Knowledge

Spin structure

Source 📝

5798: 2621: 3304: 5605: 2315: 6195:
theories where additional interactions imply that other fields may cancel the third Stiefel–Whitney class. The mathematical description of spinors in supergravity and string theory is a particularly subtle open problem, which was recently addressed in references. It turns out that the standard notion
3168: 5793:{\displaystyle \dots \longrightarrow {\textrm {H}}^{2}(M;\mathbf {Z} ){\stackrel {2}{\longrightarrow }}{\textrm {H}}^{2}(M;\mathbf {Z} )\longrightarrow {\textrm {H}}^{2}(M;\mathbf {Z} _{2}){\stackrel {\beta }{\longrightarrow }}{\textrm {H}}^{3}(M;\mathbf {Z} )\longrightarrow \dots ,} 5010: 4414: 5272: 3130: 2616:{\displaystyle {\begin{aligned}E_{2}^{0,1}&=H^{0}(M,H^{1}(\operatorname {SO} (n),\mathbb {Z} /2))=H^{1}(\operatorname {SO} (n),\mathbb {Z} /2)\\E_{2}^{2,0}&=H^{2}(M,H^{0}(\operatorname {SO} (n),\mathbb {Z} /2))=H^{2}(M,\mathbb {Z} /2)\end{aligned}}} 5144: 2304: 2832: 3960: 4208: 727: 3299:{\displaystyle {\begin{matrix}\operatorname {Spin} (n)&\to &{\tilde {P}}_{E}&\to &M\\\downarrow &&\downarrow &&\downarrow \\\operatorname {SO} (n)&\to &P_{E}&\to &M\end{matrix}}} 3691: 500: 6196:
of spin structure is too restrictive for applications to supergravity and string theory, and that the correct notion of spinorial structure for the mathematical formulation of these theories is a "Lipschitz structure".
4911: 3605: 4539: 643: 591: 2977: 3460: 1369: 444: 838: 6735: 2158: 2320: 124:
have a spin structure. This is not always possible since there is potentially a topological obstruction to the existence of spin structures. Spin structures will exist if and only if the second
4266: 539: 1111: 5904:). Identify this class with the first element in the above exact sequence. The next arrow doubles this Chern class, and so legitimate bundles will correspond to even elements in the second 4258: 871: 777: 5159: 2988: 2686: 1234: 909: 4022: 3523: 2891: 1714: 1061: 4469: 4074: 3743: 2036: 1163: 3555: 2068: 6028: 4887:– a Dirac operator is a square root of a second order operator, and exists due to the spin structure being a "square root". This was a motivating example for the index theorem. 3828: 1007: 961: 5054: 3397: 1891: 4682: 5916:, while odd elements will correspond to bundles that fail the triple overlap condition. The obstruction then is classified by the failure of an element in the second H( 5482:
When a manifold carries a spin structure at all, the set of spin structures forms an affine space. Moreover, the set of spin structures has a free transitive action of
2173: 2101: 1196: 6077:
cohomology but also of integral cohomology in one higher degree. In fact this is the case for all even Stiefel–Whitney classes. It is traditional to use an uppercase
5856:
lift of each transition function, which is a choice of sign. The lift does not exist when the product of these three signs on a triple overlap is −1, which yields the
1292: 1265: 1950: 4765: 2691: 4100: 1984: 5393:
that extends over the 3-skeleton. Similarly to the case of spin structures, one takes a Whitney sum with a trivial line bundle if the manifold is odd-dimensional.
3770: 3334: 3160: 1629: 1327: 375: 3856: 4654: 3848: 3354: 1911: 667: 395: 5474:
of the square of the U(1) part of any obtained spin bundle. By a theorem of Hopf and Hirzebruch, closed orientable 4-manifolds always admit a spin structure.
4108: 677: 6152:. Therefore, the choice of spin structure is part of the data needed to define the wavefunction, and one often needs to sum over these choices in the 6081:
for the resulting classes in odd degree, which are called the integral Stiefel–Whitney classes, and are labeled by their degree (which is always odd).
3610: 449: 4549:
When spin structures exist, the inequivalent spin structures on a manifold have a one-to-one correspondence (not canonical) with the elements of H(
5535:
This failure occurs at precisely the same intersections as an identical failure in the triple products of transition functions of the obstructed
6424: 5005:{\displaystyle 1\to \mathbb {Z} _{2}\to \operatorname {Spin} ^{\mathbf {C} }(n)\to \operatorname {SO} (n)\times \operatorname {U} (1)\to 1.} 3560: 4474: 6153: 602: 5528:. In particular, the product of transition functions on a three-way intersection is not always equal to one, as is required for a 548: 2899: 1840:
that extends over the 2-skeleton. If the dimension is lower than 3, one first takes a Whitney sum with a trivial line bundle.
17: 3402: 1383:
Haefliger found necessary and sufficient conditions for the existence of a spin structure on an oriented Riemannian manifold (
6838: 6819: 6796: 6709: 6580: 6484: 1332: 407: 5524:. When the spin structure is nonzero this square root bundle has a non-integral Chern class, which means that it fails the 782: 4409:{\displaystyle 0\to H^{1}(M,\mathbb {Z} /2)\to H^{1}(P_{E},\mathbb {Z} /2)\to H^{1}(\operatorname {SO} (n),\mathbb {Z} /2)} 2112: 505: 322:(1956) found the topological obstruction to the existence of a spin structure on an orientable Riemannian manifold and 5267:{\displaystyle {\mathrm {Spin} }^{\mathbb {C} }(n)={\mathrm {Spin} }(n)\times _{\mathbb {Z} _{2}}{\mathrm {U} }(1)\,,} 5149:
This will always have the element (−1,−1) in the kernel. Taking the quotient modulo this element gives the group Spin(
3125:{\displaystyle H^{1}(P_{E},\mathbb {Z} /2)\to H^{1}(\operatorname {SO} (n),\mathbb {Z} /2)\to H^{2}(M,\mathbb {Z} /2)} 1069: 6892: 6869: 6617: 4216: 843: 742: 6933: 2629: 1201: 876: 6381: 5809:
is induced by multiplication by 2, the third is induced by restriction modulo 2 and the fourth is the associated
5286: 4876: 3968: 3469: 2837: 1660: 1020: 6948: 6928: 6811: 6605: 6568: 5970:
is in the image of the preceding arrow only if it is in the kernel of the next arrow, which we recall is the
4561: 4422: 4027: 3696: 1989: 1116: 3528: 2041: 105: 6938: 6125: 5984: 5139:{\displaystyle \kappa \times i\colon {\mathrm {Spin} }(n)\times {\mathrm {U} }(1)\to {\mathrm {U} }(N).} 6788: 6472: 5889:
bundle nor the U(1) bundle satisfies the triple overlap condition and so neither is actually a bundle.
3775: 966: 920: 5956:
is not in the image of the arrow, then there does not exist any U(1) bundle with obstruction equal to
6417: 5428: 3359: 2038:. These results can be easily proven using a spectral sequence argument for the associated principal 1914: 1857: 1403: 125: 5555:
and so the spin bundle satisfies the triple overlap condition and is therefore a legitimate bundle.
4662: 6210: 6137: 5525: 5382: 4807: 4793: 4779: 4076:, showing this latter cohomology group classifies the various spin structures on the vector bundle 2299:{\displaystyle 0\to E_{3}^{0,1}\to E_{2}^{0,1}\xrightarrow {d_{2}} E_{2}^{2,0}\to E_{3}^{2,0}\to 0} 1829: 1558: 6733:
Friedrich, Thomas; Trautman, Andrzej (2000). "Spin spaces, Lipschitz groups, and spinor bundles".
6609: 6572: 4857:
of a spin manifold is an integer, and is an even integer if in addition the dimension is 4 mod 8.
6460: 6101: 5466:(in other words, the third integral Stiefel–Whitney class vanishes). In this case one says that 4836: 2164: 1481: 2827:{\displaystyle E_{\infty }^{0,1}=H^{1}(P_{E},\mathbb {Z} /2)/F^{1}(H^{1}(P_{E},\mathbb {Z} /2))} 2073: 1168: 6682:
Lazaroiu, C.; Shahbazi, C.S. (2019). "On the spin geometry of supergravity and string theory".
6506: 6070:
This argument also demonstrates that second Stiefel–Whitney class defines elements not only of
5971: 5810: 1832:, a spin structure can equivalently be thought of as a homotopy-class of trivialization of the 1520:. There are topological obstructions to being able to do it, and consequently, a given bundle 1270: 1243: 6881:"4.5 Notes Spin structures, the structure group definition; Equivalence of the definitions of" 6880: 1919: 6205: 4744: 264: 77: 28: 6597: 6560: 6464: 6281: 4102:. This can be done by looking at the long exact sequence of homotopy groups of the fibration 4079: 1963: 6908: 6525: 6476: 6354: 6180: 5564: 4868: 4704: 3955:{\displaystyle H^{1}(P_{E},\mathbb {Z} /2)\to H^{1}(\operatorname {SO} (n),\mathbb {Z} /2)} 3748: 3312: 3138: 1957: 1614: 1473: 1300: 348: 69: 65: 8: 6636:
Lazaroiu, C.; Shahbazi, C.S. (2019). "Real pinor bundles and real Lipschitz structures".
6598: 6561: 5594: 4899: 4821: 4694: 1513: 1505: 1010: 343: 314:
A precise definition of spin structure on manifold was possible only after the notion of
39: 6529: 5924:) to be in the image of the arrow, which, by exactness, is classified by its image in H( 3309:
where the two left vertical maps are the double covering maps. Now, double coverings of
6849: 6762: 6744: 6715: 6687: 6663: 6645: 6541: 6515: 6398: 4864:
is a rational invariant, defined for any manifold, but it is not in general an integer.
4639: 4629: 4617: 4203:{\displaystyle \pi _{1}(\operatorname {SO} (n))\to \pi _{1}(P_{E})\to \pi _{1}(M)\to 1} 3833: 3339: 1896: 652: 380: 81: 6237: 5857: 5335:
respectively. This makes the Spin group both a bundle over the circle with fibre Spin(
1372: 319: 72:
where they are an essential ingredient in the definition of any theory with uncharged
6943: 6888: 6865: 6834: 6815: 6792: 6766: 6719: 6705: 6667: 6613: 6576: 6480: 6379:
Borel, A.; Hirzebruch, F. (1958). "Characteristic classes and homogeneous spaces I".
