Knowledge

Closed-subgroup theorem

Source 📝

4908: 2989: 1560: 1840: 1352: 1123: 1347: 1555:{\displaystyle H=\left\{\left.{\begin{pmatrix}e^{2\pi i\theta }&0\\0&e^{2\pi ia\theta }\end{pmatrix}}\right|\theta \in \mathbf {R} \right\}{\text{with Lie algebra }}{\mathfrak {h}}=\left\{\left.{\begin{pmatrix}i\theta &0\\0&ia\theta \end{pmatrix}}\right|\theta \in \mathbf {R} \right\},} 3034:
for concreteness and relative simplicity, since matrices and their exponential mapping are easier concepts than in the general case. Historically, this case was proven first, by John von Neumann in 1929, and inspired Cartan to prove the full closed subgroup theorem in 1930. The proof for general
2458:. In this setting, one proves that every element of the group sufficiently close to the identity is the exponential of an element of the Lie algebra. (The proof is practically identical to the proof of the closed subgroup theorem presented below.) It follows every closed subgroup is an 1209: 287: 4277: 3463: 882: 800: 760: 976: 934: 208: 4133: 5255: 1073: 1043: 848: 824: 657: 556: 508: 481: 457: 415: 385: 361: 337: 313: 197: 131: 2596:
The closed subgroup theorem now simplifies the hypotheses considerably, a priori widening the class of homogeneous spaces. Every closed subgroup yields a homogeneous space.
1342:{\displaystyle G=\mathbb {T} ^{2}=\left\{\left.{\begin{pmatrix}e^{2\pi i\theta }&0\\0&e^{2\pi i\phi }\end{pmatrix}}\right|\theta ,\phi \in \mathbf {R} \right\},} 582: 2257: 4489:. The topology generated by these bases is the relative topology. The conclusion is that the relative topology is the same as the group topology. 3355: 175:
is not assumed to have any smoothness and therefore it is not clear how one may define its tangent space. To proceed, define the "Lie algebra"
2305: 2310: 2300: 2295: 4650:. By translating the charts obtained from the countable neighborhood basis used above one obtains slice charts around every point in 2115: 2379: 2262: 5322: 853: 771: 731: 2410: 80: 5367: 1806:
for which one can find points in an arbitrarily small neighborhood (in the relative topology) of the identity that are
4917:, Theorem 1, Section 2.7 Rossmann states the theorem for linear groups. The statement is that there is an open subset 5478: 5454: 5403: 5385: 3153: 4695:
and restriction to a submanifold (embedded or immersed) with the relative topology again yield analytic operations
516:
that are sufficiently close to the identity. That is to say, it is necessary to prove the following critical lemma:
4896: 2946: 2272: 4968: 5415:(1929), "Über die analytischen Eigenschaften von Gruppen linearer Transformationen und ihrer Darstellungen", 2267: 2247: 1203: 939: 897: 2212: 2120: 1594:
is composed of infinitely many almost parallel line segments on the surface of the torus. This means that
3466: 3008: 2252: 5417: 1054: 1024: 829: 805: 638: 537: 489: 462: 438: 396: 366: 342: 318: 294: 178: 112: 1093:
coming from these coordinates is not the subset topology. That it so say, the identity component of
4782: 3549: 2533: 2403: 1887: 2599:
In a similar way, the closed subgroup theorem simplifies the hypothesis in the following theorem.
4447:. This is, by the way it is constructed, a neighborhood basis both in the group topology and the 2610: 979: 664: 2974:
is closed so a subgroup is an embedded Lie subgroup if and only if it is closed. Equivalently,
2854: 2511: 2207: 2170: 2138: 2125: 1601: 282:{\displaystyle {\mathfrak {h}}=\left\{X\mid e^{tX}\in H,\,\,\forall t\in \mathbf {R} \right\}.} 5335: 4272:{\displaystyle (e^{S_{i}})^{m_{i}}=e^{m_{i}S_{i}}=e^{m_{i}\|S_{i}\|Y_{i}}\rightarrow e^{tY}.} 3241: 2239: 1907: 5061: 2980:
is an embedded Lie subgroup if and only if its group topology equals its relative topology.
1982: 1972: 1962: 1952: 5097: 1867: 1857: 8: 5473: 4457:
is analytic, the left and right translates of this neighborhood basis by a group element
2396: 2384: 2225: 2055: 5434: 4787: 3671: 2156: 2146: 1793: 567: 5450: 5438: 5399: 5381: 5363: 4448: 3000: 2583: 2220: 2183: 1816:. For closed subgroups this is not the case as the proof below of the theorem shows. 1585: 76: 2335: 2073: 5426: 5412: 5194: 2992: 2893: 2355: 2035: 2027: 2019: 2011: 2003: 1936: 1917: 1877: 88: 72: 36: 5318: 2661: 2340: 2093: 2078: 1849: 46: 1198:
For an example of a subgroup that is not an embedded Lie subgroup, consider the
3139:
We begin by establishing the key lemma stated in the "overview" section above.
2614: 2360: 2178: 2083: 601:
be the inverse of the exponential map. Then there is some smaller neighborhood
5342: 2345: 84: 5467: 5268:
is sequentially compact, meaning every sequence has a convergent subsequence.
3979: 3668: 3613: 3149: 2711:
is closed. A subgroup is locally closed if every point has a neighborhood in
2068: 1897: 1797: 3045: 3016: 2996: 2988: 2365: 2350: 2151: 2133: 2063: 157:. The first step is to identify something that could be the Lie algebra of 5230: 5182: 5170: 5158: 5146: 4883:. Here the metric obtained from the Hilbert–Schmidt inner product is used. 5362:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 5360:
Lie groups, Lie algebras, and representations: An elementary introduction
4647: 2191: 2107: 1831: 1087:
into a Lie group. It is important to note, however, that the topology on
20: 5206: 5430: 4528:. This is an analytic bijection with analytic inverse. Furthermore, if 3257: 3004: 2701: 2330: 2196: 2088: 92: 4905:, Theorem 20.10. Lee states and proves this theorem in all generality. 2637:
has a unique smooth manifold structure such that the action is smooth.
1647:, yet they cannot be connected to the identity with a path staying in 5398:, Oxford Graduate Texts in Mathematics, Oxford Science Publications, 1827: 1687:
is an analytic bijection, its inverse is not continuous. That is, if
1575: 68: 65: 50: 4977:, For linear groups, Hall proves a similar result in Corollary 3.45. 3702:. Suppose for the purpose of obtaining a contradiction that for all 3041:
is formally identical, except that elements of the Lie algebra are
5271: 2287: 417:
must be big enough to capture some interesting information about
32: 2423:
Because of the conclusion of the theorem, some authors chose to
762:. That is to say, in exponential coordinates near the identity, 5283: 5073: 79:) agreeing with the embedding. One of several results known as 5218: 5134: 5039: 5037: 5295: 3998:
henceforth refers to this subsequence. It will be shown that
1199: 1133: 2656:
being closed, hence an embedded Lie group, are given below.
1800:, hence not an embedding. There are also examples of groups 5034: 5022: 1839: 1482: 1368: 1240: 5085: 2879:
to a diagonal matrix with two entries of irrational ratio.
