Knowledge

Constant k filter

Source 📝

1777: 1912: 523: 1984: 1405: 2012: 481: 1950: 1878: 1968: 1896: 2003: 1959: 1887: 347: 2260:
transmission line. Notice that as Δℓ is made smaller and smaller, both ΔL and ΔC decrease, but in the same proportion, so that the ratio ΔL/ΔC remains constant. So if we take the limit of Eq. (22.28) as ΔL and ΔC go to zero, we find that the characteristic impedance z0 is a pure resistance whose magnitude is √(ΔL/ΔC). We can also write the ratio ΔL/ΔC as L0/C0, where L0 and C0 are the inductance and capacitance of a unit length of the line; then we have
466: 2259:
If we imagine the line as broken up into small lengths Δℓ, each length will look like one section of the L-C ladder with a series inductance ΔL and a shunt capacitance ΔC. We can then use our results for the ladder filter. If we take the limit as Δℓ goes to zero, we have a good description of the
1836:
It should be borne in mind that the characteristics of the filter predicted by the image method are only accurate if the section is terminated with its image impedance. This is usually not true of the sections at either end, which are usually terminated with a fixed resistance. The further the
261:
that had been used previously. Campbell called his filters electric wave filters, but this term later came to mean any filter that passes waves of some frequencies but not others. Many new forms of wave filter were subsequently invented; an early (and important) variation was the
1792:
Several L-shape half-sections may be cascaded to form a composite filter. Like impedance must always face like in these combinations. There are therefore two circuits that can be formed with two identical L-shaped half-sections. Where a port of image impedance
1087: 1711: 415:, which is also an L-section but with half the element values of the full L-section. The image impedance of the half-section is dissimilar on the input and output ports: on the side presenting the series element it is equal to the mid-series 1618: 802: 1394: 1315: 1180: 373:(that is, a section from halfway through a series element to halfway through the next series element) will have the same image impedance on both ports due to symmetry. This image impedance is designated 1235: 973: 887: 1484: 2301: 1532: 2032:
Textbooks and design drawings usually show the unbalanced implementations, but in telecoms it is often required to convert the design to the balanced implementation when used with
668: 1833:
the section so formed is a T section. Further additions of half-sections to either of these section forms a ladder network which may start and end with series or shunt elements.
984: 1837:
section is from the end of the filter, the more accurate the prediction will become, since the effects of the terminating impedances are masked by the intervening sections.
1629: 607: 580: 324:
Some of the impedance terms and section terms used in this article are pictured in the diagram below. Image theory defines quantities in terms of an infinite cascade of
553: 189: 1623:
That is, the transmission is lossless in the pass-band with only the phase of the signal changing. Above the cut-off frequency, the transmission parameters are:
1543: 292:, but their subsequent use has been much more widespread than that. The design techniques used by Campbell have largely been superseded. However, the 741: 1326: 1250: 361:. The factor of two is introduced for mathematical convenience, since it is usual to work in terms of half-sections where it disappears. The 182: 1106: 727:, of the transmission line that would be formed by these infinitesimally small sections. It is also the image impedance of the section at 708:
as the size of the section (in terms of values of its components, such as inductances, capacitances, etc.) approaches zero, while keeping
175: 1092:
Given that the filter does not contain any resistive elements, the image impedance in the pass band of the filter is purely
229:
frequency response to within any prescribed limit with the addition of a sufficient number of sections. However, they are
2477: 2199: 1195: 911: 218: 835: 1440: 2447: 296:
used by Campbell with the constant k is still in use today with implementations of modern filter designs such as the
250: 2263: 2467: 2218: 257:, was already making improvements to the design at this time. Campbell's filters were far superior to the simpler 2252: 222: 230: 1499: 249:. He published his work in 1922, but had clearly invented the filters some time before, as his colleague at 1765: 1082:{\displaystyle {\frac {1}{{Z_{\mathrm {i\Pi } }}^{2}}}={Y_{\mathrm {i\Pi } }}^{2}=Y^{2}+{\frac {1}{k^{2}}}} 100: 633: 281:
and stop band. It was only necessary to add more filter sections until the desired response was obtained.