5563:
The above intuitive geometric picture may be made concrete as follows. Consider the
2167:
can be applied. From general theory of spectral sequences, there is an exact sequence
1807: 1540: 722:{\displaystyle \phi :P_{\operatorname {Spin} }\rightarrow P_{\operatorname {SO} }(E)} 6857: 6754: 6697: 6655: 6545: 6533: 6390: 6333: 6297: 6121: 5529: 5386: 4625: 3463: 1536: 268: 6856:. Lecture Notes in Mathematics. Vol. 676. Springer-Verlag. pp. 217–246. 6701: 6465: 6441: 6094: 4700: 4579:). More precisely, the space of the isomorphism classes of spin structures is an 1431:. Hence, a spin structure exists if and only if the second Stiefel–Whitney class 3686:{\displaystyle 1\in H^{1}(\operatorname {SO} (n),\mathbb {Z} /2)=\mathbb {Z} /2} 495:{\displaystyle \rho :\operatorname {Spin} (n)\rightarrow \operatorname {SO} (n)} 6659: 6187:
bundles, and in particular no charged spinors can exist on a space that is not
6161: 5590: 4903: 4884: 4601:
a spin structure corresponds to a binary choice of whether a section of the SO(
1833: 1776: 236: 6758: 5845:. It reflects the fact that one may always locally lift an SO(n) bundle to a 6922: 6912: 6173: 6169: 5536: 5521: 1852: 89: 54: 1524:
may not admit any spinor bundle. In case it does, one says that the bundle
6192: 6129: 5319:
which is generated by the pair of covering transformations for the bundles
5046: 4872: 4580: 3965:
is the set of double coverings giving spin structures. Now, this subset of
1953: 1764:
is the mapping of groups presenting the spin group as a double-cover of SO(
1544: 1493: 734: 315: 326:(1968) extended this result to the non-orientable pseudo-Riemannian case. 108:, mathematicians ask whether or not a given oriented Riemannian manifold ( 6537: 6317: 6259: 5893: 5471: 5385:, a spin structure can be equivalently thought of as a homotopy class of 4657: 1470: 1391:). The obstruction to having a spin structure is a certain element of H( 730: 398: 323: 6338: 6321: 6861: 6402: 6302: 6285: 5390: 5378: 4825: 4613: 1849: 1837: 1825: 1603: 340: 36: 5974:ÎČ. That is, the condition for the cancellation of the obstruction is 5539:. Therefore, the triple products of transition functions of the full 4880: 4861: 4854: 6749: 6520: 5427:
A spin structure exists when the bundle is orientable and the second
2104: 164:) = 0, then the set of the isomorphism classes of spin structures on 6394: 2232: 6692: 6650: 6165: 6091: 4633: 101: 85: 6240:(1956). "Sur l'extension du groupe structural d'un espace fibré". 3600:{\displaystyle \operatorname {Spin} (n)\to \operatorname {SO} (n)} 6133: 5520:
This has the following geometric interpretation, which is due to
4898:
A spin structure is analogous to a spin structure on an oriented
4534:{\displaystyle 1\in H^{1}(\operatorname {SO} (n),\mathbb {Z} /2)} 3466:
and change of coefficients, this is exactly the cohomology group
73: 6215: 638:{\displaystyle \pi _{P}:P_{\operatorname {Spin} }\rightarrow M} 117: 58: 5396:
Yet another definition is that a spin structure on a manifold
5045:, i.e., the scalar multiples of the identity. Thus there is a 5034:) consists of the diagonal elements coming from the inclusion 4656:
the second Stiefel-Whitney class can be computed as the first
120:. One method for dealing with this problem is to require that 5806: 5586: 4541:
is in bijection with the kernel, we have the desired result.
1986:
is spin, the number of spin structures are in bijection with
6065: 5543:
bundle, which are the products of the triple product of the
586:{\displaystyle \pi :P_{\operatorname {SO} }(E)\rightarrow M} 6854:
Differential Geometrical Methods in Mathematical Physics II
5963:
and so the obstruction cannot be cancelled. By exactness,
5593:
by 2 and the third is reduction modulo 2. This induces a
4902:, but uses the Spin group, which is defined instead by the 183:
is assumed to be oriented, the first Stiefel–Whitney class
6286:"Champs spinoriels et propagateurs en rélativité générale" 4605:) bundle switches sheets when one encircles the loop. If 2972:{\displaystyle H^{1}(P_{E},\mathbb {Z} /2)\to E_{3}^{0,1}} 329: 307:
is called the spinor bundle for a given spin structure on
4628:
this corresponds to a choice of periodic or antiperiodic
4612:
vanishes then these choices may be extended over the two-
4636:
going around each loop. Note that on a complex manifold
3455:{\displaystyle {\text{Hom}}(\pi _{1}(E),\mathbb {Z} /2)} 3399:, which is in bijection with the set of group morphisms 293:
and the spin representation of its structure group Spin(
1557:), which is a principal bundle under the action of the 1364:{\displaystyle P_{\operatorname {SO} }(E)\rightarrow M} 439:{\displaystyle P_{\operatorname {SO} }(E)\rightarrow M} 3173: 3135:
Now, a spin structure is exactly a double covering of
833:{\displaystyle \quad \phi (pq)=\phi (p)\rho (q)\quad } 6048:
is the Bockstein of the second Stiefel–Whitney class
5987: 5608: 5162: 5057: 5030:
is a complex spinor representation. The center of U(
4914: 4747: 4665: 4642: 4477: 4425: 4269: 4219: 4111: 4082: 4030: 3971: 3859: 3836: 3778: 3751: 3699: 3613: 3563: 3531: 3472: 3405: 3362: 3342: 3315: 3171: 3141: 2991: 2902: 2840: 2694: 2632: 2318: 2176: 2115: 2076: 2044: 1992: 1966: 1922: 1899: 1860: 1663: 1617: 1335: 1303: 1273: 1246: 1204: 1171: 1119: 1072: 1023: 969: 923: 879: 846: 785: 745: 680: 655: 605: 551: 508: 452: 410: 383: 351: 235:
are defined to be the Stiefel–Whitney classes of its
6783:
Lawson, H. Blaine; Michelsohn, Marie-Louise (1989).
6631: 6629: 6442:"Spin manifold and the second Stiefel-Whitney class" 5874:
bundle with a U(1) bundle with the same obstruction
2153:{\displaystyle \operatorname {SO} (n)\to P_{E}\to M} 1460: 76:. They are also of purely mathematical interest in 6887:. American Mathematical Society. pp. 174–189. 5497:. Thus, spin-structures correspond to elements of 1610:), by which we mean that there exists a bundle map 6232: 6230: 6115: 6022: 5792: 5266: 5138: 5004: 4759: 4676: 4648: 4533: 4463: 4408: 4252: 4202: 4094: 4068: 4016: 3954: 3842: 3822: 3764: 3737: 3685: 3599: 3549: 3517: 3454: 3391: 3348: 3328: 3298: 3154: 3124: 2971: 2885: 2826: 2680: 2615: 2298: 2152: 2095: 2062: 2030: 1978: 1944: 1905: 1885: 1708: 1623: 1535:This may be made rigorous through the language of 1402:) . For a spin structure the class is the second 1363: 1321: 1286: 1259: 1228: 1190: 1157: 1105: 1055: 1001: 955: 903: 865: 832: 771: 721: 661: 637: 585: 533: 494: 438: 389: 369: 6732: 6626: 4620:) they may automatically be extended over all of 1843: 1512:is a prescription for consistently associating a 534:{\displaystyle (P_{\operatorname {Spin} },\phi )} 6920: 6782: 6681: 6635: 6458: 6355:"Spin structures on pseudo-Riemannian manifolds" 1786:, if a spin structure exists then one says that 1106:{\displaystyle \phi _{2}\circ f=\phi _{1}\quad } 6378: 6227: 5938:To cancel the corresponding obstruction in the 1013:are called "equivalent" if there exists a Spin( 6848:Greub, Werner; Petry, Herbert-Rainer (2006) . 6596:Gompf, Robert E.; Stipsicz, Andras I. (1999). 6164:, but for the fermions on the worldvolumes of 5892:A legitimate U(1) bundle is classified by its 4253:{\displaystyle {\text{Hom}}(-,\mathbb {Z} /2)} 866:{\displaystyle p\in P_{\operatorname {Spin} }} 772:{\displaystyle \pi \circ \phi =\pi _{P}\quad } 6915:and spin structures for mathematics students. 6595: 6352: 5870:To cancel this obstruction, one tensors this 2681:{\displaystyle E_{\infty }^{0,1}=E_{3}^{0,1}} 1229:{\displaystyle q\in \operatorname {Spin} (n)} 904:{\displaystyle q\in \operatorname {Spin} (n)} 6911:by Sven-S. Porst is a short introduction to 6280: 5881:. Notice that this is an abuse of the word 4544: 3830:. If it vanishes, then the inverse image of 1329:as a spin structure on the principal bundle 6686:. Trends in Mathematics. pp. 229–235. 