5380:, Springer Graduate Texts in Mathematics, vol. 218, 4997: 4995: 3458:{\displaystyle \Phi (S,T)=e^{tS}e^{tT}=I+tS+tT+O(t^{2}),} 2999:
as given here. He was prominent in many areas, including
1626:
one can find points in an arbitrarily small neighborhood
5330:
Biographical Memoirs of the National Academy of Sciences
1122: 5345:(1930), "La théorie des groupes finis et continus et l' 5049: 1108:
In particular, the lemma stated above does not hold if
4992: 4953:
is an analytic bijection onto an open neighborhood of
1489: 1375: 1247: 1162:
in lowest terms, the helix will close up on itself at
1002:, which is the condition for an embedded submanifold. 877:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 795:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 755:{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}} 5012: 5010: 4980: 4136: 3358: 1641:
of the identity that are exponentials of elements of
1355: 1212: 1057: 1027: 942: 900: 856: 832: 808: 774: 734: 641: 570: 540: 492: 465: 441: 399: 369: 345: 321: 297: 211: 181: 115: 5109: 4689:
are analytic since these operations are analytic in
1075:. Rossmann then goes on to introduce coordinates on 2949:, then the connected Lie subgroup with Lie algebra 1117: 5396:Lie Groups – An Introduction Through Linear Groups 5007: 4271: 3982:, there is a convergent subsequence converging to 3457: 1554: 1341: 1067: 1037: 970: 928: 876: 842: 818: 794: 754: 651: 576: 550: 502: 475: 451: 409: 387:, which one might hope to be the tangent space of 379: 355: 331: 307: 281: 191: 125: 1771:is a Lie group. With this topology the injection 1604:. In the group topology, the small open sets are 393:at the identity. For this idea to work, however, 5465: 2258:Representation theory of semisimple Lie algebras 1005:It is worth noting that Rossmann shows that for 4374:and the exponential restricted to the open set 3664:such that the conclusion of the theorem holds. 3634:with analytic inverse. It remains to show that 2641: 1608:line segments on the surface of the torus and 91:'s 1929 proof of a special case for groups of 3686:, linearly ordered by reverse inclusion with 2404: 4235: 4222: 3972:. It takes its values in the unit sphere in 3054:and the exponential mapping is the time one 1194:is irrational, the helix winds indefinitely. 710:. In these coordinates, the lemma says that 663:Once this has been established, one can use 5411: 5070:, Chapter 2, Proposition 1 and Corollary 7. 5001: 4389:is in analytic bijection with the open set 4329:. This is a contradiction. Hence, for some 5106:, See comment to Corollary 5, Section 2.2. 2995:in 1929 proved the theorem in the case of 2411: 2397: 2296:Particle physics and representation theory 1838: 1021:(not necessarily closed), the Lie algebra 3134: 1221: 564:diffeomorphically onto some neighborhood 256: 255: 5393: 5236: 5188: 5176: 5164: 5152: 5115: 5103: 5079: 5067: 4914: 2987: 1121: 5444: 5317: 5277: 5261: 5016: 4407: 3556:analytic, and thus there are open sets 2263:Representations of classical Lie groups 1620:The example shows that for some groups 971:{\displaystyle n=\dim({\mathfrak {g}})} 929:{\displaystyle k=\dim({\mathfrak {h}})} 169:at the identity. The challenge is that 5466: 5341: 5203:, The result follows from Theorem 5.6. 4986: 3548:, the identity. The hypothesis of the 2480:homogeneous space construction theorem 510:actually captures all the elements of 4492:Next, construct coordinate charts on 4287:is a group, the left hand side is in 2802:is a Lie subalgebra such that for no 2514:structure such that the quotient map 2510:, the left coset space, has a unique 1697:corresponds to a small open interval 5357: 5212: 5200: 5140: 5128: 5043: 5028: 4974: 4806:For this one can choose open balls, 2116:Lie group–Lie algebra correspondence 1081:that make the identity component of 558:such that the exponential map sends 486:The key step, then, is to show that 151:is a smooth embedded submanifold of 83:, it was first published in 1930 by 5375: 5301: 5289: 5249: 5224: 5091: 5055: 4902: 2892:be a Lie subalgebra. If there is a 1747:. However, with the group topology 1468: 1060: 1030: 960: 918: 869: 859: 835: 811: 787: 777: 747: 737: 644: 543: 495: 468: 444: 402: 372: 348: 324: 300: 214: 184: 139:be an arbitrary closed subgroup of 118: 13: 3359: 1741:due to the appearance of the sets 1668:is not a Lie group. While the map 1136:laid out on the surface picturing 257: 14: 5490: 1105:but not an embedded submanifold. 291:It is not difficult to show that 5378:Introduction to Smooth manifolds 4479:gives neighborhood bases at all 2646:A few sufficient conditions for 1540: 1452: 1327: 1118:Example of a non-closed subgroup 267: 163:, that is, the tangent space of 109:be a Lie group with Lie algebra 5353:, vol. XLII, pp. 1–61 5242: 5121: 4800: 2631:is a closed Lie subgroup, then 1819: 1204:irrational winding of the torus 1068:{\displaystyle {\mathfrak {g}}} 1038:{\displaystyle {\mathfrak {h}}} 843:{\displaystyle {\mathfrak {g}}} 819:{\displaystyle {\mathfrak {h}}} 652:{\displaystyle {\mathfrak {h}}} 551:{\displaystyle {\mathfrak {g}}} 503:{\displaystyle {\mathfrak {h}}} 476:{\displaystyle {\mathfrak {h}}} 452:{\displaystyle {\mathfrak {h}}} 410:{\displaystyle {\mathfrak {h}}} 380:{\displaystyle {\mathfrak {g}}} 356:{\displaystyle {\mathfrak {h}}} 332:{\displaystyle {\mathfrak {g}}} 308:{\displaystyle {\mathfrak {h}}} 192:{\displaystyle {\mathfrak {h}}} 145:. It is necessary to show that 126:{\displaystyle {\mathfrak {g}}} 5131:. See definition in Chapter 1. 4662:is an embedded submanifold of 4467:gives a neighborhood basis at 4250: 4158: 4137: 3870:is a neighborhood basis, with 3449: 3436: 3374: 3362: 2311:Galilean group representations 2306:Poincaré group representations 1099:is an immersed submanifold of 965: 955: 923: 913: 1: 5310: 4443:form a neighborhood basis at 3782:, there is a unique sequence 3154:Hilbert–Schmidt inner product 2301:Lorentz group representations 2268:Theorem of the highest weight 1584:and hence not closed. In the 978:. Thus, we have exhibited a " 5323:"John von Neumann 1903–1957" 4890: 4581:, then in these coordinates 4473:. These bases restricted to 1810:exponentials of elements of 429:were some large subgroup of 7: 5215:, Exercise 14 in Chapter 5. 