Knowledge

Chronoamperometry

Source 📝

398:
In this period, several initial conditions will be applied to the electrochemical cell so that cell is able to equilibrate to those conditions. The working electrode potential will be held at the initial potential under these conditions for a specified period (i.e. usually 3 seconds). When the induction period is over, the working cells switch to another potential for a certain amount of time. After the first step is completed, the working electrode's potential is stepped back, usually to the potential prior to the forward step. The whole experiment ends with a relaxation period. Under this period, the default condition involves holding the working electrode potential of initial state for another approximate 1 seconds. When the relaxation period is over, the post experiment idle conditions will be applied to the cell so that the instrument can return to the idle state1. After plotting the current as a function of time, a chronoamperogram will occur and it can also be used to generate Cottrell plots.
365: 112: 390: 412: 373:
oxidized or reduced to another oxidation state. The current will decrease to the base line (approaching zero) as the analyte is consumed. This process shows the total charge (in coulomb) that flows in the reaction. Total charge (n value) is calculated by integration of area under the current plot and the application of the Faraday's law.
20: 397:
Double potential step chronoamperometry (DPSCA) is the technique whose working electrode is applied by the potential stepping forward for a certain period of time and backward for a period of time. The current is monitored and plotted with respect to time. This method starts with an induction period.
175:
You can do this experiment several times increasing electrode potentials from low to high. (In between the experiments, the solution should be stirred.) When you measure the current i(t) at a certain fixed time point τ after applying the voltage, you will see that at a certain moment the current i(τ)
427:
Chronopotentiometry is an effective method to study electrode mechanism. Different electrode will have different relationship between E and t in the chronopotentiometry graph. In this situation, E is the electrode potential in voltage and t is the reaction time in seconds. By the method of studying
419:
The application of chronopotentiometry could be derived into two parts. As an analytical method, the range of analysis is normally in the range of 10 mol/L to 10 mol/L, and sometimes it will be as accurate as 10 mol/L. When the analysis is in the extreme lower range of concentration, lower current
376:
The cell for controlled-potential (bulk) electrolysis is usually a two-compartment (divided) cell, contained a carbon rod auxiliary anode and is separated from the cathode compartment by a coarse glass frit and methyl cellulose solvent electrolyte plug. The reason for the two compartment cell is to
380:
Controlled-potential electrolysis is normally utilized with cyclic voltammetry. Cyclic voltammetry is capable to analyse the electrochemical behavior of the analyte or the reaction. For instance, cyclic voltammetry could tell us the cathodic potential of an analyte. Since the cathodic potential of
350:
are used. In addition, the solution is not stirred. In the presence of the inert electrolytes, the mass transfer process is mainly diffusion. Jarroslav Herovsky derived the chronopotentiometric method from the Cottrell equation. Chronopotentiometry is an electrochemical method that can generate a
372:
One of the application of chronoamperometry is controlled-potential (bulk) electrolysis, which is also known as potentiostatic coulometry. During this process, a constant potential is applied to the working electrode and current is monitored over time. The analyte in one oxidation state will be
55:
from faradaic processes occurring at the electrode (caused by the potential step) is monitored as a function of time. The functional relationship between current response and time is measured after applying single or double potential step to the working electrode of the electrochemical system.
456:
Chronocoulometry is an analytical method that has similar principle with chronoamperometry, but it monitors the relationship between charge and time instead of current and time. Chronocoulometry has the following differences with chronoamperometry: the signal increases over time instead of
735:
Foley, Matthew P.; Du, Peng; Griffith, Kent J.; Karty, Jonathan A.; Mubarak, Mohammad S.; Raghavachari, Krishnan; Peters, Dennis G. (September 2010). "Electrochemistry of substituted salen complexes of nickel(II): Nickel(I)-catalyzed reduction of alkyl and acetylenic halides".
436:. The chronopotentiometry experiment could be done in a very short time period, so it is a good method to study the adsorption behavior at the electrode surface. By studying the chronopotentiometry graph of electrode after adsorption of 318:
Under controlled-diffusion circumstances, the current-time plot reflects the concentration gradient of the solution near the electrode surface. The current is directly proportional to the concentration at the electrode surface.
253: 879:
Hyk, W; Nowicka, A.; Stojek, Z (2002). "Direct determination of diffusion coefficients of substrate and product by chronoamperometric techniques at microelectrodes for any level of ionic support".
708:
Cleary, James; Mubarak, Mohammad; Vieira, Kenneth; Anderson, Mark; Peters, Dennis (24 January 1986). "Electrochemical reduction of alkyl halides at vitreous carbon cathodes in dimethylformamide".
