Knowledge

Cofiniteness

Source đź“ť

553: 478: 1322: 1192: 1282: 1355: 1235: 928: 1152: 1119: 1072: 1031: 990: 671: 954: 714: 609: 473: 426: 363: 270: 157: 829: 805: 781: 734: 629: 586: 450: 383: 340: 320: 292: 227: 134: 110: 86: 66: 1450: 1033:
or the whole set. The open sets are the complements of the closed sets; namely, each open set consists of all but a finite number of pairs
905:
as the product of two compact spaces; alternatively, it is compact because each nonempty open set contains all but finitely many points.
166:
These arise naturally when generalizing structures on finite sets to infinite sets, particularly on infinite products, as in the
1421: 452:
as open sets. As a consequence, in the cofinite topology, the only closed subsets are finite sets, or the whole of
957: 887: 548:{\displaystyle {\mathcal {T}}=\{A\subseteq X:A=\varnothing {\mbox{ or }}X\setminus A{\mbox{ is finite}}\}.} 1287: 1157: 1404: 230: 1455: 1257: 1327: 748: 17: 1197: 911: 1127: 1094: 184: 89: 1399: 1036: 995: 302:
not generated by a single element of the algebra) if and only if there exists an infinite set
1252: 637: 1431: 848: 741: 966: 647: 8: 869: 865: 566: 234: 936: 696: 591: 455: 408: 345: 252: 139: 1409: 1381: 902: 814: 790: 766: 719: 614: 571: 435: 368: 325: 305: 277: 212: 119: 95: 71: 51: 1417: 1395: 1239:
The analog without requiring that cofinitely many factors are the whole space is the
683: 402: 1372: 1122: 1088: 558: 365:
In this case, the non-principal ultrafilter is the set of all cofinite subsets of
1427: 1413: 832: 641: 1360: 898: 808: 299: 1444: 840: 760: 159:
If the complement is not finite, but is countable, then one says the set is
1359:
The analog without requiring that cofinitely many summands are zero is the
1240: 844: 238: 193: 908:
For an example of the countable double-pointed cofinite topology, the set
931: 737: 295: 160: 38: 961: 562: 113: 31: 864:
is the cofinite topology with every point doubled; that is, it is the
429: 891: 880: 873: 752: 690: 847:
because no two nonempty open sets are disjoint (that is, it is
45: 787:
axiom if and only if it contains the cofinite topology. If
1384: â€“ List of concrete topologies and topological spaces 992:. The closed sets are the unions of finitely many pairs 233:, which means that it is closed under the operations of 759:; that is, it is the smallest topology for which every 533: 517: 1330: 1290: 1260: 1200: 1160: 1130: 1097: 1039: 998: 969: 939: 914: 817: 793: 769: 722: 699: 686:
of the cofinite topology is also a cofinite topology.
650: 635:) is the cofinite topology. The same is true for any 617: 594: 574: 557:
This topology occurs naturally in the context of the
481: 458: 438: 411: 371: 348: 328: 308: 280: 255: 215: 142: 122: 98: 74: 54: 1377:
Pages displaying wikidata descriptions as a fallback
930:
of integers can be given a topology such that every
855: 807:is finite then the cofinite topology is simply the 241:, and complementation. This Boolean algebra is the 192:
is consistent with its use in other terms such as "