4776: 3352:. Expand the exponentials, 3104:, so the specialization to 2959: 2642:Conditions for being closed 2536:. The left action given by 98: 10: 5495: 4451:. Since multiplication in 3923:Normalize the sequence in 3009:foundations of mathematics 2253:Lie algebra representation 716:corresponds to a point in 528:Take a small neighborhood 27:(sometimes referred to as 5445:Willard, Stephen (1970), 5418:Mathematische Zeitschrift 5239:, Problem 2. Section 2.7. 5191:, Problem 5. Section 2.7. 5179:, Problem 4. Section 2.7. 5167:, Problem 3. Section 2.7. 5155:, Problem 1. Section 2.7. 4671:Moreover, multiplication 4404:. This proves the lemma. 3283:is uniquely expressed as 2964:An embedded Lie subgroup 2828:, the group generated by 1632:in the relative topology 1588:, a small open subset of 5479:Theorems in group theory 4793: 4783:Inverse function theorem 4555:. By fixing a basis for 3550:inverse function theorem 3058:of the vector field. If 2983: 2935:is simply connected and 2248:Lie group representation 1617:locally path connected. 673:, that is, writing each 5394:Rossmann, Wulf (2002), 5358:Hall, Brian C. (2015), 4861:for some large enough 3015:The proof is given for 2777:is a compact group and 2611:transitive group action 2434:as closed subgroups of 2273:Borel–Weil–Bott theorem 1051:is a Lie subalgebra of 980:slice coordinate system 665:exponential coordinates 459:turned out to be zero, 315:is a Lie subalgebra of 25:closed-subgroup theorem 5449:, Dover Publications, 4773:are analytic as well. 4273: 4033:of integers such that 4022:and choose a sequence 3771:is a bijection on the 3459: 3162:be the Lie algebra of 3135:Proof of the key lemma 3012: 2855:one-parameter subgroup 2783:is a closed set, then 2512:real-analytic manifold 2171:Semisimple Lie algebra 2126:Adjoint representation 1602:locally path connected 1556: 1463:with Lie algebra  1343: 1195: 1069: 1039: 972: 930: 878: 844: 826:is just a subspace of 820: 796: 756: 653: 578: 552: 504: 483:would not be helpful. 477: 453: 411: 381: 357: 333: 309: 283: 193: 127: 93:linear transformations 87:, who was inspired by 4274: 3460: 3242:orthogonal complement 3116:instead of arbitrary 2991: 2240:Representation theory 1796:immersion, but not a 1557: 1344: 1125: 1070: 1040: 973: 931: 879: 845: 821: 797: 757: 654: 579: 553: 505: 478: 454: 412: 382: 358: 334: 310: 284: 194: 128: 5334:. See in particular 4625:is the dimension of 4408:Proof of the theorem 4134: 3724:contains an element 3356: 1353: 1210: 1055: 1025: 940: 898: 854: 830: 806: 772: 732: 683:(not necessarily in 639: 568: 538: 490: 463: 439: 397: 367: 343: 319: 295: 209: 179: 113: 39:. It states that if 16:Group theory theorem 5376:Lee, J. M. (2003), 5292:, Proposition 8.22. 2707:A subgroup that is 2498:closed Lie subgroup 2484: —  2385:Table of Lie groups 2226:Compact Lie algebra 1712:, there is no open 992:looks locally like 584:of the identity in 526: —  423:. If, for example, 5431:10.1007/BF01187749 5351:Mémorial Sc. Math. 5264:, By problem 17G, 5227:, Corollary 15.30. 4788:Lie correspondence 4656:. This shows that 4631:. This shows that 4269: 3672:neighborhood basis 3652:contain open sets 3552:is satisfied with 3455: 3256:decomposes as the 3013: 2482: 2157:Affine Lie algebra 2147:Simple Lie algebra 1888:Special orthogonal 1552: 1523: 1435: 1339: 1304: 1196: 1065: 1035: 968: 926: 874: 850:, this means that 840: 816: 792: 752: 649: 574: 548: 524: 500: 473: 449: 407: 377: 353: 329: 305: 279: 189: 123: 5413:von Neumann, John 5304:, Corollary 8.25. 5280:, Corollary 10.5. 5248:See for instance 5143:, Corollary 3.45. 4449:relative topology 3001:quantum mechanics 2477: 2432:matrix Lie groups 2428:linear Lie groups 2421: 2420: 2221:Split Lie algebra 2184:Cartan subalgebra 2046: 2045: 1937:Simple Lie groups 1586:relative topology 1568:irrational. Then 1464: 1349:and its subgroup 1132:. Imagine a bent 577:{\displaystyle V} 534:of the origin in 520: 363:is a subspace of 339:. In particular, 35:in the theory of 5486: 5459: 5447:General Topology 5441: 5408: 5390: 5372: 5354: 5333: 5327: 5305: 5299: 5293: 5287: 5281: 5275: 5269: 5259: 5253: 5246: 5240: 5234: 5228: 5222: 5216: 5210: 5204: 5198: 5192: 5186: 5180: 5174: 5168: 5162: 5156: 5150: 5144: 5138: 5132: 5125: 5119: 5113: 5107: 5101: 5095: 5089: 5083: 5077: 5071: 5065: 5059: 5053: 5047: 5041: 5032: 5026: 5020: 5014: 5005: 5002:von Neumann 1929 4999: 4990: 4984: 4978: 4972: 4966: 4964: 4958: 4952: 4926: 4912: 4906: 4900: 4884: 4882: 4866: 4860: 4850: 4848: 4847: 4838: 4835: 4804: 4772: 4754: 4736: 4730: 4712: 4694: 4688: 4682: 4677:, and inversion 4676: 4667: 4661: 4655: 4645: 4630: 4624: 4618: 4580: 4574: 4569:and identifying 4568: 4554: 4537: 4527: 4497: 4488: 4478: 4472: 4466: 4456: 4446: 4442: 4438: 4427: 4421: 4403: 4388: 4373: 4359: 4346: 4334: 4328: 4318: 4304: 4298: 4292: 4286: 4278: 4276: 4275: 4270: 4265: 4264: 4249: 4248: 4247: 4246: 4234: 4233: 4221: 4220: 4203: 4202: 4201: 4200: 4191: 4190: 4173: 4172: 4171: 4170: 4156: 4155: 4154: 4153: 4129: 4117: 4074: 4063: 4056: 4032: 4021: 4015: 3997: 3991: 3978:and since it is 3977: 3971: 3970: 3968: 3967: 3955: 3952: 3928: 3919: 3909: 3894: 3884: 3869: 3865: 3861: 3841: 3826: 3810: 3781: 3770: 3766: 3734: 3723: 3707: 3701: 3685: 3678: 3663: 3657: 3651: 3642: 3633: 3624: 3611: 3607: 3594: 3584: 3555: 3547: 3539: 3529: 3522: 3510: 3508: 3507: 3502: 3499: 3476: 3464: 3462: 3461: 3456: 3448: 3447: 3405: 3404: 3392: 3391: 3351: 3333: 3314: 3296: 3282: 3272: 3255: 3249: 3239: 3208: 3167: 3161: 3147: 3131:matters little. 