6183:charged spinors are sections of associated 6037:where we have used the fact that the third 4703:admits 2 inequivalent spin structures; see 4017:{\displaystyle H^{1}(P_{E},\mathbb {Z} /2)} 3772:of the second Stiefel–Whitney class, hence 3518:{\displaystyle H^{1}(P_{E},\mathbb {Z} /2)} 2886:{\displaystyle H^{1}(P_{E},\mathbb {Z} /2)} 209:vanishes too. (The Stiefel–Whitney classes 168:is acted upon freely and transitively by H( 6847: 5470:is spin. Intuitively, the lift gives the 4597:Intuitively, for each nontrivial cycle on 4260:, giving the sequence of cohomology groups 1709:{\displaystyle \phi (pg)=\phi (p)\rho (g)} 64:Spin structures have wide applications to 6805: 6748: 6691: 6649: 6558: 6519: 6502:Spin–structures and homotopy equivalences 6337: 6301: 6258: 6236: 6066:Integral lifts of Stiefel–Whitney classes 5260: 5232: 5182: 4923: 4516: 4446: 4391: 4341: 4296: 4235: 4051: 3999: 3937: 3887: 3720: 3671: 3652: 3500: 3437: 3107: 3069: 3019: 2930: 2868: 2806: 2746: 2594: 2553: 2455: 2402: 2013: 6499: 6362:Revista de la UniĂłn MatemĂĄtica Argentina 6262:(1963). "Spin structures on manifolds". 4775:, but for different reasons; see below.) 4471:is the kernel, and the inverse image of 1056:{\displaystyle f:P_{1}\rightarrow P_{2}} 6878: 6828: 6316: 5547:and U(1) component bundles, are either 4464:{\displaystyle H^{1}(M,\mathbb {Z} /2)} 4069:{\displaystyle H^{1}(M,\mathbb {Z} /2)} 3738:{\displaystyle H^{2}(M,\mathbb {Z} /2)} 2031:{\displaystyle H^{1}(M,\mathbb {Z} /2)} 1158:{\displaystyle \quad f(pq)=f(p)q\quad } 330:Spin structures on Riemannian manifolds 14: 6921: 6808:Dirac Operators in Riemannian Geometry 6736:Annals of Global Analysis and Geometry 6563:Dirac Operators in Riemannian Geometry 6353:Alagia, H. R.; SĂĄnchez, C. U. (1985), 6055:(this can be taken as a definition of 5819:The obstruction to the existence of a 5304:) is the quotient group obtained from 3550:{\displaystyle \operatorname {SO} (n)} 2063:{\displaystyle \operatorname {SO} (n)} 6418:"Elliptic complexes and index theory" 5532:. Instead it is sometimes −1. 4792:More generally, all even-dimensional 1821:quotient of a principal spin bundle. 1294:are two equivalent double coverings. 6850:"On the lifting of structure groups" 5515: 1496:. This means that at each point of 1297:The definition of spin structure on 446:with respect to the double covering 6322:"AlgĂšbres de Clifford et K-thĂ©orie" 6023:{\displaystyle W_{3}=\beta w_{2}=0} 4893: 24: 6776: 6684:Geometric Methods in Physics XXXVI 5849:bundle, but one needs to choose a 5408:together with a spin structure on 5246: 5211: 5208: 5205: 5202: 5175: 5172: 5169: 5166: 5119: 5100: 5081: 5078: 5075: 5072: 4981: 3162:fitting into a commutative diagram 2700: 2638: 267:associated with the corresponding 25: 6960: 6902: 6430:from the original on 20 Aug 2018. 5477: 5281:. In other words, the group Spin( 3823:{\displaystyle w_{2}(1)=w_{2}(E)} 1461:Spin structures on vector bundles 1002:{\displaystyle (P_{2},\phi _{2})} 956:{\displaystyle (P_{1},\phi _{1})} 57:, giving rise to the notion of a 6415: 6097:of dimension 4 or less are spin. 5774: 5721: 5686: 5639: 5422: 4942: 3525:. Applying the same argument to 404:of the orthonormal frame bundle 53:allows one to define associated 6726: 6675: 6589: 6552: 6493: 6382:American Journal of Mathematics 6191:. An exception arises in some 6116:Application to particle physics 5942:bundle, this image needs to be 5512:although not in a natural way. 5153:). This is the twisted product 5015:To motivate this, suppose that 3392:{\displaystyle \pi _{1}(P_{E})} 1886:{\displaystyle \pi _{E}:E\to M} 1154: 1120: 1102: 829: 786: 768: 377:with an oriented vector bundle 88:. They form the foundation for 6833:. Springer. pp. 212–214. 6600:4-Manifolds and Kirby Calculus 6452: 6434: 6409: 6372: 6346: 6310: 6274: 6252: 5781: 5778: 5764: 5738: 5731: 5710: 5693: 5690: 5676: 5650: 5643: 5629: 5612: 5597:on cohomology, which contains 5558: 5257: 5251: 5222: 5216: 5194: 5188: 5130: 5124: 5114: 5111: 5105: 5092: 5086: 4996: 4993: 4987: 4975: 4969: 4960: 4957: 4951: 4933: 4918: 4867:This was originally proven by 4677:{\displaystyle {\text{mod }}2} 4528: 4509: 4503: 4494: 4458: 4436: 4403: 4384: 4378: 4369: 4356: 4353: 4324: 4311: 4308: 4286: 4273: 4247: 4225: 4194: 4191: 4185: 4172: 4169: 4156: 4143: 4140: 4137: 4131: 4122: 4086: 4063: 4041: 4011: 3982: 3949: 3930: 3924: 3915: 3902: 3899: 3870: 3817: 3811: 3795: 3789: 3732: 3710: 3664: 3645: 3639: 3630: 3594: 3588: 3579: 3576: 3570: 3544: 3538: 3512: 3483: 3449: 3430: 3424: 3411: 3386: 3373: 3284: 3267: 3262: 3256: 3243: 3237: 3231: 3219: 3205: 3193: 3188: 3182: 3119: 3097: 3084: 3081: 3062: 3056: 3047: 3034: 3031: 3002: 2945: 2942: 2913: 2880: 2851: 2821: 2818: 2789: 2776: 2758: 2729: 2606: 2584: 2568: 2565: 2546: 2540: 2531: 2512: 2467: 2448: 2442: 2433: 2417: 2414: 2395: 2389: 2380: 2361: 2290: 2266: 2204: 2180: 2144: 2131: 2128: 2122: 2087: 2057: 2051: 2025: 2003: 1970: 1952:vanishes. This is a result of 1939: 1933: 1877: 1844:Obstruction and classification 1703: 1697: 1691: 1685: 1676: 1667: 1539:. The collection of oriented 1378: 1355: 1352: 1346: 1316: 1304: 1223: 1217: 1148: 1142: 1133: 1124: 1040: 996: 970: 950: 924: 898: 892: 826: 820: 814: 808: 799: 790: 716: 710: 697: 629: 577: 574: 568: 541:is a spin structure on the SO( 528: 509: 489: 483: 474: 471: 465: 430: 427: 421: 364: 352: 13: 1: 6885:The wild world of 4-manifolds 6812:American Mathematical Society 6606:American Mathematical Society 6569:American Mathematical Society 6221: 6156:. In many physical theories 6084: 4847: 4562:universal coefficient theorem 1771:In the special case in which 334: 6909:Something on Spin Structures 6702:10.1007/978-3-030-01156-7_25 6638:Asian Journal of Mathematics 3336:are in bijection with index 7: 6879:Scorpan, Alexandru (2005). 6264:L'Enseignement MathĂ©matique 6199: 5896:, which is an element of H( 5435:is in the image of the map 5312:with respect to the normal 4877:Atiyah–Singer index theorem 4875:, and can be proven by the 4687: 3557:, the non-trivial covering 1960:. Furthermore, in the case 1893:a spin structure exists on 297:) on the space of spinors Δ 95: 10: 6965: 6806:Friedrich, Thomas (2000). 6789:Princeton University Press 6660:10.4310/AJM.2019.v23.n5.a3 6559:Friedrich, Thomas (2000). 6473:Princeton University Press 2096:{\displaystyle P_{E}\to M} 1913:if and only if the second 1602:) under the action of the 1543:of a vector bundle form a 1191:{\displaystyle p\in P_{1}} 153:vanishes. Furthermore, if 61:in differential geometry. 6326:Ann. Sci. Éc. Norm. SupĂ©r 5400:is a complex line bundle 5300:Viewed another way, Spin( 4808:complex projective spaces 4794:complex projective spaces 4545:Remarks on classification 1810:of the tangent fibers of 1565:). A spin structure for 1287:{\displaystyle \phi _{2}} 1260:{\displaystyle \phi _{1}} 502:. In other words, a pair 6461:Michelsohn, Marie-Louise 6211:Orthonormal frame bundle 6138:associated vector bundle 6102:almost complex manifolds 5935:) under the next arrow. 5526:triple overlap condition 5339:), and a bundle over SO( 4780:complex projective plane 2982:giving an exact sequence 1945:{\displaystyle w_{2}(E)} 1591:) to a principal bundle 1559:special orthogonal group 6934:Structures on manifolds 6759:10.1023/A:1006713405277 6507:Geometry & Topology 6126:spin–statistics theorem 5346:The fundamental group π 5343:) with fibre a circle. 4760:{\displaystyle n\neq 2} 4024:can be identified with 2834:for some filtration on 2165:Serre spectral sequence 1782:over the base manifold 339:A spin structure on an 245:The bundle of spinors π 6242:C. R. Acad. Sci. Paris 6041:Stiefel–Whitney class 6024: 5972:Bockstein homomorphism 5811:Bockstein homomorphism 5794: 5377:If the manifold has a 5268: 5140: 5006: 4761: 4678: 4650: 4535: 4465: 4417: 4410: 4254: 4211: 4204: 4096: 4095:{\displaystyle E\to M} 4070: 4018: 3963: 3956: 3844: 3824: 3766: 3739: 3687: 3601: 3551: 3519: 3456: 3393: 3350: 3330: 3307: 3300: 3156: 3133: 3126: 2980: 2973: 2887: 2828: 2682: 2624: 2617: 2307: 2300: 2161: 2154: 2103:. Notice this gives a 2097: 2064: 2032: 1980: 1979:{\displaystyle E\to M} 1946: 1907: 1887: 1824:If the manifold has a 1806:) principal bundle of 1710: 1625: 1508:. A spinor bundle of 1365: 1323: 1288: 1261: 1230: 1192: 1159: 1107: 1057: 1003: 957: 913: 905: 867: 834: 773: 723: 663: 639: 587: 535: 496: 440: 391: 371: 18:Complex spin structure 6829:Karoubi, Max (2008). 