420:
density could be used. Also, to get the accurate concentration determination, the transition time could be extended. In this area of analysis determination, chronopotentiometry is similar to
941:
Schwarz, W. M.; Shain, I (1965). "Investigation of First-Order Chemical Reactions Following Charge Transfer by a Step-Functional Controlled Potential Method. The Benzidine Rearrangement1".
457:
decreasing; the act of integration minimizes noise, resulting in a smooth hyperbolic response curve; and contributions from double-layer charging and absorbed species are easily observed.
914:
Long, J. W.; Terrill, R. H.; Williams, M. E.; Murray, R. W (1997). "An Electron Time-of-Flight Method Applied to Charge Transport Dynamics in a Cobalt Bipyridine Redox Polyether Hybrid".
578:
J.M. Seveant, E. Vianello (1965). "Potential-sweep chronoamperometry: Kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents)".
673:
Vanalabhpatana, Parichatr; Peters, Dennis (2005). "Catalytic Reduction of 1,6-Dihalohexanes by Nickel(I) Salen Electrogenerated at Glassy Carbon Cathodes in Dimethylformamide".
377:
separate cathodic and anodic reaction. The working electrode for bulk electrolysis could be a RVC disk, which has larger surface area to increase the rate of the reaction.
138: 428:
the relationship between E and t in the chronopotentiometry graph, we can get the information of mechanisms of electrode reactions, such as the electrode reaction of
176:
does not rise anymore; you have reached the mass-transfer-limited region. This means that anthracene arrives as fast as diffusion can bring it to the electrode.
789:
Faulkner, L. R.; Bard, A. J. Basic Potential Step Methods, Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New Jersey, 2000; 156-225.
69: 763:
Vieira, Kenneth L.; Peters, Dennis G. (December 1985). "Voltammetric behavior of tertiary butyl bromide at mercury electrodes in dimethylformamide".
986: 202: 562: 535: 510: 381:
this analyte is obtained, controlled-potential electrolysis could hold this constant potential for the reaction to happen.
326:
reiterated the chronoamperometric method when he invented the polarographic method. It can use the basic circuit of the
1308: 1261: 1009: 471: 137:. Generally, chronoamperometry uses fixed-area electrodes, which are suitable for studying electrode processes of 979: 1145: 1049: 1029: 1084: 165: 1180: 1019: 552: 68:
current. However, as with all pulsed techniques, chronoamperometry generates high charging currents, which
1251: 1200: 1190: 865: 825: 1236: 1125: 972: 448:, it is proved that the adsorption of iodine occurs in the form of iodine molecules, not iodine atoms. 335: 1195: 466: 1256: 1069: 1064: 995: 476: 1175: 1150: 1089: 1059: 1014: 444:
on iron ions exists. By studying the chronopotentiometry graph of platinum electrode adsorbing
156:(DMF) will be reduced (An + e -> An) at the electrode surface that is at a certain negative 1094: 852: 812: 305: 105: 605: 323: 1288: 1231: 682: 89: 503:
Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded
8: 1205: 1170: 1120: 364: 111: 686: 84:
events and is most often the current component of interest - decays as described in the
1155: 1044: 338:
is not used, instead, the static electrodes such as suspended mercury, mercury poll or
169: 130: 40: 188:
deduced the linear diffusion on a planar electrode according to the diffusion law and
172:
to drop in time (proportional to the diffusion gradient that is formed by diffusion).
1246: 1215: 1135: 1054: 1024: 896: 776: 721: 591: 558: 531: 506: 429: 424:. Waves that are separable in polarography is also separable in chronopotentiometry. 193: 189: 153: 85: 81: 44: 950: 923: 888: 772: 749: 745: 717: 690: 655: 628: 587: 278: 77: 52: 32: 1276: 1271: 185: 659: 632: 1302: 1266: 1241: 1140: 1079: 92:, this decay is much slower than the charging decay-cells with no supporting 48: 964: 1165: 1074: 900: 421: 331: 57: 389: 1185: 1115: 1099: 481: 433: 327: 97: 93: 954: 104:
over relatively longer time intervals, chronoamperometry gives a better
1210: 1039: 765:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
710:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
646:
Lingane, Peter James; Peters, Dennis G. (1971). "Chronopotentiometry".
619:
Lingane, Peter James; Peters, Dennis G. (1971). "Chronopotentiometry".