3130: 3115: 3103: 3091: 3085: 3073: 3067: 3053: 3040: 3033: 2993:John von Neumann 2979: 2973: 2954: 2944: 2927: 2921: 2913: 2907: 2901: 2894:simply connected 2891: 2878: 2873:is similar over 2872: 2862: 2852: 2839: 2833: 2827: 2819: 2801: 2788: 2782: 2776: 2770: 2736: 2730: 2720: 2699: 2693: 2687: 2681: 2675: 2662:classical groups 2655: 2636: 2630: 2608: 2589: 2581: 2571: 2531: 2509: 2495: 2485: 2473: 2457: 2445: 2413: 2406: 2399: 2356:Claude Chevalley 2213:Complexification 2056:Other Lie groups 1942: 1941: 1850:Classical groups 1842: 1824: 1823: 1815: 1805: 1791: 1770: 1755: 1746: 1740: 1729: 1711: 1696: 1686: 1667: 1652: 1646: 1640: 1631: 1625: 1613: 1599: 1593: 1583: 1573: 1567: 1561: 1559: 1558: 1553: 1548: 1544: 1543: 1532: 1528: 1527: 1472: 1471: 1465: 1462: 1460: 1456: 1455: 1444: 1440: 1439: 1432: 1431: 1396: 1395: 1348: 1346: 1345: 1340: 1335: 1331: 1330: 1313: 1309: 1308: 1301: 1300: 1268: 1267: 1230: 1229: 1224: 1193: 1187: 1177: 1171: 1165: 1161: 1160: 1159: 1153: 1141: 1131: 1113: 1104: 1098: 1092: 1086: 1080: 1074: 1072: 1071: 1066: 1064: 1063: 1050: 1044: 1042: 1041: 1036: 1034: 1033: 1020: 1014: 1001: 991: 977: 975: 974: 969: 964: 963: 935: 933: 932: 927: 922: 921: 893: 883: 881: 880: 875: 873: 872: 863: 862: 849: 847: 846: 841: 839: 838: 825: 823: 822: 817: 815: 814: 801: 799: 798: 793: 791: 790: 781: 780: 767: 761: 759: 758: 753: 751: 750: 741: 740: 727: 721: 715: 709: 698: 688: 682: 672: 658: 656: 655: 650: 648: 647: 634: 626: 616: 610: 600: 589: 583: 581: 580: 575: 563: 557: 555: 554: 549: 547: 546: 533: 527: 515: 509: 507: 506: 501: 499: 498: 482: 480: 479: 474: 472: 471: 458: 456: 455: 450: 448: 447: 434: 428: 422: 416: 414: 413: 408: 406: 405: 392: 386: 384: 383: 378: 376: 375: 362: 360: 359: 354: 352: 351: 338: 336: 335: 330: 328: 327: 314: 312: 311: 306: 304: 303: 288: 286: 285: 280: 275: 271: 270: 245: 244: 218: 217: 204: 198: 196: 195: 190: 188: 187: 174: 168: 162: 156: 150: 144: 138: 132: 130: 129: 124: 122: 121: 108: 89:John von Neumann 81:Cartan's theorem 73:smooth structure 63: 57: 44: 29:Cartan's theorem 5494: 5493: 5489: 5488: 5487: 5485: 5484: 5483: 5464: 5463: 5462: 5457: 5406: 5388: 5370: 5325: 5313: 5308: 5300: 5296: 5288: 5284: 5276: 5272: 5260: 5256: 5247: 5243: 5235: 5231: 5223: 5219: 5211: 5207: 5199: 5195: 5187: 5183: 5175: 5171: 5163: 5159: 5151: 5147: 5139: 5135: 5126: 5122: 5114: 5110: 5102: 5098: 5090: 5086: 5078: 5074: 5066: 5062: 5054: 5050: 5046:, Theorem 3.42. 5042: 5035: 5031:, Theorem 3.20. 5027: 5023: 5015: 5008: 5000: 4993: 4985: 4981: 4973: 4969: 4960: 4954: 4928: 4918: 4913: 4909: 4901: 4897: 4893: 4888: 4887: 4881: 4874: 4868: 4862: 4839: 4836: 4833: 4832: 4830: 4828: 4819: 4807: 4805: 4801: 4796: 4779: 4756: 4738: 4732: 4714: 4696: 4690: 4684: 4678: 4672: 4663: 4657: 4651: 4643: 4632: 4626: 4620: 4612: 4599: 4588: 4582: 4576: 4570: 4556: 4545: 4539: 4529: 4505: 4499: 4498:. First define 4493: 4480: 4474: 4468: 4458: 4452: 4444: 4440: 4437: 4429: 4423: 4422:, the image in 4413: 4410: 4390: 4375: 4361: 4357: 4348: 4345: 4336: 4330: 4320: 4306: 4300: 4294: 4288: 4282: 4257: 4253: 4242: 4238: 4229: 4225: 4216: 4212: 4211: 4207: 4196: 4192: 4186: 4182: 4181: 4177: 4166: 4162: 4161: 4157: 4149: 4145: 4144: 4140: 4135: 4132: 4131: 4127: 4119: 4115: 4106: 4093: 4084: 4076: 4073: 4065: 4064:. For example, 4058: 4051: 4042: 4034: 4031: 4023: 4017: 3999: 3993: 3983: 3973: 3965: 3956: 3953: 3951: 3943: 3942: 3940: 3938: 3930: 3924: 3911: 3904: 3896: 3886: 3883: 3871: 3867: 3863: 3860: 3851: 3843: 3836: 3828: 3821: 3812: 3809: 3800: 3791: 3783: 3780: 3772: 3768: 3761: 3748: 3740: 3733: 3725: 3718: 3709: 3703: 3700: 3693: 3687: 3680: 3674: 3659: 3653: 3650: 3644: 3641: 3635: 3632: 3626: 3623: 3617: 3616:bijection from 3609: 3606: 3596: 3593: 3586: 3574: 3563: 3557: 3553: 3545: 3541: 3531: 3528: 3520: 3503: 3500: 3495: 3494: 3492: 3482: 3478: 3474: 3443: 3439: 3397: 3393: 3384: 3380: 3357: 3354: 3353: 3335: 3319: 3298: 3284: 3274: 3260: 3251: 3245: 3210: 3182: 3169: 3163: 3157: 3143: 3137: 3117: 3105: 3093: 3087: 3075: 3069: 3059: 3049: 3036: 3020: 2986: 2975: 2965: 2962: 2950: 2936: 2923: 2915: 2909: 2903: 2897: 2883: 2874: 2868: 2867:if and only if 2858: 2844: 2835: 2834:, is closed in 2829: 2821: 2803: 2793: 2784: 2778: 2772: 2741: 2732: 2722: 2712: 2695: 2689: 2683: 2677: 2665: 2647: 2644: 2632: 2622: 2604: 2594: 2585: 2573: 2566: 2560: 2550: 2543: 2537: 2532:is an analytic 2515: 2501: 2487: 2483: 2463: 2462:submanifold of 2447: 2435: 2417: 2372: 2371: 2370: 2341:Wilhelm Killing 2325: 2317: 2316: 2315: 2290: 2279: 2278: 2277: 2242: 2232: 2231: 2230: 2217: 2201: 2179:Dynkin diagrams 2173: 2163: 2162: 2161: 2143: 2121:Exponential map 2110: 2100: 2099: 2098: 2079:Conformal group 2058: 2048: 2047: 2039: 2031: 2023: 2015: 2007: 1988: 1978: 1968: 1958: 1939: 1929: 1928: 1927: 1908:Special unitary 1852: 1822: 1811: 1801: 1792:is an analytic 1786: 1772: 1768: 1757: 1754: 1748: 1742: 1731: 1727: 1713: 1698: 1688: 1684: 1669: 1665: 1654: 1648: 1642: 1639: 1633: 1627: 1621: 1609: 1595: 1589: 1579: 1569: 1563: 1539: 1522: 1521: 1510: 1504: 1503: 1498: 1485: 1484: 1481: 1480: 1476: 1467: 1466: 1461: 1451: 1434: 1433: 1415: 1411: 1409: 1403: 1402: 1397: 1382: 1378: 1371: 1370: 1367: 1366: 1362: 1354: 1351: 1350: 1326: 1303: 1302: 1287: 1283: 1281: 1275: 1274: 1269: 1254: 1250: 1243: 1242: 1239: 1238: 1234: 1225: 1220: 1219: 1211: 1208: 1207: 1189: 1183: 1173: 1167: 1163: 1155: 1149: 1148: 1143: 1137: 1127: 1120: 1114:is not closed. 1109: 1100: 1094: 1088: 1082: 1076: 1059: 1058: 1056: 1053: 1052: 1046: 1029: 1028: 1026: 1023: 1022: 1016: 1010: 993: 983: 959: 958: 941: 938: 937: 917: 916: 899: 896: 895: 885: 868: 867: 858: 857: 855: 852: 851: 834: 833: 831: 828: 827: 810: 809: 807: 804: 803: 786: 785: 776: 775: 773: 770: 769: 763: 746: 745: 736: 735: 733: 730: 729: 723: 717: 711: 700: 690: 684: 674: 668: 661: 643: 642: 640: 637: 636: 628: 618: 612: 602: 591: 585: 569: 566: 565: 559: 542: 541: 539: 536: 535: 529: 525: 511: 494: 493: 491: 488: 487: 467: 466: 464: 461: 460: 443: 442: 440: 437: 436: 430: 424: 418: 401: 400: 398: 395: 394: 388: 371: 370: 368: 365: 364: 347: 346: 344: 341: 340: 323: 322: 320: 317: 316: 299: 298: 296: 293: 292: 266: 237: 233: 226: 222: 213: 212: 210: 207: 206: 205:by the formula 200: 183: 182: 180: 177: 176: 170: 164: 158: 152: 146: 140: 134: 117: 116: 114: 111: 110: 104: 101: 75:(and hence the 59: 53: 47:closed subgroup 40: 17: 12: 11: 5: 5492: 5482: 5481: 5476: 5461: 5460: 5455: 5442: 5409: 5404: 5391: 5386: 5373: 5369:978-3319134666 5368: 5355: 5347:Analysis Situs 5339: 5314: 5312: 5309: 5307: 5306: 5294: 5282: 5270: 5254: 5241: 5229: 5217: 5205: 5193: 5181: 5169: 5157: 5145: 5133: 5120: 5108: 5096: 5094:, Example 7.3. 