258: 2040: 1537:
For the low-pass L-shape section, below the cut-off frequency, the transmission parameters are given by
340: 1776: 1761: 1757: 1753: 234: 117: 70: 65: 33: 1706:{\displaystyle \gamma =\alpha +i\beta =\cosh ^{-1}{\frac {\omega }{\omega _{c}}}+i{\frac {\pi }{2}}} 2472: 1425: 717: 2437: 217:
method. They are the original and simplest filters produced by this methodology and consist of a
1431: 585: 558: 111: 353:
The sections of the hypothetical infinite filter are made of series elements having impedance 2
2074: 613:
The building block of constant k filters is the half-section "L" network, composed of a series
522: 273:
and other simple filters of the time was that they could be designed for any desired degree of
246: 123: 83: 1721:
The presented plots of image impedance, attenuation and phase change correspond to a low-pass
266:
by Zobel who coined the term constant k for the Campbell filter in order to distinguish them.
2417: 2248: 538: 366: 1404: 900: 1911: 1412:
of a constant k prototype low-pass filter for a single half-section showing attenuation in
728: 614: 439: 735:= 0 in the case of low-pass filters. For example, the pictured low-pass half-section has 8: 1983: 297: 828:
however, are both approaching zero, and from the formulae (below) for image impedances,
447: 2240: 2145: 2106: 2069: 443: 128: 40: 2011: 2443: 1409: 1186: 289: 210: 22: 2204:
Planar microwave engineering: a practical guide to theory, measurement, and circuits
2149: 2137: 2102: 2064: 1722: 1613:{\displaystyle \gamma =\alpha +i\beta =0+i\sin ^{-1}{\frac {\omega }{\omega _{c}}}} 1097: 480: 451: 325: 263: 95: 45: 2387: 2236: 2059: 1844: 362: 329: 214: 60: 50: 2093:
Campbell, G. A. (November 1922), "Physical Theory of the Electric Wave-Filter",
797:{\displaystyle k={\sqrt {\frac {i\omega L}{i\omega C}}}={\sqrt {\frac {L}{C}}}} 690: 438:
Parts of this article or section rely on the reader's knowledge of the complex
343:, "L" refers to the specific filter shape which resembles inverted letter "L". 293: 2176: 2141: 1949: 1877: 2461: 2244: 424:, but on the side presenting the shunt element it is equal to the mid-shunt 225:
components. Historically, they are the first filters that could approach the
105: 55: 1967: 1741: 1895: 233:
for a modern design, the principles behind them having been superseded by
2223:
Electromagnetics for high-speed analog and digital communication circuits
2002: 1958: 1886: 1389:{\displaystyle Z_{\mathrm {iT} }=iL{\sqrt {\omega ^{2}-\omega _{c}^{2}}}} 1093: 285: 226: 161: 1764:
into high-pass, band-pass or band-stop types by application of suitable
1310:{\displaystyle Z_{\mathrm {iT} }=L{\sqrt {\omega _{c}^{2}-\omega ^{2}}}} 2396:
Microwave Filters, Impedance-Matching Networks, and Coupling Structures
621: 386:" topology of a mid-series section. Likewise, the image impedance of a 333: 270: 254: 156: 151: 146: 1175:{\displaystyle {Z_{\mathrm {iT} }}^{2}=-(\omega L)^{2}+{\frac {L}{C}}} 1241: 346: 313: 309: 305: 465: 284:
The filters were designed by Campbell for the purpose of separating
2033: 535:
of a constant k prototype low-pass filter is plotted vs. frequency
301: 278: 274: 2118:
Bray, p.62 gives 1910 as the start of Campbell's work on filters.
1736:= 1 Ω. This is produced by a filter half-section with inductance 2403:
Theory and Design of Uniform and Composite Electric Wave Filters
816:
can be made arbitrarily small while retaining the same value of
697:. A physical interpretation of k can be given by observing that 237:
which are more accurate in their prediction of filter response.
1417: 2202:(2004). "2.5. Driving-point impedance of Iterated Structure". 1320:
Above the cut-off frequency the image impedance is imaginary,
328:, and in the case of the filters being discussed, an infinite 1749: 1413: 433:. There are thus two variant ways of using a half-section. 369:
of a section will generally not be the same. However, for a
1760:
to the desired values. The low-pass prototype can also be
332:
of L-sections. Here "L" should not be confused with the
678: 469:
Constant k low-pass filter half section. Here inductance
16:
Type of electronic filter designed using the image method
2442:, New Delhi: Prentice Hall of India, pp. 544–563, 1100:. For example, for the pictured low-pass half-section, 2355:
Matthaei et al., pp.96-97, 412-413, 438-440, 727-729.
