Knowledge

Complete sequence

Source πŸ“

1013: 1322: 643:
In this numeral system, any substring "100" can be replaced by "011" and vice versa due to the definition of the Fibonacci numbers. Continual application of these rules will translate form the maximal to the minimal, and vice versa. The fact that any number (greater than 1) can be represented with
467:
Just as the powers of two form a complete sequence due to the binary numeral system, in fact any complete sequence can be used to encode integers as bit strings. The rightmost bit position is assigned to the first, smallest member of the sequence; the next rightmost to the next member; and so on.
255: 51:= 1 + 4 + 32). This sequence is minimal, since no value can be removed from it without making some natural numbers impossible to represent. Simple examples of sequences that are not complete include the 371: 47:, is a complete sequence; given any natural number, we can choose the values corresponding to the 1 bits in its binary representation and sum them to obtain that number (e.g. 37 = 100101 147: 307: 188: 1204: 644:
a terminal 0 means that it is always possible to add 1, and given that, for 1 and 2 can be represented in Fibonacci coding, completeness follows by
847: 1194: 1287: 633: 619: 440: 395: 1128: 194: 313: 773: 622:). By dropping the trailing one, the coding for 17 above occurs as the 16th term of A104326. The minimal form will never use F 1138: 450:, as well as the Fibonacci numbers with any one number removed. This follows from the identity that the sum of the first 419: 1302: 1133: 893: 840: 1282: 1292: 1184: 1174: 91: 737: 1297: 1199: 833: 726:
S. S. Pillai, "An arithmetical function concerning primes", Annamalai University Journal (1930), pp. 159–167.
1325: 626:
and will always have a trailing zero. The full coding without the trailing zero can be found at (sequence
1307: 612:
and will always have a trailing one. The full coding without the trailing one can be found at (sequence
1346: 1189: 1179: 1169: 1159: 1274: 1096: 637: 423: 388:
However there are complete sequences that do not satisfy this corollary, for example (sequence
936: 883: 645: 278: 159: 1143: 888: 480:
system, based on the Fibonacci sequence, the number 17 can be encoded in six different ways:
44: 1254: 1091: 860: 758: 682:
Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985, pp.123-128.
657: 56: 52: 8: 1234: 1101: 777: 433:
which has 1 as the first term and contains all other powers of 2 as a subset. (sequence
1164: 1075: 1060: 1032: 1012: 951: 709: 811: 1264: 1065: 1037: 991: 981: 961: 808: 447: 36:
can be expressed as a sum of values in the sequence, using each value at most once.
1249: 1070: 996: 986: 966: 868: 701: 601: 430: 1027: 956: 754: 745: 468:
Bits set to 1 are included in the sum. These representations may not be unique.
1259: 1244: 1239: 918: 903: 25: 1340: 1224: 898: 40: 1229: 971: 913: 415: 399: 976: 923: 17: 825: 713: 908: 816: 705: 856: 21: 33: 692:
Brown, J. L. (1961). "Note on Complete Sequences of Integers".
250:{\displaystyle s_{k-1}\geq a_{k}-1{\text{ for all }}k\geq 1} 628: 614: 435: 390: 366:{\displaystyle 2a_{k}\geq a_{k+1}{\text{ for all }}k\geq 0} 76:
is in non-decreasing order, and define the partial sums of
806: 55:, since adding even numbers produces only even numbersβ€”no 1205:
1/2 + 1/3 + 1/5 + 1/7 + 1/11 + β‹― (inverses of primes)
1195:
1 βˆ’ 1 + 2 βˆ’ 6 + 24 βˆ’ 120 + β‹― (alternating factorials)
316: 281: 197: 162: 94: 365: 301: 249: 182: 141: 774:"The main operations of the Fibonacci arithmetic" 1338: 67:Without loss of generality, assume the sequence 62: 841: 458: + 2)nd Fibonacci number minus 1. 414:The sequence of the number 1 followed by the 1288:Hypergeometric function of a matrix argument 678: 676: 674: 672: 600:= 13 + 3 + 1 = 17, minimal form, as used in 398:), consisting of the number 1 and the first 1144:1 + 1/2 + 1/3 + ... (Riemann zeta function) 405: 848: 834: 735: 142:{\displaystyle s_{n}=\sum _{m=0}^{n}a_{m}} 1200:1 + 1/2 + 1/3 + 1/4 + β‹― (harmonic series) 669: 298: 179: 855: 608:The maximal form above will always use F 507:= 8 + 5 + 2 + 1 + 1 = 17, maximal form) 1339: 765: 260:are both necessary and sufficient for 829: 807: 691: 272:A corollary to the above states that 794:. Originally accessed: 27 July 2010. 792:Museum of Harmony and Golden Section 43:(1, 2, 4, 8, ...), the basis of the 1165:1 βˆ’ 1 + 1 βˆ’ 1 + β‹― (Grandi's series) 471: 13: 14: 1358: 1283:Generalized hypergeometric series 800: 694:The American Mathematical Monthly 1321: 1320: 1293:Lauricella hypergeometric series 1011: 410:The complete sequences include: 1303:Riemann's differential equation 636:). This coding is known as the 462: 422:and others); this follows from 729: 720: 685: 1: 1298:Modular hypergeometric series 1139:1/4 + 1/16 + 1/64 + 1/256 + β‹― 663: 39:For example, the sequence of 7: 1308:Theta hypergeometric series 651: 385:to be a complete sequence. 269:to be a complete sequence. 63:Conditions for completeness 10: 1363: 1190:Infinite arithmetic series 1134:1/2 + 1/4 + 1/8 + 1/16 + β‹― 1129:1/2 βˆ’ 1/4 + 1/8 βˆ’ 1/16 + β‹― 736:Srinivasan, A. K. (1948), 454:Fibonacci numbers is the ( 1316: 1273: 1217: 1152: 1121: 1114: 1084: 1053: 1046: 1020: 1009: 932: 876: 867: 638:Zeckendorf representation 302:{\displaystyle a_{0}=1\,} 183:{\displaystyle a_{0}=1\,} 406:Other complete sequences 1021:Properties of sequences 402:after each power of 2. 884:Arithmetic progression 570:= 13 + 2 + 1 + 1 = 17) 367: 303: 251: 184: 143: 128: 1275:Hypergeometric series 889:Geometric progression 551:= 8 + 5 + 3 + 1 = 17) 529:= 8 + 5 + 3 + 1 = 17) 368: 304: 252: 185: 144: 108: 45:binary numeral system 1255:Trigonometric series 1047:Properties of series 894:Harmonic progression 658:Ostrowski numeration 478:Fibonacci arithmetic 476:For example, in the 424:Bertrand's postulate 314: 279: 195: 160: 153:Then the conditions 92: 1235:Formal power series 812:"Complete Sequence" 780:on January 24, 2013 738:"Practical numbers" 376:are sufficient for 351: for all  235: for all  1033:Monotonic function 952:Fibonacci sequence 809:Weisstein, Eric W. 585:= 13 + 3 + 1 = 17) 363: 299: 247: 180: 139: 32:if every positive 1347:Integer sequences 1334: 1333: 1265:Generating series 1213: 1212: 1185:1 βˆ’ 2 + 4 βˆ’ 8 + β‹― 1180:1 + 2 + 4 + 8 + β‹― 1175:1 βˆ’ 2 + 3 βˆ’ 4 + β‹― 1170:1 + 2 + 3 + 4 + β‹― 1160:1 + 1 + 1 + 1 + β‹― 1110: 1109: 1038:Periodic sequence 1007: 1006: 992:Triangular number 982:Pentagonal number 962:Heptagonal number 947:Complete sequence 869:Integer sequences 771:Stakhov, Alexey. 