5084: 5082:, Section 2.3. 5072: 5060: 5048: 5033: 5021: 5006: 4991: 4979: 4967: 4907: 4894: 4892: 4889: 4886: 4885: 4879: 4872: 4824: 4815: 4798: 4797: 4795: 4792: 4791: 4790: 4785: 4778: 4775: 4641: 4608: 4597: 4586: 4543: 4503: 4433: 4409: 4406: 4353: 4341: 4268: 4263: 4260: 4256: 4252: 4245: 4241: 4237: 4232: 4228: 4224: 4219: 4215: 4210: 4206: 4199: 4195: 4189: 4185: 4180: 4176: 4169: 4165: 4160: 4152: 4148: 4143: 4139: 4123: 4111: 4102: 4089: 4080: 4069: 4047: 4038: 4027: 3961: 3947: 3934: 3900: 3879: 3862:converging to 3856: 3847: 3832: 3817: 3805: 3796: 3787: 3776: 3767:. Then, since 3757: 3744: 3729: 3714: 3698: 3691: 3648: 3639: 3630: 3621: 3604: 3591: 3572: 3561: 3543: 3530:is seen to be 3523: 3480: 3454: 3451: 3446: 3442: 3438: 3435: 3432: 3429: 3426: 3423: 3420: 3417: 3414: 3411: 3408: 3403: 3400: 3396: 3390: 3387: 3383: 3379: 3376: 3373: 3370: 3367: 3364: 3361: 3178: 3136: 3133: 3043:left invariant 2985: 2982: 2961: 2958: 2957: 2956: 2929: 2908:isomorphic to 2896:compact group 2880: 2841: 2790: 2738: 2709:locally closed 2705: 2664:are closed in 2643: 2640: 2639: 2638: 2615:isotropy group 2609:is a set with 2564: 2558: 2548: 2541: 2475: 2419: 2418: 2416: 2415: 2408: 2401: 2393: 2390: 2389: 2388: 2387: 2382: 2374: 2373: 2369: 2368: 2363: 2361:Harish-Chandra 2358: 2353: 2348: 2343: 2338: 2336:Henri Poincaré 2333: 2327: 2326: 2323: 2322: 2319: 2318: 2314: 2313: 2308: 2303: 2298: 2292: 2291: 2286:Lie groups in 2285: 2284: 2281: 2280: 2276: 2275: 2270: 2265: 2260: 2255: 2250: 2244: 2243: 2238: 2237: 2234: 2233: 2229: 2228: 2223: 2218: 2216: 2215: 2210: 2204: 2202: 2200: 2199: 2194: 2188: 2186: 2181: 2175: 2174: 2169: 2168: 2165: 2164: 2160: 2159: 2154: 2149: 2144: 2142: 2141: 2136: 2130: 2128: 2123: 2118: 2112: 2111: 2106: 2105: 2102: 2101: 2097: 2096: 2091: 2086: 2084:Diffeomorphism 2081: 2076: 2071: 2066: 2060: 2059: 2054: 2053: 2050: 2049: 2044: 2043: 2042: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 1998: 1997: 1993: 1992: 1991: 1990: 1984: 1980: 1974: 1970: 1964: 1960: 1954: 1947: 1946: 1940: 1935: 1934: 1931: 1930: 1926: 1925: 1915: 1905: 1895: 1885: 1875: 1868:Special linear 1865: 1858:General linear 1854: 1853: 1848: 1847: 1844: 1843: 1835: 1834: 1821: 1818: 1784: 1766: 1752: 1725: 1682: 1663: 1637: 1551: 1547: 1542: 1538: 1535: 1531: 1526: 1520: 1517: 1514: 1511: 1509: 1506: 1505: 1502: 1499: 1497: 1494: 1491: 1490: 1488: 1483: 1479: 1475: 1470: 1459: 1454: 1450: 1447: 1443: 1438: 1430: 1427: 1424: 1421: 1418: 1414: 1410: 1408: 1405: 1404: 1401: 1398: 1394: 1391: 1388: 1385: 1381: 1377: 1376: 1374: 1369: 1365: 1361: 1358: 1338: 1334: 1329: 1325: 1322: 1319: 1316: 1312: 1307: 1299: 1296: 1293: 1290: 1286: 1282: 1280: 1277: 1276: 1273: 1270: 1266: 1263: 1260: 1257: 1253: 1249: 1248: 1246: 1241: 1237: 1233: 1228: 1223: 1218: 1215: 1119: 1116: 1062: 1032: 967: 962: 957: 954: 951: 948: 945: 925: 920: 915: 912: 909: 906: 903: 871: 866: 861: 837: 813: 789: 784: 779: 749: 744: 739: 646: 573: 545: 518: 497: 470: 446: 404: 374: 350: 326: 302: 278: 274: 269: 265: 262: 259: 254: 251: 248: 243: 240: 236: 232: 229: 225: 221: 216: 186: 120: 100: 97: 77:group topology 15: 9: 6: 4: 3: 2: 5491: 5480: 5477: 5475: 5472: 5471: 5469: 5458: 5456:0-486-43479-6 5452: 5448: 5443: 5440: 5436: 5432: 5428: 5424: 5421:(in German), 5420: 5419: 5414: 5410: 5407: 5405:0-19-859683-9 5401: 5397: 5392: 5389: 5387:0-387-95448-1 5383: 5379: 5374: 5371: 5365: 5361: 5356: 5352: 5348: 5344: 5340: 5337: 5331: 5324: 5320: 5316: 5315: 5303: 5298: 5291: 5286: 5279: 5274: 5267: 5263: 5258: 5251: 5245: 5238: 5237:Rossmann 2002 5233: 5226: 5221: 5214: 5209: 5202: 5197: 5190: 5189:Rossmann 2002 5185: 5178: 5177:Rossmann 2002 5173: 5166: 5165:Rossmann 2002 5161: 5154: 5153:Rossmann 2002 5149: 5142: 5137: 5130: 5124: 5117: 5116:Rossmann 2002 5112: 5105: 5104:Rossmann 2002 5100: 5093: 5088: 5081: 5080:Rossmann 2002 5076: 5069: 5068:Rossmann 2002 5064: 5057: 5052: 5045: 5040: 5038: 5030: 5025: 5018: 5013: 5011: 5003: 4998: 4996: 4988: 4983: 4976: 4971: 4963: 4957: 4951: 4947: 4943: 4939: 4935: 4931: 4925: 4921: 4916: 4915:Rossmann 2002 4911: 4904: 4899: 4895: 4878: 4871: 4865: 4858: 4854: 4846: 4842: 4827: 4823: 4818: 4814: 4810: 4803: 4799: 4789: 4786: 4784: 4781: 4780: 4774: 4771: 4767: 4763: 4759: 4753: 4749: 4745: 4741: 4737:is embedded, 4735: 4729: 4725: 4721: 4717: 4711: 4707: 4703: 4699: 4693: 4687: 4681: 4675: 4669: 4666: 4660: 4654: 4649: 4640: 4636: 4629: 4623: 4617:), 0, ..., 0) 4616: 4611: 4607: 4603: 4596: 4592: 4585: 4579: 4573: 4567: 4563: 4559: 4553: 4549: 4542: 4536: 4532: 4525: 4521: 4517: 4513: 4509: 4502: 4496: 4490: 4487: 4483: 4477: 4471: 4465: 4461: 4455: 4450: 4436: 4432: 4426: 4420: 4416: 4405: 4402: 4398: 4394: 4387: 4383: 4379: 4372: 4368: 4364: 4356: 4351: 4344: 4339: 4333: 4327: 4323: 4317: 4313: 4309: 4303: 4297: 4291: 4285: 4279: 4266: 4261: 4258: 4254: 4243: 4239: 4230: 4226: 4217: 4213: 4208: 4204: 4197: 4193: 4187: 4183: 4178: 4174: 4167: 4163: 4150: 4146: 4141: 4126: 4122: 4114: 4110: 4105: 4101: 4097: 4092: 4088: 4083: 4079: 4072: 4068: 4061: 4055: 4050: 4046: 4041: 4037: 4030: 4026: 4020: 4014: 4010: 4006: 4002: 3996: 3990: 3986: 3981: 3976: 3964: 3960: 3950: 3946: 3937: 3933: 3927: 3921: 3918: 3914: 3908: 3903: 3899: 3893: 3889: 3882: 3878: 3874: 3859: 3855: 3850: 3846: 3840: 3835: 3831: 3825: 3820: 3816: 3808: 3804: 3799: 3795: 3790: 3786: 3779: 3775: 3765: 3760: 3756: 3752: 3747: 3743: 3738: 3732: 3728: 3722: 3717: 3713: 3706: 3697: 3690: 3684: 3677: 3673: 3670: 3665: 3662: 