6206:Metaplectic structure 6025: 5949:. In particular, if 5823:bundle is an element 5795: 5429:Stiefel–Whitney class 5277:where U(1) = SO(2) = 5269: 5141: 5007: 4762: 4679: 4651: 4536: 4466: 4411: 4262: 4255: 4205: 4104: 4097: 4071: 4019: 3957: 3852: 3845: 3825: 3767: 3765:{\displaystyle w_{2}} 3740: 3688: 3602: 3552: 3520: 3457: 3394: 3351: 3331: 3329:{\displaystyle P_{E}} 3301: 3164: 3157: 3155:{\displaystyle P_{E}} 3127: 2984: 2974: 2895: 2888: 2829: 2683: 2618: 2311: 2301: 2169: 2155: 2108: 2098: 2065: 2033: 1981: 1947: 1915:Stiefel–Whitney class 1908: 1888: 1711: 1626: 1624:{\displaystyle \phi } 1404:Stiefel–Whitney class 1366: 1324: 1322:{\displaystyle (M,g)} 1289: 1262: 1231: 1193: 1160: 1108: 1058: 1009:on the same oriented 1004: 958: 906: 868: 835: 774: 738: 724: 664: 640: 588: 536: 497: 441: 392: 372: 370:{\displaystyle (M,g)} 318:had been introduced; 265:complex vector bundle 126:Stiefel–Whitney class 78:differential geometry 29:differential geometry 6949:Mathematical physics 6929:Riemannian manifolds 6538:10.2140/gt.1997.1.41 6181:quantum field theory 6136:is a section of the 5985: 5606: 5565:short exact sequence 5354:)) is isomorphic to 5160: 5055: 4912: 4837:Calabi–Yau manifolds 4822:orientable manifolds 4806:All odd-dimensional 4745: 4705:theta characteristic 4663: 4640: 4475: 4423: 4267: 4217: 4109: 4080: 4028: 3969: 3857: 3834: 3776: 3749: 3697: 3611: 3561: 3529: 3470: 3403: 3360: 3340: 3313: 3169: 3139: 2989: 2900: 2893:, hence we get a map 2838: 2692: 2630: 2316: 2174: 2113: 2074: 2042: 1990: 1964: 1958:Friedrich Hirzebruch 1920: 1897: 1858: 1661: 1615: 1474:topological manifold 1333: 1301: 1271: 1244: 1202: 1169: 1117: 1070: 1021: 967: 921: 917:Two spin structures 877: 844: 783: 743: 678: 653: 645:is a principal Spin( 603: 549: 506: 450: 408: 381: 349: 179:) . As the manifold 70:quantum field theory 66:mathematical physics 6530:1997math......5218G 6459:Lawson, H. Blaine; 6416:Pati, Vishwambhar. 6339:10.24033/asens.1163 6290:Bull. Soc. Math. Fr 6111:manifolds are spin. 5595:long exact sequence 5585:, where the second 4900:Riemannian manifold 4879:, by realizing the 4630:boundary conditions 2968: 2715: 2677: 2653: 2494: 2343: 2289: 2265: 2243: 2227: 2203: 1514:spin representation 1506:inner product space 1011:Riemannian manifold 545:)-principal bundle 344:Riemannian manifold 68:, in particular to 40:Riemannian manifold 6939:Algebraic topology 6862:10.1007/BFb0063673 6500:R. Gompf (1997). " 6446:Math.Stachexchange 6303:10.24033/bsmf.1604 6154:partition function 6020: 5790: 5379:cell decomposition 5264: 5136: 5002: 4883:as the index of a 4757: 4674: 4646: 4618:obstruction theory 4564:is isomorphic to H 4531: 4461: 4406: 4250: 4200: 4092: 4066: 4014: 3952: 3840: 3820: 3762: 3735: 3683: 3597: 3547: 3515: 3452: 3389: 3346: 3326: 3296: 3294: 3152: 3122: 2969: 2948: 2883: 2824: 2695: 2678: 2657: 2633: 2613: 2611: 2474: 2323: 2296: 2269: 2245: 2207: 2183: 2150: 2093: 2060: 2028: 1976: 1942: 1903: 1883: 1826:cell decomposition 1706: 1621: 1541:orthonormal frames 1516:to every point of 1361: 1319: 1284: 1257: 1226: 1188: 1155: 1103: 1053: 1017:)-equivariant map 999: 953: 901: 863: 830: 769: 719: 659: 635: 583: 531: 492: 436: 387: 367: 82:algebraic topology 6840:978-3-540-79889-7 6821:978-0-8218-2055-1 6798:978-0-691-08542-5 6711:978-3-030-01155-0 6582:978-0-8218-2055-1 6486:978-0-691-08542-5 6128:implies that the 5885:, as neither the 5805:where the second 5755: 5747: 5701: 5667: 5659: 5620: 5516:Geometric picture 5387:complex structure 5287:central extension 5039: : U(1) → U( 4669: 4649:{\displaystyle X} 4223: 3843:{\displaystyle 1} 3745:is precisely the 3693:, and the map to 3409: 3349:{\displaystyle 2} 3208: 2244: 1906:{\displaystyle E} 1808:orthonormal bases 1537:principal bundles 1484:vector bundle on 662:{\displaystyle M} 390:{\displaystyle E} 16:(Redirected from 6956: 6898: 6875: 6844: 6825: 6802: 6771: 6770: 6752: 6730: 6724: 6723: 6695: 6679: 6673: 6671: 6653: 6633: 6624: 6623: 6603: 6593: 6587: 6586: 6566: 6556: 6550: 6549: 6523: 6497: 6491: 6490: 6470: 6456: 6450: 6449: 6438: 6432: 6431: 6429: 6422: 6413: 6407: 6406: 6376: 6370: 6369: 6359: 6350: 6344: 6343: 6341: 6314: 6308: 6307: 6305: 6282:Lichnerowicz, A. 6278: 6272: 6271: 6256: 6250: 6249: 6234: 6132:of an uncharged 6122:particle physics 6095:smooth manifolds 6029: 6027: 6026: 6021: 6013: 6012: 5997: 5996: 5915: 5844: 5799: 5797: 5796: 5791: 5777: 5763: 5762: 5757: 5756: 5753: 5749: 5748: 5746: 5741: 5736: 5730: 5729: 5724: 5709: 5708: 5703: 5702: 5699: 5689: 5675: 5674: 5669: 5668: 5665: 5661: 5660: 5658: 5653: 5648: 5642: 5628: 5627: 5622: 5621: 5618: 5584: 5554: 5550: 5530:principal bundle 5511: 5496: 5465: 5418: 5334: 5330: 5311: 5273: 5271: 5270: 5265: 5250: 5249: 5243: 5242: 5241: 5240: 5235: 5215: 5214: 5187: 5186: 5185: 5179: 5178: 5145: 5143: 5142: 5137: 5123: 5122: 5104: 5103: 5085: 5084: 5044: 5029: 5011: 5009: 5008: 5003: 4947: 4946: 4945: 4932: 4931: 4926: 4766: 4764: 4763: 4758: 4683: 4681: 4680: 4675: 4670: 4667: 4655: 4653: 4652: 4647: 4626:particle physics 4560:), which by the 4540: 4538: 4537: 4532: 4524: 4519: 4493: 4492: 4470: 4468: 4467: 4462: 4454: 4449: 4435: 4434: 4415: 4413: 4412: 4407: 4399: 4394: 4368: 4367: 4349: 4344: 4336: 4335: 4323: 4322: 4304: 4299: 4285: 4284: 4259: 4257: 4256: 4251: 4243: 4238: 4224: 4221: 4209: 4207: 4206: 4201: 4184: 4183: 4168: 4167: 4155: 4154: 4121: 4120: 4101: 4099: 4098: 4093: 4075: 4073: 4072: 4067: 4059: 4054: 4040: 4039: 4023: 4021: 4020: 4015: 4007: 4002: 3994: 3993: 3981: 3980: 3961: 3959: 3958: 3953: 3945: 3940: 3914: 3913: 3895: 3890: 3882: 3881: 3869: 3868: 3849: 3847: 3846: 3841: 3829: 3827: 3826: 3821: 3810: 3809: 3788: 3787: 3771: 3769: 3768: 3763: 3761: 3760: 3744: 3742: 3741: 3736: 3728: 3723: 3709: 3708: 3692: 3690: 3689: 3684: 3679: 3674: 3660: 3655: 3629: 3628: 3606: 3604: 3603: 3598: 3556: 3554: 3553: 3548: 3524: 3522: 3521: 3516: 3508: 3503: 3495: 3494: 3482: 3481: 3464:Hurewicz theorem 3461: 3459: 3458: 3453: 3445: 3440: 3423: 3422: 3410: 3407: 3398: 3396: 3395: 3390: 3385: 3384: 3372: 3371: 3355: 3353: 3352: 3347: 3335: 3333: 3332: 3327: 3325: 3324: 3305: 3303: 3302: 3297: 3295: 3281: 3280: 3241: 3235: 3216: 3215: 3210: 3209: 3201: 3161: 3159: 3158: 3153: 3151: 3150: 3131: 3129: 3128: 3123: 3115: 3110: 3096: 3095: 3077: 3072: 3046: 3045: 3027: 3022: 3014: 3013: 3001: 3000: 2978: 2976: 2975: 2970: 2967: 2956: 2938: 2933: 2925: 2924: 2912: 2911: 2892: 2890: 2889: 2884: 2876: 2871: 2863: 2862: 2850: 2849: 2833: 2831: 2830: 2825: 2814: 2809: 2801: 2800: 2788: 2787: 2775: 2774: 2765: 2754: 2749: 2741: 2740: 2728: 2727: 2714: 2703: 2687: 2685: 2684: 2679: 2676: 2665: 2652: 2641: 2622: 2620: 2619: 2614: 2612: 2602: 2597: 2583: 2582: 2561: 2556: 2530: 2529: 2511: 2510: 2493: 2482: 2463: 2458: 2432: 2431: 2410: 2405: 2379: 2378: 2360: 2359: 2342: 2331: 2305: 2303: 2302: 2297: 2288: 2277: 2264: 2253: 2242: 2241: 2228: 2226: 2215: 2202: 2191: 2159: 2157: 2156: 2151: 2143: 2142: 2102: 2100: 2099: 2094: 2086: 2085: 2069: 2067: 2066: 2061: 2037: 2035: 2034: 2029: 2021: 2016: 2002: 2001: 1985: 1983: 1982: 1977: 1951: 1949: 1948: 1943: 1932: 1931: 1912: 1910: 1909: 1904: 1892: 1890: 1889: 1884: 1870: 1869: 1763: 1744: 1733: 1715: 1713: 1712: 1707: 1630: 1628: 1627: 1622: 1492:equipped with a 1370: 1368: 1367: 1362: 1345: 1344: 1328: 1326: 1325: 1320: 1293: 1291: 1290: 1285: 1283: 1282: 1266: 1264: 1263: 1258: 1256: 1255: 1235: 1233: 1232: 1227: 1197: 1195: 1194: 1189: 1187: 1186: 1164: 1162: 1161: 1156: 1112: 1110: 1109: 1104: 1101: 1100: 1082: 1081: 1062: 1060: 1059: 1054: 1052: 1051: 1039: 1038: 1008: 1006: 1005: 1000: 995: 994: 982: 981: 962: 960: 959: 954: 949: 948: 936: 935: 910: 908: 907: 902: 872: 870: 