2266: 1632: 1546: 1502: 1443: 1329: 1253: 1198: 1109: 987: 914: 838: 744: 636: 588: 561: 541: 2420:, California Institute of Technology – HTML edition. 2412:
Feynman, Richard; Leighton, Robert; Sands, Matthew,
269:
The great advantage Campbell's filters had over the
1434:for a general constant k half-section are given by 1230:{\displaystyle \omega _{c}={\frac {1}{\sqrt {LC}}}} 968:{\displaystyle {Z_{\mathrm {iT} }}^{2}=Z^{2}+k^{2}} 2295: 1725:section. The prototype has a cut-off frequency of 1705: 1612: 1526: 1478: 1388: 1309: 1229: 1174: 1081: 967: 882:{\displaystyle \lim _{Z,Y\to 0}Z_{\mathrm {i} }=k} 881: 796: 662: 627:. The "k" in "constant k" is the value given by, 601: 574: 547: 1523: 1479:{\displaystyle \gamma =\sinh ^{-1}{\frac {Z}{k}}} 905:The image impedances of the section are given by 555:. The impedance is purely resistive (real) below 2459: 2235: 840: 2296:{\displaystyle {\sqrt {\frac {L_{0}}{C_{0}}}}} 316:and multiple band filters are also possible. 277:rejection or steepness of transition between 183: 2430:For a simpler treatment of the analysis see, 2388:Innovation and the Communications Revolution 1839: 1716: 2210: 2180:, filed 30 April 1920, issued 23 Sept 1924. 681:. It is readily apparent that in order for 2394:Matthaei, G.; Young, L.; Jones, E. M. T., 2391:, Institute of Electrical Engineers, 2002. 2219:"Section 9.2. An Infinite Ladder Network." 1399: 731:, in the case of band-pass filters, or at 190: 176: 2324: 2322: 2320: 2206:. Cambridge University Press. p. 44. 1788:low-pass constant-k filter half-sections. 1522: 484:Constant k band-pass filter half section. 2414:The Feynman Lectures on Physics, Vol. II 2216: 2092: 1842: 1775: 1527:{\displaystyle \gamma _{n}=n\gamma \,\!} 1426:Image impedance § Transfer function 1403: 582:, and purely reactive (imaginary) above 521: 479: 464: 677:will have units of impedance, that is, 300:. Campbell gave constant k designs for 2460: 2439:Network Theory: Analysis and Synthesis 2317: 2192: 2128:White, G. (January 2000), "The Past", 2031: 2435: 2127: 1870: 1867: 1864: 1771: 1922: 1852: 663:{\displaystyle k^{2}={\frac {Z}{Y}}} 357:and shunt elements with admittance 2 245:Constant k filters were invented by 2198: 13: 2424: 2107:10.1002/j.1538-7305.1922.tb00386.x 2010: 2001: 1982: 1966: 1957: 1948: 1910: 1894: 1885: 1876: 1732:= 1 rad/s and a nominal impedance 1339: 1336: 1263: 1260: 1121: 1118: 1096:and in the stop band it is purely 1033: 1030: 1004: 1001: 926: 923: 894: 867: 345: 14: 2489: 2405:, Bell System Technical Journal, 901:Image impedance § Derivation 2367: 2358: 2349: 2340: 2331: 2308: 2254:The Feynman Lectures on Physics 1244:, the image impedance is real, 2229: 2183: 2164: 2155: 2121: 2112: 2086: 1150: 1140: 853: 319: 1: 2379: 1928: 1856: 460: 66:Optimum "L" (Legendre) filter 712:at its initial value. Thus, 7: 2418:Section 6. A ladder network 2416:, Chapter 22. AC Circuits, 2053: 2038: 1185:The transition occurs at a 602:{\displaystyle \omega _{c}} 575:{\displaystyle \omega _{c}} 403:" topology. Half of such a 10: 2494: 2478:Electronic filter topology 2364:Matthaei et al., pp.65-68. 