3656: 3647: 3638: 3629: 3620: 3615: 3614:real-analytic 3603: 3599: 3590: 3582: 3578: 3571: 3567: 3560: 3551: 3538: 3534: 3526: 3518: 3514: 3506: 3498: 3490: 3486: 3472: 3468: 3452: 3444: 3440: 3433: 3430: 3427: 3424: 3421: 3418: 3415: 3412: 3409: 3406: 3401: 3398: 3394: 3388: 3385: 3381: 3377: 3371: 3368: 3365: 3350: 3347: 3343: 3339: 3331: 3327: 3323: 3318:Define a map 3316: 3313: 3309: 3305: 3301: 3295: 3291: 3287: 3281: 3277: 3271: 3267: 3263: 3259: 3254: 3248: 3243: 3237: 3233: 3229: 3225: 3221: 3217: 3213: 3206: 3202: 3198: 3194: 3190: 3186: 3181: 3176: 3172: 3166: 3160: 3155: 3151: 3150:inner product 3146: 3140: 3132: 3128: 3124: 3120: 3113: 3109: 3101: 3097: 3092:is closed in 3090: 3083: 3079: 3072: 3066: 3062: 3057: 3052: 3047: 3046:vector fields 3044: 3039: 3031: 3027: 3023: 3018: 3017:matrix groups 3010: 3006: 3002: 2998: 2997:matrix groups 2994: 2990: 2981: 2978: 2972: 2968: 2953: 2948: 2943: 2939: 2934: 2930: 2926: 2922:is closed in 2919: 2912: 2906: 2900: 2895: 2890: 2886: 2881: 2877: 2871: 2866: 2861: 2857:generated by 2856: 2851: 2847: 2842: 2838: 2832: 2825: 2818: 2814: 2810: 2806: 2800: 2796: 2791: 2787: 2781: 2775: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2739: 2735: 2731:is closed in 2729: 2725: 2719: 2715: 2710: 2706: 2703: 2698: 2692: 2686: 2680: 2673: 2669: 2663: 2659: 2658: 2657: 2654: 2650: 2635: 2629: 2625: 2620: 2616: 2612: 2607: 2602: 2601: 2600: 2597: 2593: 2591: 2588: 2580: 2576: 2570: 2563: 2557: 2553: 2547: 2540: 2535: 2530: 2526: 2522: 2518: 2513: 2508: 2504: 2499: 2494: 2490: 2481: 2474: 2471: 2467: 2461: 2455: 2451: 2443: 2439: 2433: 2429: 2426: 2414: 2409: 2407: 2402: 2400: 2395: 2394: 2392: 2391: 2386: 2383: 2381: 2378: 2377: 2376: 2375: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2328: 2321: 2320: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2293: 2289: 2283: 2282: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2245: 2241: 2236: 2235: 2227: 2224: 2222: 2219: 2214: 2211: 2209: 2206: 2205: 2203: 2198: 2195: 2193: 2190: 2189: 2187: 2185: 2182: 2180: 2177: 2176: 2172: 2167: 2166: 2158: 2155: 2153: 2150: 2148: 2145: 2140: 2137: 2135: 2132: 2131: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2113: 2109: 2104: 2103: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2061: 2057: 2052: 2051: 2040: 2034: 2032: 2026: 2024: 2018: 2016: 2010: 2008: 2002: 2001: 2000: 1999: 1995: 1994: 1989: 1987: 1981: 1979: 1977: 1971: 1969: 1967: 1961: 1959: 1957: 1951: 1950: 1949: 1948: 1944: 1943: 1938: 1933: 1932: 1923: 1919: 1916: 1913: 1909: 1906: 1903: 1899: 1896: 1893: 1889: 1886: 1883: 1879: 1876: 1873: 1869: 1866: 1863: 1859: 1856: 1855: 1851: 1846: 1845: 1841: 1837: 1836: 1833: 1829: 1826: 1825: 1817: 1814: 1809: 1804: 1799: 1798:homeomorphism 1795: 1790: 1783: 1779: 1775: 1765: 1761: 1751: 1745: 1739: 1735: 1724: 1720: 1716: 1710: 1706: 1702: 1695: 1691: 1681: 1677: 1673: 1662: 1658: 1651: 1645: 1636: 1630: 1624: 1618: 1616: 1612: 1607: 1603: 1598: 1592: 1587: 1582: 1577: 1572: 1566: 1549: 1545: 1536: 1533: 1529: 1524: 1518: 1515: 1512: 1507: 1500: 1495: 1492: 1486: 1477: 1473: 1457: 1448: 1445: 1441: 1436: 1428: 1425: 1422: 1419: 1416: 1412: 1406: 1399: 1392: 1389: 1386: 1383: 1379: 1372: 1363: 1359: 1356: 1336: 1332: 1323: 1320: 1317: 1314: 1310: 1305: 1297: 1294: 1291: 1288: 1284: 1278: 1271: 1264: 1261: 1258: 1255: 1251: 1244: 1235: 1231: 1226: 1216: 1213: 1205: 1201: 1192: 1186: 1182:rotations in 1181: 1176: 1172:rotations in 1170: 1158: 1152: 1146: 1140: 1135: 1130: 1124: 1115: 1112: 1106: 1103: 1097: 1091: 1085: 1079: 1049: 1019: 1013: 1008: 1003: 1000: 996: 990: 986: 981: 952: 949: 946: 943: 910: 907: 904: 901: 892: 888: 884:is just like 864: 782: 766: 742: 726: 722:precisely if 720: 714: 707: 703: 697: 693: 687: 681: 677: 671: 666: 660: 632: 625: 621: 615: 611:such that if 609: 605: 599: 595: 588: 571: 562: 532: 523: 517: 514: 484: 433: 427: 421: 391: 289: 276: 272: 263: 260: 252: 249: 246: 241: 238: 234: 230: 227: 223: 219: 203: 173: 167: 161: 155: 149: 143: 137: 107: 96: 94: 90: 86: 82: 78: 74: 70: 67: 62: 56: 52: 48: 43: 38: 34: 30: 26: 22: 5446: 5422: 5416: 5395: 5377: 5359: 5350: 5346: 5343:Cartan, Élie 5329: 5297: 5285: 5278:Willard 1970 5273: 5265: 5262:Willard 1970 5257: 5244: 5232: 5220: 5208: 5196: 5184: 5172: 5160: 5148: 5136: 5123: 5111: 5099: 5087: 5075: 5063: 5058:, Chapter 5. 5051: 5024: 5017:Bochner 1958 4982: 4970: 4961: 4955: 4949: 4945: 4941: 4937: 4933: 4929: 4923: 4919: 4910: 4898: 4876: 4869: 4863: 4856: 4852: 4844: 4840: 4825: 4821: 4816: 4812: 4808: 4802: 4769: 4765: 4761: 4757: 4751: 4747: 4743: 4739: 4733: 4731:. But since 4727: 4723: 4719: 4715: 4709: 4705: 4701: 4697: 4691: 4685: 4679: 4673: 4670: 4664: 4658: 4652: 4638: 4634: 4627: 4621: 4614: 4609: 4605: 4601: 4594: 4590: 4583: 4577: 4571: 4565: 4561: 4557: 4551: 4547: 4540: 4534: 4530: 4523: 4519: 4515: 4511: 4507: 4500: 4494: 4491: 4485: 4481: 4475: 4469: 4463: 4459: 4453: 4434: 4430: 4424: 4418: 4414: 4411: 4400: 4396: 4392: 4385: 4381: 4377: 4370: 4366: 4362: 4354: 4349: 4342: 4337: 4331: 4325: 4321: 4315: 4311: 4307: 4301: 4295: 4289: 4283: 4280: 4124: 4120: 4118:will do, as 4112: 4108: 4103: 4099: 4095: 4090: 4086: 4081: 4077: 4070: 4066: 4059: 4053: 4048: 4044: 4039: 4035: 4028: 4024: 4018: 4012: 4008: 4004: 4000: 3994: 3992:. The index 3988: 3984: 3974: 3962: 3958: 3948: 3944: 3935: 3931: 3925: 3922: 3916: 3912: 3906: 3901: 3897: 3891: 3887: 3880: 3876: 3872: 3857: 3853: 3848: 3844: 3838: 3833: 3829: 3823: 3818: 3814: 3806: 3802: 3797: 3793: 3788: 3784: 3777: 3773: 3763: 3758: 3754: 3750: 3745: 3741: 3739:on the form 3736: 3730: 3726: 3720: 3715: 3711: 3704: 3695: 3688: 3682: 3675: 3666: 3660: 3654: 3645: 3636: 3627: 3618: 3601: 3597: 3588: 3580: 3576: 3569: 3565: 3558: 3536: 3532: 3524: 3516: 3512: 3504: 3496: 3488: 3484: 3471:differential 3470: 3348: 3345: 3341: 3337: 3329: 3325: 3321: 3317: 3311: 3307: 3303: 3299: 3293: 3289: 3285: 3279: 3275: 3269: 3265: 3261: 3252: 3246: 3235: 3231: 3227: 3223: 3219: 3215: 3211: 3204: 