149: 73: 927: 892: 694: 1130: 157: 61: 1160: 441: 347: 339: 101: 24: 141:, especially the reaction mechanism of organic electrochemistry. 134: 121:
There are two types of chronoamperometry that are commonly used:
445: 351:
stable current that can flow between two different electrodes.
161: 65: 500: 707: 437: 359: 343: 411: 384: 248:{\displaystyle i={\frac {nFAC{\sqrt {D}}}{\sqrt {t\pi }}}} 913: 129:. Before running controlled-potential chronoamperometry, 528:
Electrochemical Methods: Fundamentals and Applications
298:
is the initial concentration of the analyte in mol/cm;
19: 525: 205: 734: 672: 501:
Kissinger, Peter; William R. Heineman (1996-01-23).
133:
are run to determine the reduction potential of the
60:species can be obtained from the ratio of the peak 27:
showing integrated region for charge determination.
401: 247: 1300: 878: 526:Bard, Allen J.; Larry R. Faulkner (2000-12-18). 108:in comparison to other amperometric techniques. 621:C R C Critical Reviews in Analytical Chemistry 56:Limited information about the identity of the 994: 980: 645: 618: 940: 762: 648:CRC Critical Reviews in Analytical Chemistry 577: 987: 973: 440:ions, it is proved that the adsorption of 287:is the area of the planar electrode in cm; 368:Cell of controlled-potential electrolysis 96:are notable exceptions. Most commonly a 798: 410: 388: 363: 360:Controlled-potential (bulk) electrolysis 110: 39:is an analytical technique in which the 18: 385:Double potential step chronoamperometry 1301: 738:Journal of Electroanalytical Chemistry 406: 123:controlled-potential chronoamperometry 115:Scheme of chronoamperometry instrument 968: 550: 16:Analytical method in electrochemistry 127:controlled-current chronoamperometry 838: 606:"The Nobel Prize in Chemistry 1959" 451: 13: 330:. To connect the fast recorder or 14: 1320: 1010:Adsorptive stripping voltammetry 551:Zoski, Cynthia G. (2007-02-07). 472:Electrochemical skin conductance 23:Double-pulsed chronoamperometry 934: 907: 872: 832: 792: 783: 756: 728: 402:Two methods from chronoanalysis 1262:Faraday's laws of electrolysis 1146:Hanging mercury drop electrode 1050:Differential pulse voltammetry 1030:Cathodic stripping voltammetry 750:10.1016/j.jelechem.2010.06.001 701: 666: 639: 612: 598: 571: 544: 519: 494: 354: 100:is used. Since the current is 1: 1085:Rotated electrode voltammetry 487: 1181:Rotating ring-disk electrode 1020:Anodic stripping voltammetry 777:10.1016/0022-0728(85)85083-X 722:10.1016/0022-0728(86)90030-6 592:10.1016/0013-4686(65)80003-2 554:Handbook of Electrochemistry 7: 1201:Standard hydrogen electrode 1191:Saturated calomel electrode 799:Cottrell, F. G. Z. (1902). 460: 271:is the number of electrons; 10: 1325: 1126:Dropping mercury electrode 393:Cell of cyclic voltammetry 336:dropping mercury electrode 179: 144: 139:coupled chemical reactions 1309:Electroanalytical methods 1285: 1224: 1196:Silver chloride electrode 1108: 1002: 996:Electroanalytical methods 660:10.1080/1040834nu08542742 633:10.1080/1040834nu08542742 467:Electroanalytical methods 1070:Normal pulse voltammetry 1065:Linear sweep voltammetry 477:Potentiometric titration 64:current versus the peak 1176:Rotating disk electrode 1151:Ion selective electrode 314:is the time in seconds. 265:is the current in amps; 1237:Butler–Volmer equation 1090:Squarewave voltammetry 1060:Hydrodynamic technique 1015:Amperometric titration 416: 394: 369: 249: 168:, thereby causing the 116: 98:three-electrode system 28: 1252:Debye–Hückel equation 1095:Staircase voltammetry 530:(2 ed.). Wiley. 