2337:Matthaei et al., pp.61-62. 1996:X Section (mid-Π-Derived) 1993:X Section (mid-T-Derived) 1811:, the section is called a 1423: 898: 341:electronic filter topology 240: 2217:Niknejad, Ali M. (2007). 2172:Multiple-band wave filter 2028: 2024: 2009: 2000: 1995: 1992: 1981: 1976: 1965: 1956: 1947: 1942: 1939: 1936: 1931: 1909: 1904: 1893: 1884: 1875: 1859: 1766:frequency transformations 1717:Prototype transformations 701:is the limiting value of 454:representation of signals 221:of identical sections of 118:Bridged T delay equaliser 34:Network synthesis filters 2436:Ghosh, Smarajit (2005), 2080: 1752:. This prototype can be 718:characteristic impedance 450:and on knowledge of the 365:of the input and output 2468:Image impedance filters 2142:10.1023/A:1026506828275 1432:transmission parameters 1400:Transmission parameters 548:{\displaystyle \omega } 259:single element circuits 84:Image impedance filters 51:Elliptic (Cauer) filter 2409:(1923), pp. 1–46. 2373:Matthaei et al., p.68. 2328:Matthaei et al., p.61. 2297: 2249:"Section 22-7. Filter" 2075:Composite image filter 2015: 2006: 1987: 1971: 1962: 1953: 1915: 1899: 1890: 1881: 1789: 1707: 1614: 1528: 1480: 1421: 1390: 1311: 1231: 1176: 1083: 969: 883: 798: 664: 610: 603: 576: 549: 519: 477: 350: 288:telephone channels on 124:Composite image filter 2298: 2177:U.S. patent 1,509,184 2130:BT Technology Journal 2014: 2005: 1986: 1970: 1961: 1952: 1914: 1898: 1889: 1880: 1779: 1708: 1615: 1529: 1481: 1407: 1391: 1312: 1232: 1177: 1084: 970: 884: 799: 665: 604: 577: 550: 525: 483: 468: 349: 101:General image filters 71:Linkwitz–Riley filter 2314:Zobel, 1923, pp.3-4. 2264: 2095:Bell System Tech. J. 1630: 1544: 1500: 1441: 1416:and phase change in 1327: 1251: 1196: 1107: 985: 912: 836: 742: 634: 586: 559: 539: 411:section is called a 2241:Leighton, Robert B. 1489:and for a chain of 1383: 1291: 298:Tchebyscheff filter 235:other methodologies 213:designed using the 108:(constant R) filter 2293: 2016: 2007: 1988: 1972: 1963: 1954: 1916: 1900: 1891: 1882: 1790: 1772:Cascading sections 1703: 1610: 1524: 1476: 1422: 1386: 1369: 1307: 1277: 1227: 1172: 1079: 965: 879: 860: 794: 660: 611: 599: 572: 545: 520: 478: 442:representation of 371:mid-series section 351: 290:transmission lines 203:Constant k filters 41:Butterworth filter 25:electronic filters 2398:McGraw-Hill 1964. 2346:Zobel, 1923, p.3. 2291: 2290: 2189:Zobel, 1923, p.6. 2051: 2050: 2047: 2046: 2043: 2020: 2019: 1920: 1919: 1784:) for a chain of 1780:Gain response, H( 1701: 1685: 1608: 1474: 1410:transfer function 1384: 1305: 1225: 1224: 1187:cut-off frequency 1170: 1077: 1017: 839: 792: 791: 777: 776: 658: 388:mid-shunt section 326:two-port sections 231:rarely considered 211:electronic filter 200: 199: 91:Constant k filter 2485: 2452: 2374: 2371: 2365: 2362: 2356: 2353: 2347: 2344: 2338: 2335: 2329: 2326: 2315: 2312: 2306: 2304: 2302: 2300: 2299: 2294: 2292: 2289: 2288: 2279: 2278: 2269: 2268: 2237:Feynman, Richard 