3200: 3196: 3192: 3188: 3184: 3179: 3174: 3170: 3164: 3158: 3144: 3141: 3138: 3126: 3122: 3118: 3111: 3107: 3099: 3095: 3088: 3081: 3077: 3070: 3064: 3060: 3055: 3050: 3042: 3037: 3029: 3025: 3021: 3014: 2976: 2970: 2966: 2963: 2951: 2941: 2937: 2932: 2924: 2917: 2910: 2904: 2898: 2888: 2884: 2875: 2869: 2864: 2859: 2849: 2845: 2836: 2830: 2823: 2816: 2812: 2808: 2804: 2798: 2794: 2785: 2779: 2773: 2766: 2762: 2758: 2754: 2750: 2746: 2742: 2733: 2727: 2723: 2717: 2713: 2708: 2696: 2690: 2684: 2678: 2671: 2667: 2652: 2648: 2645: 2633: 2627: 2623: 2618: 2605: 2598: 2595: 2586: 2584:homogeneous 2578: 2574: 2568: 2561: 2555: 2551: 2545: 2538: 2528: 2524: 2520: 2516: 2506: 2502: 2497: 2492: 2488: 2479: 2476: 2469: 2465: 2459: 2453: 2449: 2441: 2437: 2431: 2427: 2424: 2422: 2366:Armand Borel 2351:Hermann Weyl 2152:Loop algebra 2134:Killing form 2108:Lie algebras 1985: 1975: 1965: 1955: 1921: 1911: 1901: 1891: 1881: 1871: 1861: 1832:Lie algebras 1820:Applications 1812: 1807: 1802: 1788: 1781: 1777: 1773: 1763: 1759: 1749: 1743: 1737: 1733: 1722: 1718: 1714: 1708: 1704: 1700: 1693: 1689: 1679: 1675: 1671: 1660: 1656: 1653:. The group 1649: 1643: 1634: 1628: 1622: 1619: 1614: 1610: 1605: 1596: 1590: 1580: 1570: 1564: 1197: 1190: 1184: 1179: 1174: 1168: 1156: 1150: 1144: 1138: 1128: 1110: 1107: 1101: 1095: 1089: 1083: 1077: 1047: 1017: 1011: 1006: 1004: 998: 994: 988: 984: 890: 886: 764: 724: 718: 712: 705: 701: 695: 691: 685: 679: 675: 669: 662: 630: 623: 619: 613: 607: 603: 597: 593: 586: 560: 530: 521: 519: 512: 485: 431: 425: 419: 389: 290: 201: 171: 165: 159: 153: 147: 141: 135: 105: 102: 60: 54: 41: 28: 24: 18: 5425:(1): 3–42, 5336:p. 441 5319:Bochner, S. 4987:Cartan 1930 4648:slice chart 4305:is closed, 3667:Consider a 3467:pushforward 3168:defined as 3156:), and let 3152:(e.g., the 2955:is closed. 2853:, then the 2702:quaternions 2621:of a point 2346:Élie Cartan 2192:Root system 1996:Exceptional 1670:exp : 982:" in which 768:looks like 728:belongs to 635:belongs to 617:belongs to 85:Élie Cartan 21:mathematics 5474:Lie groups 5468:Categories 5311:References 5252:Chapter 21 4927:such that 4867:such that 4075:such that 3842:such that 3608:such that 3273:, so each 3258:direct sum 3074:closed in 3005:set theory 2865:not closed 2789:is closed. 2721:such that 2619:stabilizer 2534:submersion 2331:Sophus Lie 2324:Scientists 2197:Weyl group 1918:Symplectic 1878:Orthogonal 1828:Lie groups 1126:The torus 590:, and let 133:. Now let 37:Lie groups 5439:122565679 5332:: 438–456 5213:Hall 2015 5201:Hall 2015 5141:Hall 2015 5129:Hall 2015 5044:Hall 2015 5029:Hall 2015 4975:Hall 2015 4891:Citations 4335:the sets 4251:→ 4236:‖ 4223:‖ 3920:as well. 3669:countable 3360:Φ 3320:Φ : 2208:Real form 2094:Euclidean 1945:Classical 1794:injective 1776: : ( 1537:∈ 1534:θ 1519:θ 1496:θ 1449:∈ 1446:θ 1429:θ 1420:π 1393:θ 1387:π 1324:∈ 1321:ϕ 1315:θ 1298:ϕ 1292:π 1265:θ 1259:π 1009:subgroup 953:⁡ 911:⁡ 865:⊂ 783:⊂ 743:⊂ 264:∈ 258:∀ 247:∈ 231:∣ 71:with the 69:Lie group 51:Lie group 5321:(1958), 5302:Lee 2003 5290:Lee 2003 5250:Lee 2003 5225:Lee 2003 5092:Lee 2003 5056:Lee 2003 4903:Lee 2003 4777:See also 4760: : 4742: : 4718: : 4700: : 4619:, where 4604:), ..., 4506: : 4360:satisfy 4319:, hence 4299:. Since 4293:for all 3885:. Since 3866:because 3735:that is 3465:and the 3148:with an 3007:and the 2960:Converse 2811:∖ 2771:, where 2676:, where 2613:and the 2460:embedded 2380:Glossary 2074:Poincaré 1202:and an " 802:. Since 99:Overview 66:embedded 4989:, § 26. 4849:⁠ 4831:⁠ 4820:| diam( 4538:, then 4130:. Then 4107:+ 1) || 3980:compact 3969:⁠ 3941:⁠ 3811:, with 3540:, i.e. 3509:⁠ 3493:⁠ 3250:. Then 3230:) = 0 ∀ 3086:, then 2914:, then 2820:, then 2582:into a 2500:, then 2288:physics 2069:Lorentz 1898:Unitary 1600:is not 1154:⁄ 894:, with 627:, then 58:, then 33:theorem 31:) is a 5453:  5437:  5402:  5384:  5366:  4522:↦ log( 4439:under 4281:Since 4016:. Fix 3240:, the 3209:. Let 3142:Endow 2945:is an 2700:, the 2590:-space 2572:turns 2425:define 2064:Circle 1606:single 1166:after 1164:(1, 1) 704:= log( 64:is an 23:, the 5435:S2CID 5326:(PDF) 5127:E.g. 4948:) → e 4794:Notes 4646:is a 4593:) = ( 4575:with 4352:= Φ(Β 4094:|| ≤ 4052:|| → 3612:is a 3585:with 3575:⊂ GL( 3324:→ GL( 3297:with 3121:⊂ GL( 3068:with 3024:= GL( 3019:with 2984:Proof 2947:ideal 2902:with 2815:, ∈ 2694:, or 2554:) = ( 2496:is a 2139:Index 1730:with 1707:< 1703:< 1576:dense 1562:with 1200:torus 1188:. If 1142:. If 1134:helix 689:) as 592:log: 522:Lemma 49:of a 45:is a 5451:ISBN 5400:ISBN 5382:ISBN 5364:ISBN 4829:) = 4755:and 4713:and 4550:) ∈ 4412:For 4395:) ∩ 4384:) ⊂ 4347:and 3895:and 3875:e = 3827:and 3813:0 ≠ 3719:) ∩ 3681:0 ∈ 3658:and 3643:and 3595:and 3587:0 ∈ 3546:= Id 3491:) = 3344:) ↦ 3187:) = 3056:flow 2882:Let 2660:All 2478:The 2089:Loop 1830:and 1787:) → 1736:) ⊂ 1732:log( 1178:and 936:and 699:for 629:log( 435:but 103:Let 5427:doi 5349:", 4959:in 4940:, ( 4811:= { 4683:in 4428:of 4340:= Β 4314:, ∀ 4128:→ 0 4098:≤ ( 4062:→ ∞ 4057:as 4007:, ∀ 3737:not 3679:at 3625:to 3527:= 0 3473:at 3469:or 3334:by 3244:of 3222:| ( 3214:= { 3177:∈ M 3173:= { 3106:GL( 3094:GL( 3076:GL( 3048:on 2931:If 2863:is 2843:If 2792:If 2749:= { 2740:If 2682:is 2666:GL( 2617:or 2603:If 2544:⋅ ( 2486:If 2464:GL( 2448:GL( 2446:or 2436:GL( 2430:or 1920:Sp( 1910:SU( 1890:SO( 1870:SL( 1860:GL( 1808:not 1717:⊂ ( 1674:→ ( 1578:in 1574:is 1206:". 1045:of 1015:of 1007:any 950:dim 908:dim 667:on 199:of 19:In 5470:: 5433:, 5423:30 5328:, 5036:^ 5009:^ 4994:^ 4944:, 4936:→ 4932:× 4922:⊂ 4875:⊂ 4855:∈ 4851:, 4843:+ 4768:→ 4764:× 4750:→ 4746:× 4726:→ 4722:× 4708:→ 4704:× 4668:. 4637:, 4564:⊕ 4560:= 4533:∈ 4518:, 4514:→ 4510:⊂ 4484:∈ 4462:∈ 4417:≥ 4399:⊂ 4391:Φ( 4380:∩ 4369:∩ 4365:= 4324:∈ 4310:∈ 4116:|| 4085:|| 4043:|| 4011:∈ 4003:∈ 3987:∈ 3966:|| 3957:|| 3939:= 3929:, 3915:∈ 3910:, 3905:∈ 3890:∈ 3852:∈ 3837:∈ 3822:∈ 3801:+ 3792:= 3762:∈ 3753:, 3749:= 3710:Φ( 3708:, 3694:⊂ 3600:∈ 3579:, 3568:, 3564:⊂ 3535:+ 3517:tT 3515:, 3513:tS 3511:Φ( 3505:dt 3487:, 3477:, 3340:, 3328:, 3315:. 