1349: 1316: 1276: 1229: 1186: 1146: 1113: 1066: 1025: 984: 948: 922: 823: 799: 775: 728: 708: 665: 623: 603: 580: 547: 467: 444: 420: 377: 357: 334: 314: 286: 264: 221: 151: 128: 104: 80: 60: 1442: 342:is isomorphic to the finite–cofinite algebra on 897:since topologically distinguishable points are 27:Being a subset whose complement is a finite set 183:" to describe a property possessed by a set's 1412:reprint of 1978 ed.), Berlin, New York: 763:is closed. In fact, an arbitrary topology on 1394: 539: 492: 229:that are either finite or cofinite forms a 136:contains all but finitely many elements of 747:Separation: The cofinite topology is the 274:In the other direction, a Boolean algebra 916: 693:contains all but finitely many points of 588:are zero on finite sets, or the whole of 475:Symbolically, one writes the topology as 831:is not finite then this topology is not 886:, since the points of each doublet are 14: 1443: 1451:Basic concepts in infinite set theory 167: 1317:{\displaystyle \alpha _{i}\in M_{i}} 1187:{\displaystyle U_{i}\subseteq X_{i}} 388: 1091:on a product of topological spaces 1082: 644:; it is not true, for example, for 204: 24: 868:of the cofinite topology with the 484: 25: 1467: 1077: 872:on a two-element set. It is not 526: 513: 405:that can be defined on every set 862:double-pointed cofinite topology 856:Double-pointed cofinite topology 1277:{\displaystyle \bigoplus M_{i}} 958:topologically indistinguishable 888:topologically indistinguishable 171: 1350:{\displaystyle \alpha _{i}=0.} 13: 1: 1388: 1246: 1194:is open, and cofinitely many 676: 1230:{\displaystyle U_{i}=X_{i}.} 923:{\displaystyle \mathbb {Z} } 432:and all cofinite subsets of 7: 1405:Counterexamples in Topology 1366: 1147:{\displaystyle \prod U_{i}} 1114:{\displaystyle \prod X_{i}} 294:has a unique non-principal 10: 1472: 399:finite complement topology 209:The set of all subsets of 29: 689:Compactness: Since every 1067:{\displaystyle 2n,2n+1,} 1026:{\displaystyle 2n,2n+1,} 611:the Zariski topology on 177:This use of the prefix " 30:Not to be confused with 565:in one variable over a 245:finite–cofinite algebra 1400:Seebach, J. Arthur Jr. 1375: â€“ frechet filter 1351: 1324:where cofinitely many 1318: 1278: 1231: 1188: 1148: 1115: 1068: 1027: 986: 950: 924: 825: 801: 777: 730: 710: 667: 625: 605: 582: 549: 469: 446: 422: 397:(sometimes called the 379: 359: 336: 316: 288: 266: 223: 153: 130: 106: 82: 62: 1352: 1319: 1279: 1253:direct sum of modules 1232: 1189: 1149: 1116: 1074:or is the empty set. 1069: 1028: 987: 951: 925: 826: 802: 778: 731: 711: 668: 626: 606: 583: 550: 470: 447: 428:It has precisely the 423: 380: 360: 337: 317: 289: 267: 224: 154: 131: 107: 83: 63: 1328: 1288: 1258: 1251:The elements of the 1198: 1158: 1128: 1095: 1037: 996: 985:{\displaystyle 2n+1} 967: 937: 912: 815: 791: 767: 742:sequentially compact 720: 697: 666:{\displaystyle XY=0} 648: 615: 592: 572: 479: 456: 436: 409: 369: 346: 326: 306: 278: 253: 213: 140: 120: 96: 72: 52: 960:from the following 890:. It is, however, 870:indiscrete topology 866:topological product 1396:Steen, Lynn Arthur 1382:List of topologies 1347: 1314: 1274: 1227: 1184: 1144: 1111: 1064: 1023: 982: 949:{\displaystyle 2n} 946: 920: 821: 797: 773: 726: 709:{\displaystyle X,} 706: 663: 621: 604:{\displaystyle K,} 601: 578: 545: 537: 521: 468:{\displaystyle X.} 465: 442: 421:{\displaystyle X.} 418: 375: 358:{\displaystyle X.} 355: 332: 312: 284: 265:{\displaystyle X.} 262: 219: 152:{\displaystyle X.