2233: 2227: 2226: 2214: 2208: 2207: 2196: 2190: 2187: 2181: 2179: 2168: 2162: 2159: 2153: 2152: 2125: 2119: 2116: 2110: 2109: 2090: 2065:m-derived filter 2039: 2026: 2025: 1929: 1857: 1840: 1831: 1822: 1814: 1809: 1800: 1758:frequency scaled 1754:impedance scaled 1744:and capacitance 1723:prototype filter 1712: 1710: 1709: 1704: 1702: 1694: 1686: 1684: 1683: 1671: 1666: 1665: 1619: 1617: 1616: 1611: 1609: 1607: 1606: 1594: 1589: 1588: 1533: 1531: 1530: 1525: 1512: 1511: 1485: 1483: 1482: 1477: 1475: 1467: 1462: 1461: 1395: 1393: 1392: 1387: 1385: 1382: 1377: 1365: 1364: 1355: 1344: 1343: 1342: 1316: 1314: 1313: 1308: 1306: 1304: 1303: 1290: 1285: 1276: 1268: 1267: 1266: 1236: 1234: 1233: 1228: 1226: 1217: 1213: 1208: 1207: 1181: 1179: 1178: 1173: 1171: 1163: 1158: 1157: 1133: 1132: 1127: 1126: 1125: 1124: 1088: 1086: 1085: 1080: 1078: 1076: 1075: 1063: 1058: 1057: 1045: 1044: 1039: 1038: 1037: 1036: 1018: 1016: 1015: 1010: 1009: 1008: 1007: 989: 974: 972: 971: 966: 964: 963: 951: 950: 938: 937: 932: 931: 930: 929: 888: 886: 885: 880: 872: 871: 870: 859: 803: 801: 800: 795: 793: 784: 783: 778: 775: 764: 753: 752: 685:to be constant, 669: 667: 666: 661: 659: 651: 646: 645: 608: 606: 605: 600: 598: 597: 581: 579: 578: 573: 571: 570: 554: 552: 551: 546: 526:Image impedance 452:frequency domain 432: 423: 410: 406: 402: 398: 385: 381: 264:m-derived filter 209:, are a type of 192: 185: 178: 96:m-derived filter 46:Chebyshev filter 19: 18: 2493: 2492: 2488: 2487: 2486: 2484: 2483: 2482: 2473:Analog circuits 2458: 2457: 2450: 2427: 2425:Further reading 2382: 2377: 2372: 2368: 2363: 2359: 2354: 2350: 2345: 2341: 2336: 2332: 2327: 2318: 2313: 2309: 2284: 2280: 2274: 2270: 2267: 2265: 2262: 2261: 2257:. Vol. 2. 2234: 2230: 2215: 2211: 2197: 2193: 2188: 2184: 2175: 2169: 2165: 2160: 2156: 2126: 2122: 2117: 2113: 2091: 2087: 2083: 2070:mm'-type filter 2060:Image impedance 2056: 1977:Ladder network 1937:C Half-section 1905:Ladder network 1871:Π Section 1865:L Half section 1848: 1847:filter sections 1832: 1829: 1823: 1820: 1815:section. Where 1812: 1810: 1807: 1801: 1798: 1787: 1783: 1774: 1731: 1719: 1693: 1679: 1675: 1670: 1658: 1654: 1631: 1628: 1627: 1602: 1598: 1593: 1581: 1577: 1545: 1542: 1541: 1507: 1503: 1501: 1498: 1497: 1466: 1454: 1450: 1442: 1439: 1438: 1428: 1402: 1378: 1373: 1360: 1356: 1354: 1335: 1334: 1330: 1328: 1325: 1324: 1299: 1295: 1286: 1281: 1275: 1259: 1258: 1254: 1252: 1249: 1248: 1212: 1203: 1199: 1197: 1194: 1193: 1162: 1153: 1149: 1128: 1117: 1116: 1112: 1111: 1110: 1108: 1105: 1104: 1071: 1067: 1062: 1053: 1049: 1040: 1029: 1028: 1024: 1023: 1022: 1011: 1000: 999: 995: 994: 993: 988: 986: 983: 982: 959: 955: 946: 942: 933: 922: 921: 917: 916: 915: 913: 910: 909: 903: 897: 895:Image impedance 892: 866: 865: 861: 843: 837: 834: 833: 782: 765: 754: 751: 743: 740: 739: 726: 707: 650: 641: 637: 635: 632: 631: 593: 589: 587: 584: 583: 566: 562: 560: 557: 556: 540: 537: 536: 534: 515: 508: 498: 491: 485: 463: 431: 425: 422: 416: 408: 404: 400: 397: 391: 383: 380: 374: 363:image