral of 1164: 1162: 1161: 1156: 1154: 1151: 1150: 1149: 1140: 1139: 1136: 1129: 1128: 1127: 1124: 1115: 1114: 1104: 1103: 1098: 1097: 1094: 1063: 1061: 1060: 1055: 1043: 1041: 1040: 1035: 1030: 1029: 1026: 1020: 1001: 999: 998: 993: 990: 985: 967:We can also use 963: 961: 960: 955: 953: 951: 950: 949: 940: 939: 936: 926: 923: 921: 920: 919: 903: 902: 901: 888: 883: 882: 863: 861: 860: 855: 840: 838: 837: 832: 830: 829: 820: 819: 816: 796: 794: 793: 788: 786: 781: 777: 776: 769: 763: 758: 747: 744: 743: 738: 734: 732: 731: 730: 714: 713: 712: 699: 683: 682: 656: 654: 653: 652: 643: 642: 629: 626: 625: 620: 616: 614: 613: 612: 596: 595: 594: 581: 568: 567: 545: 543: 542: 537: 529: 499: 497: 496: 491: 483: 462: 460: 459: 454: 442: 440: 439: 434: 419: 417: 416: 411: 409: 408: 399: 381: 379: 378: 373: 371: 369: 358: 355: 353: 352: 351: 335: 334: 333: 320: 315: 314: 305: 304: 301: 282: 280: 279: 274: 269: 254: 252: 251: 246: 244: 243: 234: 233: 218: 213: 212: 193: 191: 190: 185: 173: 171: 170: 165: 153: 151: 150: 145: 127: 125: 124: 119: 117: 116: 113: 100: 98: 97: 92: 21: 1583: 1582: 1578: 1577: 1576: 1574: 1573: 1572: 1553: 1552: 1548:Wayback Machine 1531: 1526: 1525: 1520: 1516: 1511: 1507: 1502: 1498: 1493: 1489: 1484: 1480: 1471: 1469: 1465: 1458: 1450: 1446: 1441: 1437: 1422: 1415: 1410: 1398: 1386: 1365: 1338: 1335: 1334: 1315: 1310: 1307: 1306: 1284: 1281: 1280: 1264: 1261: 1260: 1236: 1233: 1232: 1210: 1207: 1206: 1183: 1178: 1175: 1174: 1171: 1145: 1141: 1135: 1131: 1130: 1123: 1119: 1110: 1106: 1105: 1102: 1093: 1089: 1087: 1084: 1083: 1066:Planck constant 1049: 1046: 1045: 1025: 1021: 1016: 1011: 1008: 1007: 986: 981: 972: 969: 968: 945: 941: 935: 931: 930: 925: 915: 911: 904: 897: 893: 889: 887: 878: 874: 872: 869: 868: 846: 843: 842: 825: 821: 815: 811: 806: 803: 802: 772: 771: 770: 768: 748: 746: 739: 726: 722: 715: 708: 704: 700: 698: 694: 693: 678: 677: 648: 644: 638: 634: 633: 628: 621: 608: 604: 597: 590: 586: 582: 580: 576: 575: 560: 556: 554: 551: 550: 525: 505: 502: 501: 479: 468: 465: 464: 448: 445: 444: 428: 425: 424: 404: 400: 395: 390: 387: 386: 362: 357: 347: 343: 336: 329: 325: 321: 319: 310: 306: 300: 296: 291: 288: 287: 265: 260: 257: 256: 239: 235: 229: 225: 214: 208: 204: 199: 196: 195: 179: 176: 175: 159: 156: 155: 133: 130: 129: 112: 108: 106: 103: 102: 83: 80: 79: 72: 51:Keplerian orbit 28: 23: 22: 15: 12: 11: 5: 1581: 1571: 1570: 1565: 1551: 1550: 1538: 1530: 1529:External links 1527: 1524: 1523: 1514: 1505: 1496: 1487: 1478: 1444: 1435: 1412: 1411: 1409: 1406: 1405: 1404: 1397: 1394: 1385: 1382: 1364: 1361: 1348: 1345: 1342: 1322: 1318: 1314: 1288: 1268: 1240: 1220: 1217: 1214: 1190: 1186: 1182: 1170: 1167: 1166: 1165: 1148: 1144: 1134: 1122: 1118: 1113: 1109: 1101: 1092: 1053: 1033: 1024: 1019: 1015: 989: 984: 980: 976: 965: 964: 948: 944: 934: 929: 918: 914: 910: 907: 900: 896: 892: 886: 881: 877: 853: 850: 828: 824: 814: 810: 798: 797: 784: 780: 775: 767: 761: 757: 754: 751: 742: 737: 729: 725: 721: 718: 711: 707: 703: 697: 692: 689: 686: 681: 675: 672: 669: 666: 663: 660: 651: 647: 641: 637: 632: 624: 619: 611: 607: 603: 600: 593: 589: 585: 579: 574: 571: 566: 563: 559: 535: 532: 528: 524: 521: 518: 515: 512: 509: 489: 486: 482: 478: 475: 472: 452: 432: 407: 403: 398: 394: 383: 382: 368: 365: 361: 350: 346: 342: 339: 332: 328: 324: 318: 313: 309: 299: 295: 272: 268: 264: 242: 238: 232: 228: 224: 221: 217: 211: 207: 203: 183: 163: 143: 140: 137: 111: 90: 87: 71: 68: 