448:Fibonacci numbers 431:practical numbers 352: 236: 30:complete sequence 1354: 1324: 1323: 1250:Dirichlet series 1119: 1118: 1051: 1050: 1015: 987:Polygonal number 967:Hexagonal number 940: 874: 873: 850: 843: 836: 827: 826: 822: 821: 795: 789: 787: 785: 776:. Archived from 769: 763: 761: 742: 733: 727: 724: 718: 717: 689: 683: 680: 631: 617: 602:Fibonacci coding 534: 512: 486: 472:Fibonacci coding 438: 429:The sequence of 393: 372: 370: 369: 364: 353: 350: 348: 347: 329: 328: 308: 306: 305: 300: 291: 290: 256: 254: 253: 248: 237: 234: 226: 225: 213: 212: 189: 187: 186: 181: 172: 171: 148: 146: 145: 140: 138: 137: 127: 122: 104: 103: 1362: 1361: 1357: 1356: 1355: 1353: 1352: 1351: 1337: 1336: 1335: 1330: 1312: 1269: 1218:Kinds of series 1209: 1148: 1115:Explicit series 1106: 1080: 1042: 1028:Cauchy sequence 1016: 1003: 957:Figurate number 934: 928: 919:Powers of three 863: 854: 803: 798: 783: 781: 772: 770: 766: 746:Current Science 740: 734: 730: 725: 721: 706:10.2307/2311150 690: 686: 681: 670: 666: 654: 627: 625: 613: 611: 599: 595: 591: 584: 580: 576: 569: 565: 561: 557: 550: 546: 542: 538: 532: 528: 524: 520: 516: 510: 506: 502: 498: 494: 490: 484: 474: 465: 434: 408: 389: 384: 349: 337: 333: 324: 320: 315: 312: 311: 286: 282: 280: 277: 276: 268: 233: 221: 217: 202: 198: 196: 193: 192: 167: 163: 161: 158: 157: 133: 129: 123: 112: 99: 95: 93: 90: 89: 84: 75: 65: 59:can be formed. 50: 26:natural numbers 12: 11: 5: 1360: 1350: 1349: 1332: 1331: 1329: 1328: 1317: 1314: 1313: 1311: 1310: 1305: 1300: 1295: 1290: 1285: 1279: 1277: 1271: 1270: 1268: 1267: 1262: 1260:Fourier series 1257: 1252: 1247: 1245:Puiseux series 1242: 1240:Laurent series 1237: 1232: 1227: 1221: 1219: 1215: 1214: 1211: 1210: 1208: 1207: 1202: 1197: 1192: 1187: 1182: 1177: 1172: 1167: 1162: 1156: 1154: 1150: 1149: 1147: 1146: 1141: 1136: 1131: 1125: 1123: 1116: 1112: 1111: 1108: 1107: 1105: 1104: 1099: 1094: 1088: 1086: 1082: 1081: 1079: 1078: 1073: 1068: 1063: 1057: 1055: 1048: 1044: 1043: 1041: 1040: 1035: 1030: 1024: 1022: 1018: 1017: 1010: 1008: 1005: 1004: 1002: 1001: 1000: 999: 989: 984: 979: 974: 969: 964: 959: 954: 949: 943: 941: 930: 929: 927: 926: 921: 916: 911: 906: 901: 896: 891: 886: 880: 878: 871: 865: 864: 853: 852: 845: 838: 830: 824: 823: 802: 801:External links 799: 797: 796: 764: 728: 719: 700:(6): 557–560. 684: 667: 665: 662: 661: 660: 653: 650: 623: 609: 606: 605: 597: 593: 589: 586: 582: 578: 574: 571: 567: 563: 559: 555: 552: 548: 544: 540: 536: 530: 526: 522: 518: 514: 508: 504: 500: 496: 492: 488: 473: 470: 464: 461: 460: 459: 444: 427: 407: 404: 380: 374: 373: 362: 359: 356: 346: 343: 340: 336: 332: 327: 323: 319: 309: 297: 294: 289: 285: 264: 258: 257: 246: 243: 240: 232: 229: 224: 220: 216: 211: 208: 205: 201: 190: 178: 175: 170: 166: 151: 150: 136: 132: 126: 121: 118: 115: 111: 107: 102: 98: 80: 71: 64: 61: 48: 9: 6: 4: 3: 2: 1359: 1348: 1345: 1344: 1342: 1327: 1319: 1318: 1315: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1280: 1278: 1276: 1272: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1225:Taylor series 1223: 1222: 1220: 1216: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1157: 1155: 1151: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1126: 1124: 1120: 1117: 1113: 1103: 1100: 1098: 1095: 1093: 1090: 1089: 1087: 1083: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1058: 1056: 1052: 1049: 1045: 1039: 1036: 1034: 1031: 1029: 1026: 1025: 1023: 1019: 