414: 392: 367: 306:diffusion coefficient 250: 114: 106:signal-to-noise ratio 90:electrochemical cells 22: 1289:Analytical Chemistry 1232:Activity coefficient 841:Bull. Chem. Soc. Jpn 557:. Elsevier Science. 308:for species in cm/s; 203: 131:cyclic voltammetries 1206:Ultramicroelectrode 1171:Reference electrode 1121:Auxiliary electrode 955:10.1021/j100885a008 687:2005JElS..152E.222V 675:J. Electrochem. Soc 580:Electrochimica Acta 505:(2 ed.). CRC. 415:Chronopotentiometry 407:Chronopotentiometry 192:, and obtained the 70:decay exponentially 1156:Mercury coulometer 1045:Cyclic voltammetry 417: 395: 370: 324:Jaroslav Heyrovský 245: 117: 80:- which is due to 51:and the resulting 41:electric potential 29: 1296: 1295: 1247:Cottrell equation 1216:Working electrode 1136:Electrolytic cell 1055:Electrogravimetry 1035:Chronoamperometry 1025:Bulk electrolysis 928:10.1021/ac970701n 922:(24): 5082–5086. 893:10.1021/ac0109117 860:Missing or empty 820:Missing or empty 695:10.1149/1.1928168 564:978-0-444-51958-0 537:978-0-471-04372-0 512:978-0-8247-9445-3 430:hydrogen peroxide 243: 242: 232: 194:Cottrell equation 190:Laplace transform 166:diffusion-limited 154:dimethylformamide 86:Cottrell equation 82:electron transfer 72:with time as any 45:working electrode 37:chronoamperometry 1316: 989: 982: 975: 966: 965: 959: 958: 938: 932: 931: 911: 905: 904: 876: 870: 869: 863: 858: 856: 848: 836: 830: 829: 823: 818: 816: 808: 796: 790: 787: 781: 780: 760: 754: 753: 732: 726: 725: 705: 699: 698: 681:(7): E222–E229. 670: 664: 663: 643: 637: 636: 616: 610: 609: 602: 596: 595: 575: 569: 568: 548: 542: 541: 523: 517: 516: 498: 452:Chronocoulometry 313: 303: 297: 286: 279:Faraday constant 276: 270: 264: 254: 252: 251: 246: 244: 235: 234: 233: 228: 213: 152:in deoxygenated 78:Faradaic current 33:electrochemistry 1324: 1323: 1319: 1318: 1317: 1315: 1314: 1313: 1299: 1298: 1297: 1292: 1281: 1277:Nernst equation 1220: 1109:Instrumentation 1104: 998: 993: 963: 962: 939: 935: 912: 908: 877: 873: 861: 859: 850: 849: 837: 833: 821: 819: 810: 809: 797: 793: 788: 784: 761: 757: 733: 729: 706: 702: 671: 667: 644: 640: 617: 613: 604: 603: 599: 576: 572: 565: 549: 545: 538: 524: 520: 513: 499: 495: 490: 463: 454: 409: 404: 387: 362: 357: 311: 301: 296: 290: 284: 274: 268: 262: 227: 214: 212: 204: 201: 200: 182: 147: 17: 12: 11: 5: 1322: 1312: 1311: 1294: 1293: 1286: 1283: 1282: 1280: 1279: 1274: 1272:Ionic strength 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1234: 1228: 1226: 1222: 1221: 1219: 1218: 1213: 1208: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1168: 1163: 1158: 1153: 1148: 1143: 1138: 1133: 1128: 1123: 1118: 1112: 1110: 1106: 1105: 1103: 1102: 1097: 1092: 1087: 1082: 1077: 1072: 1067: 1062: 1057: 1052: 1047: 1042: 1037: 1032: 1027: 1022: 1017: 1012: 1006: 1004: 1000: 999: 992: 991: 984: 977: 969: 961: 960: 933: 906: 887:(1): 149–157. 871: 831: 791: 782: 755: 744:(2): 194–203. 727: 716:(1): 107–124. 700: 665: 654:(4): 587–634. 638: 627:(4): 587–634. 611: 597: 586:(9): 905–920. 570: 563: 543: 536: 518: 511: 492: 491: 489: 486: 485: 484: 479: 474: 469: 462: 459: 453: 450: 408: 405: 403: 400: 386: 383: 361: 358: 356: 353: 316: 315: 309: 299: 294: 288: 282: 272: 266: 256: 255: 241: 238: 231: 226: 223: 220: 217: 211: 208: 186:F. G. Cottrell 181: 178: 146: 143: 15: 9: 6: 4: 3: 2: 1321: 1310: 1307: 1306: 1304: 1291: 1290: 1284: 1278: 1275: 1273: 1270: 1268: 1267:Half-reaction 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1242:Cell notation 1240: 1238: 1235: 1233: 1230: 1229: 1227: 1223: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1141:Galvanic cell 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1113: 1111: 1107: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1080:Potentiometry 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1011: 1008: 1007: 1005: 1001: 997: 990: 985: 983: 978: 976: 971: 970: 967: 956: 952: 948: 944: 943:J. Phys. Chem 937: 929: 925: 921: 917: 910: 902: 898: 894: 890: 886: 882: 875: 867: 854: 846: 842: 835: 827: 814: 806: 802: 801:Z. Phys. Chem 795: 786: 778: 774: 771:(1): 93–104. 