} 149: 126: 116:. In other words, 102: 78: 58: 1423:978-0-486-68735-3 824:{\displaystyle X} 809:discrete topology 800:{\displaystyle X} 776:{\displaystyle X} 749:coarsest topology 729:{\displaystyle X} 684:subspace topology 682:Subspaces: Every 624:{\displaystyle K} 581:{\displaystyle K} 536: 520: 445:{\displaystyle X} 395:cofinite topology 389:Cofinite topology 378:{\displaystyle X} 335:{\displaystyle A} 315:{\displaystyle X} 287:{\displaystyle A} 222:{\displaystyle X} 129:{\displaystyle A} 105:{\displaystyle X} 81:{\displaystyle A} 61:{\displaystyle X} 16:(Redirected from 1463: 1456:General topology 1436:(See example 18) 1434: 1378: 1356: 1354: 1353: 1348: 1340: 1339: 1323: 1321: 1320: 1315: 1313: 1312: 1300: 1299: 1283: 1281: 1280: 1275: 1273: 1272: 1236: 1234: 1233: 1228: 1223: 1222: 1210: 1209: 1193: 1191: 1190: 1185: 1183: 1182: 1170: 1169: 1153: 1151: 1150: 1145: 1143: 1142: 1120: 1118: 1117: 1112: 1110: 1109: 1089:product topology 1083:Product topology 1073: 1071: 1070: 1065: 1032: 1030: 1029: 1024: 991: 989: 988: 983: 955: 953: 952: 947: 929: 927: 926: 921: 919: 901:. The space is 830: 828: 827: 822: 806: 804: 803: 798: 782: 780: 779: 774: 735: 733: 732: 727: 715: 713: 712: 707: 672: 670: 669: 664: 630: 628: 627: 622: 610: 608: 607: 602: 587: 585: 584: 579: 559:Zariski topology 554: 552: 551: 546: 538: 534: 522: 518: 488: 487: 474: 472: 471: 466: 451: 449: 448: 443: 427: 425: 424: 419: 384: 382: 381: 376: 364: 362: 361: 356: 341: 339: 338: 333: 321: 319: 318: 313: 293: 291: 290: 285: 271: 269: 268: 263: 247: 246: 228: 226: 225: 220: 205:Boolean algebras 168:product topology 158: 156: 155: 150: 135: 133: 132: 127: 111: 109: 108: 103: 87: 85: 84: 79: 67: 65: 64: 59: 21: 1471: 1470: 1466: 1465: 1464: 1462: 1461: 1460: 1441: 1440: 1424: 1414:Springer-Verlag 1391: 1376: 1369: 1335: 1331: 1329: 1326: 1325: 1308: 1304: 1295: 1291: 1289: 1286: 1285: 1268: 1264: 1259: 1256: 1255: 1249: 1218: 1214: 1205: 1201: 1199: 1196: 1195: 1178: 1174: 1165: 1161: 1159: 1156: 1155: 1138: 1134: 1129: 1126: 1125: 1105: 1101: 1096: 1093: 1092: 1085: 1080: 1038: 1035: 1034: 997: 994: 993: 968: 965: 964: 938: 935: 934: 915: 913: 910: 909: 895: 884: 877: 858: 836: 816: 813: 812: 792: 789: 788: 786: 783:satisfies the T 768: 765: 764: 756: 751:satisfying the 721: 718: 717: 698: 695: 694: 679: 649: 646: 645: 642:algebraic curve 631:(considered as 616: 613: 612: 593: 590: 589: 573: 570: 569: 535: is finite 532: 516: 483: 482: 480: 477: 476: 457: 454: 453: 437: 434: 433: 410: 407: 406: 391: 370: 367: 366: 347: 344: 343: 327: 324: 323: 307: 304: 303: 279: 276: 275: 254: 251: 250: 244: 243: 231:Boolean algebra 214: 211: 210: 207: 141: 138: 137: 121: 118: 117: 97: 94: 93: 73: 70: 69: 53: 50: 49: 35: 28: 23: 22: 15: 12: 11: 5: 1469: 1459: 1458: 1453: 1439: 1438: 1422: 1390: 1387: 1386: 1385: 1379: 1373:FrĂ©chet filter 1368: 1365: 1361:direct product 1346: 1343: 1338: 1334: 1311: 1307: 1303: 1298: 1294: 1284:are sequences 1271: 1267: 1263: 1248: 1245: 1226: 1221: 1217: 1213: 1208: 1204: 1181: 1177: 1173: 1168: 1164: 1141: 1137: 1133: 1108: 1104: 1100: 1084: 1081: 1079: 1078:Other examples 1076: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 981: 978: 975: 972: 945: 942: 918: 893: 882: 875: 857: 854: 853: 852: 849:hyperconnected 834: 820: 796: 784: 772: 754: 745: 725: 705: 702: 687: 678: 675: 673:in the plane. 