869: 864: 862: 861: 839: 837: 836: 831: 778: 776: 775: 770: 767: 766: 728: 726: 725: 720: 709: 708: 696: 695: 668: 666: 665: 660: 644: 642: 641: 636: 628: 627: 615: 614: 592: 590: 589: 584: 567: 566: 540: 538: 537: 532: 521: 520: 501: 499: 498: 493: 445: 443: 442: 437: 420: 419: 396: 394: 393: 388: 376: 374: 373: 368: 269:principal bundle 231:) of a manifold 52: 21: 6964: 6963: 6959: 6958: 6957: 6955: 6954: 6953: 6919: 6918: 6905: 6895: 6872: 6841: 6822: 6799: 6779: 6777:Further reading 6774: 6731: 6727: 6712: 6680: 6676: 6634: 6627: 6620: 6594: 6590: 6583: 6557: 6553: 6498: 6494: 6487: 6457: 6453: 6440: 6439: 6435: 6427: 6420: 6414: 6410: 6395:10.2307/2372795 6377: 6373: 6357: 6351: 6347: 6315: 6311: 6279: 6275: 6257: 6253: 6235: 6228: 6224: 6202: 6118: 6087: 6076: 6068: 6061: 6054: 6047: 6008: 6004: 5992: 5988: 5986: 5983: 5982: 5969: 5962: 5955: 5948: 5934: 5905: 5880: 5866: 5858:Čech cohomology 5855: 5842: 5831: 5829: 5773: 5758: 5752: 5751: 5750: 5742: 5737: 5735: 5734: 5725: 5720: 5719: 5704: 5698: 5697: 5696: 5685: 5670: 5664: 5663: 5662: 5654: 5649: 5647: 5646: 5638: 5623: 5617: 5616: 5615: 5607: 5604: 5603: 5582: 5567: 5561: 5552: 5548: 5518: 5498: 5483: 5480: 5436: 5425: 5409: 5349: 5333:Spin(2) → SO(2) 5332: 5320: 5318: 5305: 5245: 5244: 5236: 5231: 5230: 5229: 5225: 5201: 5200: 5181: 5180: 5165: 5164: 5163: 5161: 5158: 5157: 5118: 5117: 5099: 5098: 5071: 5070: 5056: 5053: 5052: 5035: 5016: 4941: 4940: 4936: 4927: 4922: 4921: 4913: 4910: 4909: 4896: 4894:Spin structures 4860:In general the 4850: 4746: 4743: 4742: 4733:. For example, 4724: 4701:Riemann surface 4690: 4666: 4664: 4661: 4660: 4641: 4638: 4637: 4611: 4593: 4578: 4567: 4559: 4547: 4520: 4515: 4488: 4484: 4476: 4473: 4472: 4450: 4445: 4430: 4426: 4424: 4421: 4420: 4395: 4390: 4363: 4359: 4345: 4340: 4331: 4327: 4318: 4314: 4300: 4295: 4280: 4276: 4268: 4265: 4264: 4239: 4234: 4220: 4218: 4215: 4214: 4179: 4175: 4163: 4159: 4150: 4146: 4116: 4112: 4110: 4107: 4106: 4081: 4078: 4077: 4055: 4050: 4035: 4031: 4029: 4026: 4025: 4003: 3998: 3989: 3985: 3976: 3972: 3970: 3967: 3966: 3941: 3936: 3909: 3905: 3891: 3886: 3877: 3873: 3864: 3860: 3858: 3855: 3854: 3835: 3832: 3831: 3805: 3801: 3783: 3779: 3777: 3774: 3773: 3756: 3752: 3750: 3747: 3746: 3724: 3719: 3704: 3700: 3698: 3695: 3694: 3675: 3670: 3656: 3651: 3624: 3620: 3612: 3609: 3608: 3607:corresponds to 3562: 3559: 3558: 3530: 3527: 3526: 3504: 3499: 3490: 3486: 3477: 3473: 3471: 3468: 3467: 3441: 3436: 3418: 3414: 3406: 3404: 3401: 3400: 3380: 3376: 3367: 3363: 3361: 3358: 3357: 3341: 3338: 3337: 3320: 3316: 3314: 3311: 3310: 3293: 3292: 3287: 3282: 3276: 3272: 3270: 3265: 3247: 3246: 3240: 3234: 3228: 3227: 3222: 3217: 3211: 3200: 3199: 3198: 3196: 3191: 3172: 3170: 3167: 3166: 3146: 3142: 3140: 3137: 3136: 3111: 3106: 3091: 3087: 3073: 3068: 3041: 3037: 3023: 3018: 3009: 3005: 2996: 2992: 2990: 2987: 2986: 2957: 2952: 2934: 2929: 2920: 2916: 2907: 2903: 2901: 2898: 2897: 2872: 2867: 2858: 2854: 2845: 2841: 2839: 2836: 2835: 2810: 2805: 2796: 2792: 2783: 2779: 2770: 2766: 2761: 2750: 2745: 2736: 2732: 2723: 2719: 2704: 2699: 2693: 2690: 2689: 2666: 2661: 2642: 2637: 2631: 2628: 2627: 2610: 2609: 2598: 2593: 2578: 2574: 2557: 2552: 2525: 2521: 2506: 2502: 2495: 2483: 2478: 2471: 2470: 2459: 2454: 2427: 2423: 2406: 2401: 2374: 2370: 2355: 2351: 2344: 2332: 2327: 2319: 2317: 2314: 2313: 2278: 2273: 2254: 2249: 2237: 2233: 2216: 2211: 2192: 2187: 2175: 2172: 2171: 2138: 2134: 2114: 2111: 2110: 2081: 2077: 2075: 2072: 2071: 2043: 2040: 2039: 2017: 2012: 1997: 1993: 1991: 1988: 1987: 1965: 1962: 1961: 1927: 1923: 1921: 1918: 1917: 1898: 1895: 1894: 1865: 1861: 1859: 1856: 1855: 1846: 1820: 1794:. Equivalently 1750: 1735: 1727: 1717: 1662: 1659: 1658: 1649: 1638: 1616: 1613: 1612: 1597: 1586: 1571: 1552: 1500:, the fibre of 1463: 1452: 1437: 1426: 1411: 1401: 1381: 1373:AndrĂ© Haefliger 1340: 1336: 1334: 1331: 1330: 1302: 1299: 1298: 1278: 1274: 1272: 1269: 1268: 1251: 1247: 1245: 1242: 1241: 1203: 1200: 1199: 1182: 1178: 1170: 1167: 1166: 1118: 1115: 1114: 1096: 1092: 1077: 1073: 1071: 1068: 1067: 1047: 1043: 1034: 1030: 1022: 1019: 1018: 990: 986: 977: 973: 968: 965: 964: 944: 940: 931: 927: 922: 919: 918: 878: 875: 874: 857: 853: 845: 842: 841: 784: 781: 780: 762: 758: 744: 741: 740: 704: 700: 691: 687: 679: 676: 675: 654: 651: 650: 623: 619: 610: 606: 604: 601: 600: 562: 558: 550: 547: 546: 516: 512: 507: 504: 503: 451: 448: 447: 415: 411: 409: 406: 405: 382: 379: 378: 350: 347: 346: 337: 332: 320:AndrĂ© Haefliger 302: 276: 250: 230: 214: 204: 189: 178: 159: 148: 133: 98: 42: 23: 22: 15: 12: 11: 5: 6962: 6952: 6951: 6946: 6941: 6936: 6931: 6917: 6916: 6904: 6903:External links 6901: 6900: 6899: 6893: 6876: 6870: 6845: 6839: 6826: 6820: 6803: 6797: 6778: 6775: 6773: 6772: 6743:(3): 221–240. 6725: 6710: 6674: 6644:(5): 749–836. 6625: 6618: 6612:–58, 186–187. 6588: 6581: 6551: 6492: 6485: 6451: 6433: 6408: 6371: 6345: 6332:(2): 161–270. 6309: 6273: 6251: 6225: 6223: 6220: 6219: 6218: 6213: 6208: 6201: 6198: 6162:tangent bundle 6144:lift of an SO( 6117: 6114: 6113: 6112: 6105: 6098: 6086: 6083: 6074: 6067: 6064: 6059: 6052: 6045: 6035: 6034: 6033: 6032: 6031: 6030: 6019: 6016: 6011: 6007: 6003: 6000: 5995: 5991: 5967: 5960: 5953: 5946: 5932: 5878: 5864: 5853: 5840: 5827: 5803: 5802: 5801: 5800: 5789: 5786: 5783: 5780: 5776: 5772: 5769: 5766: 5761: 5745: 5740: 5733: 5728: 5723: 5718: 5715: 5712: 5707: 5695: 5692: 5688: 5684: 5681: 5678: 5673: 5657: 5652: 5645: 5641: 5637: 5634: 5631: 5626: 5614: 5611: 5591:multiplication 5580: 5560: 5557: 5517: 5514: 5479: 5478:Classification 5476: 5431:of the bundle 5424: 5421: 5347: 5316: 5275: 5274: 5263: 5259: 5256: 5253: 5248: 5239: 5234: 5228: 5224: 5221: 5218: 5213: 5210: 5207: 5204: 5199: 5196: 5193: 5190: 5184: 5177: 5174: 5171: 5168: 5147: 5146: 5135: 5132: 5129: 5126: 5121: 5116: 5113: 5110: 5107: 5102: 5097: 5094: 5091: 5088: 5083: 5080: 5077: 5074: 5069: 5066: 5063: 5060: 5013: 5012: 5001: 4998: 4995: 4992: 4989: 4986: 4983: 4980: 4977: 4974: 4971: 4968: 4965: 4962: 4959: 4956: 4953: 4950: 4944: 4939: 4935: 4930: 4925: 4920: 4917: 4904:exact sequence 4895: 4892: 4891: 4890: 4889: 4888: 4885:Dirac operator 4865: 4849: 4846: 4845: 4844: 4833: 4818: 4804: 4790: 4776: 4756: 4753: 4750: 4722: 4708: 4689: 4686: 4673: 4645: 4609: 4591: 4576: 4565: 4557: 4546: 4543: 4530: 4527: 4523: 4518: 4514: 4511: 4508: 4505: 4502: 4499: 4496: 4491: 4487: 4483: 4480: 4460: 4457: 4453: 4448: 4444: 4441: 4438: 4433: 4429: 4405: 4402: 4398: 4393: 4389: 4386: 4383: 4380: 4377: 4374: 4371: 4366: 4362: 4358: 4355: 4352: 4348: 4343: 4339: 4334: 4330: 4326: 4321: 4317: 4313: 4310: 4307: 4303: 4298: 4294: 4291: 4288: 4283: 4279: 4275: 4272: 4249: 4246: 4242: 4237: 4233: 4230: 4227: 4199: 4196: 4193: 4190: 4187: 4182: 4178: 4174: 4171: 4166: 4162: 4158: 4153: 4149: 4145: 4142: 4139: 4136: 4133: 4130: 4127: 4124: 4119: 4115: 4091: 4088: 4085: 4065: 4062: 4058: 4053: 4049: 4046: 4043: 4038: 4034: 4013: 4010: 4006: 4001: 3997: 3992: 3988: 3984: 3979: 3975: 3951: 3948: 3944: 3939: 3935: 3932: 3929: 3926: 3923: 3920: 3917: 3912: 3908: 3904: 3901: 3898: 3894: 3889: 3885: 3880: 3876: 3872: 3867: 3863: 3839: 3819: 3816: 3813: 3808: 3804: 3800: 3797: 3794: 3791: 3786: 3782: 3759: 3755: 3734: 3731: 3727: 3722: 3718: 3715: 3712: 3707: 3703: 3682: 3678: 3673: 3669: 3666: 3663: 3659: 3654: 3650: 3647: 3644: 3641: 3638: 3635: 3632: 3627: 3623: 3619: 3616: 3596: 3593: 3590: 3587: 3584: 3581: 3578: 3575: 3572: 3569: 3566: 3546: 3543: 3540: 3537: 3534: 3514: 3511: 3507: 3502: 3498: 3493: 3489: 3485: 3480: 3476: 3451: 3448: 3444: 3439: 3435: 3432: 3429: 3426: 3421: 3417: 3413: 3388: 3383: 3379: 3375: 3370: 3366: 3345: 3323: 3319: 3291: 3288: 3286: 3283: 3279: 3275: 3271: 3269: 3266: 3264: 3261: 3258: 3255: 3252: 3249: 3248: 3245: 3242: 3239: 3236: 3233: 3230: 3229: 3226: 3223: 3221: 3218: 3214: 3207: 3204: 3197: 3195: 3192: 3190: 3187: 3184: 3181: 3178: 3175: 3174: 3149: 3145: 3121: 3118: 3114: 