42:. As with any 40:electric field 26: 9: 6: 4: 3: 2: 1580: 1569: 1566: 1564: 1561: 1560: 1558: 1549: 1545: 1542: 1539: 1536: 1533: 1532: 1518: 1509: 1500: 1491: 1482: 1468:on 2016-12-23 1464: 1457: 1456: 1448: 1439: 1431: 1427: 1420: 1418: 1413: 1403: 1400: 1399: 1393: 1391: 1381: 1379: 1376: 1371: 1360: 1346: 1343: 1340: 1320: 1316: 1312: 1304: 1303: 1286: 1266: 1258: 1254: 1238: 1215: 1212: 1204: 1188: 1184: 1180: 1146: 1142: 1132: 1120: 1116: 1111: 1107: 1099: 1090: 1082: 1081: 1080: 1078: 1074: 1069: 1067: 1051: 1031: 1022: 1017: 1013: 1005: 987: 982: 978: 974: 946: 942: 932: 927: 916: 912: 908: 905: 898: 894: 890: 884: 879: 875: 867: 866: 865: 851: 848: 826: 822: 812: 782: 778: 765: 759: 755: 752: 749: 740: 735: 727: 723: 719: 716: 709: 705: 701: 695: 690: 684: 673: 670: 667: 661: 658: 649: 645: 639: 635: 630: 622: 617: 609: 605: 601: 598: 591: 587: 583: 577: 572: 569: 564: 561: 557: 549: 548: 547: 530: 522: 519: 516: 510: 507: 484: 476: 473: 450: 430: 421: 405: 401: 396: 392: 366: 363: 359: 348: 344: 340: 337: 330: 326: 322: 316: 311: 307: 297: 286: 285: 284: 270: 266: 262: 240: 236: 230: 226: 222: 219: 215: 209: 205: 201: 181: 174:with a speed 161: 141: 138: 135: 109: 88: 85: 76: 75:deflections. 67: 65: 61: 56: 52: 49: 45: 41: 37: 33: 19: 1517: 1508: 1499: 1490: 1481: 1470:. Retrieved 1463:the original 1454: 1447: 1438: 1429: 1425: 1387: 1378:Debye length 1369: 1366: 1300: 1255:in 1936 and 1202: 1172: 1077:Debye length 1070: 966: 799: 422: 384: 77: 73: 34:is a binary 31: 29: 1568:Scattering 1557:Categories 1472:2017-10-19 1432:: 154–164. 1408:References 1253:Lev Landau 60:Lev Landau 48:hyperbolic 1341:λ 1321:λ 1239:λ 1219:Λ 1216:⁡ 1108:ϵ 1091:λ 975:π 913:ϵ 909:π 841:equal to 827:⊥ 809:Δ 766:∫ 753:π 724:ϵ 720:π 671:π 606:ϵ 602:π 573:∫ 565:⊥ 520:π 345:ϵ 341:π 317:≈ 312:⊥ 294:Δ 227:ϵ 223:π 101:and mass 86:− 1544:Archived 1396:See also 1073:shielded 1384:History 1064:is the 55:plasmas 1044:where 1466:(PDF) 1459:(PDF) 1279:and 801:for 463:and 1231:or 500:is 1559:: 1430:10 1428:. 1416:^ 1368:1/ 1347:10 1287:15 1213:ln 1079:: 1068:. 66:. 30:A 1475:. 1370:b 1344:= 1317:/ 1313:1 1267:5 1189:b 1185:/ 1181:1 1147:2 1143:e 1137:e 1133:n 1125:e 1121:T 1117:k 1112:0 1100:= 1095:D 1052:h 1032:v 1027:e 1023:m 1018:/ 1014:h 988:2 983:0 979:b 947:2 943:v 937:e 933:m 928:1 917:0 906:4 899:2 895:e 891:Z 885:= 880:0 876:b 852:v 849:m 823:v 817:e 813:m 783:b 779:b 774:d 760:v 756:n 750:2 741:2 736:) 728:0 717:4 710:2 706:e 702:Z 696:( 691:= 688:) 685:b 680:d 674:b 668:2 665:( 662:v 659:n 650:2 646:b 640:2 636:v 631:1 623:2 618:) 610:0 599:4 592:2 588:e 584:Z 578:( 570:= 562:v 558:D 534:) 531:b 527:d 523:b 517:2 514:( 511:v 508:n 488:) 485:b 481:d 477:+ 474:b 471:( 451:b 431:n 406:2 402:v 397:/ 393:1 367:b 364:v 360:1 349:0 338:4 331:2 327:e 323:Z 308:v 302:e 298:m 271:v 267:/ 263:b 241:2 237:b 231:0 220:4 216:/ 210:2 206:e 202:Z 182:v 162:b 142:e 139:Z 136:+ 114:e 110:m 89:e 20:)

Index

Coulomb logarithm
elastic collision
electric field
inverse-square law
hyperbolic
Keplerian orbit
plasmas
Lev Landau
Landau kinetic equation
de Broglie wavelength
Planck constant
shielded
Debye length
Lev Landau
Subrahmanyan Chandrasekhar
NRL Plasma formulary
Screening effect
Debye length
University of California, Berkeley
Rutherford scattering


NRL Plasma formulary
the original
Effects of Ionization
NRL Plasma Formulary 2013 ed.
Archived
Wayback Machine
Categories
Plasma phenomena

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