impedance 322: 294:ladder topology 247:George Campbell 243: 196: 167: 166: 142: 134: 133: 129:mm'-type filter 86: 76: 75: 61:Gaussian filter 36: 24: 17: 12: 11: 5: 2491: 2481: 2480: 2475: 2470: 2454: 2453: 2448: 2432: 2431: 2426: 2423: 2422: 2421: 2410: 2399: 2392: 2381: 2378: 2376: 2375: 2366: 2357: 2348: 2339: 2330: 2316: 2307: 2287: 2283: 2277: 2273: 2245:Sands, Matthew 2228: 2209: 2200:Lee, Thomas H. 2191: 2182: 2163: 2154: 2136:(1): 107–132, 2120: 2111: 2084: 2082: 2079: 2078: 2077: 2072: 2067: 2062: 2055: 2052: 2049: 2048: 2045: 2044: 2037: 2030: 2022: 2021: 2018: 2017: 2008: 1998: 1997: 1994: 1990: 1989: 1979: 1978: 1974: 1973: 1964: 1955: 1945: 1944: 1941: 1938: 1934: 1933: 1925: 1924: 1921: 1918: 1917: 1907: 1906: 1902: 1901: 1892: 1883: 1873: 1872: 1869: 1866: 1862: 1861: 1854: 1850: 1849: 1843: 1828: 1819: 1806: 1802:faces another 1797: 1785: 1781: 1773: 1770: 1729: 1718: 1715: 1714: 1713: 1700: 1697: 1692: 1689: 1682: 1678: 1674: 1669: 1664: 1661: 1657: 1653: 1650: 1647: 1644: 1641: 1638: 1635: 1621: 1620: 1605: 1601: 1597: 1592: 1587: 1584: 1580: 1576: 1573: 1570: 1567: 1564: 1561: 1558: 1555: 1552: 1549: 1535: 1534: 1521: 1518: 1515: 1510: 1506: 1493:half-sections 1487: 1486: 1473: 1470: 1465: 1460: 1457: 1453: 1449: 1446: 1401: 1398: 1397: 1396: 1381: 1376: 1372: 1368: 1363: 1359: 1353: 1350: 1347: 1341: 1338: 1333: 1318: 1317: 1302: 1298: 1294: 1289: 1284: 1280: 1274: 1271: 1265: 1262: 1257: 1238: 1237: 1223: 1220: 1216: 1211: 1206: 1202: 1183: 1182: 1169: 1166: 1161: 1156: 1152: 1148: 1145: 1142: 1139: 1136: 1131: 1123: 1120: 1115: 1090: 1089: 1074: 1070: 1066: 1061: 1056: 1052: 1048: 1043: 1035: 1032: 1027: 1021: 1014: 1006: 1003: 998: 992: 976: 975: 962: 958: 954: 949: 945: 941: 936: 928: 925: 920: 896: 893: 891: 890: 878: 875: 869: 864: 858: 855: 852: 849: 846: 842: 830: 806: 805: 790: 787: 781: 774: 771: 768: 763: 760: 757: 750: 747: 724: 705: 691:dual impedance 671: 670: 657: 654: 649: 644: 640: 620:, and a shunt 596: 592: 569: 565: 544: 530: 513: 506: 496: 489: 462: 459: 458: 457: 429: 420: 395: 390:is designated 378: 330:ladder network 321: 318: 242: 239: 219:ladder network 207:k-type filters 198: 197: 195: 194: 187: 180: 172: 169: 168: 165: 164: 159: 154: 149: 143: 141:Simple filters 140: 139: 136: 135: 132: 131: 126: 121: 115: 112:Lattice filter 109: 103: 98: 93: 87: 82: 81: 78: 77: 74: 73: 68: 63: 58: 53: 48: 43: 37: 32: 31: 28: 27: 15: 9: 6: 4: 3: 2: 2490: 2479: 2476: 2474: 2471: 2469: 2466: 2465: 2463: 2456: 2451: 2449:81-203-2638-5 2445: 2441: 2440: 2434: 2433: 2429: 2428: 2419: 2415: 2411: 2408: 2404: 2401:Zobel, O. J., 2400: 2397: 2393: 2390: 2389: 2384: 2383: 2370: 2361: 2352: 2343: 2334: 2325: 2323: 2321: 2311: 2303: 2285: 2281: 2275: 2271: 2256: 2255: 2250: 2246: 2242: 2238: 2232: 2224: 2220: 2213: 2205: 2201: 2195: 2186: 2178: 2173: 2167: 2158: 2151: 2147: 2143: 2139: 2135: 2131: 2124: 2115: 2108: 2104: 2100: 2096: 2089: 2085: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2057: 2042: 2035: 2027: 2023: 2013: 2004: 1999: 1991: 1985: 