3109: 3105: 3102: 3099: 3094: 3090: 3086: 3083: 3080: 3076: 3071: 3067: 3064: 3061: 3058: 3055: 3052: 3049: 3044: 3040: 3036: 3033: 3030: 3026: 3021: 3017: 3012: 3008: 3004: 2999: 2995: 2966: 2963: 2960: 2955: 2951: 2947: 2944: 2941: 2937: 2932: 2928: 2923: 2919: 2915: 2910: 2906: 2882: 2879: 2875: 2870: 2866: 2861: 2857: 2853: 2848: 2844: 2823: 2820: 2817: 2813: 2808: 2804: 2799: 2795: 2791: 2786: 2782: 2778: 2773: 2769: 2764: 2760: 2757: 2753: 2748: 2744: 2739: 2735: 2731: 2726: 2722: 2718: 2713: 2710: 2707: 2702: 2698: 2675: 2672: 2669: 2664: 2660: 2656: 2651: 2648: 2645: 2640: 2636: 2608: 2605: 2601: 2596: 2592: 2589: 2586: 2581: 2577: 2573: 2570: 2567: 2564: 2560: 2555: 2551: 2548: 2545: 2542: 2539: 2536: 2533: 2528: 2524: 2520: 2517: 2514: 2509: 2505: 2501: 2498: 2496: 2492: 2489: 2486: 2481: 2477: 2473: 2472: 2469: 2466: 2462: 2457: 2453: 2450: 2447: 2444: 2441: 2438: 2435: 2430: 2426: 2422: 2419: 2416: 2413: 2409: 2404: 2400: 2397: 2394: 2391: 2388: 2385: 2382: 2377: 2373: 2369: 2366: 2363: 2358: 2354: 2350: 2347: 2345: 2341: 2338: 2335: 2330: 2326: 2322: 2321: 2295: 2292: 2287: 2284: 2281: 2276: 2272: 2268: 2263: 2260: 2257: 2252: 2248: 2240: 2236: 2231: 2225: 2222: 2219: 2214: 2210: 2206: 2201: 2198: 2195: 2190: 2186: 2182: 2179: 2149: 2146: 2141: 2137: 2133: 2130: 2127: 2124: 2121: 2118: 2092: 2089: 2084: 2080: 2059: 2056: 2053: 2050: 2047: 2027: 2024: 2020: 2015: 2011: 2008: 2005: 2000: 1996: 1975: 1972: 1969: 1941: 1938: 1935: 1930: 1926: 1902: 1882: 1879: 1876: 1873: 1868: 1864: 1845: 1842: 1834:tangent bundle 1818: 1777:tangent bundle 1747: 1746: 1725: 1705: 1702: 1699: 1696: 1693: 1690: 1687: 1684: 1681: 1678: 1675: 1672: 1669: 1666: 1647: 1636: 1620: 1595: 1584: 1569: 1550: 1462: 1459: 1450: 1435: 1424: 1409: 1399: 1380: 1377: 1360: 1357: 1354: 1351: 1348: 1343: 1339: 1318: 1315: 1312: 1309: 1306: 1281: 1277: 1254: 1250: 1238: 1237: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1185: 1181: 1177: 1174: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1099: 1095: 1091: 1088: 1085: 1080: 1076: 1050: 1046: 1042: 1037: 1033: 1029: 1026: 998: 993: 989: 985: 980: 976: 972: 952: 947: 943: 939: 934: 930: 926: 915: 914: 900: 897: 894: 891: 888: 885: 882: 860: 856: 852: 849: 828: 825: 822: 819: 816: 813: 810: 807: 804: 801: 798: 795: 792: 789: 765: 761: 757: 754: 751: 748: 718: 715: 712: 707: 703: 699: 694: 690: 686: 683: 670: 658: 649:)-bundle over 634: 631: 626: 622: 618: 613: 609: 582: 579: 576: 573: 570: 565: 561: 557: 554: 530: 527: 524: 519: 515: 511: 491: 488: 485: 482: 479: 476: 473: 470: 467: 464: 461: 458: 455: 435: 432: 429: 426: 423: 418: 414: 386: 366: 363: 360: 357: 354: 336: 333: 331: 328: 298: 272: 246: 237:tangent bundle 228: 212: 202: 187: 176: 157: 146: 131: 97: 94: 55:spinor bundles 33:spin structure 9: 6: 4: 3: 2: 6961: 6950: 6947: 6945: 6942: 6940: 6937: 6935: 6932: 6930: 6927: 6926: 6924: 6914: 6910: 6907: 6906: 6896: 6894:9780821837498 6890: 6886: 6882: 6877: 6873: 6871:9783540357216 6867: 6863: 6859: 6855: 6851: 6846: 6842: 6836: 6832: 6827: 6823: 6817: 6813: 6809: 6804: 6800: 6794: 6790: 6786: 6785:Spin Geometry 6781: 6780: 6768: 6764: 6760: 6756: 6751: 6746: 6742: 6738: 6737: 6729: 6721: 6717: 6713: 6707: 6703: 6699: 6694: 6689: 6685: 6678: 6669: 6665: 6661: 6657: 6652: 6647: 6643: 6639: 6632: 6630: 6621: 6619:0-8218-0994-6 6615: 6611: 6607: 6602: 6601: 6592: 6584: 6578: 6574: 6570: 6565: 6564: 6555: 6547: 6543: 6539: 6535: 6531: 6527: 6522: 6517: 6513: 6509: 6508: 6503: 6496: 6488: 6482: 6478: 6474: 6469: 6468: 6467:Spin Geometry 6462: 6455: 6447: 6443: 6437: 6426: 6419: 6412: 6404: 6400: 6396: 6392: 6389:(2): 97–136. 6388: 6384: 6383: 6375: 6367: 6363: 6356: 6349: 6340: 6335: 6331: 6327: 6323: 6319: 6313: 6304: 6299: 6295: 6291: 6287: 6283: 6277: 6269: 6265: 6261: 6255: 6247: 6243: 6239: 6238:Haefliger, A. 6233: 6231: 6226: 6217: 6214: 6212: 6209: 6207: 6204: 6203: 6197: 6194: 6190: 6186: 6182: 6177: 6175: 6174:normal bundle 6171: 6170:string theory 6167: 6163: 6159: 6155: 6151: 6147: 6143: 6139: 6135: 6131: 6127: 6123: 6110: 6106: 6103: 6099: 6096: 6093: 6089: 6088: 6082: 6080: 6073: 6063: 6058: 6051: 6044: 6040: 6017: 6014: 6009: 6005: 6001: 5998: 5993: 5989: 5981: 5980: 5979: 5978: 5977: 5976: 5975: 5973: 5966: 5959: 5952: 5945: 5941: 5936: 5931: 5927: 5923: 5919: 5913: 5909: 5903: 5899: 5895: 5890: 5888: 5884: 5877: 5873: 5868: 5863: 5859: 5852: 5848: 5839: 5835: 5826: 5822: 5817: 5815: 5812: 5808: 5787: 5784: 5770: 5767: 5759: 5743: 5726: 5716: 5713: 5705: 5682: 5679: 5671: 5655: 5635: 5632: 5624: 5609: 5602: 5601: 5600: 5599: 5598: 5596: 5592: 5588: 5579: 5575: 5571: 5566: 5556: 5546: 5542: 5538: 5533: 5531: 5527: 5523: 5522:Edward Witten 5513: 5509: 5505: 5501: 5494: 5490: 5486: 5475: 5473: 5469: 5463: 5459: 5455: 5451: 5447: 5443: 5439: 5434: 5430: 5420: 5417: 5413: 5407: 5403: 5399: 5394: 5392: 5388: 5384: 5383:triangulation 5380: 5375: 5373: 5369: 5365: 5361: 5357: 5353: 5344: 5342: 5338: 5328: 5324: 5315: 5309: 5303: 5298: 5296: 5292: 5288: 5284: 5280: 5261: 5254: 5237: 5226: 5219: 5197: 5191: 5156: 5155: 5154: 5152: 5133: 5127: 5108: 5095: 5089: 5067: 5064: 5061: 5058: 5051: 5050: 5049: 5048: 5042: 5038: 5033: 5027: 5023: 5020: : Spin( 5019: 4999: 4990: 4984: 4978: 4972: 4966: 4963: 4954: 4948: 4937: 4928: 4915: 4908: 4907: 4906: 4905: 4901: 4886: 4882: 4878: 4874: 4870: 4866: 4863: 4859: 4858: 4856: 4852: 4851: 4842: 4838: 4834: 4831: 4827: 4823: 4820:All compact, 4819: 4816: 4812: 4809: 4805: 4802: 4798: 4795: 4791: 4788: 4784: 4781: 4777: 4774: 4770: 4767:. (Note that 4754: 4751: 4748: 4740: 4736: 4732: 4728: 4721: 4717: 4713: 4709: 4706: 4702: 4699: 4696: 4692: 4691: 4685: 4671: 4659: 4643: 4635: 4631: 4627: 4623: 4619: 4615: 4608: 4604: 4600: 4595: 4590: 4586: 4582: 4575: 4571: 4563: 4556: 4552: 4542: 4525: 4521: 4512: 4506: 4500: 4497: 4489: 4485: 4481: 4478: 4455: 4451: 4442: 4439: 4431: 4427: 4416: 4400: 4396: 4387: 4381: 4375: 4372: 4364: 4360: 4350: 4346: 4337: 4332: 4328: 4319: 4315: 4305: 4301: 4292: 4289: 4281: 4277: 4270: 4261: 4244: 4240: 4231: 4228: 4213:and applying 4210: 4197: 4188: 4180: 4176: 4164: 4160: 4151: 4147: 4134: 4128: 4125: 4117: 4113: 4103: 4089: 4083: 4060: 4056: 4047: 4044: 4036: 4032: 4008: 4004: 3995: 3990: 3986: 3977: 3973: 3962: 3946: 3942: 3933: 3927: 3921: 3918: 3910: 3906: 3896: 3892: 3883: 3878: 3874: 3865: 3861: 3851: 3850:under the map 3837: 3814: 3806: 3802: 3798: 3792: 3784: 3780: 3757: 3753: 3729: 3725: 3716: 3713: 3705: 3701: 3680: 3676: 3667: 3661: 3657: 3648: 3642: 3636: 3633: 3625: 3621: 3617: 3614: 3591: 3585: 3582: 3573: 3567: 3564: 3541: 3535: 3532: 3509: 3505: 3496: 3491: 3487: 3478: 3474: 3465: 3446: 3442: 3433: 3427: 3419: 3415: 3381: 3377: 3368: 3364: 3356:subgroups of 3343: 3321: 3317: 3306: 3289: 3277: 3273: 3259: 3253: 3250: 3224: 3212: 3202: 3185: 3179: 3176: 3163: 3147: 3143: 3132: 3116: 3112: 3103: 3100: 3092: 3088: 3078: 3074: 3065: 3059: 3053: 3050: 3042: 3038: 3028: 3024: 3015: 3010: 3006: 2997: 2993: 2983: 2979: 2964: 2961: 2958: 2953: 2949: 2939: 2935: 2926: 2921: 2917: 2908: 2904: 2894: 2877: 2873: 2864: 2859: 2855: 2846: 2842: 2815: 2811: 2802: 2797: 2793: 2784: 2780: 2771: 2767: 2762: 2755: 2751: 2742: 2737: 2733: 2724: 2720: 2716: 2711: 2708: 2705: 2696: 2673: 2670: 2667: 2662: 2658: 2654: 2649: 2646: 2643: 2634: 2626:In addition, 2623: 2603: 2599: 2590: 2587: 2579: 2575: 2571: 2562: 2558: 2549: 2543: 2537: 2534: 2526: 2522: 2518: 2515: 2507: 2503: 2499: 2497: 2490: 2487: 2484: 2479: 2475: 2464: 2460: 2451: 2445: 2439: 2436: 2428: 2424: 2420: 2411: 2407: 2398: 2392: 2386: 2383: 2375: 2371: 2367: 2364: 2356: 2352: 2348: 2346: 2339: 2336: 2333: 2328: 2324: 2310: 2306: 2293: 2285: 2282: 2279: 2274: 2270: 2261: 2258: 2255: 2250: 2246: 2238: 2234: 2229: 2223: 2220: 2217: 2212: 2208: 2199: 2196: 2193: 2188: 2184: 2177: 2168: 2166: 2160: 2147: 2139: 2135: 2125: 2119: 2116: 2107: 2106: 2090: 2082: 2078: 2054: 2048: 2045: 2022: 2018: 2009: 2006: 1998: 1994: 1973: 1967: 1959: 1955: 1936: 1928: 