1014: 998: 995: 994: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 948: 945: 944: 942: 938: 931: 925: 922: 920: 917: 915: 914:Powers of two 912: 910: 907: 905: 902: 900: 899:Square number 897: 895: 892: 890: 887: 885: 882: 881: 879: 875: 872: 870: 866: 862: 858: 851: 846: 844: 839: 837: 832: 831: 828: 819: 818: 813: 810: 805: 804: 793: 784:September 11, 779: 775: 768: 760: 756: 752: 748: 747: 739: 732: 723: 715: 711: 707: 703: 699: 695: 688: 679: 677: 675: 673: 668: 659: 656: 655: 649: 647: 641: 639: 635: 630: 621: 616: 603: 587: 572: 553: 531: 509: 483: 482: 481: 479: 469: 457: 453: 449: 445: 442: 437: 432: 428: 425: 421: 417: 416:prime numbers 413: 412: 411: 403: 401: 397: 392: 386: 383: 379: 360: 357: 354: 344: 341: 338: 334: 330: 325: 321: 317: 310: 295: 292: 287: 283: 275: 274: 273: 270: 267: 263: 244: 241: 238: 230: 227: 222: 218: 214: 209: 206: 203: 199: 191: 176: 173: 168: 164: 156: 155: 154: 134: 130: 124: 119: 116: 113: 109: 105: 100: 96: 88: 87: 86: 83: 79: 74: 70: 60: 58: 54: 46: 42: 41:powers of two 37: 35: 31: 27: 23: 19: 1230:Power series 972:Lucas number 946: 924:Powers of 10 904:Cubic number 815: 791: 782:. Retrieved 778:the original 767: 750: 744: 731: 722: 697: 693: 687: 642: 607: 477: 475: 466: 463:Applications 455: 451: 420:S. S. Pillai 418:(studied by 409: 387: 381: 377: 375: 271: 265: 261: 259: 152: 81: 77: 72: 68: 66: 53:even numbers 38: 29: 28:is called a 15: 1097:Conditional 1085:Convergence 1076:Telescoping 1061:Alternating 977:Pell number 753:: 179–180, 18:mathematics 1122:Convergent 1066:Convergent 664:References 588:1001010 (F 573:1001001 (F 554:1000111 (F 57:odd number 1153:Divergent 1071:Divergent 933:Advanced 909:Factorial 857:Sequences 817:MathWorld 646:induction 535:111010 (F 513:111001 (F 487:110111 (F 358:≥ 331:≥ 242:≥ 228:− 215:≥ 207:− 110:∑ 1341:Category 1326:Category 1092:Absolute 652:See also 22:sequence 1102:Uniform 759:0027799 714:2311150 632:in the 629:A014417 618:in the 615:A104326 533:  511:  485:  439:in the 436:A005153 394:in the 391:A203074 34:integer 1054:Series 861:series 757:  712:  997:array 877:Basic 741:(PDF) 710:JSTOR 400:prime 937:list 859:and 786:2016 634:OEIS 620:OEIS 446:The 441:OEIS 396:OEIS 85:as: 20:, a 702:doi 596:+ F 592:+ F 581:+ F 577:+ F 566:+ F 562:+ F 558:+ F 547:+ F 543:+ F 539:+ F 525:+ F 521:+ F 517:+ F 503:+ F 499:+ F 495:+ F 491:+ F 24:of 16:In 1343:: 814:. 790:, 755:MR 751:17 749:, 743:, 708:. 698:68 696:. 671:^ 648:. 640:. 939:) 935:( 849:e 842:t 835:v 820:. 788:. 762:. 716:. 704:: 624:1 610:1 604:) 598:2 594:4 590:7 583:1 579:4 575:7 568:1 564:2 560:3 556:7 549:2 545:4 541:5 537:6 527:1 523:4 519:5 515:6 505:1 501:2 497:3 493:5 489:6 456:n 452:n 443:) 426:. 382:n 378:a 361:0 355:k 345:1 342:+ 339:k 335:a 326:k 322:a 318:2 296:1 293:= 288:0 284:a 266:n 262:a 245:1 239:k 231:1 223:k 219:a 210:1 204:k 200:s 177:1 174:= 169:0 165:a 149:. 135:m 131:a 125:n 120:0 117:= 114:m 106:= 101:n 97:s 82:n 78:a 73:n 69:a 49:2

Index

mathematics
sequence
natural numbers
integer
powers of two
binary numeral system
even numbers
odd number
A203074
OEIS
prime
prime numbers
S. S. Pillai
Bertrand's postulate
practical numbers
A005153
OEIS
Fibonacci numbers
Fibonacci coding
A104326
OEIS
A014417
OEIS
Zeckendorf representation
induction
Ostrowski numeration



Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