1980: 1975: 1969: 1960: 1951: 1946: 1935: 1930: 1927: 1926: 1913: 1908: 1903: 1897: 1888: 1879: 1874: 1863: 1858: 1855: 1851: 1846: 1841: 1838: 1834: 1827: 1818: 1805: 1796: 1778: 1769: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1728: 1724: 1698: 1695: 1690: 1687: 1680: 1676: 1672: 1667: 1662: 1659: 1655: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1626: 1625: 1624: 1603: 1599: 1595: 1590: 1585: 1582: 1578: 1574: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1540: 1539: 1538: 1519: 1516: 1513: 1508: 1504: 1496: 1495: 1494: 1492: 1471: 1468: 1463: 1458: 1455: 1451: 1447: 1444: 1437: 1436: 1435: 1433: 1427: 1419: 1415: 1411: 1406: 1379: 1374: 1370: 1366: 1361: 1357: 1351: 1348: 1345: 1331: 1323: 1322: 1321: 1300: 1296: 1292: 1287: 1282: 1278: 1272: 1269: 1255: 1247: 1246: 1245: 1243: 1221: 1218: 1214: 1209: 1204: 1200: 1192: 1191: 1190: 1188: 1167: 1164: 1159: 1154: 1146: 1143: 1137: 1134: 1129: 1113: 1103: 1102: 1101: 1099: 1095: 1072: 1068: 1064: 1059: 1054: 1050: 1046: 1041: 1025: 1019: 1012: 996: 990: 981: 980: 979: 960: 956: 952: 947: 943: 939: 934: 918: 908: 907: 906: 902: 876: 873: 862: 856: 850: 847: 844: 832: 831: 829: 827: 823: 819: 815: 811: 788: 785: 779: 772: 769: 766: 761: 758: 755: 748: 745: 738: 737: 736: 734: 730: 723: 719: 715: 711: 704: 700: 696: 692: 688: 684: 680: 676: 655: 652: 647: 642: 638: 630: 629: 628: 626: 623: 619: 616: 594: 590: 567: 563: 542: 533: 529: 524: 518: 512: 505: 501: 495: 488: 482: 476: 472: 467: 455: 453: 449: 445: 441: 436: 435: 434: 428: 419: 414: 394: 389: 377: 372: 368: 364: 360: 356: 348: 344: 342: 338: 335: 331: 327: 317: 315: 311: 307: 303: 299: 295: 291: 287: 282: 280: 276: 272: 267: 265: 260: 256: 252: 248: 238: 236: 232: 228: 224: 220: 216: 212: 208: 204: 193: 188: 186: 181: 179: 174: 173: 171: 170: 163: 160: 158: 155: 153: 150: 148: 145: 144: 138: 137: 130: 127: 125: 122: 119: 116: 113: 110: 107: 106:Zobel network 104: 102: 99: 97: 94: 92: 89: 88: 85: 80: 79: 72: 69: 67: 64: 62: 59: 57: 56:Bessel filter 54: 52: 49: 47: 44: 42: 39: 38: 35: 30: 29: 26: 23:Linear analog 21: 20: 2455: 2438: 2413: 2406: 2402: 2395: 2386: 2369: 2360: 2351: 2342: 2333: 2310: 2258: 2253: 2231: 2222: 2212: 2203: 2194: 2185: 2171: 2170:Zobel, O J, 2166: 2157: 2133: 2129: 2123: 2114: 2098: 2094: 2088: 1943:Box Section 1835: 1825: 1816: 1803: 1794: 1791: 1745: 1737: 1733: 1726: 1720: 1622: 1536: 1490: 1488: 1429: 1319: 1239: 1184: 1091: 977: 904: 825: 821: 817: 813: 809: 807: 732: 721: 713: 709: 702: 698: 694: 689:must be the 686: 682: 674: 672: 624: 617: 612: 531: 527: 516: 510: 503: 499: 493: 486: 474: 470: 437: 426: 417: 413:half-section 412: 399:due to the " 392: 387: 382:due to the " 375: 370: 358: 354: 352: 336: 323: 283: 268: 244: 227:ideal filter 206: 202: 201: 90: 2161:Bray, p.62. 