1924: 1916: 1900: 1880: 1874: 1871: 1866: 1862: 1854: 1853:vector bundle 1851: 1841: 1839: 1835: 1831: 1830:triangulation 1827: 1822: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1792:spin manifold 1789: 1785: 1781: 1778: 1774: 1769: 1767: 1761: 1757: 1754: : Spin( 1753: 1742: 1739:∈ Spin( 1738: 1731: 1724: 1720: 1700: 1694: 1688: 1682: 1679: 1673: 1670: 1664: 1657: 1656: 1655: 1653: 1646: 1642: 1635: 1631: 1618: 1609: 1605: 1601: 1594: 1590: 1583: 1579: 1575: 1568: 1564: 1560: 1556: 1549: 1546: 1542: 1538: 1533: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1488:of dimension 1487: 1483: 1479: 1475: 1472: 1468: 1458: 1456: 1449: 1445: 1441: 1434: 1430: 1423: 1419: 1415: 1408: 1405: 1398: 1394: 1390: 1386: 1376: 1374: 1358: 1349: 1341: 1337: 1313: 1310: 1307: 1295: 1279: 1275: 1252: 1248: 1240:In this case 1220: 1214: 1211: 1208: 1205: 1183: 1179: 1175: 1172: 1151: 1145: 1139: 1136: 1130: 1127: 1121: 1097: 1093: 1089: 1086: 1083: 1078: 1074: 1066: 1065: 1064: 1048: 1044: 1035: 1031: 1027: 1024: 1016: 1012: 991: 987: 983: 978: 974: 945: 941: 937: 932: 928: 912: 895: 889: 886: 883: 880: 858: 854: 850: 847: 823: 817: 811: 805: 802: 796: 793: 787: 763: 759: 755: 752: 749: 746: 736: 732: 713: 705: 701: 692: 688: 684: 681: 674: 671: 656: 648: 632: 624: 620: 616: 611: 607: 599: 596: 595: 594: 580: 571: 563: 559: 555: 552: 544: 525: 522: 517: 513: 486: 480: 477: 468: 462: 459: 456: 453: 433: 424: 416: 412: 403: 400: 384: 361: 358: 355: 345: 342: 327: 325: 321: 317: 312: 310: 306: 303:. The bundle 301: 296: 292: 288: 284: 280: 275: 270: 266: 262: 258: 254: 249: 243: 241: 238: 234: 227: 223: 219: 215: 208: 201: 197: 193: 186: 182: 175: 171: 167: 163: 156: 152: 145: 141: 137: 130: 127: 123: 119: 115: 111: 107: 103: 93: 91: 90:spin geometry 87: 83: 79: 75: 71: 67: 62: 60: 56: 50: 46: 41: 38: 34: 30: 19: 6884: 6853: 6830: 6807: 6784: 6750:math/9901137 6740: 6734: 6728: 6683: 6677: 6641: 6637: 6599: 6591: 6562: 6554: 6521:math/9705218 6511: 6505: 6501: 6495: 6466: 6454: 6445: 6436: 6411: 6386: 6380: 6374: 6365: 6361: 6348: 6329: 6325: 6312: 6293: 6289: 6276: 6267: 6263: 6254: 6245: 6241: 6193:supergravity 6188: 6184: 6178: 6157: 6149: 6145: 6141: 6130:wavefunction 6119: 6108: 6078: 6071: 6069: 6056: 6049: 6042: 6038: 6036: 5964: 5957: 5950: 5943: 5939: 5937: 5929: 5925: 5921: 5917: 5911: 5907: 5901: 5897: 5891: 5886: 5882: 5875: 5871: 5869: 5861: 5850: 5846: 5837: 5833: 5824: 5820: 5818: 5813: 5804: 5577: 5573: 5569: 5562: 5544: 5540: 5534: 5519: 5507: 5503: 5499: 5492: 5488: 5484: 5481: 5467: 5461: 5457: 5453: 5449: 5445: 5441: 5437: 5432: 5426: 5415: 5411: 5405: 5401: 5397: 5395: 5376: 5371: 5367: 5363: 5362:≠ 2, and to 5359: 5355: 5351: 5345: 5340: 5336: 5326: 5322: 5313: 5307: 5301: 5299: 5294: 5290: 5282: 5278: 5276: 5150: 5148: 5047:homomorphism 5040: 5036: 5031: 5025: 5021: 5017: 5014: 4897: 4840: 4829: 4828:or less are 4814: 4810: 4800: 4796: 4786: 4782: 4772: 4768: 4738: 4734: 4730: 4726: 4725:) vanishes, 4719: 4715: 4711: 4697: 4621: 4606: 4602: 4598: 4596: 4588: 4584: 4581:affine space 4573: 4569: 4554: 4550: 4548: 4418: 4263: 4212: 4105: 3964: 3853: 3462:. But, from 3308: 3165: 3134: 2985: 2981: 2896: 2625: 2312: 2308: 2170: 2162: 2109: 1954:Armand Borel 1847: 1823: 1815: 1811: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1772: 1770: 1765: 1759: 1755: 1751: 1748: 1740: 1736: 1729: 1722: 1718: 1654:) such that 1651: 1644: 1640: 1633: 1611: 1607: 1599: 1592: 1588: 1581: 1577: 1573: 1566: 1562: 1554: 1547: 1545:frame bundle 1534: 1529: 1525: 1521: 1517: 1509: 1501: 1497: 1494:fibre metric 1489: 1485: 1477: 1466: 1464: 1454: 1447: 1443: 1439: 1432: 1428: 1421: 1417: 1413: 1406: 1396: 1392: 1388: 1384: 1382: 1296: 1239: 1014: 916: 739: 735:covering map 672: 646: 597: 542: 401: 338: 316:fiber bundle 313: 308: 304: 299: 294: 290: 286: 282: 278: 273: 263:is then the 260: 256: 252: 247: 244: 239: 232: 225: 221: 217: 210: 206: 199: 195: 191: 184: 180: 173: 169: 165: 161: 154: 150: 143: 139: 135: 128: 121: 113: 109: 106:field theory 99: 63: 48: 44: 32: 26: 6913:orientation 6608:. pp.  6318:Karoubi, M. 5894:Chern class 5860:picture of 5559:The details 5537:spin bundle 5472:Chern class 5423:Obstruction 5389:over the 2- 5310:) × Spin(2) 4826:dimension 3 4658:chern class 4616:, then (by 1836:over the 1- 1471:paracompact 1379:Obstruction 731:equivariant 399:equivariant 324:Max Karoubi 287:spin frames 6923:Categories 6693:1607.02103 6651:1606.07894 6571:. p.  6475:. p.  6296:: 11–100. 6270:: 198–203. 6248:: 558–560. 6222:References 4869:Hirzebruch 4848:Properties 2163:hence the 1850:orientable 1802:if the SO( 1716:, for all 1604:spin group 1457:vanishes. 1371:is due to 1063:such that 341:orientable 335:Definition 37:orientable 6767:118698159 6720:104292702 6668:119598006 6514:: 41–50. 6260:J. Milnor 6148:) bundle 6104:are spin. 6002:β 5785:… 5782:⟶ 5744:β 5739:⟶ 5694:⟶ 5651:⟶ 5613:⟶ 5610:⋯ 5227:× 5115:→ 5096:× 5068:: 5062:× 5059:κ 4997:→ 4985:⁡ 4979:× 4967:⁡ 4961:→ 4949:⁡ 4934:→ 4919:→ 4752:≠ 4668:mod  4501:⁡ 4482:∈ 4376:⁡ 4357:→ 4312:→ 4274:→ 4229:− 4195:→ 4177:π 4173:→ 4148:π 4144:→ 4129:⁡ 4114:π 4087:→ 3922:⁡ 3903:→ 3637:⁡ 3618:∈ 3586:⁡ 3580:→ 3568:⁡ 3536:⁡ 3416:π 3365:π 3285:→ 3268:→ 3254:⁡ 3244:↓ 3238:↓ 3232:↓ 3220:→ 3206:~ 3194:→ 3180:⁡ 3085:→ 3054:⁡ 3035:→ 2946:→ 2701:∞ 2639:∞ 2538:⁡ 2440:⁡ 2387:⁡ 2291:→ 2267:→ 2205:→ 2181:→ 2145:→ 2132:→ 2120:⁡ 2105:fibration 2088:→ 2049:⁡ 1971:→ 1878:→ 1863:π 1695:ρ 1683:ϕ 1665:ϕ 1619:ϕ 1356:→ 1276:ϕ 1249:ϕ 1215:⁡ 1209:∈ 1176:∈ 1094:ϕ 1084:∘ 1075:ϕ 1041:→ 988:ϕ 942:ϕ 890:⁡ 884:∈ 851:∈ 818:ρ 806:ϕ 788:ϕ 760:π 753:ϕ 750:∘ 747:π 737:such that 698:→ 682:ϕ 630:→ 608:π 578:→ 553:π 526:ϕ 481:⁡ 475:→ 463:⁡ 454:ρ 431:→ 116:) admits 6944:K-theory 6831:K-Theory 6463:(1989). 6425:Archived 6320:(1968). 6284:(1964). 6200:See also 6172:it is a 6166:D-branes 6092:oriented 6085:Examples 6039:integral 5553:(−1) = 1 5391:skeleton 4799:are not 4771:is also 4741:for all 4688:Examples 4634:fermions 4614:skeleton 4419:Because 2230:→ 2070:-bundle 1838:skeleton 1721:∈ 1632: : 1482:oriented 1375:(1956). 1165:for all 840:for all 102:geometry 96:Overview 86:K theory 74:fermions 6546:6906852 6526:Bibcode 6403:2372795 6368:: 64–78 6160:is the 6140:to the 6134:fermion 5325:) → SO( 5285:) is a 4881: genus 4862: genus 4855: genus 4785:is not 4583:over H( 1848:For an 1775:is the 1758:) → SO( 1576:) is a 733:2-fold 118:spinors 104:and in 6891:  6868:  6837:  6818:  6795:  6765:  6718:  6708:  6666:  6616:  6579:  6544:  6483:  6401:  6216:Spinor 5883:bundle 5350:(Spin( 5289:of SO( 5024:) → U( 4624:. In 1749:where 1504:is an 1442:) ∈ H( 1416:) ∈ H( 729:is an 397:is an 220:) ∈ H( 194:) ∈ H( 138:) ∈ H( 84:, and 59:spinor 35:on an 6763:S2CID 6745:arXiv 6716:S2CID 6688:arXiv 6664:S2CID 6646:arXiv 6542:S2CID 6516:arXiv 6428:(PDF) 6421:(PDF) 6399:JSTOR 6358:(PDF) 5807:arrow 5587:arrow 5549:1 = 1 5404:over 5381:or a 5374:= 2. 5321:Spin( 5306:Spin( 5293:) by 4873:Borel 4695:genus 2309:where 1828:or a 1814:is a 1790:is a 1606:Spin( 1469:be a 1453:) of 1427:) of 669:, and 593:when 289:over 259:over 205:) of 149:) of 6889:ISBN 6866:ISBN 6835:ISBN 6816:ISBN 6793:ISBN 6706:ISBN 6614:ISBN 6577:ISBN 6481:ISBN 6189:spin 6185:spin 6142:spin 6124:the 6109:spin 6107:All 6100:All 6090:All 5940:spin 5887:spin 5872:spin 5847:spin 5821:spin 5568:0 → 5545:spin 5541:spin 5448:) → 5331:and 4938:Spin 4871:and 4853:The 4841:spin 4839:are 4835:All 4830:spin 4815:spin 4813:are 4801:spin 4787:spin 4778:The 4773:spin 4739:spin 4731:spin 4632:for 3565:Spin 3177:Spin 2688:and 1956:and 1800:spin 1734:and 1726:Spin 1643:) → 1637:Spin 1596:Spin 1578:lift 1530:spin 1476:and 1465:Let 1267:and 1212:Spin 1198:and 1113:and 963:and 887:Spin 873:and 859:Spin 693:Spin 625:Spin 518:Spin 460:Spin 402:lift 31:, a 6858:doi 6755:doi 6698:doi 6656:doi 6534:doi 6504:". 6477:391 6391:doi 6334:doi 6298:doi 6246:243 6179:In 6168:in 6120:In 6062:). 5830:of 5589:is 5583:→ 0 5551:or 5370:if 5358:if 4824:of 4737:is 4729:is 4710:If 4594:). 4222:Hom 3408:Hom 1798:is 1768:). 