662: 659: 656: 653: 620: 600: 597: 577: 544: 541: 531: 528: 525: 519: or  515: 512: 509: 506: 503: 500: 497: 494: 491: 486: 464: 461: 441: 417: 414: 390: 387: 374: 354: 351: 331: 311: 300:maximal filter 283: 261: 258: 218: 206: 203: 197: 188: 181: 148: 145: 125: 101: 77: 57: 26: 9: 6: 4: 3: 2: 1468: 1457: 1454: 1452: 1449: 1448: 1446: 1437: 1433: 1429: 1425: 1419: 1415: 1411: 1407: 1406: 1401: 1397: 1393: 1392: 1383: 1380: 1374: 1371: 1370: 1364: 1362: 1357: 1344: 1341: 1336: 1332: 1309: 1305: 1301: 1296: 1292: 1269: 1265: 1261: 1254: 1244: 1242: 1237: 1224: 1219: 1215: 1211: 1206: 1202: 1179: 1175: 1171: 1166: 1162: 1139: 1135: 1131: 1124: 1106: 1102: 1098: 1090: 1075: 1061: 1058: 1055: 1052: 1049: 1046: 1043: 1040: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 979: 976: 973: 970: 963: 959: 943: 940: 933: 906: 904: 900: 896: 889: 885: 878: 871: 867: 863: 850: 846: 842: 838: 818: 810: 794: 770: 762: 761:singleton set 758: 750: 746: 743: 739: 723: 703: 700: 692: 688: 685: 681: 680: 674: 660: 657: 654: 651: 643: 640: 639: 634: 618: 598: 595: 575: 568: 564: 560: 555: 542: 529: 523: 510: 507: 504: 501: 498: 495: 489: 462: 459: 439: 431: 415: 412: 404: 400: 396: 386: 372: 352: 349: 329: 309: 301: 297: 281: 272: 259: 256: 248: 240: 236: 232: 216: 202: 200: 198: 195: 191: 189: 186: 182: 179: 175: 173: 169: 164: 162: 146: 143: 123: 115: 99: 91: 75: 55: 47: 44: 40: 33: 19: 1435: 1403: 1358: 1250: 1241:box topology 1238: 1086: 907: 861: 859: 833:Hausdorff (T 636: 632: 556: 398: 394: 392: 298:(that is, a 273: 242: 239:intersection 208: 194: 185: 178: 176: 165: 68:is a subset 42: 36: 932:even number 638:irreducible 633:affine line 563:polynomials 296:ultrafilter 161:cocountable 39:mathematics 1445:Categories 1389:References 1247:Direct sum 962:odd number 716:the space 677:Properties 322:such that 199:meagre set 172:direct sum 114:finite set 90:complement 32:cofinality 1402:(1995) , 1333:α 1302:∈ 1293:α 1262:⨁ 1172:⊆ 1132:∏ 1099:∏ 899:separated 527:∖ 514:∅ 499:⊆ 430:empty set 48:of a set 1367:See also 691:open set 561:. Since 403:topology 190:mplement 43:cofinite 18:Cofinite 1432:0507446 903:compact 841:regular 738:compact 401:) is a 1430:  1420:  1154:where 845:normal 88:whose 46:subset 1410:Dover 1123:basis 811:. If 757:axiom 567:field 235:union 112:is a 1418:ISBN 1121:has 1087:The 860:The 740:and 393:The 201:". 41:, a 956:is 879:or 843:or 736:is 249:on 174:. 170:or 92:in 37:In 1447:: 1428:MR 1426:, 1416:, 1398:; 1363:. 1345:0. 1243:. 851:). 839:, 385:. 237:, 196:co 187:co 180:co 163:. 1408:( 1342:= 1337:i 1310:i 1306:M 1297:i 1270:i 1266:M 1225:. 1220:i 1216:X 1212:= 1207:i 1203:U 1180:i 1176:X 1167:i 1163:U 1140:i 1136:U 1107:i 1103:X 1062:, 1059:1 1056:+ 1053:n 1050:2 1047:, 1044:n 1041:2 1021:, 1018:1 1015:+ 1012:n 1009:2 1006:, 1003:n 1000:2 980:1 977:+ 974:n 971:2 944:n 941:2 917:Z 894:0 892:R 883:1 881:T 876:0 874:T 837:) 835:2 819:X 795:X 785:1 771:X 755:1 753:T 744:. 724:X 704:, 701:X 661:0 658:= 655:Y 652:X 619:K 599:, 596:K 576:K 543:. 540:} 530:A 524:X 511:= 508:A 505:: 502:X 496:A 493:{ 490:= 485:T 463:. 460:X 440:X 416:. 413:X 373:X 353:. 350:X 330:A 310:X 282:A 260:. 257:X 217:X 147:. 144:X 124:A 100:X 76:A 56:X 34:. 20:)

Index

Cofinite
cofinality
mathematics
subset
complement
finite set
cocountable
product topology
direct sum
complement
comeagre set
Boolean algebra
union
intersection
ultrafilter
maximal filter
topology
empty set
Zariski topology
polynomials
field
irreducible
algebraic curve
subspace topology
open set
compact
sequentially compact
coarsest topology
T1 axiom
singleton set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