2101:(2): 1–32, 1860:Unbalanced 1762:transformed 1240:Below this 320:Terminology 286:multiplexed 251:AT&T Co 2462:Categories 2385:Bray, J., 2380:References 1940:H Section 1868:T Section 1424:See also: 899:See also: 622:admittance 461:Derivation 444:capacitors 334:inductance 271:RL circuit 255:Otto Zobel 162:RLC filter 120:(all-pass) 114:(all-pass) 1932:Balanced 1696:π 1677:ω 1673:ω 1668:⁡ 1660:− 1649:β 1640:α 1634:γ 1600:ω 1596:ω 1591:⁡ 1583:− 1563:β 1554:α 1548:γ 1520:γ 1505:γ 1464:⁡ 1456:− 1445:γ 1371:ω 1367:− 1358:ω 1297:ω 1293:− 1279:ω 1242:frequency 1201:ω 1189:given by 1144:ω 1138:− 1098:imaginary 1034:Π 1005:Π 854:→ 808:Elements 770:ω 759:ω 729:resonance 615:impedance 591:ω 564:ω 543:ω 473:is equal 448:inductors 440:impedance 314:Band-stop 312:filters. 310:band-pass 306:high-pass 279:pass band 275:stop band 157:LC filter 152:RL filter 147:RC filter 2150:62360033 2054:See also 2034:balanced 302:low-pass 2036:lines. 1923:  1853:  1418:radians 716:is the 241:History 223:passive 205:, also 2446:  2407:Vol. 2 2148:  1824:faces 1414:nepers 673:Thus, 2146:S2CID 2081:Notes 2029:N.B. 1845:Image 1750:farad 1742:henry 339:– in 215:image 2444:ISBN 2041:edit 1756:and 1748:= 1 1740:= 1 1656:cosh 1452:sinh 1430:The 1408:The 1094:real 978:and 824:and 812:and 679:ohms 502:and 446:and 367:port 308:and 2138:doi 2103:doi 1579:sin 841:lim 820:. 693:of 409:"Π" 407:or 405:"T" 2464:: 2319:^ 2251:. 2247:. 2243:; 2239:; 2221:. 2174:, 2144:, 2134:18 2132:, 2097:, 1830:iΠ 1821:iΠ 1808:iT 1799:iT 1768:. 720:, 532:iT 509:= 492:= 475:Ck 430:iΠ 421:iT 396:iΠ 379:iT 304:, 253:, 2305:. 2286:0 2282:C 2276:0 2272:L 2225:. 2140:: 2105:: 2099:1 1826:Z 1817:Z 1813:Π 1804:Z 1795:Z 1786:n 1782:ω 1746:C 1738:L 1734:k 1730:c 1727:ω 1699:2 1691:i 1688:+ 1681:c 1663:1 1652:= 1646:i 1643:+ 1637:= 1604:c 1586:1 1575:i 1572:+ 1569:0 1566:= 1560:i 1557:+ 1551:= 1517:n 1514:= 1509:n 1491:n 1472:k 1469:Z 1459:1 1448:= 1420:. 1380:2 1375:c 1362:2 1352:L 1349:i 1346:= 1340:T 1337:i 1332:Z 1301:2 1288:2 1283:c 1273:L 1270:= 1264:T 1261:i 1256:Z 1222:C 1219:L 1215:1 1210:= 1205:c 1168:C 1165:L 1160:+ 1155:2 1151:) 1147:L 1141:( 1135:= 1130:2 1122:T 1119:i 1114:Z 1073:2 1069:k 1065:1 1060:+ 1055:2 1051:Y 1047:= 1042:2 1031:i 1026:Y 1020:= 1013:2 1002:i 997:Z 991:1 961:2 957:k 953:+ 948:2 944:Z 940:= 935:2 927:T 924:i 919:Z 889:. 877:k 874:= 868:i 863:Z 857:0 851:Y 848:, 845:Z 826:Y 822:Z 818:k 814:C 810:L 804:. 789:C 786:L 780:= 773:C 767:i 762:L 756:i 749:= 746:k 733:ω 725:0 722:Z 714:k 710:k 706:i 703:Z 699:k 695:Z 687:Y 683:k 675:k 656:Y 653:Z 648:= 643:2 639:k 625:Y 618:Z 609:. 595:c 568:c 528:Z 517:k 514:1 511:C 507:2 504:L 500:k 497:2 494:C 490:1 487:L 471:L 456:. 427:Z 418:Z 401:Π 393:Z 384:T 376:Z 359:Y 355:Z 337:L 191:e 184:t 177:v

Index

Linear analog
electronic filters

Network synthesis filters
Butterworth filter
Chebyshev filter
Elliptic (Cauer) filter
Bessel filter
Gaussian filter
Optimum "L" (Legendre) filter
Linkwitz–Riley filter
Image impedance filters
Constant k filter
m-derived filter
General image filters
Zobel network
Lattice filter
Bridged T delay equaliser
Composite image filter
mm'-type filter
RC filter
RL filter
LC filter
RLC filter
v
t
e
electronic filter
image
ladder network
passive
ideal filter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.