3310:∈ 3306:, 3302:∈ 3292:+ 3288:= 3278:∈ 3268:⊕ 3264:= 3234:∈ 3226:, 3218:∈ 3203:∈ 3195:∈ 3191:| 3125:, 3110:, 3098:, 3080:, 3063:⊂ 3028:, 3003:, 2969:⊂ 2940:⊂ 2928:. 2916:Γ( 2887:⊂ 2848:∈ 2822:Γ( 2807:∈ 2797:⊂ 2765:∈ 2761:, 2757:∈ 2753:| 2751:ab 2747:AB 2745:= 2726:∩ 2688:, 2670:, 2651:⊂ 2626:∈ 2592:. 2523:→ 2491:⊂ 2468:, 2452:, 2440:, 1900:U( 1880:O( 1780:, 1762:, 1756:, 1721:, 1692:⊂ 1678:, 1659:, 1615:is 1147:= 997:⊂ 987:⊂ 889:⊂ 694:= 678:∈ 659:. 622:∩ 606:⊂ 596:→ 95:. 5429:: 5338:. 5266:s 5118:. 5019:. 5004:. 4965:. 4962:G 4956:H 4950:H 4946:H 4942:X 4938:G 4934:H 4930:U 4924:g 4920:U 4880:1 4877:U 4873:1 4870:B 4864:m 4859:} 4857:N 4853:k 4845:m 4841:k 4837:/ 4834:1 4826:k 4822:B 4817:k 4813:B 4809:Β 4770:H 4766:H 4762:H 4758:i 4752:H 4748:H 4744:H 4740:m 4734:H 4728:G 4724:H 4720:H 4716:i 4710:G 4706:H 4702:H 4698:m 4692:G 4686:H 4680:i 4674:m 4665:G 4659:H 4653:H 4644:) 4642:1 4639:φ 4635:e 4633:( 4628:h 4622:m 4615:h 4613:( 4610:m 4606:x 4602:h 4600:( 4598:1 4595:x 4591:h 4589:( 4587:1 4584:φ 4578:R 4572:g 4566:s 4562:h 4558:g 4552:h 4548:h 4546:( 4544:1 4541:φ 4535:H 4531:h 4526:) 4524:g 4520:g 4516:g 4512:G 4508:e 4504:1 4501:φ 4495:H 4486:H 4482:h 4476:H 4470:g 4464:G 4460:g 4454:G 4445:I 4441:Φ 4435:j 4431:B 4425:H 4419:i 4415:j 4401:H 4397:H 4393:U 4386:h 4382:h 4378:U 4376:( 4371:V 4367:H 4363:e 4358:) 4355:i 4350:V 4343:i 4338:U 4332:i 4326:h 4322:Y 4316:t 4312:H 4308:e 4302:H 4296:i 4290:H 4284:H 4267:. 4262:Y 4259:t 4255:e 4244:i 4240:Y 4231:i 4227:S 4218:i 4214:m 4209:e 4205:= 4198:i 4194:S 4188:i 4184:m 4179:e 4175:= 4168:i 4164:m 4159:) 4151:i 4147:S 4142:e 4138:( 4125:i 4121:S 4113:i 4109:S 4104:i 4100:m 4096:t 4091:i 4087:S 4082:i 4078:m 4071:i 4067:m 4060:i 4054:t 4049:i 4045:S 4040:i 4036:m 4029:i 4025:m 4019:t 4013:R 4009:t 4005:H 4001:e 3995:i 3989:s 3985:Y 3975:s 3963:i 3959:S 3954:/ 3949:i 3945:S 3936:i 3932:Y 3926:s 3917:H 3913:e 3907:H 3902:i 3898:h 3892:H 3888:e 3881:i 3877:h 3873:e 3868:Β 3864:0 3858:i 3854:B 3849:i 3845:X 3839:h 3834:i 3830:T 3824:s 3819:i 3815:S 3807:i 3803:T 3798:i 3794:S 3789:i 3785:X 3778:i 3774:B 3769:Φ 3764:h 3759:i 3755:T 3751:e 3746:i 3742:h 3731:i 3727:h 3721:H 3716:i 3712:B 3705:i 3699:1 3696:U 3692:1 3689:B 3683:g 3676:Β 3661:V 3655:U 3649:1 3646:V 3640:1 3637:U 3631:1 3628:V 3622:1 3619:U 3610:Φ 3605:1 3602:V 3598:I 3592:1 3589:U 3583:) 3581:R 3577:n 3573:1 3570:V 3566:g 3562:1 3559:U 3554:Φ 3544:∗ 3542:Φ 3537:T 3533:S 3525:t 3521:| 3519:) 3501:/ 3497:d 3489:T 3485:S 3483:( 3481:∗ 3479:Φ 3475:0 3453:, 3450:) 3445:2 3441:t 3437:( 3434:O 3431:+ 3428:T 3425:t 3422:+ 3419:S 3416:t 3413:+ 3410:I 3407:= 3402:T 3399:t 3395:e 3389:S 3386:t 3382:e 3378:= 3375:) 3372:T 3369:, 3366:S 3363:( 3349:e 3346:e 3342:T 3338:S 3336:( 3332:) 3330:R 3326:n 3322:g 3312:h 3308:T 3304:s 3300:S 3294:T 3290:S 3286:X 3280:g 3276:X 3270:h 3266:s 3262:g 3253:g 3247:h 3238:} 3236:h 3232:T 3228:T 3224:S 3220:g 3216:S 3212:s 3207:} 3205:R 3201:t 3199:∀ 3197:H 3193:e 3189:g 3185:R 3183:( 3180:n 3175:X 3171:h 3165:H 3159:h 3145:g 3129:) 3127:R 3123:n 3119:G 3114:) 3112:R 3108:n 3102:) 3100:R 3096:n 3089:H 3084:) 3082:R 3078:n 3071:G 3065:G 3061:H 3051:G 3038:G 3032:) 3030:R 3026:n 3022:G 3011:. 2977:H 2971:G 2967:H 2952:h 2942:g 2938:h 2933:G 2925:G 2920:) 2918:h 2911:h 2905:k 2899:k 2889:g 2885:h 2876:C 2870:X 2860:X 2850:g 2846:X 2840:. 2837:G 2831:e 2826:) 2824:h 2817:h 2813:h 2809:g 2805:X 2799:g 2795:h 2786:H 2780:B 2774:A 2769:} 2767:B 2763:b 2759:A 2755:a 2743:H 2737:. 2734:U 2728:U 2724:H 2718:G 2716:⊂ 2714:U 2704:. 2697:H 2691:C 2685:R 2679:F 2674:) 2672:n 2668:F 2653:G 2649:H 2634:X 2628:X 2624:x 2606:X 2587:G 2579:H 2577:/ 2575:G 2569:H 2567:) 2565:2 2562:g 2559:1 2556:g 2552:H 2549:2 2546:g 2542:1 2539:g 2529:H 2527:/ 2525:G 2521:G 2519:: 2517:π 2507:H 2505:/ 2503:G 2493:G 2489:H 2472:) 2470:C 2466:n 2456:) 2454:C 2450:n 2444:) 2442:R 2438:n 2412:e 2405:t 2398:v 2038:8 2036:E 2030:7 2028:E 2022:6 2020:E 2014:4 2012:F 2006:2 2004:G 1986:n 1983:D 1976:n 1973:C 1966:n 1963:B 1956:n 1953:A 1924:) 1922:n 1914:) 1912:n 1904:) 1902:n 1894:) 1892:n 1884:) 1882:n 1874:) 1872:n 1864:) 1862:n 1813:h 1803:H 1789:G 1785:g 1782:τ 1778:H 1774:ι 1769:) 1767:g 1764:τ 1760:H 1758:( 1753:g 1750:τ 1744:V 1738:U 1734:V 1728:) 1726:r 1723:τ 1719:H 1715:V 1709:ε 1705:θ 1701:ε 1699:− 1694:h 1690:U 1685:) 1683:r 1680:τ 1676:H 1672:h 1666:) 1664:r 1661:τ 1657:H 1655:( 1650:U 1644:h 1638:r 1635:τ 1629:U 1623:H 1611:H 1597:H 1591:H 1581:G 1571:H 1565:a 1550:, 1546:} 1541:R 1530:| 1525:) 1516:a 1513:i 1508:0 1501:0 1493:i 1487:( 1478:{ 1474:= 1469:h 1458:} 1453:R 1442:| 1437:) 1426:a 1423:i 1417:2 1413:e 1407:0 1400:0 1390:i 1384:2 1380:e 1373:( 1364:{ 1360:= 1357:H 1337:, 1333:} 1328:R 1318:, 1311:| 1306:) 1295:i 1289:2 1285:e 1279:0 1272:0 1262:i 1256:2 1252:e 1245:( 1236:{ 1232:= 1227:2 1222:T 1217:= 1214:G 1191:a 1185:θ 1180:q 1175:φ 1169:p 1157:q 1151:p 1145:a 1139:H 1129:G 1111:H 1102:G 1096:H 1090:H 1084:H 1078:H 1061:g 1048:H 1031:h 1018:G 1012:H 999:R 995:R 989:G 985:H 966:) 961:g 956:( 947:= 944:n 924:) 919:h 914:( 905:= 902:k 891:R 887:R 870:g 860:h 836:g 812:h 788:g 778:h 765:H 748:g 738:h 725:X 719:H 713:X 708:) 706:g 702:X 696:e 692:g 686:H 680:W 676:g 670:W 645:h 633:) 631:h 624:H 620:W 614:h 608:V 604:W 598:U 594:V 587:G 572:V 561:U 544:g 531:U 513:H 496:h 469:h 445:h 432:G 426:H 420:H 403:h 390:H 373:g 349:h 325:g 301:h 277:. 273:} 268:R 261:t 253:, 250:H 242:X 239:t 235:e 228:X 224:{ 220:= 215:h 202:H 185:h 172:H 166:H 160:H 154:G 148:H 142:G 136:H 119:g 106:G 61:H 55:G 42:H

Index

mathematics
theorem
Lie groups
closed subgroup
Lie group
embedded
Lie group
smooth structure
group topology
Cartan's theorem
Élie Cartan
John von Neumann
linear transformations
exponential coordinates
slice coordinate system

helix
torus
irrational winding of the torus
dense
relative topology
locally path connected
injective
homeomorphism
Lie groups
Lie algebras

Classical groups
General linear
Special linear

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.