1580:of 1561:SO( 1528:is 1480:an 779:and 285:of 242:.) 100:In 27:In 6925:: 6883:. 6864:. 6852:. 6814:. 6810:. 6791:. 6787:. 6761:. 6753:. 6741:18 6739:. 6714:. 6704:. 6696:. 6662:. 6654:. 6642:23 6640:. 6628:^ 6610:55 6604:. 6575:. 6573:26 6567:. 6540:. 6532:. 6524:. 6510:. 6479:. 6471:. 6444:. 6423:. 6397:. 6387:80 6385:. 6366:32 6364:, 6360:, 6328:. 6324:. 6294:92 6292:. 6288:. 6266:. 6244:. 6229:^ 6176:. 5910:, 5906:H( 5867:. 5832:H( 5816:. 5576:→ 5572:→ 5506:, 5491:, 5460:/2 5456:, 5444:, 5419:. 5414:⊕ 5366:⊕ 5297:. 5000:1. 4964:SO 4811:CP 4797:CP 4783:CP 4693:A 4684:. 4498:SO 4373:SO 4126:SO 3919:SO 3634:SO 3583:SO 3533:SO 3251:SO 3051:SO 2535:SO 2437:SO 2384:SO 2117:SO 2046:SO 1780:TM 1648:SO 1585:SO 1570:SO 1551:SO 1532:. 1446:, 1420:, 1395:, 1342:SO 706:SO 673:b) 598:a) 564:SO 478:SO 417:SO 311:. 281:→ 277:: 255:→ 251:: 240:TM 224:, 198:, 172:, 142:, 92:. 80:, 47:, 6897:. 6874:. 6860:: 6843:. 6824:. 6801:. 6769:. 6757:: 6747:: 6722:. 6700:: 6690:: 6672:. 6670:. 6658:: 6648:: 6622:. 6585:. 6548:. 6536:: 6528:: 6518:: 6512:1 6489:. 6448:. 6405:. 6393:: 6342:. 6336:: 6330:1 6306:. 6300:: 6268:9 6158:E 6150:E 6146:N 6079:W 6075:2 6072:Z 6060:3 6057:W 6053:2 6050:w 6046:3 6043:W 6018:0 6015:= 6010:2 6006:w 5999:= 5994:3 5990:W 5968:2 5965:w 5961:2 5958:w 5954:2 5951:w 5947:2 5944:w 5933:2 5930:Z 5928:, 5926:M 5922:Z 5920:, 5918:M 5914:) 5912:Z 5908:M 5902:Z 5900:, 5898:M 5879:2 5876:w 5865:2 5862:w 5854:2 5851:Z 5843:) 5841:2 5838:Z 5836:, 5834:M 5828:2 5825:w 5814:ÎČ 5788:, 5779:) 5775:Z 5771:; 5768:M 5765:( 5760:3 5754:H 5732:) 5727:2 5722:Z 5717:; 5714:M 5711:( 5706:2 5700:H 5691:) 5687:Z 5683:; 5680:M 5677:( 5672:2 5666:H 5656:2 5644:) 5640:Z 5636:; 5633:M 5630:( 5625:2 5619:H 5581:2 5578:Z 5574:Z 5570:Z 5510:) 5508:Z 5504:M 5502:( 5500:H 5495:) 5493:Z 5489:M 5487:( 5485:H 5468:E 5464:) 5462:Z 5458:Z 5454:M 5452:( 5450:H 5446:Z 5442:M 5440:( 5438:H 5433:E 5416:L 5412:N 5410:T 5406:N 5402:L 5398:N 5372:n 5368:Z 5364:Z 5360:n 5356:Z 5352:n 5348:1 5341:n 5337:n 5329:) 5327:n 5323:n 5317:2 5314:Z 5308:n 5302:n 5295:S 5291:n 5283:n 5279:S 5262:, 5258:) 5255:1 5252:( 5247:U 5238:2 5233:Z 5223:) 5220:n 5217:( 5212:n 5209:i 5206:p 5203:S 5198:= 5195:) 5192:n 5189:( 5183:C 5176:n 5173:i 5170:p 5167:S 5151:n 5134:. 5131:) 5128:N 5125:( 5120:U 5112:) 5109:1 5106:( 5101:U 5093:) 5090:n 5087:( 5082:n 5079:i 5076:p 5073:S 5065:i 5043:) 5041:N 5037:i 5032:N 5028:) 5026:N 5022:n 5018:Îș 4994:) 4991:1 4988:( 4982:U 4976:) 4973:n 4970:( 4958:) 4955:n 4952:( 4943:C 4929:2 4924:Z 4916:1 4843:. 4832:. 4817:. 4803:. 4789:. 4769:S 4755:2 4749:n 4735:S 4727:M 4723:2 4720:Z 4718:, 4716:M 4714:( 4712:H 4707:. 4698:g 4672:2 4644:X 4622:M 4610:2 4607:w 4603:N 4599:M 4592:2 4589:Z 4587:, 4585:M 4577:2 4574:Z 4572:, 4570:M 4568:( 4566:1 4558:2 4555:Z 4553:, 4551:M 4529:) 4526:2 4522:/ 4517:Z 4513:, 4510:) 4507:n 4504:( 4495:( 4490:1 4486:H 4479:1 4459:) 4456:2 4452:/ 4447:Z 4443:, 4440:M 4437:( 4432:1 4428:H 4404:) 4401:2 4397:/ 4392:Z 4388:, 4385:) 4382:n 4379:( 4370:( 4365:1 4361:H 4354:) 4351:2 4347:/ 4342:Z 4338:, 4333:E 4329:P 4325:( 4320:1 4316:H 4309:) 4306:2 4302:/ 4297:Z 4293:, 4290:M 4287:( 4282:1 4278:H 4271:0 4248:) 4245:2 4241:/ 4236:Z 4232:, 4226:( 4198:1 4192:) 4189:M 4186:( 4181:1 4170:) 4165:E 4161:P 4157:( 4152:1 4141:) 4138:) 4135:n 4132:( 4123:( 4118:1 4090:M 4084:E 4064:) 4061:2 4057:/ 4052:Z 4048:, 4045:M 4042:( 4037:1 4033:H 4012:) 4009:2 4005:/ 4000:Z 3996:, 3991:E 3987:P 3983:( 3978:1 3974:H 3950:) 3947:2 3943:/ 3938:Z 3934:, 3931:) 3928:n 3925:( 3916:( 3911:1 3907:H 3900:) 3897:2 3893:/ 3888:Z 3884:, 3879:E 3875:P 3871:( 3866:1 3862:H 3838:1 3818:) 3815:E 3812:( 3807:2 3803:w 3799:= 3796:) 3793:1 3790:( 3785:2 3781:w 3758:2 3754:w 3733:) 3730:2 3726:/ 3721:Z 3717:, 3714:M 3711:( 3706:2 3702:H 3681:2 3677:/ 3672:Z 3668:= 3665:) 3662:2 3658:/ 3653:Z 3649:, 3646:) 3643:n 3640:( 3631:( 3626:1 3622:H 3615:1 3595:) 3592:n 3589:( 3577:) 3574:n 3571:( 3545:) 3542:n 3539:( 3513:) 3510:2 3506:/ 3501:Z 3497:, 3492:E 3488:P 3484:( 3479:1 3475:H 3450:) 3447:2 3443:/ 3438:Z 3434:, 3431:) 3428:E 3425:( 3420:1 3412:( 3387:) 3382:E 3378:P 3374:( 3369:1 3344:2 3322:E 3318:P 3290:M 3278:E 3274:P 3263:) 3260:n 3257:( 3225:M 3213:E 3203:P 3189:) 3186:n 3183:( 3148:E 3144:P 3120:) 3117:2 3113:/ 3108:Z 3104:, 3101:M 3098:( 3093:2 3089:H 3082:) 3079:2 3075:/ 3070:Z 3066:, 3063:) 3060:n 3057:( 3048:( 3043:1 3039:H 3032:) 3029:2 3025:/ 3020:Z 3016:, 3011:E 3007:P 3003:( 2998:1 2994:H 2965:1 2962:, 2959:0 2954:3 2950:E 2943:) 2940:2 2936:/ 2931:Z 2927:, 2922:E 2918:P 2914:( 2909:1 2905:H 2881:) 2878:2 2874:/ 2869:Z 2865:, 2860:E 2856:P 2852:( 2847:1 2843:H 2822:) 2819:) 2816:2 2812:/ 2807:Z 2803:, 2798:E 2794:P 2790:( 2785:1 2781:H 2777:( 2772:1 2768:F 2763:/ 2759:) 2756:2 2752:/ 2747:Z 2743:, 2738:E 2734:P 2730:( 2725:1 2721:H 2717:= 2712:1 2709:, 2706:0 2697:E 2674:1 2671:, 2668:0 2663:3 2659:E 2655:= 2650:1 2647:, 2644:0 2635:E 2607:) 2604:2 2600:/ 2595:Z 2591:, 2588:M 2585:( 2580:2 2576:H 2572:= 2569:) 2566:) 2563:2 2559:/ 2554:Z 2550:, 2547:) 2544:n 2541:( 2532:( 2527:0 2523:H 2519:, 2516:M 2513:( 2508:2 2504:H 2500:= 2491:0 2488:, 2485:2 2480:2 2476:E 2468:) 2465:2 2461:/ 2456:Z 2452:, 2449:) 2446:n 2443:( 2434:( 2429:1 2425:H 2421:= 2418:) 2415:) 2412:2 2408:/ 2403:Z 2399:, 2396:) 2393:n 2390:( 2381:( 2376:1 2372:H 2368:, 2365:M 2362:( 2357:0 2353:H 2349:= 2340:1 2337:, 2334:0 2329:2 2325:E 2294:0 2286:0 2283:, 2280:2 2275:3 2271:E 2262:0 2259:, 2256:2 2251:2 2247:E 2239:2 2235:d 2224:1 2221:, 2218:0 2213:2 2209:E 2200:1 2197:, 2194:0 2189:3 2185:E 2178:0 2148:M 2140:E 2136:P 2129:) 2126:n 2123:( 2091:M 2083:E 2079:P 2058:) 2055:n 2052:( 2026:) 2023:2 2019:/ 2014:Z 2010:, 2007:M 2004:( 1999:1 1995:H 1974:M 1968:E 1940:) 1937:E 1934:( 1929:2 1925:w 1901:E 1881:M 1875:E 1872:: 1867:E 1819:2 1816:Z 1812:M 1804:n 1796:M 1788:M 1784:M 1773:E 1766:n 1762:) 1760:n 1756:n 1752:ρ 1745:, 1743:) 1741:n 1737:g 1732:) 1730:E 1728:( 1723:P 1719:p 1704:) 1701:g 1698:( 1692:) 1689:p 1686:( 1680:= 1677:) 1674:g 1671:p 1668:( 1652:E 1650:( 1645:P 1641:E 1639:( 1634:P 1608:n 1600:E 1598:( 1593:P 1589:E 1587:( 1582:P 1574:E 1572:( 1567:P 1563:n 1555:E 1553:( 1548:P 1526:E 1522:E 1518:M 1510:E 1502:E 1498:M 1490:n 1486:M 1478:E 1467:M 1455:M 1451:2 1448:Z 1444:M 1440:M 1438:( 1436:2 1433:w 1429:M 1425:2 1422:Z 1418:M 1414:M 1412:( 1410:2 1407:w 1400:2 1397:Z 1393:M 1389:g 1387:, 1385:M 1359:M 1353:) 1350:E 1347:( 1338:P 1317:) 1314:g 1311:, 1308:M 1305:( 1280:2 1253:1 1236:. 1224:) 1221:n 1218:( 1206:q 1184:1 1180:P 1173:p 1152:q 1149:) 1146:p 1143:( 1140:f 1137:= 1134:) 1131:q 1128:p 1125:( 1122:f 1098:1 1090:= 1087:f 1079:2 1049:2 1045:P 1036:1 1032:P 1028:: 1025:f 1015:n 997:) 992:2 984:, 979:2 975:P 971:( 951:) 946:1 938:, 933:1 929:P 925:( 911:. 899:) 896:n 893:( 881:q 855:P 848:p 827:) 824:q 821:( 815:) 812:p 809:( 803:= 800:) 797:q 794:p 791:( 764:P 756:= 717:) 714:E 711:( 702:P 689:P 685:: 657:M 647:n 633:M 621:P 617:: 612:P 581:M 575:) 572:E 569:( 560:P 556:: 543:n 529:) 523:, 514:P 510:( 490:) 487:n 484:( 472:) 469:n 466:( 457:: 434:M 428:) 425:E 422:( 413:P 385:E 365:) 362:g 359:, 356:M 353:( 309:M 305:S 300:n 295:n 291:M 283:M 279:P 274:P 271:π 261:M 257:M 253:S 248:S 233:M 229:2 226:Z 222:M 218:M 216:( 213:i 211:w 207:M 203:2 200:Z 196:M 192:M 190:( 188:1 185:w 181:M 177:2 174:Z 170:M 166:M 162:M 160:( 158:2 155:w 151:M 147:2 144:Z 140:M 136:M 134:( 132:2 129:w 122:M 114:g 112:, 110:M 51:) 49:g 45:M 43:( 20:)

Index

Complex spin structure
differential geometry
orientable
Riemannian manifold
spinor bundles
spinor
mathematical physics
quantum field theory
fermions
differential geometry
algebraic topology
K theory
spin geometry
geometry
field theory
spinors
Stiefel–Whitney class
tangent bundle
complex vector bundle
principal bundle
fiber bundle
André Haefliger
Max Karoubi
orientable
Riemannian manifold
equivariant
equivariant
covering map
Riemannian manifold
André Haefliger

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