770: 766: 759: 751: 747: 743: 739: 731: 723: 719: 715: 711: 704: 696: 692: 688: 684: 680: 676: 669: 661: 657: 653: 649: 642: 634: 630: 626: 622: 615: 607: 601: 593: 589: 585: 581: 574: 566: 560: 556: 555: 547: 539: 533: 529: 522: 514: 508: 504: 497: 493: 483: 480: 478: 475: 473: 470: 468: 465: 464: 458: 449: 447: 443: 439: 435: 431: 425: 423: 413: 399: 391: 382: 378: 374: 366: 352: 349: 345: 341: 337: 333: 329: 325: 320: 310: 307: 300: 293: 289: 283: 280: 273: 267: 261: 260: 259: 239: 236: 229: 224: 221: 218: 215: 209: 206: 199: 198: 197: 195: 191: 187: 177: 173: 171: 167: 163: 159: 155: 151: 142: 140: 136: 132: 128: 124: 119: 113: 109: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 54: 50: 46: 42: 38: 34: 26: 21: 1287: 1257:Double layer 1166:Potentiostat 1075:Polarography 1034: 946: 942: 936: 919: 915: 909: 884: 880: 874: 862:|title= 853:cite journal 844: 840: 839:Kambara, T. 834: 822:|title= 813:cite journal 804: 800: 794: 785: 768: 764: 758: 741: 737: 730: 713: 709: 703: 678: 674: 668: 651: 647: 641: 624: 620: 614: 600: 583: 579: 573: 553: 546: 527: 521: 502: 496: 455: 426: 422:polarography 418: 396: 379: 375: 371: 332:oscilloscope 321: 317: 291: 257: 183: 174: 148: 126: 122: 120: 118: 58:electrolyzed 36: 30: 1186:Salt bridge 1100:Voltammetry 482:Voltammetry 434:oxalic acid 355:Application 328:polarograph 94:electrolyte 1211:Voltameter 1116:Amperostat 1040:Coulometry 1003:Techniques 916:Anal. Chem 881:Anal. Chem 847:(27): 523. 488:References 150:Anthracene 102:integrated 88:. In most 74:RC circuit 1131:Electrode 949:: 30–40. 322:In 1922, 240:π 184:In 1902, 162:reduction 158:potential 66:reduction 62:oxidation 1303:Category 1161:pH meter 901:11795783 461:See also 442:platinum 348:graphite 340:platinum 164:will be 135:analytes 25:waveform 683:Bibcode 304:is the 277:is the 258:where 180:History 170:current 145:Example 76:. The 53:current 49:stepped 43:of the 1225:Theory 899:  807:: 385. 561:  534:  509:  446:iodine 334:, the 160:. The 897:PMID 866:help 845:1954 826:help 679:1152 559:ISBN 532:ISBN 507:ISBN 438:iron 432:and 346:and 344:gold 125:and 951:doi 924:doi 889:doi 773:doi 769:196 746:doi 742:647 718:doi 714:198 691:doi 656:doi 629:doi 588:doi 47:is 31:In 1305:: 947:69 945:. 920:69 918:. 895:. 885:74 883:. 857:: 855:}} 851:{{ 843:. 817:: 815:}} 811:{{ 805:42 803:. 767:. 740:. 712:. 689:. 677:. 650:. 623:. 584:10 582:. 342:, 196:: 35:, 988:e 981:t 974:v 957:. 953:: 930:. 926:: 903:. 891:: 868:) 864:( 828:) 824:( 779:. 775:: 752:. 748:: 724:. 720:: 697:. 693:: 685:: 662:. 658:: 652:1 635:. 631:: 625:1 608:. 594:. 590:: 567:. 540:. 515:. 312:t 302:D 295:0 292:C 285:A 281:; 275:F 269:n 263:i 237:t 230:D 225:C 222:A 219:F 216:n 210:= 207:i

Index


waveform
electrochemistry
electric potential
working electrode
stepped
current
electrolyzed
oxidation
reduction
decay exponentially
RC circuit
Faradaic current
electron transfer
Cottrell equation
electrochemical cells
electrolyte
three-electrode system
integrated
signal-to-noise ratio

cyclic voltammetries
analytes
coupled chemical reactions
Anthracene
dimethylformamide
potential
reduction
diffusion-limited
current

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.